Merge tag 'mmc-v4.11-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43  * Check if any of the ctx's have pending work in this hardware queue
44  */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47         return sbitmap_any_bit_set(&hctx->ctx_map) ||
48                         !list_empty_careful(&hctx->dispatch) ||
49                         blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53  * Mark this ctx as having pending work in this hardware queue
54  */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56                                      struct blk_mq_ctx *ctx)
57 {
58         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63                                       struct blk_mq_ctx *ctx)
64 {
65         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70         int freeze_depth;
71
72         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73         if (freeze_depth == 1) {
74                 percpu_ref_kill(&q->q_usage_counter);
75                 blk_mq_run_hw_queues(q, false);
76         }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87                                      unsigned long timeout)
88 {
89         return wait_event_timeout(q->mq_freeze_wq,
90                                         percpu_ref_is_zero(&q->q_usage_counter),
91                                         timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96  * Guarantee no request is in use, so we can change any data structure of
97  * the queue afterward.
98  */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101         /*
102          * In the !blk_mq case we are only calling this to kill the
103          * q_usage_counter, otherwise this increases the freeze depth
104          * and waits for it to return to zero.  For this reason there is
105          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106          * exported to drivers as the only user for unfreeze is blk_mq.
107          */
108         blk_mq_freeze_queue_start(q);
109         blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114         /*
115          * ...just an alias to keep freeze and unfreeze actions balanced
116          * in the blk_mq_* namespace
117          */
118         blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124         int freeze_depth;
125
126         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127         WARN_ON_ONCE(freeze_depth < 0);
128         if (!freeze_depth) {
129                 percpu_ref_reinit(&q->q_usage_counter);
130                 wake_up_all(&q->mq_freeze_wq);
131         }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137  * @q: request queue.
138  *
139  * Note: this function does not prevent that the struct request end_io()
140  * callback function is invoked. Additionally, it is not prevented that
141  * new queue_rq() calls occur unless the queue has been stopped first.
142  */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145         struct blk_mq_hw_ctx *hctx;
146         unsigned int i;
147         bool rcu = false;
148
149         blk_mq_stop_hw_queues(q);
150
151         queue_for_each_hw_ctx(q, hctx, i) {
152                 if (hctx->flags & BLK_MQ_F_BLOCKING)
153                         synchronize_srcu(&hctx->queue_rq_srcu);
154                 else
155                         rcu = true;
156         }
157         if (rcu)
158                 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164         struct blk_mq_hw_ctx *hctx;
165         unsigned int i;
166
167         queue_for_each_hw_ctx(q, hctx, i)
168                 if (blk_mq_hw_queue_mapped(hctx))
169                         blk_mq_tag_wakeup_all(hctx->tags, true);
170
171         /*
172          * If we are called because the queue has now been marked as
173          * dying, we need to ensure that processes currently waiting on
174          * the queue are notified as well.
175          */
176         wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181         return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186                         struct request *rq, unsigned int op)
187 {
188         INIT_LIST_HEAD(&rq->queuelist);
189         /* csd/requeue_work/fifo_time is initialized before use */
190         rq->q = q;
191         rq->mq_ctx = ctx;
192         rq->cmd_flags = op;
193         if (blk_queue_io_stat(q))
194                 rq->rq_flags |= RQF_IO_STAT;
195         /* do not touch atomic flags, it needs atomic ops against the timer */
196         rq->cpu = -1;
197         INIT_HLIST_NODE(&rq->hash);
198         RB_CLEAR_NODE(&rq->rb_node);
199         rq->rq_disk = NULL;
200         rq->part = NULL;
201         rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203         rq->rl = NULL;
204         set_start_time_ns(rq);
205         rq->io_start_time_ns = 0;
206 #endif
207         rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209         rq->nr_integrity_segments = 0;
210 #endif
211         rq->special = NULL;
212         /* tag was already set */
213         rq->errors = 0;
214         rq->extra_len = 0;
215
216         INIT_LIST_HEAD(&rq->timeout_list);
217         rq->timeout = 0;
218
219         rq->end_io = NULL;
220         rq->end_io_data = NULL;
221         rq->next_rq = NULL;
222
223         ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228                                        unsigned int op)
229 {
230         struct request *rq;
231         unsigned int tag;
232
233         tag = blk_mq_get_tag(data);
234         if (tag != BLK_MQ_TAG_FAIL) {
235                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237                 rq = tags->static_rqs[tag];
238
239                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240                         rq->tag = -1;
241                         rq->internal_tag = tag;
242                 } else {
243                         if (blk_mq_tag_busy(data->hctx)) {
244                                 rq->rq_flags = RQF_MQ_INFLIGHT;
245                                 atomic_inc(&data->hctx->nr_active);
246                         }
247                         rq->tag = tag;
248                         rq->internal_tag = -1;
249                         data->hctx->tags->rqs[rq->tag] = rq;
250                 }
251
252                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253                 return rq;
254         }
255
256         return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261                 unsigned int flags)
262 {
263         struct blk_mq_alloc_data alloc_data = { .flags = flags };
264         struct request *rq;
265         int ret;
266
267         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268         if (ret)
269                 return ERR_PTR(ret);
270
271         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273         blk_mq_put_ctx(alloc_data.ctx);
274         blk_queue_exit(q);
275
276         if (!rq)
277                 return ERR_PTR(-EWOULDBLOCK);
278
279         rq->__data_len = 0;
280         rq->__sector = (sector_t) -1;
281         rq->bio = rq->biotail = NULL;
282         return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287                 unsigned int flags, unsigned int hctx_idx)
288 {
289         struct blk_mq_alloc_data alloc_data = { .flags = flags };
290         struct request *rq;
291         unsigned int cpu;
292         int ret;
293
294         /*
295          * If the tag allocator sleeps we could get an allocation for a
296          * different hardware context.  No need to complicate the low level
297          * allocator for this for the rare use case of a command tied to
298          * a specific queue.
299          */
300         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301                 return ERR_PTR(-EINVAL);
302
303         if (hctx_idx >= q->nr_hw_queues)
304                 return ERR_PTR(-EIO);
305
306         ret = blk_queue_enter(q, true);
307         if (ret)
308                 return ERR_PTR(ret);
309
310         /*
311          * Check if the hardware context is actually mapped to anything.
312          * If not tell the caller that it should skip this queue.
313          */
314         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316                 blk_queue_exit(q);
317                 return ERR_PTR(-EXDEV);
318         }
319         cpu = cpumask_first(alloc_data.hctx->cpumask);
320         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324         blk_mq_put_ctx(alloc_data.ctx);
325         blk_queue_exit(q);
326
327         if (!rq)
328                 return ERR_PTR(-EWOULDBLOCK);
329
330         return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335                              struct request *rq)
336 {
337         const int sched_tag = rq->internal_tag;
338         struct request_queue *q = rq->q;
339
340         if (rq->rq_flags & RQF_MQ_INFLIGHT)
341                 atomic_dec(&hctx->nr_active);
342
343         wbt_done(q->rq_wb, &rq->issue_stat);
344         rq->rq_flags = 0;
345
346         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348         if (rq->tag != -1)
349                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350         if (sched_tag != -1)
351                 blk_mq_sched_completed_request(hctx, rq);
352         blk_mq_sched_restart_queues(hctx);
353         blk_queue_exit(q);
354 }
355
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357                                      struct request *rq)
358 {
359         struct blk_mq_ctx *ctx = rq->mq_ctx;
360
361         ctx->rq_completed[rq_is_sync(rq)]++;
362         __blk_mq_finish_request(hctx, ctx, rq);
363 }
364
365 void blk_mq_finish_request(struct request *rq)
366 {
367         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369
370 void blk_mq_free_request(struct request *rq)
371 {
372         blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378         blk_account_io_done(rq);
379
380         if (rq->end_io) {
381                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
382                 rq->end_io(rq, error);
383         } else {
384                 if (unlikely(blk_bidi_rq(rq)))
385                         blk_mq_free_request(rq->next_rq);
386                 blk_mq_free_request(rq);
387         }
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394                 BUG();
395         __blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401         struct request *rq = data;
402
403         rq->q->softirq_done_fn(rq);
404 }
405
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408         struct blk_mq_ctx *ctx = rq->mq_ctx;
409         bool shared = false;
410         int cpu;
411
412         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413                 rq->q->softirq_done_fn(rq);
414                 return;
415         }
416
417         cpu = get_cpu();
418         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419                 shared = cpus_share_cache(cpu, ctx->cpu);
420
421         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422                 rq->csd.func = __blk_mq_complete_request_remote;
423                 rq->csd.info = rq;
424                 rq->csd.flags = 0;
425                 smp_call_function_single_async(ctx->cpu, &rq->csd);
426         } else {
427                 rq->q->softirq_done_fn(rq);
428         }
429         put_cpu();
430 }
431
432 static void blk_mq_stat_add(struct request *rq)
433 {
434         if (rq->rq_flags & RQF_STATS) {
435                 /*
436                  * We could rq->mq_ctx here, but there's less of a risk
437                  * of races if we have the completion event add the stats
438                  * to the local software queue.
439                  */
440                 struct blk_mq_ctx *ctx;
441
442                 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443                 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444         }
445 }
446
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449         struct request_queue *q = rq->q;
450
451         blk_mq_stat_add(rq);
452
453         if (!q->softirq_done_fn)
454                 blk_mq_end_request(rq, rq->errors);
455         else
456                 blk_mq_ipi_complete_request(rq);
457 }
458
459 /**
460  * blk_mq_complete_request - end I/O on a request
461  * @rq:         the request being processed
462  *
463  * Description:
464  *      Ends all I/O on a request. It does not handle partial completions.
465  *      The actual completion happens out-of-order, through a IPI handler.
466  **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469         struct request_queue *q = rq->q;
470
471         if (unlikely(blk_should_fake_timeout(q)))
472                 return;
473         if (!blk_mark_rq_complete(rq)) {
474                 rq->errors = error;
475                 __blk_mq_complete_request(rq);
476         }
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479
480 int blk_mq_request_started(struct request *rq)
481 {
482         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
486 void blk_mq_start_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489
490         blk_mq_sched_started_request(rq);
491
492         trace_block_rq_issue(q, rq);
493
494         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495                 blk_stat_set_issue_time(&rq->issue_stat);
496                 rq->rq_flags |= RQF_STATS;
497                 wbt_issue(q->rq_wb, &rq->issue_stat);
498         }
499
500         blk_add_timer(rq);
501
502         /*
503          * Ensure that ->deadline is visible before set the started
504          * flag and clear the completed flag.
505          */
506         smp_mb__before_atomic();
507
508         /*
509          * Mark us as started and clear complete. Complete might have been
510          * set if requeue raced with timeout, which then marked it as
511          * complete. So be sure to clear complete again when we start
512          * the request, otherwise we'll ignore the completion event.
513          */
514         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519         if (q->dma_drain_size && blk_rq_bytes(rq)) {
520                 /*
521                  * Make sure space for the drain appears.  We know we can do
522                  * this because max_hw_segments has been adjusted to be one
523                  * fewer than the device can handle.
524                  */
525                 rq->nr_phys_segments++;
526         }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532         struct request_queue *q = rq->q;
533
534         trace_block_rq_requeue(q, rq);
535         wbt_requeue(q->rq_wb, &rq->issue_stat);
536         blk_mq_sched_requeue_request(rq);
537
538         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539                 if (q->dma_drain_size && blk_rq_bytes(rq))
540                         rq->nr_phys_segments--;
541         }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546         __blk_mq_requeue_request(rq);
547
548         BUG_ON(blk_queued_rq(rq));
549         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555         struct request_queue *q =
556                 container_of(work, struct request_queue, requeue_work.work);
557         LIST_HEAD(rq_list);
558         struct request *rq, *next;
559         unsigned long flags;
560
561         spin_lock_irqsave(&q->requeue_lock, flags);
562         list_splice_init(&q->requeue_list, &rq_list);
563         spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567                         continue;
568
569                 rq->rq_flags &= ~RQF_SOFTBARRIER;
570                 list_del_init(&rq->queuelist);
571                 blk_mq_sched_insert_request(rq, true, false, false, true);
572         }
573
574         while (!list_empty(&rq_list)) {
575                 rq = list_entry(rq_list.next, struct request, queuelist);
576                 list_del_init(&rq->queuelist);
577                 blk_mq_sched_insert_request(rq, false, false, false, true);
578         }
579
580         blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584                                 bool kick_requeue_list)
585 {
586         struct request_queue *q = rq->q;
587         unsigned long flags;
588
589         /*
590          * We abuse this flag that is otherwise used by the I/O scheduler to
591          * request head insertation from the workqueue.
592          */
593         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595         spin_lock_irqsave(&q->requeue_lock, flags);
596         if (at_head) {
597                 rq->rq_flags |= RQF_SOFTBARRIER;
598                 list_add(&rq->queuelist, &q->requeue_list);
599         } else {
600                 list_add_tail(&rq->queuelist, &q->requeue_list);
601         }
602         spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604         if (kick_requeue_list)
605                 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611         kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616                                     unsigned long msecs)
617 {
618         kblockd_schedule_delayed_work(&q->requeue_work,
619                                       msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625         unsigned long flags;
626         LIST_HEAD(rq_list);
627
628         spin_lock_irqsave(&q->requeue_lock, flags);
629         list_splice_init(&q->requeue_list, &rq_list);
630         spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632         while (!list_empty(&rq_list)) {
633                 struct request *rq;
634
635                 rq = list_first_entry(&rq_list, struct request, queuelist);
636                 list_del_init(&rq->queuelist);
637                 rq->errors = -EIO;
638                 blk_mq_end_request(rq, rq->errors);
639         }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645         if (tag < tags->nr_tags) {
646                 prefetch(tags->rqs[tag]);
647                 return tags->rqs[tag];
648         }
649
650         return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655         unsigned long next;
656         unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661         const struct blk_mq_ops *ops = req->q->mq_ops;
662         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664         /*
665          * We know that complete is set at this point. If STARTED isn't set
666          * anymore, then the request isn't active and the "timeout" should
667          * just be ignored. This can happen due to the bitflag ordering.
668          * Timeout first checks if STARTED is set, and if it is, assumes
669          * the request is active. But if we race with completion, then
670          * we both flags will get cleared. So check here again, and ignore
671          * a timeout event with a request that isn't active.
672          */
673         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674                 return;
675
676         if (ops->timeout)
677                 ret = ops->timeout(req, reserved);
678
679         switch (ret) {
680         case BLK_EH_HANDLED:
681                 __blk_mq_complete_request(req);
682                 break;
683         case BLK_EH_RESET_TIMER:
684                 blk_add_timer(req);
685                 blk_clear_rq_complete(req);
686                 break;
687         case BLK_EH_NOT_HANDLED:
688                 break;
689         default:
690                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691                 break;
692         }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696                 struct request *rq, void *priv, bool reserved)
697 {
698         struct blk_mq_timeout_data *data = priv;
699
700         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
701                 return;
702
703         if (time_after_eq(jiffies, rq->deadline)) {
704                 if (!blk_mark_rq_complete(rq))
705                         blk_mq_rq_timed_out(rq, reserved);
706         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
707                 data->next = rq->deadline;
708                 data->next_set = 1;
709         }
710 }
711
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714         struct request_queue *q =
715                 container_of(work, struct request_queue, timeout_work);
716         struct blk_mq_timeout_data data = {
717                 .next           = 0,
718                 .next_set       = 0,
719         };
720         int i;
721
722         /* A deadlock might occur if a request is stuck requiring a
723          * timeout at the same time a queue freeze is waiting
724          * completion, since the timeout code would not be able to
725          * acquire the queue reference here.
726          *
727          * That's why we don't use blk_queue_enter here; instead, we use
728          * percpu_ref_tryget directly, because we need to be able to
729          * obtain a reference even in the short window between the queue
730          * starting to freeze, by dropping the first reference in
731          * blk_mq_freeze_queue_start, and the moment the last request is
732          * consumed, marked by the instant q_usage_counter reaches
733          * zero.
734          */
735         if (!percpu_ref_tryget(&q->q_usage_counter))
736                 return;
737
738         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739
740         if (data.next_set) {
741                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
742                 mod_timer(&q->timeout, data.next);
743         } else {
744                 struct blk_mq_hw_ctx *hctx;
745
746                 queue_for_each_hw_ctx(q, hctx, i) {
747                         /* the hctx may be unmapped, so check it here */
748                         if (blk_mq_hw_queue_mapped(hctx))
749                                 blk_mq_tag_idle(hctx);
750                 }
751         }
752         blk_queue_exit(q);
753 }
754
755 /*
756  * Reverse check our software queue for entries that we could potentially
757  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
758  * too much time checking for merges.
759  */
760 static bool blk_mq_attempt_merge(struct request_queue *q,
761                                  struct blk_mq_ctx *ctx, struct bio *bio)
762 {
763         struct request *rq;
764         int checked = 8;
765
766         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767                 bool merged = false;
768
769                 if (!checked--)
770                         break;
771
772                 if (!blk_rq_merge_ok(rq, bio))
773                         continue;
774
775                 switch (blk_try_merge(rq, bio)) {
776                 case ELEVATOR_BACK_MERGE:
777                         if (blk_mq_sched_allow_merge(q, rq, bio))
778                                 merged = bio_attempt_back_merge(q, rq, bio);
779                         break;
780                 case ELEVATOR_FRONT_MERGE:
781                         if (blk_mq_sched_allow_merge(q, rq, bio))
782                                 merged = bio_attempt_front_merge(q, rq, bio);
783                         break;
784                 case ELEVATOR_DISCARD_MERGE:
785                         merged = bio_attempt_discard_merge(q, rq, bio);
786                         break;
787                 default:
788                         continue;
789                 }
790
791                 if (merged)
792                         ctx->rq_merged++;
793                 return merged;
794         }
795
796         return false;
797 }
798
799 struct flush_busy_ctx_data {
800         struct blk_mq_hw_ctx *hctx;
801         struct list_head *list;
802 };
803
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806         struct flush_busy_ctx_data *flush_data = data;
807         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810         sbitmap_clear_bit(sb, bitnr);
811         spin_lock(&ctx->lock);
812         list_splice_tail_init(&ctx->rq_list, flush_data->list);
813         spin_unlock(&ctx->lock);
814         return true;
815 }
816
817 /*
818  * Process software queues that have been marked busy, splicing them
819  * to the for-dispatch
820  */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823         struct flush_busy_ctx_data data = {
824                 .hctx = hctx,
825                 .list = list,
826         };
827
828         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834         if (!queued)
835                 return 0;
836
837         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841                            bool wait)
842 {
843         struct blk_mq_alloc_data data = {
844                 .q = rq->q,
845                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847         };
848
849         if (rq->tag != -1) {
850 done:
851                 if (hctx)
852                         *hctx = data.hctx;
853                 return true;
854         }
855
856         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
857                 data.flags |= BLK_MQ_REQ_RESERVED;
858
859         rq->tag = blk_mq_get_tag(&data);
860         if (rq->tag >= 0) {
861                 if (blk_mq_tag_busy(data.hctx)) {
862                         rq->rq_flags |= RQF_MQ_INFLIGHT;
863                         atomic_inc(&data.hctx->nr_active);
864                 }
865                 data.hctx->tags->rqs[rq->tag] = rq;
866                 goto done;
867         }
868
869         return false;
870 }
871
872 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873                                     struct request *rq)
874 {
875         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876         rq->tag = -1;
877
878         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880                 atomic_dec(&hctx->nr_active);
881         }
882 }
883
884 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
885                                        struct request *rq)
886 {
887         if (rq->tag == -1 || rq->internal_tag == -1)
888                 return;
889
890         __blk_mq_put_driver_tag(hctx, rq);
891 }
892
893 static void blk_mq_put_driver_tag(struct request *rq)
894 {
895         struct blk_mq_hw_ctx *hctx;
896
897         if (rq->tag == -1 || rq->internal_tag == -1)
898                 return;
899
900         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
901         __blk_mq_put_driver_tag(hctx, rq);
902 }
903
904 /*
905  * If we fail getting a driver tag because all the driver tags are already
906  * assigned and on the dispatch list, BUT the first entry does not have a
907  * tag, then we could deadlock. For that case, move entries with assigned
908  * driver tags to the front, leaving the set of tagged requests in the
909  * same order, and the untagged set in the same order.
910  */
911 static bool reorder_tags_to_front(struct list_head *list)
912 {
913         struct request *rq, *tmp, *first = NULL;
914
915         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
916                 if (rq == first)
917                         break;
918                 if (rq->tag != -1) {
919                         list_move(&rq->queuelist, list);
920                         if (!first)
921                                 first = rq;
922                 }
923         }
924
925         return first != NULL;
926 }
927
928 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
929                                 void *key)
930 {
931         struct blk_mq_hw_ctx *hctx;
932
933         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
934
935         list_del(&wait->task_list);
936         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
937         blk_mq_run_hw_queue(hctx, true);
938         return 1;
939 }
940
941 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
942 {
943         struct sbq_wait_state *ws;
944
945         /*
946          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
947          * The thread which wins the race to grab this bit adds the hardware
948          * queue to the wait queue.
949          */
950         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
951             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
952                 return false;
953
954         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
955         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
956
957         /*
958          * As soon as this returns, it's no longer safe to fiddle with
959          * hctx->dispatch_wait, since a completion can wake up the wait queue
960          * and unlock the bit.
961          */
962         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
963         return true;
964 }
965
966 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
967 {
968         struct request_queue *q = hctx->queue;
969         struct request *rq;
970         LIST_HEAD(driver_list);
971         struct list_head *dptr;
972         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
973
974         /*
975          * Start off with dptr being NULL, so we start the first request
976          * immediately, even if we have more pending.
977          */
978         dptr = NULL;
979
980         /*
981          * Now process all the entries, sending them to the driver.
982          */
983         errors = queued = 0;
984         while (!list_empty(list)) {
985                 struct blk_mq_queue_data bd;
986
987                 rq = list_first_entry(list, struct request, queuelist);
988                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989                         if (!queued && reorder_tags_to_front(list))
990                                 continue;
991
992                         /*
993                          * The initial allocation attempt failed, so we need to
994                          * rerun the hardware queue when a tag is freed.
995                          */
996                         if (blk_mq_dispatch_wait_add(hctx)) {
997                                 /*
998                                  * It's possible that a tag was freed in the
999                                  * window between the allocation failure and
1000                                  * adding the hardware queue to the wait queue.
1001                                  */
1002                                 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003                                         break;
1004                         } else {
1005                                 break;
1006                         }
1007                 }
1008
1009                 list_del_init(&rq->queuelist);
1010
1011                 bd.rq = rq;
1012                 bd.list = dptr;
1013
1014                 /*
1015                  * Flag last if we have no more requests, or if we have more
1016                  * but can't assign a driver tag to it.
1017                  */
1018                 if (list_empty(list))
1019                         bd.last = true;
1020                 else {
1021                         struct request *nxt;
1022
1023                         nxt = list_first_entry(list, struct request, queuelist);
1024                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025                 }
1026
1027                 ret = q->mq_ops->queue_rq(hctx, &bd);
1028                 switch (ret) {
1029                 case BLK_MQ_RQ_QUEUE_OK:
1030                         queued++;
1031                         break;
1032                 case BLK_MQ_RQ_QUEUE_BUSY:
1033                         blk_mq_put_driver_tag_hctx(hctx, rq);
1034                         list_add(&rq->queuelist, list);
1035                         __blk_mq_requeue_request(rq);
1036                         break;
1037                 default:
1038                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1039                 case BLK_MQ_RQ_QUEUE_ERROR:
1040                         errors++;
1041                         rq->errors = -EIO;
1042                         blk_mq_end_request(rq, rq->errors);
1043                         break;
1044                 }
1045
1046                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047                         break;
1048
1049                 /*
1050                  * We've done the first request. If we have more than 1
1051                  * left in the list, set dptr to defer issue.
1052                  */
1053                 if (!dptr && list->next != list->prev)
1054                         dptr = &driver_list;
1055         }
1056
1057         hctx->dispatched[queued_to_index(queued)]++;
1058
1059         /*
1060          * Any items that need requeuing? Stuff them into hctx->dispatch,
1061          * that is where we will continue on next queue run.
1062          */
1063         if (!list_empty(list)) {
1064                 /*
1065                  * If we got a driver tag for the next request already,
1066                  * free it again.
1067                  */
1068                 rq = list_first_entry(list, struct request, queuelist);
1069                 blk_mq_put_driver_tag(rq);
1070
1071                 spin_lock(&hctx->lock);
1072                 list_splice_init(list, &hctx->dispatch);
1073                 spin_unlock(&hctx->lock);
1074
1075                 /*
1076                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077                  * it's possible the queue is stopped and restarted again
1078                  * before this. Queue restart will dispatch requests. And since
1079                  * requests in rq_list aren't added into hctx->dispatch yet,
1080                  * the requests in rq_list might get lost.
1081                  *
1082                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1083                  *
1084                  * If RESTART or TAG_WAITING is set, then let completion restart
1085                  * the queue instead of potentially looping here.
1086                  */
1087                 if (!blk_mq_sched_needs_restart(hctx) &&
1088                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1089                         blk_mq_run_hw_queue(hctx, true);
1090         }
1091
1092         return (queued + errors) != 0;
1093 }
1094
1095 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1096 {
1097         int srcu_idx;
1098
1099         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100                 cpu_online(hctx->next_cpu));
1101
1102         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103                 rcu_read_lock();
1104                 blk_mq_sched_dispatch_requests(hctx);
1105                 rcu_read_unlock();
1106         } else {
1107                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1108                 blk_mq_sched_dispatch_requests(hctx);
1109                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1110         }
1111 }
1112
1113 /*
1114  * It'd be great if the workqueue API had a way to pass
1115  * in a mask and had some smarts for more clever placement.
1116  * For now we just round-robin here, switching for every
1117  * BLK_MQ_CPU_WORK_BATCH queued items.
1118  */
1119 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1120 {
1121         if (hctx->queue->nr_hw_queues == 1)
1122                 return WORK_CPU_UNBOUND;
1123
1124         if (--hctx->next_cpu_batch <= 0) {
1125                 int next_cpu;
1126
1127                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128                 if (next_cpu >= nr_cpu_ids)
1129                         next_cpu = cpumask_first(hctx->cpumask);
1130
1131                 hctx->next_cpu = next_cpu;
1132                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1133         }
1134
1135         return hctx->next_cpu;
1136 }
1137
1138 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1139 {
1140         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1141                      !blk_mq_hw_queue_mapped(hctx)))
1142                 return;
1143
1144         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1145                 int cpu = get_cpu();
1146                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1147                         __blk_mq_run_hw_queue(hctx);
1148                         put_cpu();
1149                         return;
1150                 }
1151
1152                 put_cpu();
1153         }
1154
1155         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1156 }
1157
1158 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1159 {
1160         struct blk_mq_hw_ctx *hctx;
1161         int i;
1162
1163         queue_for_each_hw_ctx(q, hctx, i) {
1164                 if (!blk_mq_hctx_has_pending(hctx) ||
1165                     blk_mq_hctx_stopped(hctx))
1166                         continue;
1167
1168                 blk_mq_run_hw_queue(hctx, async);
1169         }
1170 }
1171 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1172
1173 /**
1174  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1175  * @q: request queue.
1176  *
1177  * The caller is responsible for serializing this function against
1178  * blk_mq_{start,stop}_hw_queue().
1179  */
1180 bool blk_mq_queue_stopped(struct request_queue *q)
1181 {
1182         struct blk_mq_hw_ctx *hctx;
1183         int i;
1184
1185         queue_for_each_hw_ctx(q, hctx, i)
1186                 if (blk_mq_hctx_stopped(hctx))
1187                         return true;
1188
1189         return false;
1190 }
1191 EXPORT_SYMBOL(blk_mq_queue_stopped);
1192
1193 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1194 {
1195         cancel_work(&hctx->run_work);
1196         cancel_delayed_work(&hctx->delay_work);
1197         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1198 }
1199 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1200
1201 void blk_mq_stop_hw_queues(struct request_queue *q)
1202 {
1203         struct blk_mq_hw_ctx *hctx;
1204         int i;
1205
1206         queue_for_each_hw_ctx(q, hctx, i)
1207                 blk_mq_stop_hw_queue(hctx);
1208 }
1209 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1210
1211 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1212 {
1213         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1214
1215         blk_mq_run_hw_queue(hctx, false);
1216 }
1217 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1218
1219 void blk_mq_start_hw_queues(struct request_queue *q)
1220 {
1221         struct blk_mq_hw_ctx *hctx;
1222         int i;
1223
1224         queue_for_each_hw_ctx(q, hctx, i)
1225                 blk_mq_start_hw_queue(hctx);
1226 }
1227 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1228
1229 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1230 {
1231         if (!blk_mq_hctx_stopped(hctx))
1232                 return;
1233
1234         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235         blk_mq_run_hw_queue(hctx, async);
1236 }
1237 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1238
1239 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1240 {
1241         struct blk_mq_hw_ctx *hctx;
1242         int i;
1243
1244         queue_for_each_hw_ctx(q, hctx, i)
1245                 blk_mq_start_stopped_hw_queue(hctx, async);
1246 }
1247 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1248
1249 static void blk_mq_run_work_fn(struct work_struct *work)
1250 {
1251         struct blk_mq_hw_ctx *hctx;
1252
1253         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1254
1255         __blk_mq_run_hw_queue(hctx);
1256 }
1257
1258 static void blk_mq_delay_work_fn(struct work_struct *work)
1259 {
1260         struct blk_mq_hw_ctx *hctx;
1261
1262         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1263
1264         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1265                 __blk_mq_run_hw_queue(hctx);
1266 }
1267
1268 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1269 {
1270         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1271                 return;
1272
1273         blk_mq_stop_hw_queue(hctx);
1274         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1275                         &hctx->delay_work, msecs_to_jiffies(msecs));
1276 }
1277 EXPORT_SYMBOL(blk_mq_delay_queue);
1278
1279 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1280                                             struct request *rq,
1281                                             bool at_head)
1282 {
1283         struct blk_mq_ctx *ctx = rq->mq_ctx;
1284
1285         trace_block_rq_insert(hctx->queue, rq);
1286
1287         if (at_head)
1288                 list_add(&rq->queuelist, &ctx->rq_list);
1289         else
1290                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1291 }
1292
1293 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1294                              bool at_head)
1295 {
1296         struct blk_mq_ctx *ctx = rq->mq_ctx;
1297
1298         __blk_mq_insert_req_list(hctx, rq, at_head);
1299         blk_mq_hctx_mark_pending(hctx, ctx);
1300 }
1301
1302 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1303                             struct list_head *list)
1304
1305 {
1306         /*
1307          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1308          * offline now
1309          */
1310         spin_lock(&ctx->lock);
1311         while (!list_empty(list)) {
1312                 struct request *rq;
1313
1314                 rq = list_first_entry(list, struct request, queuelist);
1315                 BUG_ON(rq->mq_ctx != ctx);
1316                 list_del_init(&rq->queuelist);
1317                 __blk_mq_insert_req_list(hctx, rq, false);
1318         }
1319         blk_mq_hctx_mark_pending(hctx, ctx);
1320         spin_unlock(&ctx->lock);
1321 }
1322
1323 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1324 {
1325         struct request *rqa = container_of(a, struct request, queuelist);
1326         struct request *rqb = container_of(b, struct request, queuelist);
1327
1328         return !(rqa->mq_ctx < rqb->mq_ctx ||
1329                  (rqa->mq_ctx == rqb->mq_ctx &&
1330                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1331 }
1332
1333 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1334 {
1335         struct blk_mq_ctx *this_ctx;
1336         struct request_queue *this_q;
1337         struct request *rq;
1338         LIST_HEAD(list);
1339         LIST_HEAD(ctx_list);
1340         unsigned int depth;
1341
1342         list_splice_init(&plug->mq_list, &list);
1343
1344         list_sort(NULL, &list, plug_ctx_cmp);
1345
1346         this_q = NULL;
1347         this_ctx = NULL;
1348         depth = 0;
1349
1350         while (!list_empty(&list)) {
1351                 rq = list_entry_rq(list.next);
1352                 list_del_init(&rq->queuelist);
1353                 BUG_ON(!rq->q);
1354                 if (rq->mq_ctx != this_ctx) {
1355                         if (this_ctx) {
1356                                 trace_block_unplug(this_q, depth, from_schedule);
1357                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1358                                                                 &ctx_list,
1359                                                                 from_schedule);
1360                         }
1361
1362                         this_ctx = rq->mq_ctx;
1363                         this_q = rq->q;
1364                         depth = 0;
1365                 }
1366
1367                 depth++;
1368                 list_add_tail(&rq->queuelist, &ctx_list);
1369         }
1370
1371         /*
1372          * If 'this_ctx' is set, we know we have entries to complete
1373          * on 'ctx_list'. Do those.
1374          */
1375         if (this_ctx) {
1376                 trace_block_unplug(this_q, depth, from_schedule);
1377                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1378                                                 from_schedule);
1379         }
1380 }
1381
1382 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1383 {
1384         init_request_from_bio(rq, bio);
1385
1386         blk_account_io_start(rq, true);
1387 }
1388
1389 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1390 {
1391         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1392                 !blk_queue_nomerges(hctx->queue);
1393 }
1394
1395 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1396                                          struct blk_mq_ctx *ctx,
1397                                          struct request *rq, struct bio *bio)
1398 {
1399         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1400                 blk_mq_bio_to_request(rq, bio);
1401                 spin_lock(&ctx->lock);
1402 insert_rq:
1403                 __blk_mq_insert_request(hctx, rq, false);
1404                 spin_unlock(&ctx->lock);
1405                 return false;
1406         } else {
1407                 struct request_queue *q = hctx->queue;
1408
1409                 spin_lock(&ctx->lock);
1410                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1411                         blk_mq_bio_to_request(rq, bio);
1412                         goto insert_rq;
1413                 }
1414
1415                 spin_unlock(&ctx->lock);
1416                 __blk_mq_finish_request(hctx, ctx, rq);
1417                 return true;
1418         }
1419 }
1420
1421 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1422 {
1423         if (rq->tag != -1)
1424                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1425
1426         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1427 }
1428
1429 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1430                                       bool may_sleep)
1431 {
1432         struct request_queue *q = rq->q;
1433         struct blk_mq_queue_data bd = {
1434                 .rq = rq,
1435                 .list = NULL,
1436                 .last = 1
1437         };
1438         struct blk_mq_hw_ctx *hctx;
1439         blk_qc_t new_cookie;
1440         int ret;
1441
1442         if (q->elevator)
1443                 goto insert;
1444
1445         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1446                 goto insert;
1447
1448         new_cookie = request_to_qc_t(hctx, rq);
1449
1450         /*
1451          * For OK queue, we are done. For error, kill it. Any other
1452          * error (busy), just add it to our list as we previously
1453          * would have done
1454          */
1455         ret = q->mq_ops->queue_rq(hctx, &bd);
1456         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1457                 *cookie = new_cookie;
1458                 return;
1459         }
1460
1461         __blk_mq_requeue_request(rq);
1462
1463         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1464                 *cookie = BLK_QC_T_NONE;
1465                 rq->errors = -EIO;
1466                 blk_mq_end_request(rq, rq->errors);
1467                 return;
1468         }
1469
1470 insert:
1471         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1472 }
1473
1474 /*
1475  * Multiple hardware queue variant. This will not use per-process plugs,
1476  * but will attempt to bypass the hctx queueing if we can go straight to
1477  * hardware for SYNC IO.
1478  */
1479 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1480 {
1481         const int is_sync = op_is_sync(bio->bi_opf);
1482         const int is_flush_fua = op_is_flush(bio->bi_opf);
1483         struct blk_mq_alloc_data data = { .flags = 0 };
1484         struct request *rq;
1485         unsigned int request_count = 0, srcu_idx;
1486         struct blk_plug *plug;
1487         struct request *same_queue_rq = NULL;
1488         blk_qc_t cookie;
1489         unsigned int wb_acct;
1490
1491         blk_queue_bounce(q, &bio);
1492
1493         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1494                 bio_io_error(bio);
1495                 return BLK_QC_T_NONE;
1496         }
1497
1498         blk_queue_split(q, &bio, q->bio_split);
1499
1500         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1501             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1502                 return BLK_QC_T_NONE;
1503
1504         if (blk_mq_sched_bio_merge(q, bio))
1505                 return BLK_QC_T_NONE;
1506
1507         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1508
1509         trace_block_getrq(q, bio, bio->bi_opf);
1510
1511         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1512         if (unlikely(!rq)) {
1513                 __wbt_done(q->rq_wb, wb_acct);
1514                 return BLK_QC_T_NONE;
1515         }
1516
1517         wbt_track(&rq->issue_stat, wb_acct);
1518
1519         cookie = request_to_qc_t(data.hctx, rq);
1520
1521         if (unlikely(is_flush_fua)) {
1522                 if (q->elevator)
1523                         goto elv_insert;
1524                 blk_mq_bio_to_request(rq, bio);
1525                 blk_insert_flush(rq);
1526                 goto run_queue;
1527         }
1528
1529         plug = current->plug;
1530         /*
1531          * If the driver supports defer issued based on 'last', then
1532          * queue it up like normal since we can potentially save some
1533          * CPU this way.
1534          */
1535         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1536             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1537                 struct request *old_rq = NULL;
1538
1539                 blk_mq_bio_to_request(rq, bio);
1540
1541                 /*
1542                  * We do limited plugging. If the bio can be merged, do that.
1543                  * Otherwise the existing request in the plug list will be
1544                  * issued. So the plug list will have one request at most
1545                  */
1546                 if (plug) {
1547                         /*
1548                          * The plug list might get flushed before this. If that
1549                          * happens, same_queue_rq is invalid and plug list is
1550                          * empty
1551                          */
1552                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1553                                 old_rq = same_queue_rq;
1554                                 list_del_init(&old_rq->queuelist);
1555                         }
1556                         list_add_tail(&rq->queuelist, &plug->mq_list);
1557                 } else /* is_sync */
1558                         old_rq = rq;
1559                 blk_mq_put_ctx(data.ctx);
1560                 if (!old_rq)
1561                         goto done;
1562
1563                 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1564                         rcu_read_lock();
1565                         blk_mq_try_issue_directly(old_rq, &cookie, false);
1566                         rcu_read_unlock();
1567                 } else {
1568                         srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1569                         blk_mq_try_issue_directly(old_rq, &cookie, true);
1570                         srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1571                 }
1572                 goto done;
1573         }
1574
1575         if (q->elevator) {
1576 elv_insert:
1577                 blk_mq_put_ctx(data.ctx);
1578                 blk_mq_bio_to_request(rq, bio);
1579                 blk_mq_sched_insert_request(rq, false, true,
1580                                                 !is_sync || is_flush_fua, true);
1581                 goto done;
1582         }
1583         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1584                 /*
1585                  * For a SYNC request, send it to the hardware immediately. For
1586                  * an ASYNC request, just ensure that we run it later on. The
1587                  * latter allows for merging opportunities and more efficient
1588                  * dispatching.
1589                  */
1590 run_queue:
1591                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1592         }
1593         blk_mq_put_ctx(data.ctx);
1594 done:
1595         return cookie;
1596 }
1597
1598 /*
1599  * Single hardware queue variant. This will attempt to use any per-process
1600  * plug for merging and IO deferral.
1601  */
1602 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1603 {
1604         const int is_sync = op_is_sync(bio->bi_opf);
1605         const int is_flush_fua = op_is_flush(bio->bi_opf);
1606         struct blk_plug *plug;
1607         unsigned int request_count = 0;
1608         struct blk_mq_alloc_data data = { .flags = 0 };
1609         struct request *rq;
1610         blk_qc_t cookie;
1611         unsigned int wb_acct;
1612
1613         blk_queue_bounce(q, &bio);
1614
1615         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1616                 bio_io_error(bio);
1617                 return BLK_QC_T_NONE;
1618         }
1619
1620         blk_queue_split(q, &bio, q->bio_split);
1621
1622         if (!is_flush_fua && !blk_queue_nomerges(q)) {
1623                 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1624                         return BLK_QC_T_NONE;
1625         } else
1626                 request_count = blk_plug_queued_count(q);
1627
1628         if (blk_mq_sched_bio_merge(q, bio))
1629                 return BLK_QC_T_NONE;
1630
1631         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1632
1633         trace_block_getrq(q, bio, bio->bi_opf);
1634
1635         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1636         if (unlikely(!rq)) {
1637                 __wbt_done(q->rq_wb, wb_acct);
1638                 return BLK_QC_T_NONE;
1639         }
1640
1641         wbt_track(&rq->issue_stat, wb_acct);
1642
1643         cookie = request_to_qc_t(data.hctx, rq);
1644
1645         if (unlikely(is_flush_fua)) {
1646                 if (q->elevator)
1647                         goto elv_insert;
1648                 blk_mq_bio_to_request(rq, bio);
1649                 blk_insert_flush(rq);
1650                 goto run_queue;
1651         }
1652
1653         /*
1654          * A task plug currently exists. Since this is completely lockless,
1655          * utilize that to temporarily store requests until the task is
1656          * either done or scheduled away.
1657          */
1658         plug = current->plug;
1659         if (plug) {
1660                 struct request *last = NULL;
1661
1662                 blk_mq_bio_to_request(rq, bio);
1663
1664                 /*
1665                  * @request_count may become stale because of schedule
1666                  * out, so check the list again.
1667                  */
1668                 if (list_empty(&plug->mq_list))
1669                         request_count = 0;
1670                 if (!request_count)
1671                         trace_block_plug(q);
1672                 else
1673                         last = list_entry_rq(plug->mq_list.prev);
1674
1675                 blk_mq_put_ctx(data.ctx);
1676
1677                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1678                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1679                         blk_flush_plug_list(plug, false);
1680                         trace_block_plug(q);
1681                 }
1682
1683                 list_add_tail(&rq->queuelist, &plug->mq_list);
1684                 return cookie;
1685         }
1686
1687         if (q->elevator) {
1688 elv_insert:
1689                 blk_mq_put_ctx(data.ctx);
1690                 blk_mq_bio_to_request(rq, bio);
1691                 blk_mq_sched_insert_request(rq, false, true,
1692                                                 !is_sync || is_flush_fua, true);
1693                 goto done;
1694         }
1695         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1696                 /*
1697                  * For a SYNC request, send it to the hardware immediately. For
1698                  * an ASYNC request, just ensure that we run it later on. The
1699                  * latter allows for merging opportunities and more efficient
1700                  * dispatching.
1701                  */
1702 run_queue:
1703                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1704         }
1705
1706         blk_mq_put_ctx(data.ctx);
1707 done:
1708         return cookie;
1709 }
1710
1711 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1712                      unsigned int hctx_idx)
1713 {
1714         struct page *page;
1715
1716         if (tags->rqs && set->ops->exit_request) {
1717                 int i;
1718
1719                 for (i = 0; i < tags->nr_tags; i++) {
1720                         struct request *rq = tags->static_rqs[i];
1721
1722                         if (!rq)
1723                                 continue;
1724                         set->ops->exit_request(set->driver_data, rq,
1725                                                 hctx_idx, i);
1726                         tags->static_rqs[i] = NULL;
1727                 }
1728         }
1729
1730         while (!list_empty(&tags->page_list)) {
1731                 page = list_first_entry(&tags->page_list, struct page, lru);
1732                 list_del_init(&page->lru);
1733                 /*
1734                  * Remove kmemleak object previously allocated in
1735                  * blk_mq_init_rq_map().
1736                  */
1737                 kmemleak_free(page_address(page));
1738                 __free_pages(page, page->private);
1739         }
1740 }
1741
1742 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1743 {
1744         kfree(tags->rqs);
1745         tags->rqs = NULL;
1746         kfree(tags->static_rqs);
1747         tags->static_rqs = NULL;
1748
1749         blk_mq_free_tags(tags);
1750 }
1751
1752 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1753                                         unsigned int hctx_idx,
1754                                         unsigned int nr_tags,
1755                                         unsigned int reserved_tags)
1756 {
1757         struct blk_mq_tags *tags;
1758         int node;
1759
1760         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1761         if (node == NUMA_NO_NODE)
1762                 node = set->numa_node;
1763
1764         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1765                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1766         if (!tags)
1767                 return NULL;
1768
1769         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1770                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1771                                  node);
1772         if (!tags->rqs) {
1773                 blk_mq_free_tags(tags);
1774                 return NULL;
1775         }
1776
1777         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779                                  node);
1780         if (!tags->static_rqs) {
1781                 kfree(tags->rqs);
1782                 blk_mq_free_tags(tags);
1783                 return NULL;
1784         }
1785
1786         return tags;
1787 }
1788
1789 static size_t order_to_size(unsigned int order)
1790 {
1791         return (size_t)PAGE_SIZE << order;
1792 }
1793
1794 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1795                      unsigned int hctx_idx, unsigned int depth)
1796 {
1797         unsigned int i, j, entries_per_page, max_order = 4;
1798         size_t rq_size, left;
1799         int node;
1800
1801         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1802         if (node == NUMA_NO_NODE)
1803                 node = set->numa_node;
1804
1805         INIT_LIST_HEAD(&tags->page_list);
1806
1807         /*
1808          * rq_size is the size of the request plus driver payload, rounded
1809          * to the cacheline size
1810          */
1811         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1812                                 cache_line_size());
1813         left = rq_size * depth;
1814
1815         for (i = 0; i < depth; ) {
1816                 int this_order = max_order;
1817                 struct page *page;
1818                 int to_do;
1819                 void *p;
1820
1821                 while (this_order && left < order_to_size(this_order - 1))
1822                         this_order--;
1823
1824                 do {
1825                         page = alloc_pages_node(node,
1826                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1827                                 this_order);
1828                         if (page)
1829                                 break;
1830                         if (!this_order--)
1831                                 break;
1832                         if (order_to_size(this_order) < rq_size)
1833                                 break;
1834                 } while (1);
1835
1836                 if (!page)
1837                         goto fail;
1838
1839                 page->private = this_order;
1840                 list_add_tail(&page->lru, &tags->page_list);
1841
1842                 p = page_address(page);
1843                 /*
1844                  * Allow kmemleak to scan these pages as they contain pointers
1845                  * to additional allocations like via ops->init_request().
1846                  */
1847                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1848                 entries_per_page = order_to_size(this_order) / rq_size;
1849                 to_do = min(entries_per_page, depth - i);
1850                 left -= to_do * rq_size;
1851                 for (j = 0; j < to_do; j++) {
1852                         struct request *rq = p;
1853
1854                         tags->static_rqs[i] = rq;
1855                         if (set->ops->init_request) {
1856                                 if (set->ops->init_request(set->driver_data,
1857                                                 rq, hctx_idx, i,
1858                                                 node)) {
1859                                         tags->static_rqs[i] = NULL;
1860                                         goto fail;
1861                                 }
1862                         }
1863
1864                         p += rq_size;
1865                         i++;
1866                 }
1867         }
1868         return 0;
1869
1870 fail:
1871         blk_mq_free_rqs(set, tags, hctx_idx);
1872         return -ENOMEM;
1873 }
1874
1875 /*
1876  * 'cpu' is going away. splice any existing rq_list entries from this
1877  * software queue to the hw queue dispatch list, and ensure that it
1878  * gets run.
1879  */
1880 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1881 {
1882         struct blk_mq_hw_ctx *hctx;
1883         struct blk_mq_ctx *ctx;
1884         LIST_HEAD(tmp);
1885
1886         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1887         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1888
1889         spin_lock(&ctx->lock);
1890         if (!list_empty(&ctx->rq_list)) {
1891                 list_splice_init(&ctx->rq_list, &tmp);
1892                 blk_mq_hctx_clear_pending(hctx, ctx);
1893         }
1894         spin_unlock(&ctx->lock);
1895
1896         if (list_empty(&tmp))
1897                 return 0;
1898
1899         spin_lock(&hctx->lock);
1900         list_splice_tail_init(&tmp, &hctx->dispatch);
1901         spin_unlock(&hctx->lock);
1902
1903         blk_mq_run_hw_queue(hctx, true);
1904         return 0;
1905 }
1906
1907 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1908 {
1909         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1910                                             &hctx->cpuhp_dead);
1911 }
1912
1913 /* hctx->ctxs will be freed in queue's release handler */
1914 static void blk_mq_exit_hctx(struct request_queue *q,
1915                 struct blk_mq_tag_set *set,
1916                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1917 {
1918         unsigned flush_start_tag = set->queue_depth;
1919
1920         blk_mq_tag_idle(hctx);
1921
1922         if (set->ops->exit_request)
1923                 set->ops->exit_request(set->driver_data,
1924                                        hctx->fq->flush_rq, hctx_idx,
1925                                        flush_start_tag + hctx_idx);
1926
1927         if (set->ops->exit_hctx)
1928                 set->ops->exit_hctx(hctx, hctx_idx);
1929
1930         if (hctx->flags & BLK_MQ_F_BLOCKING)
1931                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1932
1933         blk_mq_remove_cpuhp(hctx);
1934         blk_free_flush_queue(hctx->fq);
1935         sbitmap_free(&hctx->ctx_map);
1936 }
1937
1938 static void blk_mq_exit_hw_queues(struct request_queue *q,
1939                 struct blk_mq_tag_set *set, int nr_queue)
1940 {
1941         struct blk_mq_hw_ctx *hctx;
1942         unsigned int i;
1943
1944         queue_for_each_hw_ctx(q, hctx, i) {
1945                 if (i == nr_queue)
1946                         break;
1947                 blk_mq_exit_hctx(q, set, hctx, i);
1948         }
1949 }
1950
1951 static int blk_mq_init_hctx(struct request_queue *q,
1952                 struct blk_mq_tag_set *set,
1953                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1954 {
1955         int node;
1956         unsigned flush_start_tag = set->queue_depth;
1957
1958         node = hctx->numa_node;
1959         if (node == NUMA_NO_NODE)
1960                 node = hctx->numa_node = set->numa_node;
1961
1962         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1963         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1964         spin_lock_init(&hctx->lock);
1965         INIT_LIST_HEAD(&hctx->dispatch);
1966         hctx->queue = q;
1967         hctx->queue_num = hctx_idx;
1968         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1969
1970         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1971
1972         hctx->tags = set->tags[hctx_idx];
1973
1974         /*
1975          * Allocate space for all possible cpus to avoid allocation at
1976          * runtime
1977          */
1978         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1979                                         GFP_KERNEL, node);
1980         if (!hctx->ctxs)
1981                 goto unregister_cpu_notifier;
1982
1983         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1984                               node))
1985                 goto free_ctxs;
1986
1987         hctx->nr_ctx = 0;
1988
1989         if (set->ops->init_hctx &&
1990             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1991                 goto free_bitmap;
1992
1993         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1994         if (!hctx->fq)
1995                 goto exit_hctx;
1996
1997         if (set->ops->init_request &&
1998             set->ops->init_request(set->driver_data,
1999                                    hctx->fq->flush_rq, hctx_idx,
2000                                    flush_start_tag + hctx_idx, node))
2001                 goto free_fq;
2002
2003         if (hctx->flags & BLK_MQ_F_BLOCKING)
2004                 init_srcu_struct(&hctx->queue_rq_srcu);
2005
2006         return 0;
2007
2008  free_fq:
2009         kfree(hctx->fq);
2010  exit_hctx:
2011         if (set->ops->exit_hctx)
2012                 set->ops->exit_hctx(hctx, hctx_idx);
2013  free_bitmap:
2014         sbitmap_free(&hctx->ctx_map);
2015  free_ctxs:
2016         kfree(hctx->ctxs);
2017  unregister_cpu_notifier:
2018         blk_mq_remove_cpuhp(hctx);
2019         return -1;
2020 }
2021
2022 static void blk_mq_init_cpu_queues(struct request_queue *q,
2023                                    unsigned int nr_hw_queues)
2024 {
2025         unsigned int i;
2026
2027         for_each_possible_cpu(i) {
2028                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2029                 struct blk_mq_hw_ctx *hctx;
2030
2031                 __ctx->cpu = i;
2032                 spin_lock_init(&__ctx->lock);
2033                 INIT_LIST_HEAD(&__ctx->rq_list);
2034                 __ctx->queue = q;
2035                 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2036                 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2037
2038                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2039                 if (!cpu_online(i))
2040                         continue;
2041
2042                 hctx = blk_mq_map_queue(q, i);
2043
2044                 /*
2045                  * Set local node, IFF we have more than one hw queue. If
2046                  * not, we remain on the home node of the device
2047                  */
2048                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2049                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2050         }
2051 }
2052
2053 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2054 {
2055         int ret = 0;
2056
2057         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2058                                         set->queue_depth, set->reserved_tags);
2059         if (!set->tags[hctx_idx])
2060                 return false;
2061
2062         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2063                                 set->queue_depth);
2064         if (!ret)
2065                 return true;
2066
2067         blk_mq_free_rq_map(set->tags[hctx_idx]);
2068         set->tags[hctx_idx] = NULL;
2069         return false;
2070 }
2071
2072 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2073                                          unsigned int hctx_idx)
2074 {
2075         if (set->tags[hctx_idx]) {
2076                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2077                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2078                 set->tags[hctx_idx] = NULL;
2079         }
2080 }
2081
2082 static void blk_mq_map_swqueue(struct request_queue *q,
2083                                const struct cpumask *online_mask)
2084 {
2085         unsigned int i, hctx_idx;
2086         struct blk_mq_hw_ctx *hctx;
2087         struct blk_mq_ctx *ctx;
2088         struct blk_mq_tag_set *set = q->tag_set;
2089
2090         /*
2091          * Avoid others reading imcomplete hctx->cpumask through sysfs
2092          */
2093         mutex_lock(&q->sysfs_lock);
2094
2095         queue_for_each_hw_ctx(q, hctx, i) {
2096                 cpumask_clear(hctx->cpumask);
2097                 hctx->nr_ctx = 0;
2098         }
2099
2100         /*
2101          * Map software to hardware queues
2102          */
2103         for_each_possible_cpu(i) {
2104                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2105                 if (!cpumask_test_cpu(i, online_mask))
2106                         continue;
2107
2108                 hctx_idx = q->mq_map[i];
2109                 /* unmapped hw queue can be remapped after CPU topo changed */
2110                 if (!set->tags[hctx_idx] &&
2111                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2112                         /*
2113                          * If tags initialization fail for some hctx,
2114                          * that hctx won't be brought online.  In this
2115                          * case, remap the current ctx to hctx[0] which
2116                          * is guaranteed to always have tags allocated
2117                          */
2118                         q->mq_map[i] = 0;
2119                 }
2120
2121                 ctx = per_cpu_ptr(q->queue_ctx, i);
2122                 hctx = blk_mq_map_queue(q, i);
2123
2124                 cpumask_set_cpu(i, hctx->cpumask);
2125                 ctx->index_hw = hctx->nr_ctx;
2126                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2127         }
2128
2129         mutex_unlock(&q->sysfs_lock);
2130
2131         queue_for_each_hw_ctx(q, hctx, i) {
2132                 /*
2133                  * If no software queues are mapped to this hardware queue,
2134                  * disable it and free the request entries.
2135                  */
2136                 if (!hctx->nr_ctx) {
2137                         /* Never unmap queue 0.  We need it as a
2138                          * fallback in case of a new remap fails
2139                          * allocation
2140                          */
2141                         if (i && set->tags[i])
2142                                 blk_mq_free_map_and_requests(set, i);
2143
2144                         hctx->tags = NULL;
2145                         continue;
2146                 }
2147
2148                 hctx->tags = set->tags[i];
2149                 WARN_ON(!hctx->tags);
2150
2151                 /*
2152                  * Set the map size to the number of mapped software queues.
2153                  * This is more accurate and more efficient than looping
2154                  * over all possibly mapped software queues.
2155                  */
2156                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2157
2158                 /*
2159                  * Initialize batch roundrobin counts
2160                  */
2161                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2162                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2163         }
2164 }
2165
2166 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2167 {
2168         struct blk_mq_hw_ctx *hctx;
2169         int i;
2170
2171         queue_for_each_hw_ctx(q, hctx, i) {
2172                 if (shared)
2173                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2174                 else
2175                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2176         }
2177 }
2178
2179 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2180 {
2181         struct request_queue *q;
2182
2183         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2184                 blk_mq_freeze_queue(q);
2185                 queue_set_hctx_shared(q, shared);
2186                 blk_mq_unfreeze_queue(q);
2187         }
2188 }
2189
2190 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2191 {
2192         struct blk_mq_tag_set *set = q->tag_set;
2193
2194         mutex_lock(&set->tag_list_lock);
2195         list_del_init(&q->tag_set_list);
2196         if (list_is_singular(&set->tag_list)) {
2197                 /* just transitioned to unshared */
2198                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2199                 /* update existing queue */
2200                 blk_mq_update_tag_set_depth(set, false);
2201         }
2202         mutex_unlock(&set->tag_list_lock);
2203 }
2204
2205 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2206                                      struct request_queue *q)
2207 {
2208         q->tag_set = set;
2209
2210         mutex_lock(&set->tag_list_lock);
2211
2212         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2213         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2214                 set->flags |= BLK_MQ_F_TAG_SHARED;
2215                 /* update existing queue */
2216                 blk_mq_update_tag_set_depth(set, true);
2217         }
2218         if (set->flags & BLK_MQ_F_TAG_SHARED)
2219                 queue_set_hctx_shared(q, true);
2220         list_add_tail(&q->tag_set_list, &set->tag_list);
2221
2222         mutex_unlock(&set->tag_list_lock);
2223 }
2224
2225 /*
2226  * It is the actual release handler for mq, but we do it from
2227  * request queue's release handler for avoiding use-after-free
2228  * and headache because q->mq_kobj shouldn't have been introduced,
2229  * but we can't group ctx/kctx kobj without it.
2230  */
2231 void blk_mq_release(struct request_queue *q)
2232 {
2233         struct blk_mq_hw_ctx *hctx;
2234         unsigned int i;
2235
2236         blk_mq_sched_teardown(q);
2237
2238         /* hctx kobj stays in hctx */
2239         queue_for_each_hw_ctx(q, hctx, i) {
2240                 if (!hctx)
2241                         continue;
2242                 kobject_put(&hctx->kobj);
2243         }
2244
2245         q->mq_map = NULL;
2246
2247         kfree(q->queue_hw_ctx);
2248
2249         /*
2250          * release .mq_kobj and sw queue's kobject now because
2251          * both share lifetime with request queue.
2252          */
2253         blk_mq_sysfs_deinit(q);
2254
2255         free_percpu(q->queue_ctx);
2256 }
2257
2258 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2259 {
2260         struct request_queue *uninit_q, *q;
2261
2262         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2263         if (!uninit_q)
2264                 return ERR_PTR(-ENOMEM);
2265
2266         q = blk_mq_init_allocated_queue(set, uninit_q);
2267         if (IS_ERR(q))
2268                 blk_cleanup_queue(uninit_q);
2269
2270         return q;
2271 }
2272 EXPORT_SYMBOL(blk_mq_init_queue);
2273
2274 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2275                                                 struct request_queue *q)
2276 {
2277         int i, j;
2278         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2279
2280         blk_mq_sysfs_unregister(q);
2281         for (i = 0; i < set->nr_hw_queues; i++) {
2282                 int node;
2283
2284                 if (hctxs[i])
2285                         continue;
2286
2287                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2288                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2289                                         GFP_KERNEL, node);
2290                 if (!hctxs[i])
2291                         break;
2292
2293                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2294                                                 node)) {
2295                         kfree(hctxs[i]);
2296                         hctxs[i] = NULL;
2297                         break;
2298                 }
2299
2300                 atomic_set(&hctxs[i]->nr_active, 0);
2301                 hctxs[i]->numa_node = node;
2302                 hctxs[i]->queue_num = i;
2303
2304                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2305                         free_cpumask_var(hctxs[i]->cpumask);
2306                         kfree(hctxs[i]);
2307                         hctxs[i] = NULL;
2308                         break;
2309                 }
2310                 blk_mq_hctx_kobj_init(hctxs[i]);
2311         }
2312         for (j = i; j < q->nr_hw_queues; j++) {
2313                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2314
2315                 if (hctx) {
2316                         if (hctx->tags)
2317                                 blk_mq_free_map_and_requests(set, j);
2318                         blk_mq_exit_hctx(q, set, hctx, j);
2319                         kobject_put(&hctx->kobj);
2320                         hctxs[j] = NULL;
2321
2322                 }
2323         }
2324         q->nr_hw_queues = i;
2325         blk_mq_sysfs_register(q);
2326 }
2327
2328 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2329                                                   struct request_queue *q)
2330 {
2331         /* mark the queue as mq asap */
2332         q->mq_ops = set->ops;
2333
2334         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2335         if (!q->queue_ctx)
2336                 goto err_exit;
2337
2338         /* init q->mq_kobj and sw queues' kobjects */
2339         blk_mq_sysfs_init(q);
2340
2341         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2342                                                 GFP_KERNEL, set->numa_node);
2343         if (!q->queue_hw_ctx)
2344                 goto err_percpu;
2345
2346         q->mq_map = set->mq_map;
2347
2348         blk_mq_realloc_hw_ctxs(set, q);
2349         if (!q->nr_hw_queues)
2350                 goto err_hctxs;
2351
2352         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2353         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2354
2355         q->nr_queues = nr_cpu_ids;
2356
2357         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2358
2359         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2360                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2361
2362         q->sg_reserved_size = INT_MAX;
2363
2364         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2365         INIT_LIST_HEAD(&q->requeue_list);
2366         spin_lock_init(&q->requeue_lock);
2367
2368         if (q->nr_hw_queues > 1)
2369                 blk_queue_make_request(q, blk_mq_make_request);
2370         else
2371                 blk_queue_make_request(q, blk_sq_make_request);
2372
2373         /*
2374          * Do this after blk_queue_make_request() overrides it...
2375          */
2376         q->nr_requests = set->queue_depth;
2377
2378         /*
2379          * Default to classic polling
2380          */
2381         q->poll_nsec = -1;
2382
2383         if (set->ops->complete)
2384                 blk_queue_softirq_done(q, set->ops->complete);
2385
2386         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2387
2388         get_online_cpus();
2389         mutex_lock(&all_q_mutex);
2390
2391         list_add_tail(&q->all_q_node, &all_q_list);
2392         blk_mq_add_queue_tag_set(set, q);
2393         blk_mq_map_swqueue(q, cpu_online_mask);
2394
2395         mutex_unlock(&all_q_mutex);
2396         put_online_cpus();
2397
2398         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2399                 int ret;
2400
2401                 ret = blk_mq_sched_init(q);
2402                 if (ret)
2403                         return ERR_PTR(ret);
2404         }
2405
2406         return q;
2407
2408 err_hctxs:
2409         kfree(q->queue_hw_ctx);
2410 err_percpu:
2411         free_percpu(q->queue_ctx);
2412 err_exit:
2413         q->mq_ops = NULL;
2414         return ERR_PTR(-ENOMEM);
2415 }
2416 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2417
2418 void blk_mq_free_queue(struct request_queue *q)
2419 {
2420         struct blk_mq_tag_set   *set = q->tag_set;
2421
2422         mutex_lock(&all_q_mutex);
2423         list_del_init(&q->all_q_node);
2424         mutex_unlock(&all_q_mutex);
2425
2426         wbt_exit(q);
2427
2428         blk_mq_del_queue_tag_set(q);
2429
2430         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2431 }
2432
2433 /* Basically redo blk_mq_init_queue with queue frozen */
2434 static void blk_mq_queue_reinit(struct request_queue *q,
2435                                 const struct cpumask *online_mask)
2436 {
2437         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2438
2439         blk_mq_sysfs_unregister(q);
2440
2441         /*
2442          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2443          * we should change hctx numa_node according to new topology (this
2444          * involves free and re-allocate memory, worthy doing?)
2445          */
2446
2447         blk_mq_map_swqueue(q, online_mask);
2448
2449         blk_mq_sysfs_register(q);
2450 }
2451
2452 /*
2453  * New online cpumask which is going to be set in this hotplug event.
2454  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2455  * one-by-one and dynamically allocating this could result in a failure.
2456  */
2457 static struct cpumask cpuhp_online_new;
2458
2459 static void blk_mq_queue_reinit_work(void)
2460 {
2461         struct request_queue *q;
2462
2463         mutex_lock(&all_q_mutex);
2464         /*
2465          * We need to freeze and reinit all existing queues.  Freezing
2466          * involves synchronous wait for an RCU grace period and doing it
2467          * one by one may take a long time.  Start freezing all queues in
2468          * one swoop and then wait for the completions so that freezing can
2469          * take place in parallel.
2470          */
2471         list_for_each_entry(q, &all_q_list, all_q_node)
2472                 blk_mq_freeze_queue_start(q);
2473         list_for_each_entry(q, &all_q_list, all_q_node)
2474                 blk_mq_freeze_queue_wait(q);
2475
2476         list_for_each_entry(q, &all_q_list, all_q_node)
2477                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2478
2479         list_for_each_entry(q, &all_q_list, all_q_node)
2480                 blk_mq_unfreeze_queue(q);
2481
2482         mutex_unlock(&all_q_mutex);
2483 }
2484
2485 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2486 {
2487         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2488         blk_mq_queue_reinit_work();
2489         return 0;
2490 }
2491
2492 /*
2493  * Before hotadded cpu starts handling requests, new mappings must be
2494  * established.  Otherwise, these requests in hw queue might never be
2495  * dispatched.
2496  *
2497  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2498  * for CPU0, and ctx1 for CPU1).
2499  *
2500  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2501  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2502  *
2503  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2504  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2505  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2506  * ignored.
2507  */
2508 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2509 {
2510         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2511         cpumask_set_cpu(cpu, &cpuhp_online_new);
2512         blk_mq_queue_reinit_work();
2513         return 0;
2514 }
2515
2516 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2517 {
2518         int i;
2519
2520         for (i = 0; i < set->nr_hw_queues; i++)
2521                 if (!__blk_mq_alloc_rq_map(set, i))
2522                         goto out_unwind;
2523
2524         return 0;
2525
2526 out_unwind:
2527         while (--i >= 0)
2528                 blk_mq_free_rq_map(set->tags[i]);
2529
2530         return -ENOMEM;
2531 }
2532
2533 /*
2534  * Allocate the request maps associated with this tag_set. Note that this
2535  * may reduce the depth asked for, if memory is tight. set->queue_depth
2536  * will be updated to reflect the allocated depth.
2537  */
2538 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2539 {
2540         unsigned int depth;
2541         int err;
2542
2543         depth = set->queue_depth;
2544         do {
2545                 err = __blk_mq_alloc_rq_maps(set);
2546                 if (!err)
2547                         break;
2548
2549                 set->queue_depth >>= 1;
2550                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2551                         err = -ENOMEM;
2552                         break;
2553                 }
2554         } while (set->queue_depth);
2555
2556         if (!set->queue_depth || err) {
2557                 pr_err("blk-mq: failed to allocate request map\n");
2558                 return -ENOMEM;
2559         }
2560
2561         if (depth != set->queue_depth)
2562                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2563                                                 depth, set->queue_depth);
2564
2565         return 0;
2566 }
2567
2568 /*
2569  * Alloc a tag set to be associated with one or more request queues.
2570  * May fail with EINVAL for various error conditions. May adjust the
2571  * requested depth down, if if it too large. In that case, the set
2572  * value will be stored in set->queue_depth.
2573  */
2574 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2575 {
2576         int ret;
2577
2578         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2579
2580         if (!set->nr_hw_queues)
2581                 return -EINVAL;
2582         if (!set->queue_depth)
2583                 return -EINVAL;
2584         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2585                 return -EINVAL;
2586
2587         if (!set->ops->queue_rq)
2588                 return -EINVAL;
2589
2590         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2591                 pr_info("blk-mq: reduced tag depth to %u\n",
2592                         BLK_MQ_MAX_DEPTH);
2593                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2594         }
2595
2596         /*
2597          * If a crashdump is active, then we are potentially in a very
2598          * memory constrained environment. Limit us to 1 queue and
2599          * 64 tags to prevent using too much memory.
2600          */
2601         if (is_kdump_kernel()) {
2602                 set->nr_hw_queues = 1;
2603                 set->queue_depth = min(64U, set->queue_depth);
2604         }
2605         /*
2606          * There is no use for more h/w queues than cpus.
2607          */
2608         if (set->nr_hw_queues > nr_cpu_ids)
2609                 set->nr_hw_queues = nr_cpu_ids;
2610
2611         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2612                                  GFP_KERNEL, set->numa_node);
2613         if (!set->tags)
2614                 return -ENOMEM;
2615
2616         ret = -ENOMEM;
2617         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2618                         GFP_KERNEL, set->numa_node);
2619         if (!set->mq_map)
2620                 goto out_free_tags;
2621
2622         if (set->ops->map_queues)
2623                 ret = set->ops->map_queues(set);
2624         else
2625                 ret = blk_mq_map_queues(set);
2626         if (ret)
2627                 goto out_free_mq_map;
2628
2629         ret = blk_mq_alloc_rq_maps(set);
2630         if (ret)
2631                 goto out_free_mq_map;
2632
2633         mutex_init(&set->tag_list_lock);
2634         INIT_LIST_HEAD(&set->tag_list);
2635
2636         return 0;
2637
2638 out_free_mq_map:
2639         kfree(set->mq_map);
2640         set->mq_map = NULL;
2641 out_free_tags:
2642         kfree(set->tags);
2643         set->tags = NULL;
2644         return ret;
2645 }
2646 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2647
2648 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2649 {
2650         int i;
2651
2652         for (i = 0; i < nr_cpu_ids; i++)
2653                 blk_mq_free_map_and_requests(set, i);
2654
2655         kfree(set->mq_map);
2656         set->mq_map = NULL;
2657
2658         kfree(set->tags);
2659         set->tags = NULL;
2660 }
2661 EXPORT_SYMBOL(blk_mq_free_tag_set);
2662
2663 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2664 {
2665         struct blk_mq_tag_set *set = q->tag_set;
2666         struct blk_mq_hw_ctx *hctx;
2667         int i, ret;
2668
2669         if (!set)
2670                 return -EINVAL;
2671
2672         blk_mq_freeze_queue(q);
2673         blk_mq_quiesce_queue(q);
2674
2675         ret = 0;
2676         queue_for_each_hw_ctx(q, hctx, i) {
2677                 if (!hctx->tags)
2678                         continue;
2679                 /*
2680                  * If we're using an MQ scheduler, just update the scheduler
2681                  * queue depth. This is similar to what the old code would do.
2682                  */
2683                 if (!hctx->sched_tags) {
2684                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2685                                                         min(nr, set->queue_depth),
2686                                                         false);
2687                 } else {
2688                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2689                                                         nr, true);
2690                 }
2691                 if (ret)
2692                         break;
2693         }
2694
2695         if (!ret)
2696                 q->nr_requests = nr;
2697
2698         blk_mq_unfreeze_queue(q);
2699         blk_mq_start_stopped_hw_queues(q, true);
2700
2701         return ret;
2702 }
2703
2704 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2705 {
2706         struct request_queue *q;
2707
2708         if (nr_hw_queues > nr_cpu_ids)
2709                 nr_hw_queues = nr_cpu_ids;
2710         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2711                 return;
2712
2713         list_for_each_entry(q, &set->tag_list, tag_set_list)
2714                 blk_mq_freeze_queue(q);
2715
2716         set->nr_hw_queues = nr_hw_queues;
2717         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2718                 blk_mq_realloc_hw_ctxs(set, q);
2719
2720                 /*
2721                  * Manually set the make_request_fn as blk_queue_make_request
2722                  * resets a lot of the queue settings.
2723                  */
2724                 if (q->nr_hw_queues > 1)
2725                         q->make_request_fn = blk_mq_make_request;
2726                 else
2727                         q->make_request_fn = blk_sq_make_request;
2728
2729                 blk_mq_queue_reinit(q, cpu_online_mask);
2730         }
2731
2732         list_for_each_entry(q, &set->tag_list, tag_set_list)
2733                 blk_mq_unfreeze_queue(q);
2734 }
2735 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2736
2737 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2738                                        struct blk_mq_hw_ctx *hctx,
2739                                        struct request *rq)
2740 {
2741         struct blk_rq_stat stat[2];
2742         unsigned long ret = 0;
2743
2744         /*
2745          * If stats collection isn't on, don't sleep but turn it on for
2746          * future users
2747          */
2748         if (!blk_stat_enable(q))
2749                 return 0;
2750
2751         /*
2752          * We don't have to do this once per IO, should optimize this
2753          * to just use the current window of stats until it changes
2754          */
2755         memset(&stat, 0, sizeof(stat));
2756         blk_hctx_stat_get(hctx, stat);
2757
2758         /*
2759          * As an optimistic guess, use half of the mean service time
2760          * for this type of request. We can (and should) make this smarter.
2761          * For instance, if the completion latencies are tight, we can
2762          * get closer than just half the mean. This is especially
2763          * important on devices where the completion latencies are longer
2764          * than ~10 usec.
2765          */
2766         if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2767                 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2768         else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2769                 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2770
2771         return ret;
2772 }
2773
2774 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2775                                      struct blk_mq_hw_ctx *hctx,
2776                                      struct request *rq)
2777 {
2778         struct hrtimer_sleeper hs;
2779         enum hrtimer_mode mode;
2780         unsigned int nsecs;
2781         ktime_t kt;
2782
2783         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2784                 return false;
2785
2786         /*
2787          * poll_nsec can be:
2788          *
2789          * -1:  don't ever hybrid sleep
2790          *  0:  use half of prev avg
2791          * >0:  use this specific value
2792          */
2793         if (q->poll_nsec == -1)
2794                 return false;
2795         else if (q->poll_nsec > 0)
2796                 nsecs = q->poll_nsec;
2797         else
2798                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2799
2800         if (!nsecs)
2801                 return false;
2802
2803         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2804
2805         /*
2806          * This will be replaced with the stats tracking code, using
2807          * 'avg_completion_time / 2' as the pre-sleep target.
2808          */
2809         kt = nsecs;
2810
2811         mode = HRTIMER_MODE_REL;
2812         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2813         hrtimer_set_expires(&hs.timer, kt);
2814
2815         hrtimer_init_sleeper(&hs, current);
2816         do {
2817                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2818                         break;
2819                 set_current_state(TASK_UNINTERRUPTIBLE);
2820                 hrtimer_start_expires(&hs.timer, mode);
2821                 if (hs.task)
2822                         io_schedule();
2823                 hrtimer_cancel(&hs.timer);
2824                 mode = HRTIMER_MODE_ABS;
2825         } while (hs.task && !signal_pending(current));
2826
2827         __set_current_state(TASK_RUNNING);
2828         destroy_hrtimer_on_stack(&hs.timer);
2829         return true;
2830 }
2831
2832 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2833 {
2834         struct request_queue *q = hctx->queue;
2835         long state;
2836
2837         /*
2838          * If we sleep, have the caller restart the poll loop to reset
2839          * the state. Like for the other success return cases, the
2840          * caller is responsible for checking if the IO completed. If
2841          * the IO isn't complete, we'll get called again and will go
2842          * straight to the busy poll loop.
2843          */
2844         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2845                 return true;
2846
2847         hctx->poll_considered++;
2848
2849         state = current->state;
2850         while (!need_resched()) {
2851                 int ret;
2852
2853                 hctx->poll_invoked++;
2854
2855                 ret = q->mq_ops->poll(hctx, rq->tag);
2856                 if (ret > 0) {
2857                         hctx->poll_success++;
2858                         set_current_state(TASK_RUNNING);
2859                         return true;
2860                 }
2861
2862                 if (signal_pending_state(state, current))
2863                         set_current_state(TASK_RUNNING);
2864
2865                 if (current->state == TASK_RUNNING)
2866                         return true;
2867                 if (ret < 0)
2868                         break;
2869                 cpu_relax();
2870         }
2871
2872         return false;
2873 }
2874
2875 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2876 {
2877         struct blk_mq_hw_ctx *hctx;
2878         struct blk_plug *plug;
2879         struct request *rq;
2880
2881         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2882             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2883                 return false;
2884
2885         plug = current->plug;
2886         if (plug)
2887                 blk_flush_plug_list(plug, false);
2888
2889         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2890         if (!blk_qc_t_is_internal(cookie))
2891                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2892         else
2893                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2894
2895         return __blk_mq_poll(hctx, rq);
2896 }
2897 EXPORT_SYMBOL_GPL(blk_mq_poll);
2898
2899 void blk_mq_disable_hotplug(void)
2900 {
2901         mutex_lock(&all_q_mutex);
2902 }
2903
2904 void blk_mq_enable_hotplug(void)
2905 {
2906         mutex_unlock(&all_q_mutex);
2907 }
2908
2909 static int __init blk_mq_init(void)
2910 {
2911         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2912                                 blk_mq_hctx_notify_dead);
2913
2914         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2915                                   blk_mq_queue_reinit_prepare,
2916                                   blk_mq_queue_reinit_dead);
2917         return 0;
2918 }
2919 subsys_initcall(blk_mq_init);