Linux 6.9-rc4
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42
43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
45
46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
47 static void blk_mq_request_bypass_insert(struct request *rq,
48                 blk_insert_t flags);
49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
50                 struct list_head *list);
51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
52                          struct io_comp_batch *iob, unsigned int flags);
53
54 /*
55  * Check if any of the ctx, dispatch list or elevator
56  * have pending work in this hardware queue.
57  */
58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59 {
60         return !list_empty_careful(&hctx->dispatch) ||
61                 sbitmap_any_bit_set(&hctx->ctx_map) ||
62                         blk_mq_sched_has_work(hctx);
63 }
64
65 /*
66  * Mark this ctx as having pending work in this hardware queue
67  */
68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
69                                      struct blk_mq_ctx *ctx)
70 {
71         const int bit = ctx->index_hw[hctx->type];
72
73         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
74                 sbitmap_set_bit(&hctx->ctx_map, bit);
75 }
76
77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
78                                       struct blk_mq_ctx *ctx)
79 {
80         const int bit = ctx->index_hw[hctx->type];
81
82         sbitmap_clear_bit(&hctx->ctx_map, bit);
83 }
84
85 struct mq_inflight {
86         struct block_device *part;
87         unsigned int inflight[2];
88 };
89
90 static bool blk_mq_check_inflight(struct request *rq, void *priv)
91 {
92         struct mq_inflight *mi = priv;
93
94         if (rq->part && blk_do_io_stat(rq) &&
95             (!mi->part->bd_partno || rq->part == mi->part) &&
96             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
97                 mi->inflight[rq_data_dir(rq)]++;
98
99         return true;
100 }
101
102 unsigned int blk_mq_in_flight(struct request_queue *q,
103                 struct block_device *part)
104 {
105         struct mq_inflight mi = { .part = part };
106
107         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
108
109         return mi.inflight[0] + mi.inflight[1];
110 }
111
112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
113                 unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part };
116
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118         inflight[0] = mi.inflight[0];
119         inflight[1] = mi.inflight[1];
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124         mutex_lock(&q->mq_freeze_lock);
125         if (++q->mq_freeze_depth == 1) {
126                 percpu_ref_kill(&q->q_usage_counter);
127                 mutex_unlock(&q->mq_freeze_lock);
128                 if (queue_is_mq(q))
129                         blk_mq_run_hw_queues(q, false);
130         } else {
131                 mutex_unlock(&q->mq_freeze_lock);
132         }
133 }
134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135
136 void blk_mq_freeze_queue_wait(struct request_queue *q)
137 {
138         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141
142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
143                                      unsigned long timeout)
144 {
145         return wait_event_timeout(q->mq_freeze_wq,
146                                         percpu_ref_is_zero(&q->q_usage_counter),
147                                         timeout);
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150
151 /*
152  * Guarantee no request is in use, so we can change any data structure of
153  * the queue afterward.
154  */
155 void blk_freeze_queue(struct request_queue *q)
156 {
157         /*
158          * In the !blk_mq case we are only calling this to kill the
159          * q_usage_counter, otherwise this increases the freeze depth
160          * and waits for it to return to zero.  For this reason there is
161          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
162          * exported to drivers as the only user for unfreeze is blk_mq.
163          */
164         blk_freeze_queue_start(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
179 {
180         mutex_lock(&q->mq_freeze_lock);
181         if (force_atomic)
182                 q->q_usage_counter.data->force_atomic = true;
183         q->mq_freeze_depth--;
184         WARN_ON_ONCE(q->mq_freeze_depth < 0);
185         if (!q->mq_freeze_depth) {
186                 percpu_ref_resurrect(&q->q_usage_counter);
187                 wake_up_all(&q->mq_freeze_wq);
188         }
189         mutex_unlock(&q->mq_freeze_lock);
190 }
191
192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194         __blk_mq_unfreeze_queue(q, false);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
197
198 /*
199  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
200  * mpt3sas driver such that this function can be removed.
201  */
202 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
203 {
204         unsigned long flags;
205
206         spin_lock_irqsave(&q->queue_lock, flags);
207         if (!q->quiesce_depth++)
208                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209         spin_unlock_irqrestore(&q->queue_lock, flags);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212
213 /**
214  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
215  * @set: tag_set to wait on
216  *
217  * Note: it is driver's responsibility for making sure that quiesce has
218  * been started on or more of the request_queues of the tag_set.  This
219  * function only waits for the quiesce on those request_queues that had
220  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
221  */
222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
223 {
224         if (set->flags & BLK_MQ_F_BLOCKING)
225                 synchronize_srcu(set->srcu);
226         else
227                 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
230
231 /**
232  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
233  * @q: request queue.
234  *
235  * Note: this function does not prevent that the struct request end_io()
236  * callback function is invoked. Once this function is returned, we make
237  * sure no dispatch can happen until the queue is unquiesced via
238  * blk_mq_unquiesce_queue().
239  */
240 void blk_mq_quiesce_queue(struct request_queue *q)
241 {
242         blk_mq_quiesce_queue_nowait(q);
243         /* nothing to wait for non-mq queues */
244         if (queue_is_mq(q))
245                 blk_mq_wait_quiesce_done(q->tag_set);
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         unsigned long flags;
259         bool run_queue = false;
260
261         spin_lock_irqsave(&q->queue_lock, flags);
262         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
263                 ;
264         } else if (!--q->quiesce_depth) {
265                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266                 run_queue = true;
267         }
268         spin_unlock_irqrestore(&q->queue_lock, flags);
269
270         /* dispatch requests which are inserted during quiescing */
271         if (run_queue)
272                 blk_mq_run_hw_queues(q, true);
273 }
274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
275
276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
277 {
278         struct request_queue *q;
279
280         mutex_lock(&set->tag_list_lock);
281         list_for_each_entry(q, &set->tag_list, tag_set_list) {
282                 if (!blk_queue_skip_tagset_quiesce(q))
283                         blk_mq_quiesce_queue_nowait(q);
284         }
285         blk_mq_wait_quiesce_done(set);
286         mutex_unlock(&set->tag_list_lock);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
289
290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
291 {
292         struct request_queue *q;
293
294         mutex_lock(&set->tag_list_lock);
295         list_for_each_entry(q, &set->tag_list, tag_set_list) {
296                 if (!blk_queue_skip_tagset_quiesce(q))
297                         blk_mq_unquiesce_queue(q);
298         }
299         mutex_unlock(&set->tag_list_lock);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
302
303 void blk_mq_wake_waiters(struct request_queue *q)
304 {
305         struct blk_mq_hw_ctx *hctx;
306         unsigned long i;
307
308         queue_for_each_hw_ctx(q, hctx, i)
309                 if (blk_mq_hw_queue_mapped(hctx))
310                         blk_mq_tag_wakeup_all(hctx->tags, true);
311 }
312
313 void blk_rq_init(struct request_queue *q, struct request *rq)
314 {
315         memset(rq, 0, sizeof(*rq));
316
317         INIT_LIST_HEAD(&rq->queuelist);
318         rq->q = q;
319         rq->__sector = (sector_t) -1;
320         INIT_HLIST_NODE(&rq->hash);
321         RB_CLEAR_NODE(&rq->rb_node);
322         rq->tag = BLK_MQ_NO_TAG;
323         rq->internal_tag = BLK_MQ_NO_TAG;
324         rq->start_time_ns = blk_time_get_ns();
325         rq->part = NULL;
326         blk_crypto_rq_set_defaults(rq);
327 }
328 EXPORT_SYMBOL(blk_rq_init);
329
330 /* Set start and alloc time when the allocated request is actually used */
331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
332 {
333         if (blk_mq_need_time_stamp(rq))
334                 rq->start_time_ns = blk_time_get_ns();
335         else
336                 rq->start_time_ns = 0;
337
338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
339         if (blk_queue_rq_alloc_time(rq->q))
340                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
341         else
342                 rq->alloc_time_ns = 0;
343 #endif
344 }
345
346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
347                 struct blk_mq_tags *tags, unsigned int tag)
348 {
349         struct blk_mq_ctx *ctx = data->ctx;
350         struct blk_mq_hw_ctx *hctx = data->hctx;
351         struct request_queue *q = data->q;
352         struct request *rq = tags->static_rqs[tag];
353
354         rq->q = q;
355         rq->mq_ctx = ctx;
356         rq->mq_hctx = hctx;
357         rq->cmd_flags = data->cmd_flags;
358
359         if (data->flags & BLK_MQ_REQ_PM)
360                 data->rq_flags |= RQF_PM;
361         if (blk_queue_io_stat(q))
362                 data->rq_flags |= RQF_IO_STAT;
363         rq->rq_flags = data->rq_flags;
364
365         if (data->rq_flags & RQF_SCHED_TAGS) {
366                 rq->tag = BLK_MQ_NO_TAG;
367                 rq->internal_tag = tag;
368         } else {
369                 rq->tag = tag;
370                 rq->internal_tag = BLK_MQ_NO_TAG;
371         }
372         rq->timeout = 0;
373
374         rq->part = NULL;
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_USE_SCHED) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (e->type->ops.prepare_request)
397                         e->type->ops.prepare_request(rq);
398         }
399
400         return rq;
401 }
402
403 static inline struct request *
404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405 {
406         unsigned int tag, tag_offset;
407         struct blk_mq_tags *tags;
408         struct request *rq;
409         unsigned long tag_mask;
410         int i, nr = 0;
411
412         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413         if (unlikely(!tag_mask))
414                 return NULL;
415
416         tags = blk_mq_tags_from_data(data);
417         for (i = 0; tag_mask; i++) {
418                 if (!(tag_mask & (1UL << i)))
419                         continue;
420                 tag = tag_offset + i;
421                 prefetch(tags->static_rqs[tag]);
422                 tag_mask &= ~(1UL << i);
423                 rq = blk_mq_rq_ctx_init(data, tags, tag);
424                 rq_list_add(data->cached_rq, rq);
425                 nr++;
426         }
427         if (!(data->rq_flags & RQF_SCHED_TAGS))
428                 blk_mq_add_active_requests(data->hctx, nr);
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = blk_time_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data);
487                 if (rq) {
488                         blk_mq_rq_time_init(rq, alloc_time_ns);
489                         return rq;
490                 }
491                 data->nr_tags = 1;
492         }
493
494         /*
495          * Waiting allocations only fail because of an inactive hctx.  In that
496          * case just retry the hctx assignment and tag allocation as CPU hotplug
497          * should have migrated us to an online CPU by now.
498          */
499         tag = blk_mq_get_tag(data);
500         if (tag == BLK_MQ_NO_TAG) {
501                 if (data->flags & BLK_MQ_REQ_NOWAIT)
502                         return NULL;
503                 /*
504                  * Give up the CPU and sleep for a random short time to
505                  * ensure that thread using a realtime scheduling class
506                  * are migrated off the CPU, and thus off the hctx that
507                  * is going away.
508                  */
509                 msleep(3);
510                 goto retry;
511         }
512
513         if (!(data->rq_flags & RQF_SCHED_TAGS))
514                 blk_mq_inc_active_requests(data->hctx);
515         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
516         blk_mq_rq_time_init(rq, alloc_time_ns);
517         return rq;
518 }
519
520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
521                                             struct blk_plug *plug,
522                                             blk_opf_t opf,
523                                             blk_mq_req_flags_t flags)
524 {
525         struct blk_mq_alloc_data data = {
526                 .q              = q,
527                 .flags          = flags,
528                 .cmd_flags      = opf,
529                 .nr_tags        = plug->nr_ios,
530                 .cached_rq      = &plug->cached_rq,
531         };
532         struct request *rq;
533
534         if (blk_queue_enter(q, flags))
535                 return NULL;
536
537         plug->nr_ios = 1;
538
539         rq = __blk_mq_alloc_requests(&data);
540         if (unlikely(!rq))
541                 blk_queue_exit(q);
542         return rq;
543 }
544
545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
546                                                    blk_opf_t opf,
547                                                    blk_mq_req_flags_t flags)
548 {
549         struct blk_plug *plug = current->plug;
550         struct request *rq;
551
552         if (!plug)
553                 return NULL;
554
555         if (rq_list_empty(plug->cached_rq)) {
556                 if (plug->nr_ios == 1)
557                         return NULL;
558                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
559                 if (!rq)
560                         return NULL;
561         } else {
562                 rq = rq_list_peek(&plug->cached_rq);
563                 if (!rq || rq->q != q)
564                         return NULL;
565
566                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
567                         return NULL;
568                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
569                         return NULL;
570
571                 plug->cached_rq = rq_list_next(rq);
572                 blk_mq_rq_time_init(rq, 0);
573         }
574
575         rq->cmd_flags = opf;
576         INIT_LIST_HEAD(&rq->queuelist);
577         return rq;
578 }
579
580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
581                 blk_mq_req_flags_t flags)
582 {
583         struct request *rq;
584
585         rq = blk_mq_alloc_cached_request(q, opf, flags);
586         if (!rq) {
587                 struct blk_mq_alloc_data data = {
588                         .q              = q,
589                         .flags          = flags,
590                         .cmd_flags      = opf,
591                         .nr_tags        = 1,
592                 };
593                 int ret;
594
595                 ret = blk_queue_enter(q, flags);
596                 if (ret)
597                         return ERR_PTR(ret);
598
599                 rq = __blk_mq_alloc_requests(&data);
600                 if (!rq)
601                         goto out_queue_exit;
602         }
603         rq->__data_len = 0;
604         rq->__sector = (sector_t) -1;
605         rq->bio = rq->biotail = NULL;
606         return rq;
607 out_queue_exit:
608         blk_queue_exit(q);
609         return ERR_PTR(-EWOULDBLOCK);
610 }
611 EXPORT_SYMBOL(blk_mq_alloc_request);
612
613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
614         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615 {
616         struct blk_mq_alloc_data data = {
617                 .q              = q,
618                 .flags          = flags,
619                 .cmd_flags      = opf,
620                 .nr_tags        = 1,
621         };
622         u64 alloc_time_ns = 0;
623         struct request *rq;
624         unsigned int cpu;
625         unsigned int tag;
626         int ret;
627
628         /* alloc_time includes depth and tag waits */
629         if (blk_queue_rq_alloc_time(q))
630                 alloc_time_ns = blk_time_get_ns();
631
632         /*
633          * If the tag allocator sleeps we could get an allocation for a
634          * different hardware context.  No need to complicate the low level
635          * allocator for this for the rare use case of a command tied to
636          * a specific queue.
637          */
638         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
639             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
640                 return ERR_PTR(-EINVAL);
641
642         if (hctx_idx >= q->nr_hw_queues)
643                 return ERR_PTR(-EIO);
644
645         ret = blk_queue_enter(q, flags);
646         if (ret)
647                 return ERR_PTR(ret);
648
649         /*
650          * Check if the hardware context is actually mapped to anything.
651          * If not tell the caller that it should skip this queue.
652          */
653         ret = -EXDEV;
654         data.hctx = xa_load(&q->hctx_table, hctx_idx);
655         if (!blk_mq_hw_queue_mapped(data.hctx))
656                 goto out_queue_exit;
657         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
658         if (cpu >= nr_cpu_ids)
659                 goto out_queue_exit;
660         data.ctx = __blk_mq_get_ctx(q, cpu);
661
662         if (q->elevator)
663                 data.rq_flags |= RQF_SCHED_TAGS;
664         else
665                 blk_mq_tag_busy(data.hctx);
666
667         if (flags & BLK_MQ_REQ_RESERVED)
668                 data.rq_flags |= RQF_RESV;
669
670         ret = -EWOULDBLOCK;
671         tag = blk_mq_get_tag(&data);
672         if (tag == BLK_MQ_NO_TAG)
673                 goto out_queue_exit;
674         if (!(data.rq_flags & RQF_SCHED_TAGS))
675                 blk_mq_inc_active_requests(data.hctx);
676         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
677         blk_mq_rq_time_init(rq, alloc_time_ns);
678         rq->__data_len = 0;
679         rq->__sector = (sector_t) -1;
680         rq->bio = rq->biotail = NULL;
681         return rq;
682
683 out_queue_exit:
684         blk_queue_exit(q);
685         return ERR_PTR(ret);
686 }
687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688
689 static void blk_mq_finish_request(struct request *rq)
690 {
691         struct request_queue *q = rq->q;
692
693         if (rq->rq_flags & RQF_USE_SCHED) {
694                 q->elevator->type->ops.finish_request(rq);
695                 /*
696                  * For postflush request that may need to be
697                  * completed twice, we should clear this flag
698                  * to avoid double finish_request() on the rq.
699                  */
700                 rq->rq_flags &= ~RQF_USE_SCHED;
701         }
702 }
703
704 static void __blk_mq_free_request(struct request *rq)
705 {
706         struct request_queue *q = rq->q;
707         struct blk_mq_ctx *ctx = rq->mq_ctx;
708         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709         const int sched_tag = rq->internal_tag;
710
711         blk_crypto_free_request(rq);
712         blk_pm_mark_last_busy(rq);
713         rq->mq_hctx = NULL;
714
715         if (rq->tag != BLK_MQ_NO_TAG) {
716                 blk_mq_dec_active_requests(hctx);
717                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
718         }
719         if (sched_tag != BLK_MQ_NO_TAG)
720                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
721         blk_mq_sched_restart(hctx);
722         blk_queue_exit(q);
723 }
724
725 void blk_mq_free_request(struct request *rq)
726 {
727         struct request_queue *q = rq->q;
728
729         blk_mq_finish_request(rq);
730
731         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
732                 laptop_io_completion(q->disk->bdi);
733
734         rq_qos_done(q, rq);
735
736         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
737         if (req_ref_put_and_test(rq))
738                 __blk_mq_free_request(rq);
739 }
740 EXPORT_SYMBOL_GPL(blk_mq_free_request);
741
742 void blk_mq_free_plug_rqs(struct blk_plug *plug)
743 {
744         struct request *rq;
745
746         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
747                 blk_mq_free_request(rq);
748 }
749
750 void blk_dump_rq_flags(struct request *rq, char *msg)
751 {
752         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
753                 rq->q->disk ? rq->q->disk->disk_name : "?",
754                 (__force unsigned long long) rq->cmd_flags);
755
756         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
757                (unsigned long long)blk_rq_pos(rq),
758                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
759         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
760                rq->bio, rq->biotail, blk_rq_bytes(rq));
761 }
762 EXPORT_SYMBOL(blk_dump_rq_flags);
763
764 static void req_bio_endio(struct request *rq, struct bio *bio,
765                           unsigned int nbytes, blk_status_t error)
766 {
767         if (unlikely(error)) {
768                 bio->bi_status = error;
769         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
770                 /*
771                  * Partial zone append completions cannot be supported as the
772                  * BIO fragments may end up not being written sequentially.
773                  */
774                 if (bio->bi_iter.bi_size != nbytes)
775                         bio->bi_status = BLK_STS_IOERR;
776                 else
777                         bio->bi_iter.bi_sector = rq->__sector;
778         }
779
780         bio_advance(bio, nbytes);
781
782         if (unlikely(rq->rq_flags & RQF_QUIET))
783                 bio_set_flag(bio, BIO_QUIET);
784         /* don't actually finish bio if it's part of flush sequence */
785         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
786                 bio_endio(bio);
787 }
788
789 static void blk_account_io_completion(struct request *req, unsigned int bytes)
790 {
791         if (req->part && blk_do_io_stat(req)) {
792                 const int sgrp = op_stat_group(req_op(req));
793
794                 part_stat_lock();
795                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
796                 part_stat_unlock();
797         }
798 }
799
800 static void blk_print_req_error(struct request *req, blk_status_t status)
801 {
802         printk_ratelimited(KERN_ERR
803                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
804                 "phys_seg %u prio class %u\n",
805                 blk_status_to_str(status),
806                 req->q->disk ? req->q->disk->disk_name : "?",
807                 blk_rq_pos(req), (__force u32)req_op(req),
808                 blk_op_str(req_op(req)),
809                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
810                 req->nr_phys_segments,
811                 IOPRIO_PRIO_CLASS(req->ioprio));
812 }
813
814 /*
815  * Fully end IO on a request. Does not support partial completions, or
816  * errors.
817  */
818 static void blk_complete_request(struct request *req)
819 {
820         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
821         int total_bytes = blk_rq_bytes(req);
822         struct bio *bio = req->bio;
823
824         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
825
826         if (!bio)
827                 return;
828
829 #ifdef CONFIG_BLK_DEV_INTEGRITY
830         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
831                 req->q->integrity.profile->complete_fn(req, total_bytes);
832 #endif
833
834         /*
835          * Upper layers may call blk_crypto_evict_key() anytime after the last
836          * bio_endio().  Therefore, the keyslot must be released before that.
837          */
838         blk_crypto_rq_put_keyslot(req);
839
840         blk_account_io_completion(req, total_bytes);
841
842         do {
843                 struct bio *next = bio->bi_next;
844
845                 /* Completion has already been traced */
846                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
847
848                 if (req_op(req) == REQ_OP_ZONE_APPEND)
849                         bio->bi_iter.bi_sector = req->__sector;
850
851                 if (!is_flush)
852                         bio_endio(bio);
853                 bio = next;
854         } while (bio);
855
856         /*
857          * Reset counters so that the request stacking driver
858          * can find how many bytes remain in the request
859          * later.
860          */
861         if (!req->end_io) {
862                 req->bio = NULL;
863                 req->__data_len = 0;
864         }
865 }
866
867 /**
868  * blk_update_request - Complete multiple bytes without completing the request
869  * @req:      the request being processed
870  * @error:    block status code
871  * @nr_bytes: number of bytes to complete for @req
872  *
873  * Description:
874  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
875  *     the request structure even if @req doesn't have leftover.
876  *     If @req has leftover, sets it up for the next range of segments.
877  *
878  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
879  *     %false return from this function.
880  *
881  * Note:
882  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
883  *      except in the consistency check at the end of this function.
884  *
885  * Return:
886  *     %false - this request doesn't have any more data
887  *     %true  - this request has more data
888  **/
889 bool blk_update_request(struct request *req, blk_status_t error,
890                 unsigned int nr_bytes)
891 {
892         int total_bytes;
893
894         trace_block_rq_complete(req, error, nr_bytes);
895
896         if (!req->bio)
897                 return false;
898
899 #ifdef CONFIG_BLK_DEV_INTEGRITY
900         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
901             error == BLK_STS_OK)
902                 req->q->integrity.profile->complete_fn(req, nr_bytes);
903 #endif
904
905         /*
906          * Upper layers may call blk_crypto_evict_key() anytime after the last
907          * bio_endio().  Therefore, the keyslot must be released before that.
908          */
909         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
910                 __blk_crypto_rq_put_keyslot(req);
911
912         if (unlikely(error && !blk_rq_is_passthrough(req) &&
913                      !(req->rq_flags & RQF_QUIET)) &&
914                      !test_bit(GD_DEAD, &req->q->disk->state)) {
915                 blk_print_req_error(req, error);
916                 trace_block_rq_error(req, error, nr_bytes);
917         }
918
919         blk_account_io_completion(req, nr_bytes);
920
921         total_bytes = 0;
922         while (req->bio) {
923                 struct bio *bio = req->bio;
924                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
925
926                 if (bio_bytes == bio->bi_iter.bi_size)
927                         req->bio = bio->bi_next;
928
929                 /* Completion has already been traced */
930                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
931                 req_bio_endio(req, bio, bio_bytes, error);
932
933                 total_bytes += bio_bytes;
934                 nr_bytes -= bio_bytes;
935
936                 if (!nr_bytes)
937                         break;
938         }
939
940         /*
941          * completely done
942          */
943         if (!req->bio) {
944                 /*
945                  * Reset counters so that the request stacking driver
946                  * can find how many bytes remain in the request
947                  * later.
948                  */
949                 req->__data_len = 0;
950                 return false;
951         }
952
953         req->__data_len -= total_bytes;
954
955         /* update sector only for requests with clear definition of sector */
956         if (!blk_rq_is_passthrough(req))
957                 req->__sector += total_bytes >> 9;
958
959         /* mixed attributes always follow the first bio */
960         if (req->rq_flags & RQF_MIXED_MERGE) {
961                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
962                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
963         }
964
965         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
966                 /*
967                  * If total number of sectors is less than the first segment
968                  * size, something has gone terribly wrong.
969                  */
970                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
971                         blk_dump_rq_flags(req, "request botched");
972                         req->__data_len = blk_rq_cur_bytes(req);
973                 }
974
975                 /* recalculate the number of segments */
976                 req->nr_phys_segments = blk_recalc_rq_segments(req);
977         }
978
979         return true;
980 }
981 EXPORT_SYMBOL_GPL(blk_update_request);
982
983 static inline void blk_account_io_done(struct request *req, u64 now)
984 {
985         trace_block_io_done(req);
986
987         /*
988          * Account IO completion.  flush_rq isn't accounted as a
989          * normal IO on queueing nor completion.  Accounting the
990          * containing request is enough.
991          */
992         if (blk_do_io_stat(req) && req->part &&
993             !(req->rq_flags & RQF_FLUSH_SEQ)) {
994                 const int sgrp = op_stat_group(req_op(req));
995
996                 part_stat_lock();
997                 update_io_ticks(req->part, jiffies, true);
998                 part_stat_inc(req->part, ios[sgrp]);
999                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1000                 part_stat_unlock();
1001         }
1002 }
1003
1004 static inline void blk_account_io_start(struct request *req)
1005 {
1006         trace_block_io_start(req);
1007
1008         if (blk_do_io_stat(req)) {
1009                 /*
1010                  * All non-passthrough requests are created from a bio with one
1011                  * exception: when a flush command that is part of a flush sequence
1012                  * generated by the state machine in blk-flush.c is cloned onto the
1013                  * lower device by dm-multipath we can get here without a bio.
1014                  */
1015                 if (req->bio)
1016                         req->part = req->bio->bi_bdev;
1017                 else
1018                         req->part = req->q->disk->part0;
1019
1020                 part_stat_lock();
1021                 update_io_ticks(req->part, jiffies, false);
1022                 part_stat_unlock();
1023         }
1024 }
1025
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028         if (rq->rq_flags & RQF_STATS)
1029                 blk_stat_add(rq, now);
1030
1031         blk_mq_sched_completed_request(rq, now);
1032         blk_account_io_done(rq, now);
1033 }
1034
1035 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1036 {
1037         if (blk_mq_need_time_stamp(rq))
1038                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1039
1040         blk_mq_finish_request(rq);
1041
1042         if (rq->end_io) {
1043                 rq_qos_done(rq->q, rq);
1044                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045                         blk_mq_free_request(rq);
1046         } else {
1047                 blk_mq_free_request(rq);
1048         }
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055                 BUG();
1056         __blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059
1060 #define TAG_COMP_BATCH          32
1061
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063                                           int *tag_array, int nr_tags)
1064 {
1065         struct request_queue *q = hctx->queue;
1066
1067         blk_mq_sub_active_requests(hctx, nr_tags);
1068
1069         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1070         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1071 }
1072
1073 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1074 {
1075         int tags[TAG_COMP_BATCH], nr_tags = 0;
1076         struct blk_mq_hw_ctx *cur_hctx = NULL;
1077         struct request *rq;
1078         u64 now = 0;
1079
1080         if (iob->need_ts)
1081                 now = blk_time_get_ns();
1082
1083         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1084                 prefetch(rq->bio);
1085                 prefetch(rq->rq_next);
1086
1087                 blk_complete_request(rq);
1088                 if (iob->need_ts)
1089                         __blk_mq_end_request_acct(rq, now);
1090
1091                 blk_mq_finish_request(rq);
1092
1093                 rq_qos_done(rq->q, rq);
1094
1095                 /*
1096                  * If end_io handler returns NONE, then it still has
1097                  * ownership of the request.
1098                  */
1099                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1100                         continue;
1101
1102                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1103                 if (!req_ref_put_and_test(rq))
1104                         continue;
1105
1106                 blk_crypto_free_request(rq);
1107                 blk_pm_mark_last_busy(rq);
1108
1109                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1110                         if (cur_hctx)
1111                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1112                         nr_tags = 0;
1113                         cur_hctx = rq->mq_hctx;
1114                 }
1115                 tags[nr_tags++] = rq->tag;
1116         }
1117
1118         if (nr_tags)
1119                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1120 }
1121 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1122
1123 static void blk_complete_reqs(struct llist_head *list)
1124 {
1125         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1126         struct request *rq, *next;
1127
1128         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1129                 rq->q->mq_ops->complete(rq);
1130 }
1131
1132 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1133 {
1134         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1135 }
1136
1137 static int blk_softirq_cpu_dead(unsigned int cpu)
1138 {
1139         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1140         return 0;
1141 }
1142
1143 static void __blk_mq_complete_request_remote(void *data)
1144 {
1145         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1146 }
1147
1148 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1149 {
1150         int cpu = raw_smp_processor_id();
1151
1152         if (!IS_ENABLED(CONFIG_SMP) ||
1153             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1154                 return false;
1155         /*
1156          * With force threaded interrupts enabled, raising softirq from an SMP
1157          * function call will always result in waking the ksoftirqd thread.
1158          * This is probably worse than completing the request on a different
1159          * cache domain.
1160          */
1161         if (force_irqthreads())
1162                 return false;
1163
1164         /* same CPU or cache domain and capacity?  Complete locally */
1165         if (cpu == rq->mq_ctx->cpu ||
1166             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1167              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1168              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1169                 return false;
1170
1171         /* don't try to IPI to an offline CPU */
1172         return cpu_online(rq->mq_ctx->cpu);
1173 }
1174
1175 static void blk_mq_complete_send_ipi(struct request *rq)
1176 {
1177         unsigned int cpu;
1178
1179         cpu = rq->mq_ctx->cpu;
1180         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1181                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1182 }
1183
1184 static void blk_mq_raise_softirq(struct request *rq)
1185 {
1186         struct llist_head *list;
1187
1188         preempt_disable();
1189         list = this_cpu_ptr(&blk_cpu_done);
1190         if (llist_add(&rq->ipi_list, list))
1191                 raise_softirq(BLOCK_SOFTIRQ);
1192         preempt_enable();
1193 }
1194
1195 bool blk_mq_complete_request_remote(struct request *rq)
1196 {
1197         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1198
1199         /*
1200          * For request which hctx has only one ctx mapping,
1201          * or a polled request, always complete locally,
1202          * it's pointless to redirect the completion.
1203          */
1204         if ((rq->mq_hctx->nr_ctx == 1 &&
1205              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1206              rq->cmd_flags & REQ_POLLED)
1207                 return false;
1208
1209         if (blk_mq_complete_need_ipi(rq)) {
1210                 blk_mq_complete_send_ipi(rq);
1211                 return true;
1212         }
1213
1214         if (rq->q->nr_hw_queues == 1) {
1215                 blk_mq_raise_softirq(rq);
1216                 return true;
1217         }
1218         return false;
1219 }
1220 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1221
1222 /**
1223  * blk_mq_complete_request - end I/O on a request
1224  * @rq:         the request being processed
1225  *
1226  * Description:
1227  *      Complete a request by scheduling the ->complete_rq operation.
1228  **/
1229 void blk_mq_complete_request(struct request *rq)
1230 {
1231         if (!blk_mq_complete_request_remote(rq))
1232                 rq->q->mq_ops->complete(rq);
1233 }
1234 EXPORT_SYMBOL(blk_mq_complete_request);
1235
1236 /**
1237  * blk_mq_start_request - Start processing a request
1238  * @rq: Pointer to request to be started
1239  *
1240  * Function used by device drivers to notify the block layer that a request
1241  * is going to be processed now, so blk layer can do proper initializations
1242  * such as starting the timeout timer.
1243  */
1244 void blk_mq_start_request(struct request *rq)
1245 {
1246         struct request_queue *q = rq->q;
1247
1248         trace_block_rq_issue(rq);
1249
1250         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1251             !blk_rq_is_passthrough(rq)) {
1252                 rq->io_start_time_ns = blk_time_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266                 q->integrity.profile->prepare_fn(rq);
1267 #endif
1268         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280         if (plug->multiple_queues)
1281                 return BLK_MAX_REQUEST_COUNT * 2;
1282         return BLK_MAX_REQUEST_COUNT;
1283 }
1284
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287         struct request *last = rq_list_peek(&plug->mq_list);
1288
1289         if (!plug->rq_count) {
1290                 trace_block_plug(rq->q);
1291         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292                    (!blk_queue_nomerges(rq->q) &&
1293                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294                 blk_mq_flush_plug_list(plug, false);
1295                 last = NULL;
1296                 trace_block_plug(rq->q);
1297         }
1298
1299         if (!plug->multiple_queues && last && last->q != rq->q)
1300                 plug->multiple_queues = true;
1301         /*
1302          * Any request allocated from sched tags can't be issued to
1303          * ->queue_rqs() directly
1304          */
1305         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306                 plug->has_elevator = true;
1307         rq->rq_next = NULL;
1308         rq_list_add(&plug->mq_list, rq);
1309         plug->rq_count++;
1310 }
1311
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:         request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327
1328         WARN_ON(irqs_disabled());
1329         WARN_ON(!blk_rq_is_passthrough(rq));
1330
1331         blk_account_io_start(rq);
1332
1333         /*
1334          * As plugging can be enabled for passthrough requests on a zoned
1335          * device, directly accessing the plug instead of using blk_mq_plug()
1336          * should not have any consequences.
1337          */
1338         if (current->plug && !at_head) {
1339                 blk_add_rq_to_plug(current->plug, rq);
1340                 return;
1341         }
1342
1343         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347
1348 struct blk_rq_wait {
1349         struct completion done;
1350         blk_status_t ret;
1351 };
1352
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355         struct blk_rq_wait *wait = rq->end_io_data;
1356
1357         wait->ret = ret;
1358         complete(&wait->done);
1359         return RQ_END_IO_NONE;
1360 }
1361
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364         if (!rq->mq_hctx)
1365                 return false;
1366         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367                 return false;
1368         return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374         do {
1375                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376                 cond_resched();
1377         } while (!completion_done(wait));
1378 }
1379
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:         request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393         struct blk_rq_wait wait = {
1394                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395         };
1396
1397         WARN_ON(irqs_disabled());
1398         WARN_ON(!blk_rq_is_passthrough(rq));
1399
1400         rq->end_io_data = &wait;
1401         rq->end_io = blk_end_sync_rq;
1402
1403         blk_account_io_start(rq);
1404         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405         blk_mq_run_hw_queue(hctx, false);
1406
1407         if (blk_rq_is_poll(rq))
1408                 blk_rq_poll_completion(rq, &wait.done);
1409         else
1410                 blk_wait_io(&wait.done);
1411
1412         return wait.ret;
1413 }
1414 EXPORT_SYMBOL(blk_execute_rq);
1415
1416 static void __blk_mq_requeue_request(struct request *rq)
1417 {
1418         struct request_queue *q = rq->q;
1419
1420         blk_mq_put_driver_tag(rq);
1421
1422         trace_block_rq_requeue(rq);
1423         rq_qos_requeue(q, rq);
1424
1425         if (blk_mq_request_started(rq)) {
1426                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1427                 rq->rq_flags &= ~RQF_TIMED_OUT;
1428         }
1429 }
1430
1431 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1432 {
1433         struct request_queue *q = rq->q;
1434         unsigned long flags;
1435
1436         __blk_mq_requeue_request(rq);
1437
1438         /* this request will be re-inserted to io scheduler queue */
1439         blk_mq_sched_requeue_request(rq);
1440
1441         spin_lock_irqsave(&q->requeue_lock, flags);
1442         list_add_tail(&rq->queuelist, &q->requeue_list);
1443         spin_unlock_irqrestore(&q->requeue_lock, flags);
1444
1445         if (kick_requeue_list)
1446                 blk_mq_kick_requeue_list(q);
1447 }
1448 EXPORT_SYMBOL(blk_mq_requeue_request);
1449
1450 static void blk_mq_requeue_work(struct work_struct *work)
1451 {
1452         struct request_queue *q =
1453                 container_of(work, struct request_queue, requeue_work.work);
1454         LIST_HEAD(rq_list);
1455         LIST_HEAD(flush_list);
1456         struct request *rq;
1457
1458         spin_lock_irq(&q->requeue_lock);
1459         list_splice_init(&q->requeue_list, &rq_list);
1460         list_splice_init(&q->flush_list, &flush_list);
1461         spin_unlock_irq(&q->requeue_lock);
1462
1463         while (!list_empty(&rq_list)) {
1464                 rq = list_entry(rq_list.next, struct request, queuelist);
1465                 /*
1466                  * If RQF_DONTPREP ist set, the request has been started by the
1467                  * driver already and might have driver-specific data allocated
1468                  * already.  Insert it into the hctx dispatch list to avoid
1469                  * block layer merges for the request.
1470                  */
1471                 if (rq->rq_flags & RQF_DONTPREP) {
1472                         list_del_init(&rq->queuelist);
1473                         blk_mq_request_bypass_insert(rq, 0);
1474                 } else {
1475                         list_del_init(&rq->queuelist);
1476                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1477                 }
1478         }
1479
1480         while (!list_empty(&flush_list)) {
1481                 rq = list_entry(flush_list.next, struct request, queuelist);
1482                 list_del_init(&rq->queuelist);
1483                 blk_mq_insert_request(rq, 0);
1484         }
1485
1486         blk_mq_run_hw_queues(q, false);
1487 }
1488
1489 void blk_mq_kick_requeue_list(struct request_queue *q)
1490 {
1491         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1492 }
1493 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1494
1495 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1496                                     unsigned long msecs)
1497 {
1498         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1499                                     msecs_to_jiffies(msecs));
1500 }
1501 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1502
1503 static bool blk_is_flush_data_rq(struct request *rq)
1504 {
1505         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1506 }
1507
1508 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1509 {
1510         /*
1511          * If we find a request that isn't idle we know the queue is busy
1512          * as it's checked in the iter.
1513          * Return false to stop the iteration.
1514          *
1515          * In case of queue quiesce, if one flush data request is completed,
1516          * don't count it as inflight given the flush sequence is suspended,
1517          * and the original flush data request is invisible to driver, just
1518          * like other pending requests because of quiesce
1519          */
1520         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1521                                 blk_is_flush_data_rq(rq) &&
1522                                 blk_mq_request_completed(rq))) {
1523                 bool *busy = priv;
1524
1525                 *busy = true;
1526                 return false;
1527         }
1528
1529         return true;
1530 }
1531
1532 bool blk_mq_queue_inflight(struct request_queue *q)
1533 {
1534         bool busy = false;
1535
1536         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1537         return busy;
1538 }
1539 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1540
1541 static void blk_mq_rq_timed_out(struct request *req)
1542 {
1543         req->rq_flags |= RQF_TIMED_OUT;
1544         if (req->q->mq_ops->timeout) {
1545                 enum blk_eh_timer_return ret;
1546
1547                 ret = req->q->mq_ops->timeout(req);
1548                 if (ret == BLK_EH_DONE)
1549                         return;
1550                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1551         }
1552
1553         blk_add_timer(req);
1554 }
1555
1556 struct blk_expired_data {
1557         bool has_timedout_rq;
1558         unsigned long next;
1559         unsigned long timeout_start;
1560 };
1561
1562 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1563 {
1564         unsigned long deadline;
1565
1566         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1567                 return false;
1568         if (rq->rq_flags & RQF_TIMED_OUT)
1569                 return false;
1570
1571         deadline = READ_ONCE(rq->deadline);
1572         if (time_after_eq(expired->timeout_start, deadline))
1573                 return true;
1574
1575         if (expired->next == 0)
1576                 expired->next = deadline;
1577         else if (time_after(expired->next, deadline))
1578                 expired->next = deadline;
1579         return false;
1580 }
1581
1582 void blk_mq_put_rq_ref(struct request *rq)
1583 {
1584         if (is_flush_rq(rq)) {
1585                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1586                         blk_mq_free_request(rq);
1587         } else if (req_ref_put_and_test(rq)) {
1588                 __blk_mq_free_request(rq);
1589         }
1590 }
1591
1592 static bool blk_mq_check_expired(struct request *rq, void *priv)
1593 {
1594         struct blk_expired_data *expired = priv;
1595
1596         /*
1597          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1598          * be reallocated underneath the timeout handler's processing, then
1599          * the expire check is reliable. If the request is not expired, then
1600          * it was completed and reallocated as a new request after returning
1601          * from blk_mq_check_expired().
1602          */
1603         if (blk_mq_req_expired(rq, expired)) {
1604                 expired->has_timedout_rq = true;
1605                 return false;
1606         }
1607         return true;
1608 }
1609
1610 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1611 {
1612         struct blk_expired_data *expired = priv;
1613
1614         if (blk_mq_req_expired(rq, expired))
1615                 blk_mq_rq_timed_out(rq);
1616         return true;
1617 }
1618
1619 static void blk_mq_timeout_work(struct work_struct *work)
1620 {
1621         struct request_queue *q =
1622                 container_of(work, struct request_queue, timeout_work);
1623         struct blk_expired_data expired = {
1624                 .timeout_start = jiffies,
1625         };
1626         struct blk_mq_hw_ctx *hctx;
1627         unsigned long i;
1628
1629         /* A deadlock might occur if a request is stuck requiring a
1630          * timeout at the same time a queue freeze is waiting
1631          * completion, since the timeout code would not be able to
1632          * acquire the queue reference here.
1633          *
1634          * That's why we don't use blk_queue_enter here; instead, we use
1635          * percpu_ref_tryget directly, because we need to be able to
1636          * obtain a reference even in the short window between the queue
1637          * starting to freeze, by dropping the first reference in
1638          * blk_freeze_queue_start, and the moment the last request is
1639          * consumed, marked by the instant q_usage_counter reaches
1640          * zero.
1641          */
1642         if (!percpu_ref_tryget(&q->q_usage_counter))
1643                 return;
1644
1645         /* check if there is any timed-out request */
1646         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1647         if (expired.has_timedout_rq) {
1648                 /*
1649                  * Before walking tags, we must ensure any submit started
1650                  * before the current time has finished. Since the submit
1651                  * uses srcu or rcu, wait for a synchronization point to
1652                  * ensure all running submits have finished
1653                  */
1654                 blk_mq_wait_quiesce_done(q->tag_set);
1655
1656                 expired.next = 0;
1657                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1658         }
1659
1660         if (expired.next != 0) {
1661                 mod_timer(&q->timeout, expired.next);
1662         } else {
1663                 /*
1664                  * Request timeouts are handled as a forward rolling timer. If
1665                  * we end up here it means that no requests are pending and
1666                  * also that no request has been pending for a while. Mark
1667                  * each hctx as idle.
1668                  */
1669                 queue_for_each_hw_ctx(q, hctx, i) {
1670                         /* the hctx may be unmapped, so check it here */
1671                         if (blk_mq_hw_queue_mapped(hctx))
1672                                 blk_mq_tag_idle(hctx);
1673                 }
1674         }
1675         blk_queue_exit(q);
1676 }
1677
1678 struct flush_busy_ctx_data {
1679         struct blk_mq_hw_ctx *hctx;
1680         struct list_head *list;
1681 };
1682
1683 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1684 {
1685         struct flush_busy_ctx_data *flush_data = data;
1686         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1687         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1688         enum hctx_type type = hctx->type;
1689
1690         spin_lock(&ctx->lock);
1691         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1692         sbitmap_clear_bit(sb, bitnr);
1693         spin_unlock(&ctx->lock);
1694         return true;
1695 }
1696
1697 /*
1698  * Process software queues that have been marked busy, splicing them
1699  * to the for-dispatch
1700  */
1701 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1702 {
1703         struct flush_busy_ctx_data data = {
1704                 .hctx = hctx,
1705                 .list = list,
1706         };
1707
1708         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1709 }
1710 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1711
1712 struct dispatch_rq_data {
1713         struct blk_mq_hw_ctx *hctx;
1714         struct request *rq;
1715 };
1716
1717 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1718                 void *data)
1719 {
1720         struct dispatch_rq_data *dispatch_data = data;
1721         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1722         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1723         enum hctx_type type = hctx->type;
1724
1725         spin_lock(&ctx->lock);
1726         if (!list_empty(&ctx->rq_lists[type])) {
1727                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1728                 list_del_init(&dispatch_data->rq->queuelist);
1729                 if (list_empty(&ctx->rq_lists[type]))
1730                         sbitmap_clear_bit(sb, bitnr);
1731         }
1732         spin_unlock(&ctx->lock);
1733
1734         return !dispatch_data->rq;
1735 }
1736
1737 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1738                                         struct blk_mq_ctx *start)
1739 {
1740         unsigned off = start ? start->index_hw[hctx->type] : 0;
1741         struct dispatch_rq_data data = {
1742                 .hctx = hctx,
1743                 .rq   = NULL,
1744         };
1745
1746         __sbitmap_for_each_set(&hctx->ctx_map, off,
1747                                dispatch_rq_from_ctx, &data);
1748
1749         return data.rq;
1750 }
1751
1752 bool __blk_mq_alloc_driver_tag(struct request *rq)
1753 {
1754         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1755         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1756         int tag;
1757
1758         blk_mq_tag_busy(rq->mq_hctx);
1759
1760         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1761                 bt = &rq->mq_hctx->tags->breserved_tags;
1762                 tag_offset = 0;
1763         } else {
1764                 if (!hctx_may_queue(rq->mq_hctx, bt))
1765                         return false;
1766         }
1767
1768         tag = __sbitmap_queue_get(bt);
1769         if (tag == BLK_MQ_NO_TAG)
1770                 return false;
1771
1772         rq->tag = tag + tag_offset;
1773         blk_mq_inc_active_requests(rq->mq_hctx);
1774         return true;
1775 }
1776
1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1778                                 int flags, void *key)
1779 {
1780         struct blk_mq_hw_ctx *hctx;
1781
1782         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1783
1784         spin_lock(&hctx->dispatch_wait_lock);
1785         if (!list_empty(&wait->entry)) {
1786                 struct sbitmap_queue *sbq;
1787
1788                 list_del_init(&wait->entry);
1789                 sbq = &hctx->tags->bitmap_tags;
1790                 atomic_dec(&sbq->ws_active);
1791         }
1792         spin_unlock(&hctx->dispatch_wait_lock);
1793
1794         blk_mq_run_hw_queue(hctx, true);
1795         return 1;
1796 }
1797
1798 /*
1799  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1800  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1801  * restart. For both cases, take care to check the condition again after
1802  * marking us as waiting.
1803  */
1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1805                                  struct request *rq)
1806 {
1807         struct sbitmap_queue *sbq;
1808         struct wait_queue_head *wq;
1809         wait_queue_entry_t *wait;
1810         bool ret;
1811
1812         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1813             !(blk_mq_is_shared_tags(hctx->flags))) {
1814                 blk_mq_sched_mark_restart_hctx(hctx);
1815
1816                 /*
1817                  * It's possible that a tag was freed in the window between the
1818                  * allocation failure and adding the hardware queue to the wait
1819                  * queue.
1820                  *
1821                  * Don't clear RESTART here, someone else could have set it.
1822                  * At most this will cost an extra queue run.
1823                  */
1824                 return blk_mq_get_driver_tag(rq);
1825         }
1826
1827         wait = &hctx->dispatch_wait;
1828         if (!list_empty_careful(&wait->entry))
1829                 return false;
1830
1831         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1832                 sbq = &hctx->tags->breserved_tags;
1833         else
1834                 sbq = &hctx->tags->bitmap_tags;
1835         wq = &bt_wait_ptr(sbq, hctx)->wait;
1836
1837         spin_lock_irq(&wq->lock);
1838         spin_lock(&hctx->dispatch_wait_lock);
1839         if (!list_empty(&wait->entry)) {
1840                 spin_unlock(&hctx->dispatch_wait_lock);
1841                 spin_unlock_irq(&wq->lock);
1842                 return false;
1843         }
1844
1845         atomic_inc(&sbq->ws_active);
1846         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1847         __add_wait_queue(wq, wait);
1848
1849         /*
1850          * Add one explicit barrier since blk_mq_get_driver_tag() may
1851          * not imply barrier in case of failure.
1852          *
1853          * Order adding us to wait queue and allocating driver tag.
1854          *
1855          * The pair is the one implied in sbitmap_queue_wake_up() which
1856          * orders clearing sbitmap tag bits and waitqueue_active() in
1857          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1858          *
1859          * Otherwise, re-order of adding wait queue and getting driver tag
1860          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1861          * the waitqueue_active() may not observe us in wait queue.
1862          */
1863         smp_mb();
1864
1865         /*
1866          * It's possible that a tag was freed in the window between the
1867          * allocation failure and adding the hardware queue to the wait
1868          * queue.
1869          */
1870         ret = blk_mq_get_driver_tag(rq);
1871         if (!ret) {
1872                 spin_unlock(&hctx->dispatch_wait_lock);
1873                 spin_unlock_irq(&wq->lock);
1874                 return false;
1875         }
1876
1877         /*
1878          * We got a tag, remove ourselves from the wait queue to ensure
1879          * someone else gets the wakeup.
1880          */
1881         list_del_init(&wait->entry);
1882         atomic_dec(&sbq->ws_active);
1883         spin_unlock(&hctx->dispatch_wait_lock);
1884         spin_unlock_irq(&wq->lock);
1885
1886         return true;
1887 }
1888
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891 /*
1892  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893  * - EWMA is one simple way to compute running average value
1894  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895  * - take 4 as factor for avoiding to get too small(0) result, and this
1896  *   factor doesn't matter because EWMA decreases exponentially
1897  */
1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899 {
1900         unsigned int ewma;
1901
1902         ewma = hctx->dispatch_busy;
1903
1904         if (!ewma && !busy)
1905                 return;
1906
1907         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908         if (busy)
1909                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911
1912         hctx->dispatch_busy = ewma;
1913 }
1914
1915 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1916
1917 static void blk_mq_handle_dev_resource(struct request *rq,
1918                                        struct list_head *list)
1919 {
1920         list_add(&rq->queuelist, list);
1921         __blk_mq_requeue_request(rq);
1922 }
1923
1924 static void blk_mq_handle_zone_resource(struct request *rq,
1925                                         struct list_head *zone_list)
1926 {
1927         /*
1928          * If we end up here it is because we cannot dispatch a request to a
1929          * specific zone due to LLD level zone-write locking or other zone
1930          * related resource not being available. In this case, set the request
1931          * aside in zone_list for retrying it later.
1932          */
1933         list_add(&rq->queuelist, zone_list);
1934         __blk_mq_requeue_request(rq);
1935 }
1936
1937 enum prep_dispatch {
1938         PREP_DISPATCH_OK,
1939         PREP_DISPATCH_NO_TAG,
1940         PREP_DISPATCH_NO_BUDGET,
1941 };
1942
1943 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1944                                                   bool need_budget)
1945 {
1946         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1947         int budget_token = -1;
1948
1949         if (need_budget) {
1950                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1951                 if (budget_token < 0) {
1952                         blk_mq_put_driver_tag(rq);
1953                         return PREP_DISPATCH_NO_BUDGET;
1954                 }
1955                 blk_mq_set_rq_budget_token(rq, budget_token);
1956         }
1957
1958         if (!blk_mq_get_driver_tag(rq)) {
1959                 /*
1960                  * The initial allocation attempt failed, so we need to
1961                  * rerun the hardware queue when a tag is freed. The
1962                  * waitqueue takes care of that. If the queue is run
1963                  * before we add this entry back on the dispatch list,
1964                  * we'll re-run it below.
1965                  */
1966                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1967                         /*
1968                          * All budgets not got from this function will be put
1969                          * together during handling partial dispatch
1970                          */
1971                         if (need_budget)
1972                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1973                         return PREP_DISPATCH_NO_TAG;
1974                 }
1975         }
1976
1977         return PREP_DISPATCH_OK;
1978 }
1979
1980 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1981 static void blk_mq_release_budgets(struct request_queue *q,
1982                 struct list_head *list)
1983 {
1984         struct request *rq;
1985
1986         list_for_each_entry(rq, list, queuelist) {
1987                 int budget_token = blk_mq_get_rq_budget_token(rq);
1988
1989                 if (budget_token >= 0)
1990                         blk_mq_put_dispatch_budget(q, budget_token);
1991         }
1992 }
1993
1994 /*
1995  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1996  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1997  * details)
1998  * Attention, we should explicitly call this in unusual cases:
1999  *  1) did not queue everything initially scheduled to queue
2000  *  2) the last attempt to queue a request failed
2001  */
2002 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2003                               bool from_schedule)
2004 {
2005         if (hctx->queue->mq_ops->commit_rqs && queued) {
2006                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2007                 hctx->queue->mq_ops->commit_rqs(hctx);
2008         }
2009 }
2010
2011 /*
2012  * Returns true if we did some work AND can potentially do more.
2013  */
2014 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2015                              unsigned int nr_budgets)
2016 {
2017         enum prep_dispatch prep;
2018         struct request_queue *q = hctx->queue;
2019         struct request *rq;
2020         int queued;
2021         blk_status_t ret = BLK_STS_OK;
2022         LIST_HEAD(zone_list);
2023         bool needs_resource = false;
2024
2025         if (list_empty(list))
2026                 return false;
2027
2028         /*
2029          * Now process all the entries, sending them to the driver.
2030          */
2031         queued = 0;
2032         do {
2033                 struct blk_mq_queue_data bd;
2034
2035                 rq = list_first_entry(list, struct request, queuelist);
2036
2037                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2038                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2039                 if (prep != PREP_DISPATCH_OK)
2040                         break;
2041
2042                 list_del_init(&rq->queuelist);
2043
2044                 bd.rq = rq;
2045                 bd.last = list_empty(list);
2046
2047                 /*
2048                  * once the request is queued to lld, no need to cover the
2049                  * budget any more
2050                  */
2051                 if (nr_budgets)
2052                         nr_budgets--;
2053                 ret = q->mq_ops->queue_rq(hctx, &bd);
2054                 switch (ret) {
2055                 case BLK_STS_OK:
2056                         queued++;
2057                         break;
2058                 case BLK_STS_RESOURCE:
2059                         needs_resource = true;
2060                         fallthrough;
2061                 case BLK_STS_DEV_RESOURCE:
2062                         blk_mq_handle_dev_resource(rq, list);
2063                         goto out;
2064                 case BLK_STS_ZONE_RESOURCE:
2065                         /*
2066                          * Move the request to zone_list and keep going through
2067                          * the dispatch list to find more requests the drive can
2068                          * accept.
2069                          */
2070                         blk_mq_handle_zone_resource(rq, &zone_list);
2071                         needs_resource = true;
2072                         break;
2073                 default:
2074                         blk_mq_end_request(rq, ret);
2075                 }
2076         } while (!list_empty(list));
2077 out:
2078         if (!list_empty(&zone_list))
2079                 list_splice_tail_init(&zone_list, list);
2080
2081         /* If we didn't flush the entire list, we could have told the driver
2082          * there was more coming, but that turned out to be a lie.
2083          */
2084         if (!list_empty(list) || ret != BLK_STS_OK)
2085                 blk_mq_commit_rqs(hctx, queued, false);
2086
2087         /*
2088          * Any items that need requeuing? Stuff them into hctx->dispatch,
2089          * that is where we will continue on next queue run.
2090          */
2091         if (!list_empty(list)) {
2092                 bool needs_restart;
2093                 /* For non-shared tags, the RESTART check will suffice */
2094                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2095                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2096                         blk_mq_is_shared_tags(hctx->flags));
2097
2098                 if (nr_budgets)
2099                         blk_mq_release_budgets(q, list);
2100
2101                 spin_lock(&hctx->lock);
2102                 list_splice_tail_init(list, &hctx->dispatch);
2103                 spin_unlock(&hctx->lock);
2104
2105                 /*
2106                  * Order adding requests to hctx->dispatch and checking
2107                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2108                  * in blk_mq_sched_restart(). Avoid restart code path to
2109                  * miss the new added requests to hctx->dispatch, meantime
2110                  * SCHED_RESTART is observed here.
2111                  */
2112                 smp_mb();
2113
2114                 /*
2115                  * If SCHED_RESTART was set by the caller of this function and
2116                  * it is no longer set that means that it was cleared by another
2117                  * thread and hence that a queue rerun is needed.
2118                  *
2119                  * If 'no_tag' is set, that means that we failed getting
2120                  * a driver tag with an I/O scheduler attached. If our dispatch
2121                  * waitqueue is no longer active, ensure that we run the queue
2122                  * AFTER adding our entries back to the list.
2123                  *
2124                  * If no I/O scheduler has been configured it is possible that
2125                  * the hardware queue got stopped and restarted before requests
2126                  * were pushed back onto the dispatch list. Rerun the queue to
2127                  * avoid starvation. Notes:
2128                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2129                  *   been stopped before rerunning a queue.
2130                  * - Some but not all block drivers stop a queue before
2131                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2132                  *   and dm-rq.
2133                  *
2134                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2135                  * bit is set, run queue after a delay to avoid IO stalls
2136                  * that could otherwise occur if the queue is idle.  We'll do
2137                  * similar if we couldn't get budget or couldn't lock a zone
2138                  * and SCHED_RESTART is set.
2139                  */
2140                 needs_restart = blk_mq_sched_needs_restart(hctx);
2141                 if (prep == PREP_DISPATCH_NO_BUDGET)
2142                         needs_resource = true;
2143                 if (!needs_restart ||
2144                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2145                         blk_mq_run_hw_queue(hctx, true);
2146                 else if (needs_resource)
2147                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2148
2149                 blk_mq_update_dispatch_busy(hctx, true);
2150                 return false;
2151         }
2152
2153         blk_mq_update_dispatch_busy(hctx, false);
2154         return true;
2155 }
2156
2157 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2158 {
2159         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2160
2161         if (cpu >= nr_cpu_ids)
2162                 cpu = cpumask_first(hctx->cpumask);
2163         return cpu;
2164 }
2165
2166 /*
2167  * It'd be great if the workqueue API had a way to pass
2168  * in a mask and had some smarts for more clever placement.
2169  * For now we just round-robin here, switching for every
2170  * BLK_MQ_CPU_WORK_BATCH queued items.
2171  */
2172 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2173 {
2174         bool tried = false;
2175         int next_cpu = hctx->next_cpu;
2176
2177         if (hctx->queue->nr_hw_queues == 1)
2178                 return WORK_CPU_UNBOUND;
2179
2180         if (--hctx->next_cpu_batch <= 0) {
2181 select_cpu:
2182                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2183                                 cpu_online_mask);
2184                 if (next_cpu >= nr_cpu_ids)
2185                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2186                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2187         }
2188
2189         /*
2190          * Do unbound schedule if we can't find a online CPU for this hctx,
2191          * and it should only happen in the path of handling CPU DEAD.
2192          */
2193         if (!cpu_online(next_cpu)) {
2194                 if (!tried) {
2195                         tried = true;
2196                         goto select_cpu;
2197                 }
2198
2199                 /*
2200                  * Make sure to re-select CPU next time once after CPUs
2201                  * in hctx->cpumask become online again.
2202                  */
2203                 hctx->next_cpu = next_cpu;
2204                 hctx->next_cpu_batch = 1;
2205                 return WORK_CPU_UNBOUND;
2206         }
2207
2208         hctx->next_cpu = next_cpu;
2209         return next_cpu;
2210 }
2211
2212 /**
2213  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2214  * @hctx: Pointer to the hardware queue to run.
2215  * @msecs: Milliseconds of delay to wait before running the queue.
2216  *
2217  * Run a hardware queue asynchronously with a delay of @msecs.
2218  */
2219 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2220 {
2221         if (unlikely(blk_mq_hctx_stopped(hctx)))
2222                 return;
2223         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2224                                     msecs_to_jiffies(msecs));
2225 }
2226 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2227
2228 /**
2229  * blk_mq_run_hw_queue - Start to run a hardware queue.
2230  * @hctx: Pointer to the hardware queue to run.
2231  * @async: If we want to run the queue asynchronously.
2232  *
2233  * Check if the request queue is not in a quiesced state and if there are
2234  * pending requests to be sent. If this is true, run the queue to send requests
2235  * to hardware.
2236  */
2237 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2238 {
2239         bool need_run;
2240
2241         /*
2242          * We can't run the queue inline with interrupts disabled.
2243          */
2244         WARN_ON_ONCE(!async && in_interrupt());
2245
2246         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2247
2248         /*
2249          * When queue is quiesced, we may be switching io scheduler, or
2250          * updating nr_hw_queues, or other things, and we can't run queue
2251          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2252          *
2253          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2254          * quiesced.
2255          */
2256         __blk_mq_run_dispatch_ops(hctx->queue, false,
2257                 need_run = !blk_queue_quiesced(hctx->queue) &&
2258                 blk_mq_hctx_has_pending(hctx));
2259
2260         if (!need_run)
2261                 return;
2262
2263         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2264                 blk_mq_delay_run_hw_queue(hctx, 0);
2265                 return;
2266         }
2267
2268         blk_mq_run_dispatch_ops(hctx->queue,
2269                                 blk_mq_sched_dispatch_requests(hctx));
2270 }
2271 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2272
2273 /*
2274  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2275  * scheduler.
2276  */
2277 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2278 {
2279         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2280         /*
2281          * If the IO scheduler does not respect hardware queues when
2282          * dispatching, we just don't bother with multiple HW queues and
2283          * dispatch from hctx for the current CPU since running multiple queues
2284          * just causes lock contention inside the scheduler and pointless cache
2285          * bouncing.
2286          */
2287         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2288
2289         if (!blk_mq_hctx_stopped(hctx))
2290                 return hctx;
2291         return NULL;
2292 }
2293
2294 /**
2295  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2296  * @q: Pointer to the request queue to run.
2297  * @async: If we want to run the queue asynchronously.
2298  */
2299 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2300 {
2301         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2302         unsigned long i;
2303
2304         sq_hctx = NULL;
2305         if (blk_queue_sq_sched(q))
2306                 sq_hctx = blk_mq_get_sq_hctx(q);
2307         queue_for_each_hw_ctx(q, hctx, i) {
2308                 if (blk_mq_hctx_stopped(hctx))
2309                         continue;
2310                 /*
2311                  * Dispatch from this hctx either if there's no hctx preferred
2312                  * by IO scheduler or if it has requests that bypass the
2313                  * scheduler.
2314                  */
2315                 if (!sq_hctx || sq_hctx == hctx ||
2316                     !list_empty_careful(&hctx->dispatch))
2317                         blk_mq_run_hw_queue(hctx, async);
2318         }
2319 }
2320 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2321
2322 /**
2323  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2324  * @q: Pointer to the request queue to run.
2325  * @msecs: Milliseconds of delay to wait before running the queues.
2326  */
2327 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2328 {
2329         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2330         unsigned long i;
2331
2332         sq_hctx = NULL;
2333         if (blk_queue_sq_sched(q))
2334                 sq_hctx = blk_mq_get_sq_hctx(q);
2335         queue_for_each_hw_ctx(q, hctx, i) {
2336                 if (blk_mq_hctx_stopped(hctx))
2337                         continue;
2338                 /*
2339                  * If there is already a run_work pending, leave the
2340                  * pending delay untouched. Otherwise, a hctx can stall
2341                  * if another hctx is re-delaying the other's work
2342                  * before the work executes.
2343                  */
2344                 if (delayed_work_pending(&hctx->run_work))
2345                         continue;
2346                 /*
2347                  * Dispatch from this hctx either if there's no hctx preferred
2348                  * by IO scheduler or if it has requests that bypass the
2349                  * scheduler.
2350                  */
2351                 if (!sq_hctx || sq_hctx == hctx ||
2352                     !list_empty_careful(&hctx->dispatch))
2353                         blk_mq_delay_run_hw_queue(hctx, msecs);
2354         }
2355 }
2356 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2357
2358 /*
2359  * This function is often used for pausing .queue_rq() by driver when
2360  * there isn't enough resource or some conditions aren't satisfied, and
2361  * BLK_STS_RESOURCE is usually returned.
2362  *
2363  * We do not guarantee that dispatch can be drained or blocked
2364  * after blk_mq_stop_hw_queue() returns. Please use
2365  * blk_mq_quiesce_queue() for that requirement.
2366  */
2367 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2368 {
2369         cancel_delayed_work(&hctx->run_work);
2370
2371         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2374
2375 /*
2376  * This function is often used for pausing .queue_rq() by driver when
2377  * there isn't enough resource or some conditions aren't satisfied, and
2378  * BLK_STS_RESOURCE is usually returned.
2379  *
2380  * We do not guarantee that dispatch can be drained or blocked
2381  * after blk_mq_stop_hw_queues() returns. Please use
2382  * blk_mq_quiesce_queue() for that requirement.
2383  */
2384 void blk_mq_stop_hw_queues(struct request_queue *q)
2385 {
2386         struct blk_mq_hw_ctx *hctx;
2387         unsigned long i;
2388
2389         queue_for_each_hw_ctx(q, hctx, i)
2390                 blk_mq_stop_hw_queue(hctx);
2391 }
2392 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2393
2394 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2395 {
2396         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2397
2398         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2399 }
2400 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2401
2402 void blk_mq_start_hw_queues(struct request_queue *q)
2403 {
2404         struct blk_mq_hw_ctx *hctx;
2405         unsigned long i;
2406
2407         queue_for_each_hw_ctx(q, hctx, i)
2408                 blk_mq_start_hw_queue(hctx);
2409 }
2410 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2411
2412 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2413 {
2414         if (!blk_mq_hctx_stopped(hctx))
2415                 return;
2416
2417         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2418         blk_mq_run_hw_queue(hctx, async);
2419 }
2420 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2421
2422 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2423 {
2424         struct blk_mq_hw_ctx *hctx;
2425         unsigned long i;
2426
2427         queue_for_each_hw_ctx(q, hctx, i)
2428                 blk_mq_start_stopped_hw_queue(hctx, async ||
2429                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2430 }
2431 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2432
2433 static void blk_mq_run_work_fn(struct work_struct *work)
2434 {
2435         struct blk_mq_hw_ctx *hctx =
2436                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2437
2438         blk_mq_run_dispatch_ops(hctx->queue,
2439                                 blk_mq_sched_dispatch_requests(hctx));
2440 }
2441
2442 /**
2443  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2444  * @rq: Pointer to request to be inserted.
2445  * @flags: BLK_MQ_INSERT_*
2446  *
2447  * Should only be used carefully, when the caller knows we want to
2448  * bypass a potential IO scheduler on the target device.
2449  */
2450 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2451 {
2452         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2453
2454         spin_lock(&hctx->lock);
2455         if (flags & BLK_MQ_INSERT_AT_HEAD)
2456                 list_add(&rq->queuelist, &hctx->dispatch);
2457         else
2458                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2459         spin_unlock(&hctx->lock);
2460 }
2461
2462 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2463                 struct blk_mq_ctx *ctx, struct list_head *list,
2464                 bool run_queue_async)
2465 {
2466         struct request *rq;
2467         enum hctx_type type = hctx->type;
2468
2469         /*
2470          * Try to issue requests directly if the hw queue isn't busy to save an
2471          * extra enqueue & dequeue to the sw queue.
2472          */
2473         if (!hctx->dispatch_busy && !run_queue_async) {
2474                 blk_mq_run_dispatch_ops(hctx->queue,
2475                         blk_mq_try_issue_list_directly(hctx, list));
2476                 if (list_empty(list))
2477                         goto out;
2478         }
2479
2480         /*
2481          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2482          * offline now
2483          */
2484         list_for_each_entry(rq, list, queuelist) {
2485                 BUG_ON(rq->mq_ctx != ctx);
2486                 trace_block_rq_insert(rq);
2487                 if (rq->cmd_flags & REQ_NOWAIT)
2488                         run_queue_async = true;
2489         }
2490
2491         spin_lock(&ctx->lock);
2492         list_splice_tail_init(list, &ctx->rq_lists[type]);
2493         blk_mq_hctx_mark_pending(hctx, ctx);
2494         spin_unlock(&ctx->lock);
2495 out:
2496         blk_mq_run_hw_queue(hctx, run_queue_async);
2497 }
2498
2499 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2500 {
2501         struct request_queue *q = rq->q;
2502         struct blk_mq_ctx *ctx = rq->mq_ctx;
2503         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2504
2505         if (blk_rq_is_passthrough(rq)) {
2506                 /*
2507                  * Passthrough request have to be added to hctx->dispatch
2508                  * directly.  The device may be in a situation where it can't
2509                  * handle FS request, and always returns BLK_STS_RESOURCE for
2510                  * them, which gets them added to hctx->dispatch.
2511                  *
2512                  * If a passthrough request is required to unblock the queues,
2513                  * and it is added to the scheduler queue, there is no chance to
2514                  * dispatch it given we prioritize requests in hctx->dispatch.
2515                  */
2516                 blk_mq_request_bypass_insert(rq, flags);
2517         } else if (req_op(rq) == REQ_OP_FLUSH) {
2518                 /*
2519                  * Firstly normal IO request is inserted to scheduler queue or
2520                  * sw queue, meantime we add flush request to dispatch queue(
2521                  * hctx->dispatch) directly and there is at most one in-flight
2522                  * flush request for each hw queue, so it doesn't matter to add
2523                  * flush request to tail or front of the dispatch queue.
2524                  *
2525                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2526                  * command, and queueing it will fail when there is any
2527                  * in-flight normal IO request(NCQ command). When adding flush
2528                  * rq to the front of hctx->dispatch, it is easier to introduce
2529                  * extra time to flush rq's latency because of S_SCHED_RESTART
2530                  * compared with adding to the tail of dispatch queue, then
2531                  * chance of flush merge is increased, and less flush requests
2532                  * will be issued to controller. It is observed that ~10% time
2533                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2534                  * drive when adding flush rq to the front of hctx->dispatch.
2535                  *
2536                  * Simply queue flush rq to the front of hctx->dispatch so that
2537                  * intensive flush workloads can benefit in case of NCQ HW.
2538                  */
2539                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2540         } else if (q->elevator) {
2541                 LIST_HEAD(list);
2542
2543                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2544
2545                 list_add(&rq->queuelist, &list);
2546                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2547         } else {
2548                 trace_block_rq_insert(rq);
2549
2550                 spin_lock(&ctx->lock);
2551                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2552                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2553                 else
2554                         list_add_tail(&rq->queuelist,
2555                                       &ctx->rq_lists[hctx->type]);
2556                 blk_mq_hctx_mark_pending(hctx, ctx);
2557                 spin_unlock(&ctx->lock);
2558         }
2559 }
2560
2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562                 unsigned int nr_segs)
2563 {
2564         int err;
2565
2566         if (bio->bi_opf & REQ_RAHEAD)
2567                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2568
2569         rq->__sector = bio->bi_iter.bi_sector;
2570         rq->write_hint = bio->bi_write_hint;
2571         blk_rq_bio_prep(rq, bio, nr_segs);
2572
2573         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2574         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2575         WARN_ON_ONCE(err);
2576
2577         blk_account_io_start(rq);
2578 }
2579
2580 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2581                                             struct request *rq, bool last)
2582 {
2583         struct request_queue *q = rq->q;
2584         struct blk_mq_queue_data bd = {
2585                 .rq = rq,
2586                 .last = last,
2587         };
2588         blk_status_t ret;
2589
2590         /*
2591          * For OK queue, we are done. For error, caller may kill it.
2592          * Any other error (busy), just add it to our list as we
2593          * previously would have done.
2594          */
2595         ret = q->mq_ops->queue_rq(hctx, &bd);
2596         switch (ret) {
2597         case BLK_STS_OK:
2598                 blk_mq_update_dispatch_busy(hctx, false);
2599                 break;
2600         case BLK_STS_RESOURCE:
2601         case BLK_STS_DEV_RESOURCE:
2602                 blk_mq_update_dispatch_busy(hctx, true);
2603                 __blk_mq_requeue_request(rq);
2604                 break;
2605         default:
2606                 blk_mq_update_dispatch_busy(hctx, false);
2607                 break;
2608         }
2609
2610         return ret;
2611 }
2612
2613 static bool blk_mq_get_budget_and_tag(struct request *rq)
2614 {
2615         int budget_token;
2616
2617         budget_token = blk_mq_get_dispatch_budget(rq->q);
2618         if (budget_token < 0)
2619                 return false;
2620         blk_mq_set_rq_budget_token(rq, budget_token);
2621         if (!blk_mq_get_driver_tag(rq)) {
2622                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2623                 return false;
2624         }
2625         return true;
2626 }
2627
2628 /**
2629  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2630  * @hctx: Pointer of the associated hardware queue.
2631  * @rq: Pointer to request to be sent.
2632  *
2633  * If the device has enough resources to accept a new request now, send the
2634  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2635  * we can try send it another time in the future. Requests inserted at this
2636  * queue have higher priority.
2637  */
2638 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2639                 struct request *rq)
2640 {
2641         blk_status_t ret;
2642
2643         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2644                 blk_mq_insert_request(rq, 0);
2645                 return;
2646         }
2647
2648         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2649                 blk_mq_insert_request(rq, 0);
2650                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2651                 return;
2652         }
2653
2654         ret = __blk_mq_issue_directly(hctx, rq, true);
2655         switch (ret) {
2656         case BLK_STS_OK:
2657                 break;
2658         case BLK_STS_RESOURCE:
2659         case BLK_STS_DEV_RESOURCE:
2660                 blk_mq_request_bypass_insert(rq, 0);
2661                 blk_mq_run_hw_queue(hctx, false);
2662                 break;
2663         default:
2664                 blk_mq_end_request(rq, ret);
2665                 break;
2666         }
2667 }
2668
2669 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2670 {
2671         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2672
2673         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2674                 blk_mq_insert_request(rq, 0);
2675                 return BLK_STS_OK;
2676         }
2677
2678         if (!blk_mq_get_budget_and_tag(rq))
2679                 return BLK_STS_RESOURCE;
2680         return __blk_mq_issue_directly(hctx, rq, last);
2681 }
2682
2683 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2684 {
2685         struct blk_mq_hw_ctx *hctx = NULL;
2686         struct request *rq;
2687         int queued = 0;
2688         blk_status_t ret = BLK_STS_OK;
2689
2690         while ((rq = rq_list_pop(&plug->mq_list))) {
2691                 bool last = rq_list_empty(plug->mq_list);
2692
2693                 if (hctx != rq->mq_hctx) {
2694                         if (hctx) {
2695                                 blk_mq_commit_rqs(hctx, queued, false);
2696                                 queued = 0;
2697                         }
2698                         hctx = rq->mq_hctx;
2699                 }
2700
2701                 ret = blk_mq_request_issue_directly(rq, last);
2702                 switch (ret) {
2703                 case BLK_STS_OK:
2704                         queued++;
2705                         break;
2706                 case BLK_STS_RESOURCE:
2707                 case BLK_STS_DEV_RESOURCE:
2708                         blk_mq_request_bypass_insert(rq, 0);
2709                         blk_mq_run_hw_queue(hctx, false);
2710                         goto out;
2711                 default:
2712                         blk_mq_end_request(rq, ret);
2713                         break;
2714                 }
2715         }
2716
2717 out:
2718         if (ret != BLK_STS_OK)
2719                 blk_mq_commit_rqs(hctx, queued, false);
2720 }
2721
2722 static void __blk_mq_flush_plug_list(struct request_queue *q,
2723                                      struct blk_plug *plug)
2724 {
2725         if (blk_queue_quiesced(q))
2726                 return;
2727         q->mq_ops->queue_rqs(&plug->mq_list);
2728 }
2729
2730 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2731 {
2732         struct blk_mq_hw_ctx *this_hctx = NULL;
2733         struct blk_mq_ctx *this_ctx = NULL;
2734         struct request *requeue_list = NULL;
2735         struct request **requeue_lastp = &requeue_list;
2736         unsigned int depth = 0;
2737         bool is_passthrough = false;
2738         LIST_HEAD(list);
2739
2740         do {
2741                 struct request *rq = rq_list_pop(&plug->mq_list);
2742
2743                 if (!this_hctx) {
2744                         this_hctx = rq->mq_hctx;
2745                         this_ctx = rq->mq_ctx;
2746                         is_passthrough = blk_rq_is_passthrough(rq);
2747                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2748                            is_passthrough != blk_rq_is_passthrough(rq)) {
2749                         rq_list_add_tail(&requeue_lastp, rq);
2750                         continue;
2751                 }
2752                 list_add(&rq->queuelist, &list);
2753                 depth++;
2754         } while (!rq_list_empty(plug->mq_list));
2755
2756         plug->mq_list = requeue_list;
2757         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758
2759         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2760         /* passthrough requests should never be issued to the I/O scheduler */
2761         if (is_passthrough) {
2762                 spin_lock(&this_hctx->lock);
2763                 list_splice_tail_init(&list, &this_hctx->dispatch);
2764                 spin_unlock(&this_hctx->lock);
2765                 blk_mq_run_hw_queue(this_hctx, from_sched);
2766         } else if (this_hctx->queue->elevator) {
2767                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2768                                 &list, 0);
2769                 blk_mq_run_hw_queue(this_hctx, from_sched);
2770         } else {
2771                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2772         }
2773         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2774 }
2775
2776 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2777 {
2778         struct request *rq;
2779
2780         /*
2781          * We may have been called recursively midway through handling
2782          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2783          * To avoid mq_list changing under our feet, clear rq_count early and
2784          * bail out specifically if rq_count is 0 rather than checking
2785          * whether the mq_list is empty.
2786          */
2787         if (plug->rq_count == 0)
2788                 return;
2789         plug->rq_count = 0;
2790
2791         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2792                 struct request_queue *q;
2793
2794                 rq = rq_list_peek(&plug->mq_list);
2795                 q = rq->q;
2796
2797                 /*
2798                  * Peek first request and see if we have a ->queue_rqs() hook.
2799                  * If we do, we can dispatch the whole plug list in one go. We
2800                  * already know at this point that all requests belong to the
2801                  * same queue, caller must ensure that's the case.
2802                  */
2803                 if (q->mq_ops->queue_rqs) {
2804                         blk_mq_run_dispatch_ops(q,
2805                                 __blk_mq_flush_plug_list(q, plug));
2806                         if (rq_list_empty(plug->mq_list))
2807                                 return;
2808                 }
2809
2810                 blk_mq_run_dispatch_ops(q,
2811                                 blk_mq_plug_issue_direct(plug));
2812                 if (rq_list_empty(plug->mq_list))
2813                         return;
2814         }
2815
2816         do {
2817                 blk_mq_dispatch_plug_list(plug, from_schedule);
2818         } while (!rq_list_empty(plug->mq_list));
2819 }
2820
2821 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2822                 struct list_head *list)
2823 {
2824         int queued = 0;
2825         blk_status_t ret = BLK_STS_OK;
2826
2827         while (!list_empty(list)) {
2828                 struct request *rq = list_first_entry(list, struct request,
2829                                 queuelist);
2830
2831                 list_del_init(&rq->queuelist);
2832                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2833                 switch (ret) {
2834                 case BLK_STS_OK:
2835                         queued++;
2836                         break;
2837                 case BLK_STS_RESOURCE:
2838                 case BLK_STS_DEV_RESOURCE:
2839                         blk_mq_request_bypass_insert(rq, 0);
2840                         if (list_empty(list))
2841                                 blk_mq_run_hw_queue(hctx, false);
2842                         goto out;
2843                 default:
2844                         blk_mq_end_request(rq, ret);
2845                         break;
2846                 }
2847         }
2848
2849 out:
2850         if (ret != BLK_STS_OK)
2851                 blk_mq_commit_rqs(hctx, queued, false);
2852 }
2853
2854 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2855                                      struct bio *bio, unsigned int nr_segs)
2856 {
2857         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2858                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2859                         return true;
2860                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2861                         return true;
2862         }
2863         return false;
2864 }
2865
2866 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2867                                                struct blk_plug *plug,
2868                                                struct bio *bio,
2869                                                unsigned int nsegs)
2870 {
2871         struct blk_mq_alloc_data data = {
2872                 .q              = q,
2873                 .nr_tags        = 1,
2874                 .cmd_flags      = bio->bi_opf,
2875         };
2876         struct request *rq;
2877
2878         rq_qos_throttle(q, bio);
2879
2880         if (plug) {
2881                 data.nr_tags = plug->nr_ios;
2882                 plug->nr_ios = 1;
2883                 data.cached_rq = &plug->cached_rq;
2884         }
2885
2886         rq = __blk_mq_alloc_requests(&data);
2887         if (rq)
2888                 return rq;
2889         rq_qos_cleanup(q, bio);
2890         if (bio->bi_opf & REQ_NOWAIT)
2891                 bio_wouldblock_error(bio);
2892         return NULL;
2893 }
2894
2895 /*
2896  * Check if there is a suitable cached request and return it.
2897  */
2898 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2899                 struct request_queue *q, blk_opf_t opf)
2900 {
2901         enum hctx_type type = blk_mq_get_hctx_type(opf);
2902         struct request *rq;
2903
2904         if (!plug)
2905                 return NULL;
2906         rq = rq_list_peek(&plug->cached_rq);
2907         if (!rq || rq->q != q)
2908                 return NULL;
2909         if (type != rq->mq_hctx->type &&
2910             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2911                 return NULL;
2912         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2913                 return NULL;
2914         return rq;
2915 }
2916
2917 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2918                 struct bio *bio)
2919 {
2920         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2921
2922         /*
2923          * If any qos ->throttle() end up blocking, we will have flushed the
2924          * plug and hence killed the cached_rq list as well. Pop this entry
2925          * before we throttle.
2926          */
2927         plug->cached_rq = rq_list_next(rq);
2928         rq_qos_throttle(rq->q, bio);
2929
2930         blk_mq_rq_time_init(rq, 0);
2931         rq->cmd_flags = bio->bi_opf;
2932         INIT_LIST_HEAD(&rq->queuelist);
2933 }
2934
2935 /**
2936  * blk_mq_submit_bio - Create and send a request to block device.
2937  * @bio: Bio pointer.
2938  *
2939  * Builds up a request structure from @q and @bio and send to the device. The
2940  * request may not be queued directly to hardware if:
2941  * * This request can be merged with another one
2942  * * We want to place request at plug queue for possible future merging
2943  * * There is an IO scheduler active at this queue
2944  *
2945  * It will not queue the request if there is an error with the bio, or at the
2946  * request creation.
2947  */
2948 void blk_mq_submit_bio(struct bio *bio)
2949 {
2950         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951         struct blk_plug *plug = blk_mq_plug(bio);
2952         const int is_sync = op_is_sync(bio->bi_opf);
2953         struct blk_mq_hw_ctx *hctx;
2954         unsigned int nr_segs = 1;
2955         struct request *rq;
2956         blk_status_t ret;
2957
2958         bio = blk_queue_bounce(bio, q);
2959
2960         /*
2961          * If the plug has a cached request for this queue, try use it.
2962          *
2963          * The cached request already holds a q_usage_counter reference and we
2964          * don't have to acquire a new one if we use it.
2965          */
2966         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2967         if (!rq) {
2968                 if (unlikely(bio_queue_enter(bio)))
2969                         return;
2970         }
2971
2972         if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2973                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2974                 if (!bio)
2975                         goto queue_exit;
2976         }
2977         if (!bio_integrity_prep(bio))
2978                 goto queue_exit;
2979
2980         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2981                 goto queue_exit;
2982
2983         if (!rq) {
2984                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2985                 if (unlikely(!rq))
2986                         goto queue_exit;
2987         } else {
2988                 blk_mq_use_cached_rq(rq, plug, bio);
2989         }
2990
2991         trace_block_getrq(bio);
2992
2993         rq_qos_track(q, rq, bio);
2994
2995         blk_mq_bio_to_request(rq, bio, nr_segs);
2996
2997         ret = blk_crypto_rq_get_keyslot(rq);
2998         if (ret != BLK_STS_OK) {
2999                 bio->bi_status = ret;
3000                 bio_endio(bio);
3001                 blk_mq_free_request(rq);
3002                 return;
3003         }
3004
3005         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3006                 return;
3007
3008         if (plug) {
3009                 blk_add_rq_to_plug(plug, rq);
3010                 return;
3011         }
3012
3013         hctx = rq->mq_hctx;
3014         if ((rq->rq_flags & RQF_USE_SCHED) ||
3015             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3016                 blk_mq_insert_request(rq, 0);
3017                 blk_mq_run_hw_queue(hctx, true);
3018         } else {
3019                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3020         }
3021         return;
3022
3023 queue_exit:
3024         /*
3025          * Don't drop the queue reference if we were trying to use a cached
3026          * request and thus didn't acquire one.
3027          */
3028         if (!rq)
3029                 blk_queue_exit(q);
3030 }
3031
3032 #ifdef CONFIG_BLK_MQ_STACKING
3033 /**
3034  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3035  * @rq: the request being queued
3036  */
3037 blk_status_t blk_insert_cloned_request(struct request *rq)
3038 {
3039         struct request_queue *q = rq->q;
3040         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3041         unsigned int max_segments = blk_rq_get_max_segments(rq);
3042         blk_status_t ret;
3043
3044         if (blk_rq_sectors(rq) > max_sectors) {
3045                 /*
3046                  * SCSI device does not have a good way to return if
3047                  * Write Same/Zero is actually supported. If a device rejects
3048                  * a non-read/write command (discard, write same,etc.) the
3049                  * low-level device driver will set the relevant queue limit to
3050                  * 0 to prevent blk-lib from issuing more of the offending
3051                  * operations. Commands queued prior to the queue limit being
3052                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3053                  * errors being propagated to upper layers.
3054                  */
3055                 if (max_sectors == 0)
3056                         return BLK_STS_NOTSUPP;
3057
3058                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3059                         __func__, blk_rq_sectors(rq), max_sectors);
3060                 return BLK_STS_IOERR;
3061         }
3062
3063         /*
3064          * The queue settings related to segment counting may differ from the
3065          * original queue.
3066          */
3067         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3068         if (rq->nr_phys_segments > max_segments) {
3069                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3070                         __func__, rq->nr_phys_segments, max_segments);
3071                 return BLK_STS_IOERR;
3072         }
3073
3074         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3075                 return BLK_STS_IOERR;
3076
3077         ret = blk_crypto_rq_get_keyslot(rq);
3078         if (ret != BLK_STS_OK)
3079                 return ret;
3080
3081         blk_account_io_start(rq);
3082
3083         /*
3084          * Since we have a scheduler attached on the top device,
3085          * bypass a potential scheduler on the bottom device for
3086          * insert.
3087          */
3088         blk_mq_run_dispatch_ops(q,
3089                         ret = blk_mq_request_issue_directly(rq, true));
3090         if (ret)
3091                 blk_account_io_done(rq, blk_time_get_ns());
3092         return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3095
3096 /**
3097  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3098  * @rq: the clone request to be cleaned up
3099  *
3100  * Description:
3101  *     Free all bios in @rq for a cloned request.
3102  */
3103 void blk_rq_unprep_clone(struct request *rq)
3104 {
3105         struct bio *bio;
3106
3107         while ((bio = rq->bio) != NULL) {
3108                 rq->bio = bio->bi_next;
3109
3110                 bio_put(bio);
3111         }
3112 }
3113 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3114
3115 /**
3116  * blk_rq_prep_clone - Helper function to setup clone request
3117  * @rq: the request to be setup
3118  * @rq_src: original request to be cloned
3119  * @bs: bio_set that bios for clone are allocated from
3120  * @gfp_mask: memory allocation mask for bio
3121  * @bio_ctr: setup function to be called for each clone bio.
3122  *           Returns %0 for success, non %0 for failure.
3123  * @data: private data to be passed to @bio_ctr
3124  *
3125  * Description:
3126  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3127  *     Also, pages which the original bios are pointing to are not copied
3128  *     and the cloned bios just point same pages.
3129  *     So cloned bios must be completed before original bios, which means
3130  *     the caller must complete @rq before @rq_src.
3131  */
3132 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3133                       struct bio_set *bs, gfp_t gfp_mask,
3134                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3135                       void *data)
3136 {
3137         struct bio *bio, *bio_src;
3138
3139         if (!bs)
3140                 bs = &fs_bio_set;
3141
3142         __rq_for_each_bio(bio_src, rq_src) {
3143                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3144                                       bs);
3145                 if (!bio)
3146                         goto free_and_out;
3147
3148                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3149                         goto free_and_out;
3150
3151                 if (rq->bio) {
3152                         rq->biotail->bi_next = bio;
3153                         rq->biotail = bio;
3154                 } else {
3155                         rq->bio = rq->biotail = bio;
3156                 }
3157                 bio = NULL;
3158         }
3159
3160         /* Copy attributes of the original request to the clone request. */
3161         rq->__sector = blk_rq_pos(rq_src);
3162         rq->__data_len = blk_rq_bytes(rq_src);
3163         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3164                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3165                 rq->special_vec = rq_src->special_vec;
3166         }
3167         rq->nr_phys_segments = rq_src->nr_phys_segments;
3168         rq->ioprio = rq_src->ioprio;
3169         rq->write_hint = rq_src->write_hint;
3170
3171         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3172                 goto free_and_out;
3173
3174         return 0;
3175
3176 free_and_out:
3177         if (bio)
3178                 bio_put(bio);
3179         blk_rq_unprep_clone(rq);
3180
3181         return -ENOMEM;
3182 }
3183 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3184 #endif /* CONFIG_BLK_MQ_STACKING */
3185
3186 /*
3187  * Steal bios from a request and add them to a bio list.
3188  * The request must not have been partially completed before.
3189  */
3190 void blk_steal_bios(struct bio_list *list, struct request *rq)
3191 {
3192         if (rq->bio) {
3193                 if (list->tail)
3194                         list->tail->bi_next = rq->bio;
3195                 else
3196                         list->head = rq->bio;
3197                 list->tail = rq->biotail;
3198
3199                 rq->bio = NULL;
3200                 rq->biotail = NULL;
3201         }
3202
3203         rq->__data_len = 0;
3204 }
3205 EXPORT_SYMBOL_GPL(blk_steal_bios);
3206
3207 static size_t order_to_size(unsigned int order)
3208 {
3209         return (size_t)PAGE_SIZE << order;
3210 }
3211
3212 /* called before freeing request pool in @tags */
3213 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3214                                     struct blk_mq_tags *tags)
3215 {
3216         struct page *page;
3217         unsigned long flags;
3218
3219         /*
3220          * There is no need to clear mapping if driver tags is not initialized
3221          * or the mapping belongs to the driver tags.
3222          */
3223         if (!drv_tags || drv_tags == tags)
3224                 return;
3225
3226         list_for_each_entry(page, &tags->page_list, lru) {
3227                 unsigned long start = (unsigned long)page_address(page);
3228                 unsigned long end = start + order_to_size(page->private);
3229                 int i;
3230
3231                 for (i = 0; i < drv_tags->nr_tags; i++) {
3232                         struct request *rq = drv_tags->rqs[i];
3233                         unsigned long rq_addr = (unsigned long)rq;
3234
3235                         if (rq_addr >= start && rq_addr < end) {
3236                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3237                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3238                         }
3239                 }
3240         }
3241
3242         /*
3243          * Wait until all pending iteration is done.
3244          *
3245          * Request reference is cleared and it is guaranteed to be observed
3246          * after the ->lock is released.
3247          */
3248         spin_lock_irqsave(&drv_tags->lock, flags);
3249         spin_unlock_irqrestore(&drv_tags->lock, flags);
3250 }
3251
3252 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3253                      unsigned int hctx_idx)
3254 {
3255         struct blk_mq_tags *drv_tags;
3256         struct page *page;
3257
3258         if (list_empty(&tags->page_list))
3259                 return;
3260
3261         if (blk_mq_is_shared_tags(set->flags))
3262                 drv_tags = set->shared_tags;
3263         else
3264                 drv_tags = set->tags[hctx_idx];
3265
3266         if (tags->static_rqs && set->ops->exit_request) {
3267                 int i;
3268
3269                 for (i = 0; i < tags->nr_tags; i++) {
3270                         struct request *rq = tags->static_rqs[i];
3271
3272                         if (!rq)
3273                                 continue;
3274                         set->ops->exit_request(set, rq, hctx_idx);
3275                         tags->static_rqs[i] = NULL;
3276                 }
3277         }
3278
3279         blk_mq_clear_rq_mapping(drv_tags, tags);
3280
3281         while (!list_empty(&tags->page_list)) {
3282                 page = list_first_entry(&tags->page_list, struct page, lru);
3283                 list_del_init(&page->lru);
3284                 /*
3285                  * Remove kmemleak object previously allocated in
3286                  * blk_mq_alloc_rqs().
3287                  */
3288                 kmemleak_free(page_address(page));
3289                 __free_pages(page, page->private);
3290         }
3291 }
3292
3293 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3294 {
3295         kfree(tags->rqs);
3296         tags->rqs = NULL;
3297         kfree(tags->static_rqs);
3298         tags->static_rqs = NULL;
3299
3300         blk_mq_free_tags(tags);
3301 }
3302
3303 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3304                 unsigned int hctx_idx)
3305 {
3306         int i;
3307
3308         for (i = 0; i < set->nr_maps; i++) {
3309                 unsigned int start = set->map[i].queue_offset;
3310                 unsigned int end = start + set->map[i].nr_queues;
3311
3312                 if (hctx_idx >= start && hctx_idx < end)
3313                         break;
3314         }
3315
3316         if (i >= set->nr_maps)
3317                 i = HCTX_TYPE_DEFAULT;
3318
3319         return i;
3320 }
3321
3322 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3323                 unsigned int hctx_idx)
3324 {
3325         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3326
3327         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3328 }
3329
3330 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3331                                                unsigned int hctx_idx,
3332                                                unsigned int nr_tags,
3333                                                unsigned int reserved_tags)
3334 {
3335         int node = blk_mq_get_hctx_node(set, hctx_idx);
3336         struct blk_mq_tags *tags;
3337
3338         if (node == NUMA_NO_NODE)
3339                 node = set->numa_node;
3340
3341         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3342                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3343         if (!tags)
3344                 return NULL;
3345
3346         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3347                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3348                                  node);
3349         if (!tags->rqs)
3350                 goto err_free_tags;
3351
3352         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3353                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3354                                         node);
3355         if (!tags->static_rqs)
3356                 goto err_free_rqs;
3357
3358         return tags;
3359
3360 err_free_rqs:
3361         kfree(tags->rqs);
3362 err_free_tags:
3363         blk_mq_free_tags(tags);
3364         return NULL;
3365 }
3366
3367 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3368                                unsigned int hctx_idx, int node)
3369 {
3370         int ret;
3371
3372         if (set->ops->init_request) {
3373                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3374                 if (ret)
3375                         return ret;
3376         }
3377
3378         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3379         return 0;
3380 }
3381
3382 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3383                             struct blk_mq_tags *tags,
3384                             unsigned int hctx_idx, unsigned int depth)
3385 {
3386         unsigned int i, j, entries_per_page, max_order = 4;
3387         int node = blk_mq_get_hctx_node(set, hctx_idx);
3388         size_t rq_size, left;
3389
3390         if (node == NUMA_NO_NODE)
3391                 node = set->numa_node;
3392
3393         INIT_LIST_HEAD(&tags->page_list);
3394
3395         /*
3396          * rq_size is the size of the request plus driver payload, rounded
3397          * to the cacheline size
3398          */
3399         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3400                                 cache_line_size());
3401         left = rq_size * depth;
3402
3403         for (i = 0; i < depth; ) {
3404                 int this_order = max_order;
3405                 struct page *page;
3406                 int to_do;
3407                 void *p;
3408
3409                 while (this_order && left < order_to_size(this_order - 1))
3410                         this_order--;
3411
3412                 do {
3413                         page = alloc_pages_node(node,
3414                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3415                                 this_order);
3416                         if (page)
3417                                 break;
3418                         if (!this_order--)
3419                                 break;
3420                         if (order_to_size(this_order) < rq_size)
3421                                 break;
3422                 } while (1);
3423
3424                 if (!page)
3425                         goto fail;
3426
3427                 page->private = this_order;
3428                 list_add_tail(&page->lru, &tags->page_list);
3429
3430                 p = page_address(page);
3431                 /*
3432                  * Allow kmemleak to scan these pages as they contain pointers
3433                  * to additional allocations like via ops->init_request().
3434                  */
3435                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3436                 entries_per_page = order_to_size(this_order) / rq_size;
3437                 to_do = min(entries_per_page, depth - i);
3438                 left -= to_do * rq_size;
3439                 for (j = 0; j < to_do; j++) {
3440                         struct request *rq = p;
3441
3442                         tags->static_rqs[i] = rq;
3443                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3444                                 tags->static_rqs[i] = NULL;
3445                                 goto fail;
3446                         }
3447
3448                         p += rq_size;
3449                         i++;
3450                 }
3451         }
3452         return 0;
3453
3454 fail:
3455         blk_mq_free_rqs(set, tags, hctx_idx);
3456         return -ENOMEM;
3457 }
3458
3459 struct rq_iter_data {
3460         struct blk_mq_hw_ctx *hctx;
3461         bool has_rq;
3462 };
3463
3464 static bool blk_mq_has_request(struct request *rq, void *data)
3465 {
3466         struct rq_iter_data *iter_data = data;
3467
3468         if (rq->mq_hctx != iter_data->hctx)
3469                 return true;
3470         iter_data->has_rq = true;
3471         return false;
3472 }
3473
3474 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3475 {
3476         struct blk_mq_tags *tags = hctx->sched_tags ?
3477                         hctx->sched_tags : hctx->tags;
3478         struct rq_iter_data data = {
3479                 .hctx   = hctx,
3480         };
3481
3482         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3483         return data.has_rq;
3484 }
3485
3486 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3487                 struct blk_mq_hw_ctx *hctx)
3488 {
3489         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3490                 return false;
3491         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3492                 return false;
3493         return true;
3494 }
3495
3496 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3497 {
3498         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3499                         struct blk_mq_hw_ctx, cpuhp_online);
3500
3501         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3502             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3503                 return 0;
3504
3505         /*
3506          * Prevent new request from being allocated on the current hctx.
3507          *
3508          * The smp_mb__after_atomic() Pairs with the implied barrier in
3509          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3510          * seen once we return from the tag allocator.
3511          */
3512         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3513         smp_mb__after_atomic();
3514
3515         /*
3516          * Try to grab a reference to the queue and wait for any outstanding
3517          * requests.  If we could not grab a reference the queue has been
3518          * frozen and there are no requests.
3519          */
3520         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3521                 while (blk_mq_hctx_has_requests(hctx))
3522                         msleep(5);
3523                 percpu_ref_put(&hctx->queue->q_usage_counter);
3524         }
3525
3526         return 0;
3527 }
3528
3529 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3530 {
3531         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3532                         struct blk_mq_hw_ctx, cpuhp_online);
3533
3534         if (cpumask_test_cpu(cpu, hctx->cpumask))
3535                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3536         return 0;
3537 }
3538
3539 /*
3540  * 'cpu' is going away. splice any existing rq_list entries from this
3541  * software queue to the hw queue dispatch list, and ensure that it
3542  * gets run.
3543  */
3544 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3545 {
3546         struct blk_mq_hw_ctx *hctx;
3547         struct blk_mq_ctx *ctx;
3548         LIST_HEAD(tmp);
3549         enum hctx_type type;
3550
3551         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3552         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3553                 return 0;
3554
3555         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3556         type = hctx->type;
3557
3558         spin_lock(&ctx->lock);
3559         if (!list_empty(&ctx->rq_lists[type])) {
3560                 list_splice_init(&ctx->rq_lists[type], &tmp);
3561                 blk_mq_hctx_clear_pending(hctx, ctx);
3562         }
3563         spin_unlock(&ctx->lock);
3564
3565         if (list_empty(&tmp))
3566                 return 0;
3567
3568         spin_lock(&hctx->lock);
3569         list_splice_tail_init(&tmp, &hctx->dispatch);
3570         spin_unlock(&hctx->lock);
3571
3572         blk_mq_run_hw_queue(hctx, true);
3573         return 0;
3574 }
3575
3576 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3577 {
3578         if (!(hctx->flags & BLK_MQ_F_STACKING))
3579                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3580                                                     &hctx->cpuhp_online);
3581         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3582                                             &hctx->cpuhp_dead);
3583 }
3584
3585 /*
3586  * Before freeing hw queue, clearing the flush request reference in
3587  * tags->rqs[] for avoiding potential UAF.
3588  */
3589 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3590                 unsigned int queue_depth, struct request *flush_rq)
3591 {
3592         int i;
3593         unsigned long flags;
3594
3595         /* The hw queue may not be mapped yet */
3596         if (!tags)
3597                 return;
3598
3599         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3600
3601         for (i = 0; i < queue_depth; i++)
3602                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3603
3604         /*
3605          * Wait until all pending iteration is done.
3606          *
3607          * Request reference is cleared and it is guaranteed to be observed
3608          * after the ->lock is released.
3609          */
3610         spin_lock_irqsave(&tags->lock, flags);
3611         spin_unlock_irqrestore(&tags->lock, flags);
3612 }
3613
3614 /* hctx->ctxs will be freed in queue's release handler */
3615 static void blk_mq_exit_hctx(struct request_queue *q,
3616                 struct blk_mq_tag_set *set,
3617                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3618 {
3619         struct request *flush_rq = hctx->fq->flush_rq;
3620
3621         if (blk_mq_hw_queue_mapped(hctx))
3622                 blk_mq_tag_idle(hctx);
3623
3624         if (blk_queue_init_done(q))
3625                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3626                                 set->queue_depth, flush_rq);
3627         if (set->ops->exit_request)
3628                 set->ops->exit_request(set, flush_rq, hctx_idx);
3629
3630         if (set->ops->exit_hctx)
3631                 set->ops->exit_hctx(hctx, hctx_idx);
3632
3633         blk_mq_remove_cpuhp(hctx);
3634
3635         xa_erase(&q->hctx_table, hctx_idx);
3636
3637         spin_lock(&q->unused_hctx_lock);
3638         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3639         spin_unlock(&q->unused_hctx_lock);
3640 }
3641
3642 static void blk_mq_exit_hw_queues(struct request_queue *q,
3643                 struct blk_mq_tag_set *set, int nr_queue)
3644 {
3645         struct blk_mq_hw_ctx *hctx;
3646         unsigned long i;
3647
3648         queue_for_each_hw_ctx(q, hctx, i) {
3649                 if (i == nr_queue)
3650                         break;
3651                 blk_mq_exit_hctx(q, set, hctx, i);
3652         }
3653 }
3654
3655 static int blk_mq_init_hctx(struct request_queue *q,
3656                 struct blk_mq_tag_set *set,
3657                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3658 {
3659         hctx->queue_num = hctx_idx;
3660
3661         if (!(hctx->flags & BLK_MQ_F_STACKING))
3662                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3663                                 &hctx->cpuhp_online);
3664         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3665
3666         hctx->tags = set->tags[hctx_idx];
3667
3668         if (set->ops->init_hctx &&
3669             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3670                 goto unregister_cpu_notifier;
3671
3672         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3673                                 hctx->numa_node))
3674                 goto exit_hctx;
3675
3676         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3677                 goto exit_flush_rq;
3678
3679         return 0;
3680
3681  exit_flush_rq:
3682         if (set->ops->exit_request)
3683                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3684  exit_hctx:
3685         if (set->ops->exit_hctx)
3686                 set->ops->exit_hctx(hctx, hctx_idx);
3687  unregister_cpu_notifier:
3688         blk_mq_remove_cpuhp(hctx);
3689         return -1;
3690 }
3691
3692 static struct blk_mq_hw_ctx *
3693 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3694                 int node)
3695 {
3696         struct blk_mq_hw_ctx *hctx;
3697         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3698
3699         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3700         if (!hctx)
3701                 goto fail_alloc_hctx;
3702
3703         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3704                 goto free_hctx;
3705
3706         atomic_set(&hctx->nr_active, 0);
3707         if (node == NUMA_NO_NODE)
3708                 node = set->numa_node;
3709         hctx->numa_node = node;
3710
3711         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3712         spin_lock_init(&hctx->lock);
3713         INIT_LIST_HEAD(&hctx->dispatch);
3714         hctx->queue = q;
3715         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3716
3717         INIT_LIST_HEAD(&hctx->hctx_list);
3718
3719         /*
3720          * Allocate space for all possible cpus to avoid allocation at
3721          * runtime
3722          */
3723         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3724                         gfp, node);
3725         if (!hctx->ctxs)
3726                 goto free_cpumask;
3727
3728         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3729                                 gfp, node, false, false))
3730                 goto free_ctxs;
3731         hctx->nr_ctx = 0;
3732
3733         spin_lock_init(&hctx->dispatch_wait_lock);
3734         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3735         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3736
3737         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3738         if (!hctx->fq)
3739                 goto free_bitmap;
3740
3741         blk_mq_hctx_kobj_init(hctx);
3742
3743         return hctx;
3744
3745  free_bitmap:
3746         sbitmap_free(&hctx->ctx_map);
3747  free_ctxs:
3748         kfree(hctx->ctxs);
3749  free_cpumask:
3750         free_cpumask_var(hctx->cpumask);
3751  free_hctx:
3752         kfree(hctx);
3753  fail_alloc_hctx:
3754         return NULL;
3755 }
3756
3757 static void blk_mq_init_cpu_queues(struct request_queue *q,
3758                                    unsigned int nr_hw_queues)
3759 {
3760         struct blk_mq_tag_set *set = q->tag_set;
3761         unsigned int i, j;
3762
3763         for_each_possible_cpu(i) {
3764                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3765                 struct blk_mq_hw_ctx *hctx;
3766                 int k;
3767
3768                 __ctx->cpu = i;
3769                 spin_lock_init(&__ctx->lock);
3770                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3771                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3772
3773                 __ctx->queue = q;
3774
3775                 /*
3776                  * Set local node, IFF we have more than one hw queue. If
3777                  * not, we remain on the home node of the device
3778                  */
3779                 for (j = 0; j < set->nr_maps; j++) {
3780                         hctx = blk_mq_map_queue_type(q, j, i);
3781                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3782                                 hctx->numa_node = cpu_to_node(i);
3783                 }
3784         }
3785 }
3786
3787 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3788                                              unsigned int hctx_idx,
3789                                              unsigned int depth)
3790 {
3791         struct blk_mq_tags *tags;
3792         int ret;
3793
3794         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3795         if (!tags)
3796                 return NULL;
3797
3798         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3799         if (ret) {
3800                 blk_mq_free_rq_map(tags);
3801                 return NULL;
3802         }
3803
3804         return tags;
3805 }
3806
3807 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3808                                        int hctx_idx)
3809 {
3810         if (blk_mq_is_shared_tags(set->flags)) {
3811                 set->tags[hctx_idx] = set->shared_tags;
3812
3813                 return true;
3814         }
3815
3816         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3817                                                        set->queue_depth);
3818
3819         return set->tags[hctx_idx];
3820 }
3821
3822 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3823                              struct blk_mq_tags *tags,
3824                              unsigned int hctx_idx)
3825 {
3826         if (tags) {
3827                 blk_mq_free_rqs(set, tags, hctx_idx);
3828                 blk_mq_free_rq_map(tags);
3829         }
3830 }
3831
3832 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3833                                       unsigned int hctx_idx)
3834 {
3835         if (!blk_mq_is_shared_tags(set->flags))
3836                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3837
3838         set->tags[hctx_idx] = NULL;
3839 }
3840
3841 static void blk_mq_map_swqueue(struct request_queue *q)
3842 {
3843         unsigned int j, hctx_idx;
3844         unsigned long i;
3845         struct blk_mq_hw_ctx *hctx;
3846         struct blk_mq_ctx *ctx;
3847         struct blk_mq_tag_set *set = q->tag_set;
3848
3849         queue_for_each_hw_ctx(q, hctx, i) {
3850                 cpumask_clear(hctx->cpumask);
3851                 hctx->nr_ctx = 0;
3852                 hctx->dispatch_from = NULL;
3853         }
3854
3855         /*
3856          * Map software to hardware queues.
3857          *
3858          * If the cpu isn't present, the cpu is mapped to first hctx.
3859          */
3860         for_each_possible_cpu(i) {
3861
3862                 ctx = per_cpu_ptr(q->queue_ctx, i);
3863                 for (j = 0; j < set->nr_maps; j++) {
3864                         if (!set->map[j].nr_queues) {
3865                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866                                                 HCTX_TYPE_DEFAULT, i);
3867                                 continue;
3868                         }
3869                         hctx_idx = set->map[j].mq_map[i];
3870                         /* unmapped hw queue can be remapped after CPU topo changed */
3871                         if (!set->tags[hctx_idx] &&
3872                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3873                                 /*
3874                                  * If tags initialization fail for some hctx,
3875                                  * that hctx won't be brought online.  In this
3876                                  * case, remap the current ctx to hctx[0] which
3877                                  * is guaranteed to always have tags allocated
3878                                  */
3879                                 set->map[j].mq_map[i] = 0;
3880                         }
3881
3882                         hctx = blk_mq_map_queue_type(q, j, i);
3883                         ctx->hctxs[j] = hctx;
3884                         /*
3885                          * If the CPU is already set in the mask, then we've
3886                          * mapped this one already. This can happen if
3887                          * devices share queues across queue maps.
3888                          */
3889                         if (cpumask_test_cpu(i, hctx->cpumask))
3890                                 continue;
3891
3892                         cpumask_set_cpu(i, hctx->cpumask);
3893                         hctx->type = j;
3894                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3895                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3896
3897                         /*
3898                          * If the nr_ctx type overflows, we have exceeded the
3899                          * amount of sw queues we can support.
3900                          */
3901                         BUG_ON(!hctx->nr_ctx);
3902                 }
3903
3904                 for (; j < HCTX_MAX_TYPES; j++)
3905                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3906                                         HCTX_TYPE_DEFAULT, i);
3907         }
3908
3909         queue_for_each_hw_ctx(q, hctx, i) {
3910                 /*
3911                  * If no software queues are mapped to this hardware queue,
3912                  * disable it and free the request entries.
3913                  */
3914                 if (!hctx->nr_ctx) {
3915                         /* Never unmap queue 0.  We need it as a
3916                          * fallback in case of a new remap fails
3917                          * allocation
3918                          */
3919                         if (i)
3920                                 __blk_mq_free_map_and_rqs(set, i);
3921
3922                         hctx->tags = NULL;
3923                         continue;
3924                 }
3925
3926                 hctx->tags = set->tags[i];
3927                 WARN_ON(!hctx->tags);
3928
3929                 /*
3930                  * Set the map size to the number of mapped software queues.
3931                  * This is more accurate and more efficient than looping
3932                  * over all possibly mapped software queues.
3933                  */
3934                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3935
3936                 /*
3937                  * Initialize batch roundrobin counts
3938                  */
3939                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3940                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3941         }
3942 }
3943
3944 /*
3945  * Caller needs to ensure that we're either frozen/quiesced, or that
3946  * the queue isn't live yet.
3947  */
3948 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3949 {
3950         struct blk_mq_hw_ctx *hctx;
3951         unsigned long i;
3952
3953         queue_for_each_hw_ctx(q, hctx, i) {
3954                 if (shared) {
3955                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3956                 } else {
3957                         blk_mq_tag_idle(hctx);
3958                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959                 }
3960         }
3961 }
3962
3963 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3964                                          bool shared)
3965 {
3966         struct request_queue *q;
3967
3968         lockdep_assert_held(&set->tag_list_lock);
3969
3970         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3971                 blk_mq_freeze_queue(q);
3972                 queue_set_hctx_shared(q, shared);
3973                 blk_mq_unfreeze_queue(q);
3974         }
3975 }
3976
3977 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3978 {
3979         struct blk_mq_tag_set *set = q->tag_set;
3980
3981         mutex_lock(&set->tag_list_lock);
3982         list_del(&q->tag_set_list);
3983         if (list_is_singular(&set->tag_list)) {
3984                 /* just transitioned to unshared */
3985                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3986                 /* update existing queue */
3987                 blk_mq_update_tag_set_shared(set, false);
3988         }
3989         mutex_unlock(&set->tag_list_lock);
3990         INIT_LIST_HEAD(&q->tag_set_list);
3991 }
3992
3993 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3994                                      struct request_queue *q)
3995 {
3996         mutex_lock(&set->tag_list_lock);
3997
3998         /*
3999          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4000          */
4001         if (!list_empty(&set->tag_list) &&
4002             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4003                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4004                 /* update existing queue */
4005                 blk_mq_update_tag_set_shared(set, true);
4006         }
4007         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4008                 queue_set_hctx_shared(q, true);
4009         list_add_tail(&q->tag_set_list, &set->tag_list);
4010
4011         mutex_unlock(&set->tag_list_lock);
4012 }
4013
4014 /* All allocations will be freed in release handler of q->mq_kobj */
4015 static int blk_mq_alloc_ctxs(struct request_queue *q)
4016 {
4017         struct blk_mq_ctxs *ctxs;
4018         int cpu;
4019
4020         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4021         if (!ctxs)
4022                 return -ENOMEM;
4023
4024         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4025         if (!ctxs->queue_ctx)
4026                 goto fail;
4027
4028         for_each_possible_cpu(cpu) {
4029                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4030                 ctx->ctxs = ctxs;
4031         }
4032
4033         q->mq_kobj = &ctxs->kobj;
4034         q->queue_ctx = ctxs->queue_ctx;
4035
4036         return 0;
4037  fail:
4038         kfree(ctxs);
4039         return -ENOMEM;
4040 }
4041
4042 /*
4043  * It is the actual release handler for mq, but we do it from
4044  * request queue's release handler for avoiding use-after-free
4045  * and headache because q->mq_kobj shouldn't have been introduced,
4046  * but we can't group ctx/kctx kobj without it.
4047  */
4048 void blk_mq_release(struct request_queue *q)
4049 {
4050         struct blk_mq_hw_ctx *hctx, *next;
4051         unsigned long i;
4052
4053         queue_for_each_hw_ctx(q, hctx, i)
4054                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4055
4056         /* all hctx are in .unused_hctx_list now */
4057         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4058                 list_del_init(&hctx->hctx_list);
4059                 kobject_put(&hctx->kobj);
4060         }
4061
4062         xa_destroy(&q->hctx_table);
4063
4064         /*
4065          * release .mq_kobj and sw queue's kobject now because
4066          * both share lifetime with request queue.
4067          */
4068         blk_mq_sysfs_deinit(q);
4069 }
4070
4071 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4072                 struct queue_limits *lim, void *queuedata)
4073 {
4074         struct queue_limits default_lim = { };
4075         struct request_queue *q;
4076         int ret;
4077
4078         q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4079         if (IS_ERR(q))
4080                 return q;
4081         q->queuedata = queuedata;
4082         ret = blk_mq_init_allocated_queue(set, q);
4083         if (ret) {
4084                 blk_put_queue(q);
4085                 return ERR_PTR(ret);
4086         }
4087         return q;
4088 }
4089 EXPORT_SYMBOL(blk_mq_alloc_queue);
4090
4091 /**
4092  * blk_mq_destroy_queue - shutdown a request queue
4093  * @q: request queue to shutdown
4094  *
4095  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4096  * requests will be failed with -ENODEV. The caller is responsible for dropping
4097  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4098  *
4099  * Context: can sleep
4100  */
4101 void blk_mq_destroy_queue(struct request_queue *q)
4102 {
4103         WARN_ON_ONCE(!queue_is_mq(q));
4104         WARN_ON_ONCE(blk_queue_registered(q));
4105
4106         might_sleep();
4107
4108         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4109         blk_queue_start_drain(q);
4110         blk_mq_freeze_queue_wait(q);
4111
4112         blk_sync_queue(q);
4113         blk_mq_cancel_work_sync(q);
4114         blk_mq_exit_queue(q);
4115 }
4116 EXPORT_SYMBOL(blk_mq_destroy_queue);
4117
4118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4119                 struct queue_limits *lim, void *queuedata,
4120                 struct lock_class_key *lkclass)
4121 {
4122         struct request_queue *q;
4123         struct gendisk *disk;
4124
4125         q = blk_mq_alloc_queue(set, lim, queuedata);
4126         if (IS_ERR(q))
4127                 return ERR_CAST(q);
4128
4129         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4130         if (!disk) {
4131                 blk_mq_destroy_queue(q);
4132                 blk_put_queue(q);
4133                 return ERR_PTR(-ENOMEM);
4134         }
4135         set_bit(GD_OWNS_QUEUE, &disk->state);
4136         return disk;
4137 }
4138 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4139
4140 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4141                 struct lock_class_key *lkclass)
4142 {
4143         struct gendisk *disk;
4144
4145         if (!blk_get_queue(q))
4146                 return NULL;
4147         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4148         if (!disk)
4149                 blk_put_queue(q);
4150         return disk;
4151 }
4152 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4153
4154 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4155                 struct blk_mq_tag_set *set, struct request_queue *q,
4156                 int hctx_idx, int node)
4157 {
4158         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4159
4160         /* reuse dead hctx first */
4161         spin_lock(&q->unused_hctx_lock);
4162         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4163                 if (tmp->numa_node == node) {
4164                         hctx = tmp;
4165                         break;
4166                 }
4167         }
4168         if (hctx)
4169                 list_del_init(&hctx->hctx_list);
4170         spin_unlock(&q->unused_hctx_lock);
4171
4172         if (!hctx)
4173                 hctx = blk_mq_alloc_hctx(q, set, node);
4174         if (!hctx)
4175                 goto fail;
4176
4177         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4178                 goto free_hctx;
4179
4180         return hctx;
4181
4182  free_hctx:
4183         kobject_put(&hctx->kobj);
4184  fail:
4185         return NULL;
4186 }
4187
4188 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4189                                                 struct request_queue *q)
4190 {
4191         struct blk_mq_hw_ctx *hctx;
4192         unsigned long i, j;
4193
4194         /* protect against switching io scheduler  */
4195         mutex_lock(&q->sysfs_lock);
4196         for (i = 0; i < set->nr_hw_queues; i++) {
4197                 int old_node;
4198                 int node = blk_mq_get_hctx_node(set, i);
4199                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4200
4201                 if (old_hctx) {
4202                         old_node = old_hctx->numa_node;
4203                         blk_mq_exit_hctx(q, set, old_hctx, i);
4204                 }
4205
4206                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4207                         if (!old_hctx)
4208                                 break;
4209                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4210                                         node, old_node);
4211                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4212                         WARN_ON_ONCE(!hctx);
4213                 }
4214         }
4215         /*
4216          * Increasing nr_hw_queues fails. Free the newly allocated
4217          * hctxs and keep the previous q->nr_hw_queues.
4218          */
4219         if (i != set->nr_hw_queues) {
4220                 j = q->nr_hw_queues;
4221         } else {
4222                 j = i;
4223                 q->nr_hw_queues = set->nr_hw_queues;
4224         }
4225
4226         xa_for_each_start(&q->hctx_table, j, hctx, j)
4227                 blk_mq_exit_hctx(q, set, hctx, j);
4228         mutex_unlock(&q->sysfs_lock);
4229 }
4230
4231 static void blk_mq_update_poll_flag(struct request_queue *q)
4232 {
4233         struct blk_mq_tag_set *set = q->tag_set;
4234
4235         if (set->nr_maps > HCTX_TYPE_POLL &&
4236             set->map[HCTX_TYPE_POLL].nr_queues)
4237                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4238         else
4239                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4240 }
4241
4242 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4243                 struct request_queue *q)
4244 {
4245         /* mark the queue as mq asap */
4246         q->mq_ops = set->ops;
4247
4248         if (blk_mq_alloc_ctxs(q))
4249                 goto err_exit;
4250
4251         /* init q->mq_kobj and sw queues' kobjects */
4252         blk_mq_sysfs_init(q);
4253
4254         INIT_LIST_HEAD(&q->unused_hctx_list);
4255         spin_lock_init(&q->unused_hctx_lock);
4256
4257         xa_init(&q->hctx_table);
4258
4259         blk_mq_realloc_hw_ctxs(set, q);
4260         if (!q->nr_hw_queues)
4261                 goto err_hctxs;
4262
4263         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4264         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4265
4266         q->tag_set = set;
4267
4268         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4269         blk_mq_update_poll_flag(q);
4270
4271         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4272         INIT_LIST_HEAD(&q->flush_list);
4273         INIT_LIST_HEAD(&q->requeue_list);
4274         spin_lock_init(&q->requeue_lock);
4275
4276         q->nr_requests = set->queue_depth;
4277
4278         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4279         blk_mq_add_queue_tag_set(set, q);
4280         blk_mq_map_swqueue(q);
4281         return 0;
4282
4283 err_hctxs:
4284         blk_mq_release(q);
4285 err_exit:
4286         q->mq_ops = NULL;
4287         return -ENOMEM;
4288 }
4289 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4290
4291 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4292 void blk_mq_exit_queue(struct request_queue *q)
4293 {
4294         struct blk_mq_tag_set *set = q->tag_set;
4295
4296         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4297         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4298         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4299         blk_mq_del_queue_tag_set(q);
4300 }
4301
4302 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4303 {
4304         int i;
4305
4306         if (blk_mq_is_shared_tags(set->flags)) {
4307                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4308                                                 BLK_MQ_NO_HCTX_IDX,
4309                                                 set->queue_depth);
4310                 if (!set->shared_tags)
4311                         return -ENOMEM;
4312         }
4313
4314         for (i = 0; i < set->nr_hw_queues; i++) {
4315                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4316                         goto out_unwind;
4317                 cond_resched();
4318         }
4319
4320         return 0;
4321
4322 out_unwind:
4323         while (--i >= 0)
4324                 __blk_mq_free_map_and_rqs(set, i);
4325
4326         if (blk_mq_is_shared_tags(set->flags)) {
4327                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4328                                         BLK_MQ_NO_HCTX_IDX);
4329         }
4330
4331         return -ENOMEM;
4332 }
4333
4334 /*
4335  * Allocate the request maps associated with this tag_set. Note that this
4336  * may reduce the depth asked for, if memory is tight. set->queue_depth
4337  * will be updated to reflect the allocated depth.
4338  */
4339 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4340 {
4341         unsigned int depth;
4342         int err;
4343
4344         depth = set->queue_depth;
4345         do {
4346                 err = __blk_mq_alloc_rq_maps(set);
4347                 if (!err)
4348                         break;
4349
4350                 set->queue_depth >>= 1;
4351                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4352                         err = -ENOMEM;
4353                         break;
4354                 }
4355         } while (set->queue_depth);
4356
4357         if (!set->queue_depth || err) {
4358                 pr_err("blk-mq: failed to allocate request map\n");
4359                 return -ENOMEM;
4360         }
4361
4362         if (depth != set->queue_depth)
4363                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4364                                                 depth, set->queue_depth);
4365
4366         return 0;
4367 }
4368
4369 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4370 {
4371         /*
4372          * blk_mq_map_queues() and multiple .map_queues() implementations
4373          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4374          * number of hardware queues.
4375          */
4376         if (set->nr_maps == 1)
4377                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4378
4379         if (set->ops->map_queues) {
4380                 int i;
4381
4382                 /*
4383                  * transport .map_queues is usually done in the following
4384                  * way:
4385                  *
4386                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4387                  *      mask = get_cpu_mask(queue)
4388                  *      for_each_cpu(cpu, mask)
4389                  *              set->map[x].mq_map[cpu] = queue;
4390                  * }
4391                  *
4392                  * When we need to remap, the table has to be cleared for
4393                  * killing stale mapping since one CPU may not be mapped
4394                  * to any hw queue.
4395                  */
4396                 for (i = 0; i < set->nr_maps; i++)
4397                         blk_mq_clear_mq_map(&set->map[i]);
4398
4399                 set->ops->map_queues(set);
4400         } else {
4401                 BUG_ON(set->nr_maps > 1);
4402                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4403         }
4404 }
4405
4406 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4407                                        int new_nr_hw_queues)
4408 {
4409         struct blk_mq_tags **new_tags;
4410         int i;
4411
4412         if (set->nr_hw_queues >= new_nr_hw_queues)
4413                 goto done;
4414
4415         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4416                                 GFP_KERNEL, set->numa_node);
4417         if (!new_tags)
4418                 return -ENOMEM;
4419
4420         if (set->tags)
4421                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4422                        sizeof(*set->tags));
4423         kfree(set->tags);
4424         set->tags = new_tags;
4425
4426         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4427                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4428                         while (--i >= set->nr_hw_queues)
4429                                 __blk_mq_free_map_and_rqs(set, i);
4430                         return -ENOMEM;
4431                 }
4432                 cond_resched();
4433         }
4434
4435 done:
4436         set->nr_hw_queues = new_nr_hw_queues;
4437         return 0;
4438 }
4439
4440 /*
4441  * Alloc a tag set to be associated with one or more request queues.
4442  * May fail with EINVAL for various error conditions. May adjust the
4443  * requested depth down, if it's too large. In that case, the set
4444  * value will be stored in set->queue_depth.
4445  */
4446 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4447 {
4448         int i, ret;
4449
4450         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4451
4452         if (!set->nr_hw_queues)
4453                 return -EINVAL;
4454         if (!set->queue_depth)
4455                 return -EINVAL;
4456         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4457                 return -EINVAL;
4458
4459         if (!set->ops->queue_rq)
4460                 return -EINVAL;
4461
4462         if (!set->ops->get_budget ^ !set->ops->put_budget)
4463                 return -EINVAL;
4464
4465         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4466                 pr_info("blk-mq: reduced tag depth to %u\n",
4467                         BLK_MQ_MAX_DEPTH);
4468                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4469         }
4470
4471         if (!set->nr_maps)
4472                 set->nr_maps = 1;
4473         else if (set->nr_maps > HCTX_MAX_TYPES)
4474                 return -EINVAL;
4475
4476         /*
4477          * If a crashdump is active, then we are potentially in a very
4478          * memory constrained environment. Limit us to  64 tags to prevent
4479          * using too much memory.
4480          */
4481         if (is_kdump_kernel())
4482                 set->queue_depth = min(64U, set->queue_depth);
4483
4484         /*
4485          * There is no use for more h/w queues than cpus if we just have
4486          * a single map
4487          */
4488         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4489                 set->nr_hw_queues = nr_cpu_ids;
4490
4491         if (set->flags & BLK_MQ_F_BLOCKING) {
4492                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4493                 if (!set->srcu)
4494                         return -ENOMEM;
4495                 ret = init_srcu_struct(set->srcu);
4496                 if (ret)
4497                         goto out_free_srcu;
4498         }
4499
4500         ret = -ENOMEM;
4501         set->tags = kcalloc_node(set->nr_hw_queues,
4502                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4503                                  set->numa_node);
4504         if (!set->tags)
4505                 goto out_cleanup_srcu;
4506
4507         for (i = 0; i < set->nr_maps; i++) {
4508                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4509                                                   sizeof(set->map[i].mq_map[0]),
4510                                                   GFP_KERNEL, set->numa_node);
4511                 if (!set->map[i].mq_map)
4512                         goto out_free_mq_map;
4513                 set->map[i].nr_queues = set->nr_hw_queues;
4514         }
4515
4516         blk_mq_update_queue_map(set);
4517
4518         ret = blk_mq_alloc_set_map_and_rqs(set);
4519         if (ret)
4520                 goto out_free_mq_map;
4521
4522         mutex_init(&set->tag_list_lock);
4523         INIT_LIST_HEAD(&set->tag_list);
4524
4525         return 0;
4526
4527 out_free_mq_map:
4528         for (i = 0; i < set->nr_maps; i++) {
4529                 kfree(set->map[i].mq_map);
4530                 set->map[i].mq_map = NULL;
4531         }
4532         kfree(set->tags);
4533         set->tags = NULL;
4534 out_cleanup_srcu:
4535         if (set->flags & BLK_MQ_F_BLOCKING)
4536                 cleanup_srcu_struct(set->srcu);
4537 out_free_srcu:
4538         if (set->flags & BLK_MQ_F_BLOCKING)
4539                 kfree(set->srcu);
4540         return ret;
4541 }
4542 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4543
4544 /* allocate and initialize a tagset for a simple single-queue device */
4545 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4546                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4547                 unsigned int set_flags)
4548 {
4549         memset(set, 0, sizeof(*set));
4550         set->ops = ops;
4551         set->nr_hw_queues = 1;
4552         set->nr_maps = 1;
4553         set->queue_depth = queue_depth;
4554         set->numa_node = NUMA_NO_NODE;
4555         set->flags = set_flags;
4556         return blk_mq_alloc_tag_set(set);
4557 }
4558 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4559
4560 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4561 {
4562         int i, j;
4563
4564         for (i = 0; i < set->nr_hw_queues; i++)
4565                 __blk_mq_free_map_and_rqs(set, i);
4566
4567         if (blk_mq_is_shared_tags(set->flags)) {
4568                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4569                                         BLK_MQ_NO_HCTX_IDX);
4570         }
4571
4572         for (j = 0; j < set->nr_maps; j++) {
4573                 kfree(set->map[j].mq_map);
4574                 set->map[j].mq_map = NULL;
4575         }
4576
4577         kfree(set->tags);
4578         set->tags = NULL;
4579         if (set->flags & BLK_MQ_F_BLOCKING) {
4580                 cleanup_srcu_struct(set->srcu);
4581                 kfree(set->srcu);
4582         }
4583 }
4584 EXPORT_SYMBOL(blk_mq_free_tag_set);
4585
4586 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4587 {
4588         struct blk_mq_tag_set *set = q->tag_set;
4589         struct blk_mq_hw_ctx *hctx;
4590         int ret;
4591         unsigned long i;
4592
4593         if (!set)
4594                 return -EINVAL;
4595
4596         if (q->nr_requests == nr)
4597                 return 0;
4598
4599         blk_mq_freeze_queue(q);
4600         blk_mq_quiesce_queue(q);
4601
4602         ret = 0;
4603         queue_for_each_hw_ctx(q, hctx, i) {
4604                 if (!hctx->tags)
4605                         continue;
4606                 /*
4607                  * If we're using an MQ scheduler, just update the scheduler
4608                  * queue depth. This is similar to what the old code would do.
4609                  */
4610                 if (hctx->sched_tags) {
4611                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4612                                                       nr, true);
4613                 } else {
4614                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4615                                                       false);
4616                 }
4617                 if (ret)
4618                         break;
4619                 if (q->elevator && q->elevator->type->ops.depth_updated)
4620                         q->elevator->type->ops.depth_updated(hctx);
4621         }
4622         if (!ret) {
4623                 q->nr_requests = nr;
4624                 if (blk_mq_is_shared_tags(set->flags)) {
4625                         if (q->elevator)
4626                                 blk_mq_tag_update_sched_shared_tags(q);
4627                         else
4628                                 blk_mq_tag_resize_shared_tags(set, nr);
4629                 }
4630         }
4631
4632         blk_mq_unquiesce_queue(q);
4633         blk_mq_unfreeze_queue(q);
4634
4635         return ret;
4636 }
4637
4638 /*
4639  * request_queue and elevator_type pair.
4640  * It is just used by __blk_mq_update_nr_hw_queues to cache
4641  * the elevator_type associated with a request_queue.
4642  */
4643 struct blk_mq_qe_pair {
4644         struct list_head node;
4645         struct request_queue *q;
4646         struct elevator_type *type;
4647 };
4648
4649 /*
4650  * Cache the elevator_type in qe pair list and switch the
4651  * io scheduler to 'none'
4652  */
4653 static bool blk_mq_elv_switch_none(struct list_head *head,
4654                 struct request_queue *q)
4655 {
4656         struct blk_mq_qe_pair *qe;
4657
4658         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4659         if (!qe)
4660                 return false;
4661
4662         /* q->elevator needs protection from ->sysfs_lock */
4663         mutex_lock(&q->sysfs_lock);
4664
4665         /* the check has to be done with holding sysfs_lock */
4666         if (!q->elevator) {
4667                 kfree(qe);
4668                 goto unlock;
4669         }
4670
4671         INIT_LIST_HEAD(&qe->node);
4672         qe->q = q;
4673         qe->type = q->elevator->type;
4674         /* keep a reference to the elevator module as we'll switch back */
4675         __elevator_get(qe->type);
4676         list_add(&qe->node, head);
4677         elevator_disable(q);
4678 unlock:
4679         mutex_unlock(&q->sysfs_lock);
4680
4681         return true;
4682 }
4683
4684 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4685                                                 struct request_queue *q)
4686 {
4687         struct blk_mq_qe_pair *qe;
4688
4689         list_for_each_entry(qe, head, node)
4690                 if (qe->q == q)
4691                         return qe;
4692
4693         return NULL;
4694 }
4695
4696 static void blk_mq_elv_switch_back(struct list_head *head,
4697                                   struct request_queue *q)
4698 {
4699         struct blk_mq_qe_pair *qe;
4700         struct elevator_type *t;
4701
4702         qe = blk_lookup_qe_pair(head, q);
4703         if (!qe)
4704                 return;
4705         t = qe->type;
4706         list_del(&qe->node);
4707         kfree(qe);
4708
4709         mutex_lock(&q->sysfs_lock);
4710         elevator_switch(q, t);
4711         /* drop the reference acquired in blk_mq_elv_switch_none */
4712         elevator_put(t);
4713         mutex_unlock(&q->sysfs_lock);
4714 }
4715
4716 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4717                                                         int nr_hw_queues)
4718 {
4719         struct request_queue *q;
4720         LIST_HEAD(head);
4721         int prev_nr_hw_queues = set->nr_hw_queues;
4722         int i;
4723
4724         lockdep_assert_held(&set->tag_list_lock);
4725
4726         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4727                 nr_hw_queues = nr_cpu_ids;
4728         if (nr_hw_queues < 1)
4729                 return;
4730         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4731                 return;
4732
4733         list_for_each_entry(q, &set->tag_list, tag_set_list)
4734                 blk_mq_freeze_queue(q);
4735         /*
4736          * Switch IO scheduler to 'none', cleaning up the data associated
4737          * with the previous scheduler. We will switch back once we are done
4738          * updating the new sw to hw queue mappings.
4739          */
4740         list_for_each_entry(q, &set->tag_list, tag_set_list)
4741                 if (!blk_mq_elv_switch_none(&head, q))
4742                         goto switch_back;
4743
4744         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4745                 blk_mq_debugfs_unregister_hctxs(q);
4746                 blk_mq_sysfs_unregister_hctxs(q);
4747         }
4748
4749         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4750                 goto reregister;
4751
4752 fallback:
4753         blk_mq_update_queue_map(set);
4754         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4755                 blk_mq_realloc_hw_ctxs(set, q);
4756                 blk_mq_update_poll_flag(q);
4757                 if (q->nr_hw_queues != set->nr_hw_queues) {
4758                         int i = prev_nr_hw_queues;
4759
4760                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4761                                         nr_hw_queues, prev_nr_hw_queues);
4762                         for (; i < set->nr_hw_queues; i++)
4763                                 __blk_mq_free_map_and_rqs(set, i);
4764
4765                         set->nr_hw_queues = prev_nr_hw_queues;
4766                         goto fallback;
4767                 }
4768                 blk_mq_map_swqueue(q);
4769         }
4770
4771 reregister:
4772         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4773                 blk_mq_sysfs_register_hctxs(q);
4774                 blk_mq_debugfs_register_hctxs(q);
4775         }
4776
4777 switch_back:
4778         list_for_each_entry(q, &set->tag_list, tag_set_list)
4779                 blk_mq_elv_switch_back(&head, q);
4780
4781         list_for_each_entry(q, &set->tag_list, tag_set_list)
4782                 blk_mq_unfreeze_queue(q);
4783
4784         /* Free the excess tags when nr_hw_queues shrink. */
4785         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4786                 __blk_mq_free_map_and_rqs(set, i);
4787 }
4788
4789 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4790 {
4791         mutex_lock(&set->tag_list_lock);
4792         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4793         mutex_unlock(&set->tag_list_lock);
4794 }
4795 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4796
4797 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4798                          struct io_comp_batch *iob, unsigned int flags)
4799 {
4800         long state = get_current_state();
4801         int ret;
4802
4803         do {
4804                 ret = q->mq_ops->poll(hctx, iob);
4805                 if (ret > 0) {
4806                         __set_current_state(TASK_RUNNING);
4807                         return ret;
4808                 }
4809
4810                 if (signal_pending_state(state, current))
4811                         __set_current_state(TASK_RUNNING);
4812                 if (task_is_running(current))
4813                         return 1;
4814
4815                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4816                         break;
4817                 cpu_relax();
4818         } while (!need_resched());
4819
4820         __set_current_state(TASK_RUNNING);
4821         return 0;
4822 }
4823
4824 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4825                 struct io_comp_batch *iob, unsigned int flags)
4826 {
4827         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4828
4829         return blk_hctx_poll(q, hctx, iob, flags);
4830 }
4831
4832 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4833                 unsigned int poll_flags)
4834 {
4835         struct request_queue *q = rq->q;
4836         int ret;
4837
4838         if (!blk_rq_is_poll(rq))
4839                 return 0;
4840         if (!percpu_ref_tryget(&q->q_usage_counter))
4841                 return 0;
4842
4843         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4844         blk_queue_exit(q);
4845
4846         return ret;
4847 }
4848 EXPORT_SYMBOL_GPL(blk_rq_poll);
4849
4850 unsigned int blk_mq_rq_cpu(struct request *rq)
4851 {
4852         return rq->mq_ctx->cpu;
4853 }
4854 EXPORT_SYMBOL(blk_mq_rq_cpu);
4855
4856 void blk_mq_cancel_work_sync(struct request_queue *q)
4857 {
4858         struct blk_mq_hw_ctx *hctx;
4859         unsigned long i;
4860
4861         cancel_delayed_work_sync(&q->requeue_work);
4862
4863         queue_for_each_hw_ctx(q, hctx, i)
4864                 cancel_delayed_work_sync(&hctx->run_work);
4865 }
4866
4867 static int __init blk_mq_init(void)
4868 {
4869         int i;
4870
4871         for_each_possible_cpu(i)
4872                 init_llist_head(&per_cpu(blk_cpu_done, i));
4873         for_each_possible_cpu(i)
4874                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4875                          __blk_mq_complete_request_remote, NULL);
4876         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4877
4878         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4879                                   "block/softirq:dead", NULL,
4880                                   blk_softirq_cpu_dead);
4881         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4882                                 blk_mq_hctx_notify_dead);
4883         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4884                                 blk_mq_hctx_notify_online,
4885                                 blk_mq_hctx_notify_offline);
4886         return 0;
4887 }
4888 subsys_initcall(blk_mq_init);