Merge tag 'for-linus-4.17-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99                 /*
100                  * index[0] counts the specific partition that was asked
101                  * for. index[1] counts the ones that are active on the
102                  * whole device, so increment that if mi->part is indeed
103                  * a partition, and not a whole device.
104                  */
105                 if (rq->part == mi->part)
106                         mi->inflight[0]++;
107                 if (mi->part->partno)
108                         mi->inflight[1]++;
109         }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113                       unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117         inflight[0] = inflight[1] = 0;
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123         int freeze_depth;
124
125         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126         if (freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 if (q->mq_ops)
129                         blk_mq_run_hw_queues(q, false);
130         }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141                                      unsigned long timeout)
142 {
143         return wait_event_timeout(q->mq_freeze_wq,
144                                         percpu_ref_is_zero(&q->q_usage_counter),
145                                         timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155         /*
156          * In the !blk_mq case we are only calling this to kill the
157          * q_usage_counter, otherwise this increases the freeze depth
158          * and waits for it to return to zero.  For this reason there is
159          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160          * exported to drivers as the only user for unfreeze is blk_mq.
161          */
162         blk_freeze_queue_start(q);
163         if (!q->mq_ops)
164                 blk_drain_queue(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180         int freeze_depth;
181
182         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183         WARN_ON_ONCE(freeze_depth < 0);
184         if (!freeze_depth) {
185                 percpu_ref_reinit(&q->q_usage_counter);
186                 wake_up_all(&q->mq_freeze_wq);
187         }
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
200
201 /**
202  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203  * @q: request queue.
204  *
205  * Note: this function does not prevent that the struct request end_io()
206  * callback function is invoked. Once this function is returned, we make
207  * sure no dispatch can happen until the queue is unquiesced via
208  * blk_mq_unquiesce_queue().
209  */
210 void blk_mq_quiesce_queue(struct request_queue *q)
211 {
212         struct blk_mq_hw_ctx *hctx;
213         unsigned int i;
214         bool rcu = false;
215
216         blk_mq_quiesce_queue_nowait(q);
217
218         queue_for_each_hw_ctx(q, hctx, i) {
219                 if (hctx->flags & BLK_MQ_F_BLOCKING)
220                         synchronize_srcu(hctx->srcu);
221                 else
222                         rcu = true;
223         }
224         if (rcu)
225                 synchronize_rcu();
226 }
227 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
228
229 /*
230  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
231  * @q: request queue.
232  *
233  * This function recovers queue into the state before quiescing
234  * which is done by blk_mq_quiesce_queue.
235  */
236 void blk_mq_unquiesce_queue(struct request_queue *q)
237 {
238         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239
240         /* dispatch requests which are inserted during quiescing */
241         blk_mq_run_hw_queues(q, true);
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
244
245 void blk_mq_wake_waiters(struct request_queue *q)
246 {
247         struct blk_mq_hw_ctx *hctx;
248         unsigned int i;
249
250         queue_for_each_hw_ctx(q, hctx, i)
251                 if (blk_mq_hw_queue_mapped(hctx))
252                         blk_mq_tag_wakeup_all(hctx->tags, true);
253 }
254
255 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
256 {
257         return blk_mq_has_free_tags(hctx->tags);
258 }
259 EXPORT_SYMBOL(blk_mq_can_queue);
260
261 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
262                 unsigned int tag, unsigned int op)
263 {
264         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
265         struct request *rq = tags->static_rqs[tag];
266         req_flags_t rq_flags = 0;
267
268         if (data->flags & BLK_MQ_REQ_INTERNAL) {
269                 rq->tag = -1;
270                 rq->internal_tag = tag;
271         } else {
272                 if (blk_mq_tag_busy(data->hctx)) {
273                         rq_flags = RQF_MQ_INFLIGHT;
274                         atomic_inc(&data->hctx->nr_active);
275                 }
276                 rq->tag = tag;
277                 rq->internal_tag = -1;
278                 data->hctx->tags->rqs[rq->tag] = rq;
279         }
280
281         /* csd/requeue_work/fifo_time is initialized before use */
282         rq->q = data->q;
283         rq->mq_ctx = data->ctx;
284         rq->rq_flags = rq_flags;
285         rq->cpu = -1;
286         rq->cmd_flags = op;
287         if (data->flags & BLK_MQ_REQ_PREEMPT)
288                 rq->rq_flags |= RQF_PREEMPT;
289         if (blk_queue_io_stat(data->q))
290                 rq->rq_flags |= RQF_IO_STAT;
291         INIT_LIST_HEAD(&rq->queuelist);
292         INIT_HLIST_NODE(&rq->hash);
293         RB_CLEAR_NODE(&rq->rb_node);
294         rq->rq_disk = NULL;
295         rq->part = NULL;
296         rq->start_time = jiffies;
297         rq->nr_phys_segments = 0;
298 #if defined(CONFIG_BLK_DEV_INTEGRITY)
299         rq->nr_integrity_segments = 0;
300 #endif
301         rq->special = NULL;
302         /* tag was already set */
303         rq->extra_len = 0;
304         rq->__deadline = 0;
305
306         INIT_LIST_HEAD(&rq->timeout_list);
307         rq->timeout = 0;
308
309         rq->end_io = NULL;
310         rq->end_io_data = NULL;
311         rq->next_rq = NULL;
312
313 #ifdef CONFIG_BLK_CGROUP
314         rq->rl = NULL;
315         set_start_time_ns(rq);
316         rq->io_start_time_ns = 0;
317 #endif
318
319         data->ctx->rq_dispatched[op_is_sync(op)]++;
320         return rq;
321 }
322
323 static struct request *blk_mq_get_request(struct request_queue *q,
324                 struct bio *bio, unsigned int op,
325                 struct blk_mq_alloc_data *data)
326 {
327         struct elevator_queue *e = q->elevator;
328         struct request *rq;
329         unsigned int tag;
330         bool put_ctx_on_error = false;
331
332         blk_queue_enter_live(q);
333         data->q = q;
334         if (likely(!data->ctx)) {
335                 data->ctx = blk_mq_get_ctx(q);
336                 put_ctx_on_error = true;
337         }
338         if (likely(!data->hctx))
339                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340         if (op & REQ_NOWAIT)
341                 data->flags |= BLK_MQ_REQ_NOWAIT;
342
343         if (e) {
344                 data->flags |= BLK_MQ_REQ_INTERNAL;
345
346                 /*
347                  * Flush requests are special and go directly to the
348                  * dispatch list.
349                  */
350                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
351                         e->type->ops.mq.limit_depth(op, data);
352         }
353
354         tag = blk_mq_get_tag(data);
355         if (tag == BLK_MQ_TAG_FAIL) {
356                 if (put_ctx_on_error) {
357                         blk_mq_put_ctx(data->ctx);
358                         data->ctx = NULL;
359                 }
360                 blk_queue_exit(q);
361                 return NULL;
362         }
363
364         rq = blk_mq_rq_ctx_init(data, tag, op);
365         if (!op_is_flush(op)) {
366                 rq->elv.icq = NULL;
367                 if (e && e->type->ops.mq.prepare_request) {
368                         if (e->type->icq_cache && rq_ioc(bio))
369                                 blk_mq_sched_assign_ioc(rq, bio);
370
371                         e->type->ops.mq.prepare_request(rq, bio);
372                         rq->rq_flags |= RQF_ELVPRIV;
373                 }
374         }
375         data->hctx->queued++;
376         return rq;
377 }
378
379 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380                 blk_mq_req_flags_t flags)
381 {
382         struct blk_mq_alloc_data alloc_data = { .flags = flags };
383         struct request *rq;
384         int ret;
385
386         ret = blk_queue_enter(q, flags);
387         if (ret)
388                 return ERR_PTR(ret);
389
390         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391         blk_queue_exit(q);
392
393         if (!rq)
394                 return ERR_PTR(-EWOULDBLOCK);
395
396         blk_mq_put_ctx(alloc_data.ctx);
397
398         rq->__data_len = 0;
399         rq->__sector = (sector_t) -1;
400         rq->bio = rq->biotail = NULL;
401         return rq;
402 }
403 EXPORT_SYMBOL(blk_mq_alloc_request);
404
405 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
407 {
408         struct blk_mq_alloc_data alloc_data = { .flags = flags };
409         struct request *rq;
410         unsigned int cpu;
411         int ret;
412
413         /*
414          * If the tag allocator sleeps we could get an allocation for a
415          * different hardware context.  No need to complicate the low level
416          * allocator for this for the rare use case of a command tied to
417          * a specific queue.
418          */
419         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
420                 return ERR_PTR(-EINVAL);
421
422         if (hctx_idx >= q->nr_hw_queues)
423                 return ERR_PTR(-EIO);
424
425         ret = blk_queue_enter(q, flags);
426         if (ret)
427                 return ERR_PTR(ret);
428
429         /*
430          * Check if the hardware context is actually mapped to anything.
431          * If not tell the caller that it should skip this queue.
432          */
433         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
434         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
435                 blk_queue_exit(q);
436                 return ERR_PTR(-EXDEV);
437         }
438         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
440
441         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442         blk_queue_exit(q);
443
444         if (!rq)
445                 return ERR_PTR(-EWOULDBLOCK);
446
447         return rq;
448 }
449 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
450
451 void blk_mq_free_request(struct request *rq)
452 {
453         struct request_queue *q = rq->q;
454         struct elevator_queue *e = q->elevator;
455         struct blk_mq_ctx *ctx = rq->mq_ctx;
456         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
457         const int sched_tag = rq->internal_tag;
458
459         if (rq->rq_flags & RQF_ELVPRIV) {
460                 if (e && e->type->ops.mq.finish_request)
461                         e->type->ops.mq.finish_request(rq);
462                 if (rq->elv.icq) {
463                         put_io_context(rq->elv.icq->ioc);
464                         rq->elv.icq = NULL;
465                 }
466         }
467
468         ctx->rq_completed[rq_is_sync(rq)]++;
469         if (rq->rq_flags & RQF_MQ_INFLIGHT)
470                 atomic_dec(&hctx->nr_active);
471
472         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
473                 laptop_io_completion(q->backing_dev_info);
474
475         wbt_done(q->rq_wb, &rq->issue_stat);
476
477         if (blk_rq_rl(rq))
478                 blk_put_rl(blk_rq_rl(rq));
479
480         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481         if (rq->tag != -1)
482                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
483         if (sched_tag != -1)
484                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485         blk_mq_sched_restart(hctx);
486         blk_queue_exit(q);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_free_request);
489
490 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491 {
492         blk_account_io_done(rq);
493
494         if (rq->end_io) {
495                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
496                 rq->end_io(rq, error);
497         } else {
498                 if (unlikely(blk_bidi_rq(rq)))
499                         blk_mq_free_request(rq->next_rq);
500                 blk_mq_free_request(rq);
501         }
502 }
503 EXPORT_SYMBOL(__blk_mq_end_request);
504
505 void blk_mq_end_request(struct request *rq, blk_status_t error)
506 {
507         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
508                 BUG();
509         __blk_mq_end_request(rq, error);
510 }
511 EXPORT_SYMBOL(blk_mq_end_request);
512
513 static void __blk_mq_complete_request_remote(void *data)
514 {
515         struct request *rq = data;
516
517         rq->q->softirq_done_fn(rq);
518 }
519
520 static void __blk_mq_complete_request(struct request *rq)
521 {
522         struct blk_mq_ctx *ctx = rq->mq_ctx;
523         bool shared = false;
524         int cpu;
525
526         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
527         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528
529         if (rq->internal_tag != -1)
530                 blk_mq_sched_completed_request(rq);
531         if (rq->rq_flags & RQF_STATS) {
532                 blk_mq_poll_stats_start(rq->q);
533                 blk_stat_add(rq);
534         }
535
536         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537                 rq->q->softirq_done_fn(rq);
538                 return;
539         }
540
541         cpu = get_cpu();
542         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
543                 shared = cpus_share_cache(cpu, ctx->cpu);
544
545         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546                 rq->csd.func = __blk_mq_complete_request_remote;
547                 rq->csd.info = rq;
548                 rq->csd.flags = 0;
549                 smp_call_function_single_async(ctx->cpu, &rq->csd);
550         } else {
551                 rq->q->softirq_done_fn(rq);
552         }
553         put_cpu();
554 }
555
556 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557         __releases(hctx->srcu)
558 {
559         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
560                 rcu_read_unlock();
561         else
562                 srcu_read_unlock(hctx->srcu, srcu_idx);
563 }
564
565 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566         __acquires(hctx->srcu)
567 {
568         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
569                 /* shut up gcc false positive */
570                 *srcu_idx = 0;
571                 rcu_read_lock();
572         } else
573                 *srcu_idx = srcu_read_lock(hctx->srcu);
574 }
575
576 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
577 {
578         unsigned long flags;
579
580         /*
581          * blk_mq_rq_aborted_gstate() is used from the completion path and
582          * can thus be called from irq context.  u64_stats_fetch in the
583          * middle of update on the same CPU leads to lockup.  Disable irq
584          * while updating.
585          */
586         local_irq_save(flags);
587         u64_stats_update_begin(&rq->aborted_gstate_sync);
588         rq->aborted_gstate = gstate;
589         u64_stats_update_end(&rq->aborted_gstate_sync);
590         local_irq_restore(flags);
591 }
592
593 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
594 {
595         unsigned int start;
596         u64 aborted_gstate;
597
598         do {
599                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
600                 aborted_gstate = rq->aborted_gstate;
601         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
602
603         return aborted_gstate;
604 }
605
606 /**
607  * blk_mq_complete_request - end I/O on a request
608  * @rq:         the request being processed
609  *
610  * Description:
611  *      Ends all I/O on a request. It does not handle partial completions.
612  *      The actual completion happens out-of-order, through a IPI handler.
613  **/
614 void blk_mq_complete_request(struct request *rq)
615 {
616         struct request_queue *q = rq->q;
617         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
618         int srcu_idx;
619
620         if (unlikely(blk_should_fake_timeout(q)))
621                 return;
622
623         /*
624          * If @rq->aborted_gstate equals the current instance, timeout is
625          * claiming @rq and we lost.  This is synchronized through
626          * hctx_lock().  See blk_mq_timeout_work() for details.
627          *
628          * Completion path never blocks and we can directly use RCU here
629          * instead of hctx_lock() which can be either RCU or SRCU.
630          * However, that would complicate paths which want to synchronize
631          * against us.  Let stay in sync with the issue path so that
632          * hctx_lock() covers both issue and completion paths.
633          */
634         hctx_lock(hctx, &srcu_idx);
635         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636                 __blk_mq_complete_request(rq);
637         hctx_unlock(hctx, srcu_idx);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640
641 int blk_mq_request_started(struct request *rq)
642 {
643         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
647 void blk_mq_start_request(struct request *rq)
648 {
649         struct request_queue *q = rq->q;
650
651         blk_mq_sched_started_request(rq);
652
653         trace_block_rq_issue(q, rq);
654
655         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657                 rq->rq_flags |= RQF_STATS;
658                 wbt_issue(q->rq_wb, &rq->issue_stat);
659         }
660
661         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662
663         /*
664          * Mark @rq in-flight which also advances the generation number,
665          * and register for timeout.  Protect with a seqcount to allow the
666          * timeout path to read both @rq->gstate and @rq->deadline
667          * coherently.
668          *
669          * This is the only place where a request is marked in-flight.  If
670          * the timeout path reads an in-flight @rq->gstate, the
671          * @rq->deadline it reads together under @rq->gstate_seq is
672          * guaranteed to be the matching one.
673          */
674         preempt_disable();
675         write_seqcount_begin(&rq->gstate_seq);
676
677         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
678         blk_add_timer(rq);
679
680         write_seqcount_end(&rq->gstate_seq);
681         preempt_enable();
682
683         if (q->dma_drain_size && blk_rq_bytes(rq)) {
684                 /*
685                  * Make sure space for the drain appears.  We know we can do
686                  * this because max_hw_segments has been adjusted to be one
687                  * fewer than the device can handle.
688                  */
689                 rq->nr_phys_segments++;
690         }
691 }
692 EXPORT_SYMBOL(blk_mq_start_request);
693
694 /*
695  * When we reach here because queue is busy, it's safe to change the state
696  * to IDLE without checking @rq->aborted_gstate because we should still be
697  * holding the RCU read lock and thus protected against timeout.
698  */
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702
703         blk_mq_put_driver_tag(rq);
704
705         trace_block_rq_requeue(q, rq);
706         wbt_requeue(q->rq_wb, &rq->issue_stat);
707
708         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710                 if (q->dma_drain_size && blk_rq_bytes(rq))
711                         rq->nr_phys_segments--;
712         }
713 }
714
715 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 {
717         __blk_mq_requeue_request(rq);
718
719         /* this request will be re-inserted to io scheduler queue */
720         blk_mq_sched_requeue_request(rq);
721
722         BUG_ON(blk_queued_rq(rq));
723         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 }
725 EXPORT_SYMBOL(blk_mq_requeue_request);
726
727 static void blk_mq_requeue_work(struct work_struct *work)
728 {
729         struct request_queue *q =
730                 container_of(work, struct request_queue, requeue_work.work);
731         LIST_HEAD(rq_list);
732         struct request *rq, *next;
733
734         spin_lock_irq(&q->requeue_lock);
735         list_splice_init(&q->requeue_list, &rq_list);
736         spin_unlock_irq(&q->requeue_lock);
737
738         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
740                         continue;
741
742                 rq->rq_flags &= ~RQF_SOFTBARRIER;
743                 list_del_init(&rq->queuelist);
744                 blk_mq_sched_insert_request(rq, true, false, false);
745         }
746
747         while (!list_empty(&rq_list)) {
748                 rq = list_entry(rq_list.next, struct request, queuelist);
749                 list_del_init(&rq->queuelist);
750                 blk_mq_sched_insert_request(rq, false, false, false);
751         }
752
753         blk_mq_run_hw_queues(q, false);
754 }
755
756 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757                                 bool kick_requeue_list)
758 {
759         struct request_queue *q = rq->q;
760         unsigned long flags;
761
762         /*
763          * We abuse this flag that is otherwise used by the I/O scheduler to
764          * request head insertion from the workqueue.
765          */
766         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767
768         spin_lock_irqsave(&q->requeue_lock, flags);
769         if (at_head) {
770                 rq->rq_flags |= RQF_SOFTBARRIER;
771                 list_add(&rq->queuelist, &q->requeue_list);
772         } else {
773                 list_add_tail(&rq->queuelist, &q->requeue_list);
774         }
775         spin_unlock_irqrestore(&q->requeue_lock, flags);
776
777         if (kick_requeue_list)
778                 blk_mq_kick_requeue_list(q);
779 }
780 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781
782 void blk_mq_kick_requeue_list(struct request_queue *q)
783 {
784         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 }
786 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787
788 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789                                     unsigned long msecs)
790 {
791         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792                                     msecs_to_jiffies(msecs));
793 }
794 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795
796 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797 {
798         if (tag < tags->nr_tags) {
799                 prefetch(tags->rqs[tag]);
800                 return tags->rqs[tag];
801         }
802
803         return NULL;
804 }
805 EXPORT_SYMBOL(blk_mq_tag_to_rq);
806
807 struct blk_mq_timeout_data {
808         unsigned long next;
809         unsigned int next_set;
810         unsigned int nr_expired;
811 };
812
813 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814 {
815         const struct blk_mq_ops *ops = req->q->mq_ops;
816         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817
818         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819
820         if (ops->timeout)
821                 ret = ops->timeout(req, reserved);
822
823         switch (ret) {
824         case BLK_EH_HANDLED:
825                 __blk_mq_complete_request(req);
826                 break;
827         case BLK_EH_RESET_TIMER:
828                 /*
829                  * As nothing prevents from completion happening while
830                  * ->aborted_gstate is set, this may lead to ignored
831                  * completions and further spurious timeouts.
832                  */
833                 blk_mq_rq_update_aborted_gstate(req, 0);
834                 blk_add_timer(req);
835                 break;
836         case BLK_EH_NOT_HANDLED:
837                 break;
838         default:
839                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
840                 break;
841         }
842 }
843
844 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845                 struct request *rq, void *priv, bool reserved)
846 {
847         struct blk_mq_timeout_data *data = priv;
848         unsigned long gstate, deadline;
849         int start;
850
851         might_sleep();
852
853         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854                 return;
855
856         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
857         while (true) {
858                 start = read_seqcount_begin(&rq->gstate_seq);
859                 gstate = READ_ONCE(rq->gstate);
860                 deadline = blk_rq_deadline(rq);
861                 if (!read_seqcount_retry(&rq->gstate_seq, start))
862                         break;
863                 cond_resched();
864         }
865
866         /* if in-flight && overdue, mark for abortion */
867         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868             time_after_eq(jiffies, deadline)) {
869                 blk_mq_rq_update_aborted_gstate(rq, gstate);
870                 data->nr_expired++;
871                 hctx->nr_expired++;
872         } else if (!data->next_set || time_after(data->next, deadline)) {
873                 data->next = deadline;
874                 data->next_set = 1;
875         }
876 }
877
878 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879                 struct request *rq, void *priv, bool reserved)
880 {
881         /*
882          * We marked @rq->aborted_gstate and waited for RCU.  If there were
883          * completions that we lost to, they would have finished and
884          * updated @rq->gstate by now; otherwise, the completion path is
885          * now guaranteed to see @rq->aborted_gstate and yield.  If
886          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887          */
888         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889             READ_ONCE(rq->gstate) == rq->aborted_gstate)
890                 blk_mq_rq_timed_out(rq, reserved);
891 }
892
893 static void blk_mq_timeout_work(struct work_struct *work)
894 {
895         struct request_queue *q =
896                 container_of(work, struct request_queue, timeout_work);
897         struct blk_mq_timeout_data data = {
898                 .next           = 0,
899                 .next_set       = 0,
900                 .nr_expired     = 0,
901         };
902         struct blk_mq_hw_ctx *hctx;
903         int i;
904
905         /* A deadlock might occur if a request is stuck requiring a
906          * timeout at the same time a queue freeze is waiting
907          * completion, since the timeout code would not be able to
908          * acquire the queue reference here.
909          *
910          * That's why we don't use blk_queue_enter here; instead, we use
911          * percpu_ref_tryget directly, because we need to be able to
912          * obtain a reference even in the short window between the queue
913          * starting to freeze, by dropping the first reference in
914          * blk_freeze_queue_start, and the moment the last request is
915          * consumed, marked by the instant q_usage_counter reaches
916          * zero.
917          */
918         if (!percpu_ref_tryget(&q->q_usage_counter))
919                 return;
920
921         /* scan for the expired ones and set their ->aborted_gstate */
922         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923
924         if (data.nr_expired) {
925                 bool has_rcu = false;
926
927                 /*
928                  * Wait till everyone sees ->aborted_gstate.  The
929                  * sequential waits for SRCUs aren't ideal.  If this ever
930                  * becomes a problem, we can add per-hw_ctx rcu_head and
931                  * wait in parallel.
932                  */
933                 queue_for_each_hw_ctx(q, hctx, i) {
934                         if (!hctx->nr_expired)
935                                 continue;
936
937                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938                                 has_rcu = true;
939                         else
940                                 synchronize_srcu(hctx->srcu);
941
942                         hctx->nr_expired = 0;
943                 }
944                 if (has_rcu)
945                         synchronize_rcu();
946
947                 /* terminate the ones we won */
948                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949         }
950
951         if (data.next_set) {
952                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
953                 mod_timer(&q->timeout, data.next);
954         } else {
955                 /*
956                  * Request timeouts are handled as a forward rolling timer. If
957                  * we end up here it means that no requests are pending and
958                  * also that no request has been pending for a while. Mark
959                  * each hctx as idle.
960                  */
961                 queue_for_each_hw_ctx(q, hctx, i) {
962                         /* the hctx may be unmapped, so check it here */
963                         if (blk_mq_hw_queue_mapped(hctx))
964                                 blk_mq_tag_idle(hctx);
965                 }
966         }
967         blk_queue_exit(q);
968 }
969
970 struct flush_busy_ctx_data {
971         struct blk_mq_hw_ctx *hctx;
972         struct list_head *list;
973 };
974
975 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
976 {
977         struct flush_busy_ctx_data *flush_data = data;
978         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
979         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
980
981         spin_lock(&ctx->lock);
982         list_splice_tail_init(&ctx->rq_list, flush_data->list);
983         sbitmap_clear_bit(sb, bitnr);
984         spin_unlock(&ctx->lock);
985         return true;
986 }
987
988 /*
989  * Process software queues that have been marked busy, splicing them
990  * to the for-dispatch
991  */
992 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993 {
994         struct flush_busy_ctx_data data = {
995                 .hctx = hctx,
996                 .list = list,
997         };
998
999         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000 }
1001 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002
1003 struct dispatch_rq_data {
1004         struct blk_mq_hw_ctx *hctx;
1005         struct request *rq;
1006 };
1007
1008 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1009                 void *data)
1010 {
1011         struct dispatch_rq_data *dispatch_data = data;
1012         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1013         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1014
1015         spin_lock(&ctx->lock);
1016         if (unlikely(!list_empty(&ctx->rq_list))) {
1017                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1018                 list_del_init(&dispatch_data->rq->queuelist);
1019                 if (list_empty(&ctx->rq_list))
1020                         sbitmap_clear_bit(sb, bitnr);
1021         }
1022         spin_unlock(&ctx->lock);
1023
1024         return !dispatch_data->rq;
1025 }
1026
1027 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1028                                         struct blk_mq_ctx *start)
1029 {
1030         unsigned off = start ? start->index_hw : 0;
1031         struct dispatch_rq_data data = {
1032                 .hctx = hctx,
1033                 .rq   = NULL,
1034         };
1035
1036         __sbitmap_for_each_set(&hctx->ctx_map, off,
1037                                dispatch_rq_from_ctx, &data);
1038
1039         return data.rq;
1040 }
1041
1042 static inline unsigned int queued_to_index(unsigned int queued)
1043 {
1044         if (!queued)
1045                 return 0;
1046
1047         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 }
1049
1050 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1051                            bool wait)
1052 {
1053         struct blk_mq_alloc_data data = {
1054                 .q = rq->q,
1055                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1056                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1057         };
1058
1059         might_sleep_if(wait);
1060
1061         if (rq->tag != -1)
1062                 goto done;
1063
1064         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1065                 data.flags |= BLK_MQ_REQ_RESERVED;
1066
1067         rq->tag = blk_mq_get_tag(&data);
1068         if (rq->tag >= 0) {
1069                 if (blk_mq_tag_busy(data.hctx)) {
1070                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1071                         atomic_inc(&data.hctx->nr_active);
1072                 }
1073                 data.hctx->tags->rqs[rq->tag] = rq;
1074         }
1075
1076 done:
1077         if (hctx)
1078                 *hctx = data.hctx;
1079         return rq->tag != -1;
1080 }
1081
1082 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1083                                 int flags, void *key)
1084 {
1085         struct blk_mq_hw_ctx *hctx;
1086
1087         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1088
1089         list_del_init(&wait->entry);
1090         blk_mq_run_hw_queue(hctx, true);
1091         return 1;
1092 }
1093
1094 /*
1095  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1097  * restart. For both cases, take care to check the condition again after
1098  * marking us as waiting.
1099  */
1100 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1101                                  struct request *rq)
1102 {
1103         struct blk_mq_hw_ctx *this_hctx = *hctx;
1104         struct sbq_wait_state *ws;
1105         wait_queue_entry_t *wait;
1106         bool ret;
1107
1108         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1110                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1111
1112                 /*
1113                  * It's possible that a tag was freed in the window between the
1114                  * allocation failure and adding the hardware queue to the wait
1115                  * queue.
1116                  *
1117                  * Don't clear RESTART here, someone else could have set it.
1118                  * At most this will cost an extra queue run.
1119                  */
1120                 return blk_mq_get_driver_tag(rq, hctx, false);
1121         }
1122
1123         wait = &this_hctx->dispatch_wait;
1124         if (!list_empty_careful(&wait->entry))
1125                 return false;
1126
1127         spin_lock(&this_hctx->lock);
1128         if (!list_empty(&wait->entry)) {
1129                 spin_unlock(&this_hctx->lock);
1130                 return false;
1131         }
1132
1133         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1134         add_wait_queue(&ws->wait, wait);
1135
1136         /*
1137          * It's possible that a tag was freed in the window between the
1138          * allocation failure and adding the hardware queue to the wait
1139          * queue.
1140          */
1141         ret = blk_mq_get_driver_tag(rq, hctx, false);
1142         if (!ret) {
1143                 spin_unlock(&this_hctx->lock);
1144                 return false;
1145         }
1146
1147         /*
1148          * We got a tag, remove ourselves from the wait queue to ensure
1149          * someone else gets the wakeup.
1150          */
1151         spin_lock_irq(&ws->wait.lock);
1152         list_del_init(&wait->entry);
1153         spin_unlock_irq(&ws->wait.lock);
1154         spin_unlock(&this_hctx->lock);
1155
1156         return true;
1157 }
1158
1159 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1160
1161 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162                              bool got_budget)
1163 {
1164         struct blk_mq_hw_ctx *hctx;
1165         struct request *rq, *nxt;
1166         bool no_tag = false;
1167         int errors, queued;
1168         blk_status_t ret = BLK_STS_OK;
1169
1170         if (list_empty(list))
1171                 return false;
1172
1173         WARN_ON(!list_is_singular(list) && got_budget);
1174
1175         /*
1176          * Now process all the entries, sending them to the driver.
1177          */
1178         errors = queued = 0;
1179         do {
1180                 struct blk_mq_queue_data bd;
1181
1182                 rq = list_first_entry(list, struct request, queuelist);
1183
1184                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1185                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1186                         break;
1187
1188                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1189                         /*
1190                          * The initial allocation attempt failed, so we need to
1191                          * rerun the hardware queue when a tag is freed. The
1192                          * waitqueue takes care of that. If the queue is run
1193                          * before we add this entry back on the dispatch list,
1194                          * we'll re-run it below.
1195                          */
1196                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1197                                 blk_mq_put_dispatch_budget(hctx);
1198                                 /*
1199                                  * For non-shared tags, the RESTART check
1200                                  * will suffice.
1201                                  */
1202                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1203                                         no_tag = true;
1204                                 break;
1205                         }
1206                 }
1207
1208                 list_del_init(&rq->queuelist);
1209
1210                 bd.rq = rq;
1211
1212                 /*
1213                  * Flag last if we have no more requests, or if we have more
1214                  * but can't assign a driver tag to it.
1215                  */
1216                 if (list_empty(list))
1217                         bd.last = true;
1218                 else {
1219                         nxt = list_first_entry(list, struct request, queuelist);
1220                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1221                 }
1222
1223                 ret = q->mq_ops->queue_rq(hctx, &bd);
1224                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225                         /*
1226                          * If an I/O scheduler has been configured and we got a
1227                          * driver tag for the next request already, free it
1228                          * again.
1229                          */
1230                         if (!list_empty(list)) {
1231                                 nxt = list_first_entry(list, struct request, queuelist);
1232                                 blk_mq_put_driver_tag(nxt);
1233                         }
1234                         list_add(&rq->queuelist, list);
1235                         __blk_mq_requeue_request(rq);
1236                         break;
1237                 }
1238
1239                 if (unlikely(ret != BLK_STS_OK)) {
1240                         errors++;
1241                         blk_mq_end_request(rq, BLK_STS_IOERR);
1242                         continue;
1243                 }
1244
1245                 queued++;
1246         } while (!list_empty(list));
1247
1248         hctx->dispatched[queued_to_index(queued)]++;
1249
1250         /*
1251          * Any items that need requeuing? Stuff them into hctx->dispatch,
1252          * that is where we will continue on next queue run.
1253          */
1254         if (!list_empty(list)) {
1255                 bool needs_restart;
1256
1257                 spin_lock(&hctx->lock);
1258                 list_splice_init(list, &hctx->dispatch);
1259                 spin_unlock(&hctx->lock);
1260
1261                 /*
1262                  * If SCHED_RESTART was set by the caller of this function and
1263                  * it is no longer set that means that it was cleared by another
1264                  * thread and hence that a queue rerun is needed.
1265                  *
1266                  * If 'no_tag' is set, that means that we failed getting
1267                  * a driver tag with an I/O scheduler attached. If our dispatch
1268                  * waitqueue is no longer active, ensure that we run the queue
1269                  * AFTER adding our entries back to the list.
1270                  *
1271                  * If no I/O scheduler has been configured it is possible that
1272                  * the hardware queue got stopped and restarted before requests
1273                  * were pushed back onto the dispatch list. Rerun the queue to
1274                  * avoid starvation. Notes:
1275                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1276                  *   been stopped before rerunning a queue.
1277                  * - Some but not all block drivers stop a queue before
1278                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279                  *   and dm-rq.
1280                  *
1281                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1282                  * bit is set, run queue after a delay to avoid IO stalls
1283                  * that could otherwise occur if the queue is idle.
1284                  */
1285                 needs_restart = blk_mq_sched_needs_restart(hctx);
1286                 if (!needs_restart ||
1287                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288                         blk_mq_run_hw_queue(hctx, true);
1289                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1290                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291         }
1292
1293         return (queued + errors) != 0;
1294 }
1295
1296 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1297 {
1298         int srcu_idx;
1299
1300         /*
1301          * We should be running this queue from one of the CPUs that
1302          * are mapped to it.
1303          *
1304          * There are at least two related races now between setting
1305          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1306          * __blk_mq_run_hw_queue():
1307          *
1308          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1309          *   but later it becomes online, then this warning is harmless
1310          *   at all
1311          *
1312          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1313          *   but later it becomes offline, then the warning can't be
1314          *   triggered, and we depend on blk-mq timeout handler to
1315          *   handle dispatched requests to this hctx
1316          */
1317         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1318                 cpu_online(hctx->next_cpu)) {
1319                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1320                         raw_smp_processor_id(),
1321                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1322                 dump_stack();
1323         }
1324
1325         /*
1326          * We can't run the queue inline with ints disabled. Ensure that
1327          * we catch bad users of this early.
1328          */
1329         WARN_ON_ONCE(in_interrupt());
1330
1331         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1332
1333         hctx_lock(hctx, &srcu_idx);
1334         blk_mq_sched_dispatch_requests(hctx);
1335         hctx_unlock(hctx, srcu_idx);
1336 }
1337
1338 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1339 {
1340         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1341
1342         if (cpu >= nr_cpu_ids)
1343                 cpu = cpumask_first(hctx->cpumask);
1344         return cpu;
1345 }
1346
1347 /*
1348  * It'd be great if the workqueue API had a way to pass
1349  * in a mask and had some smarts for more clever placement.
1350  * For now we just round-robin here, switching for every
1351  * BLK_MQ_CPU_WORK_BATCH queued items.
1352  */
1353 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1354 {
1355         bool tried = false;
1356         int next_cpu = hctx->next_cpu;
1357
1358         if (hctx->queue->nr_hw_queues == 1)
1359                 return WORK_CPU_UNBOUND;
1360
1361         if (--hctx->next_cpu_batch <= 0) {
1362 select_cpu:
1363                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1364                                 cpu_online_mask);
1365                 if (next_cpu >= nr_cpu_ids)
1366                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1367                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1368         }
1369
1370         /*
1371          * Do unbound schedule if we can't find a online CPU for this hctx,
1372          * and it should only happen in the path of handling CPU DEAD.
1373          */
1374         if (!cpu_online(next_cpu)) {
1375                 if (!tried) {
1376                         tried = true;
1377                         goto select_cpu;
1378                 }
1379
1380                 /*
1381                  * Make sure to re-select CPU next time once after CPUs
1382                  * in hctx->cpumask become online again.
1383                  */
1384                 hctx->next_cpu = next_cpu;
1385                 hctx->next_cpu_batch = 1;
1386                 return WORK_CPU_UNBOUND;
1387         }
1388
1389         hctx->next_cpu = next_cpu;
1390         return next_cpu;
1391 }
1392
1393 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1394                                         unsigned long msecs)
1395 {
1396         if (unlikely(blk_mq_hctx_stopped(hctx)))
1397                 return;
1398
1399         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1400                 int cpu = get_cpu();
1401                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1402                         __blk_mq_run_hw_queue(hctx);
1403                         put_cpu();
1404                         return;
1405                 }
1406
1407                 put_cpu();
1408         }
1409
1410         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1411                                     msecs_to_jiffies(msecs));
1412 }
1413
1414 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1415 {
1416         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1417 }
1418 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1419
1420 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1421 {
1422         int srcu_idx;
1423         bool need_run;
1424
1425         /*
1426          * When queue is quiesced, we may be switching io scheduler, or
1427          * updating nr_hw_queues, or other things, and we can't run queue
1428          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1429          *
1430          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1431          * quiesced.
1432          */
1433         hctx_lock(hctx, &srcu_idx);
1434         need_run = !blk_queue_quiesced(hctx->queue) &&
1435                 blk_mq_hctx_has_pending(hctx);
1436         hctx_unlock(hctx, srcu_idx);
1437
1438         if (need_run) {
1439                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1440                 return true;
1441         }
1442
1443         return false;
1444 }
1445 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1446
1447 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1448 {
1449         struct blk_mq_hw_ctx *hctx;
1450         int i;
1451
1452         queue_for_each_hw_ctx(q, hctx, i) {
1453                 if (blk_mq_hctx_stopped(hctx))
1454                         continue;
1455
1456                 blk_mq_run_hw_queue(hctx, async);
1457         }
1458 }
1459 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1460
1461 /**
1462  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1463  * @q: request queue.
1464  *
1465  * The caller is responsible for serializing this function against
1466  * blk_mq_{start,stop}_hw_queue().
1467  */
1468 bool blk_mq_queue_stopped(struct request_queue *q)
1469 {
1470         struct blk_mq_hw_ctx *hctx;
1471         int i;
1472
1473         queue_for_each_hw_ctx(q, hctx, i)
1474                 if (blk_mq_hctx_stopped(hctx))
1475                         return true;
1476
1477         return false;
1478 }
1479 EXPORT_SYMBOL(blk_mq_queue_stopped);
1480
1481 /*
1482  * This function is often used for pausing .queue_rq() by driver when
1483  * there isn't enough resource or some conditions aren't satisfied, and
1484  * BLK_STS_RESOURCE is usually returned.
1485  *
1486  * We do not guarantee that dispatch can be drained or blocked
1487  * after blk_mq_stop_hw_queue() returns. Please use
1488  * blk_mq_quiesce_queue() for that requirement.
1489  */
1490 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1491 {
1492         cancel_delayed_work(&hctx->run_work);
1493
1494         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495 }
1496 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1497
1498 /*
1499  * This function is often used for pausing .queue_rq() by driver when
1500  * there isn't enough resource or some conditions aren't satisfied, and
1501  * BLK_STS_RESOURCE is usually returned.
1502  *
1503  * We do not guarantee that dispatch can be drained or blocked
1504  * after blk_mq_stop_hw_queues() returns. Please use
1505  * blk_mq_quiesce_queue() for that requirement.
1506  */
1507 void blk_mq_stop_hw_queues(struct request_queue *q)
1508 {
1509         struct blk_mq_hw_ctx *hctx;
1510         int i;
1511
1512         queue_for_each_hw_ctx(q, hctx, i)
1513                 blk_mq_stop_hw_queue(hctx);
1514 }
1515 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1516
1517 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1518 {
1519         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1520
1521         blk_mq_run_hw_queue(hctx, false);
1522 }
1523 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1524
1525 void blk_mq_start_hw_queues(struct request_queue *q)
1526 {
1527         struct blk_mq_hw_ctx *hctx;
1528         int i;
1529
1530         queue_for_each_hw_ctx(q, hctx, i)
1531                 blk_mq_start_hw_queue(hctx);
1532 }
1533 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1534
1535 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1536 {
1537         if (!blk_mq_hctx_stopped(hctx))
1538                 return;
1539
1540         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1541         blk_mq_run_hw_queue(hctx, async);
1542 }
1543 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1544
1545 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1546 {
1547         struct blk_mq_hw_ctx *hctx;
1548         int i;
1549
1550         queue_for_each_hw_ctx(q, hctx, i)
1551                 blk_mq_start_stopped_hw_queue(hctx, async);
1552 }
1553 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1554
1555 static void blk_mq_run_work_fn(struct work_struct *work)
1556 {
1557         struct blk_mq_hw_ctx *hctx;
1558
1559         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1560
1561         /*
1562          * If we are stopped, don't run the queue.
1563          */
1564         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1565                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1566
1567         __blk_mq_run_hw_queue(hctx);
1568 }
1569
1570 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1571                                             struct request *rq,
1572                                             bool at_head)
1573 {
1574         struct blk_mq_ctx *ctx = rq->mq_ctx;
1575
1576         lockdep_assert_held(&ctx->lock);
1577
1578         trace_block_rq_insert(hctx->queue, rq);
1579
1580         if (at_head)
1581                 list_add(&rq->queuelist, &ctx->rq_list);
1582         else
1583                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1584 }
1585
1586 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1587                              bool at_head)
1588 {
1589         struct blk_mq_ctx *ctx = rq->mq_ctx;
1590
1591         lockdep_assert_held(&ctx->lock);
1592
1593         __blk_mq_insert_req_list(hctx, rq, at_head);
1594         blk_mq_hctx_mark_pending(hctx, ctx);
1595 }
1596
1597 /*
1598  * Should only be used carefully, when the caller knows we want to
1599  * bypass a potential IO scheduler on the target device.
1600  */
1601 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1602 {
1603         struct blk_mq_ctx *ctx = rq->mq_ctx;
1604         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1605
1606         spin_lock(&hctx->lock);
1607         list_add_tail(&rq->queuelist, &hctx->dispatch);
1608         spin_unlock(&hctx->lock);
1609
1610         if (run_queue)
1611                 blk_mq_run_hw_queue(hctx, false);
1612 }
1613
1614 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1615                             struct list_head *list)
1616
1617 {
1618         /*
1619          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1620          * offline now
1621          */
1622         spin_lock(&ctx->lock);
1623         while (!list_empty(list)) {
1624                 struct request *rq;
1625
1626                 rq = list_first_entry(list, struct request, queuelist);
1627                 BUG_ON(rq->mq_ctx != ctx);
1628                 list_del_init(&rq->queuelist);
1629                 __blk_mq_insert_req_list(hctx, rq, false);
1630         }
1631         blk_mq_hctx_mark_pending(hctx, ctx);
1632         spin_unlock(&ctx->lock);
1633 }
1634
1635 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1636 {
1637         struct request *rqa = container_of(a, struct request, queuelist);
1638         struct request *rqb = container_of(b, struct request, queuelist);
1639
1640         return !(rqa->mq_ctx < rqb->mq_ctx ||
1641                  (rqa->mq_ctx == rqb->mq_ctx &&
1642                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1643 }
1644
1645 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1646 {
1647         struct blk_mq_ctx *this_ctx;
1648         struct request_queue *this_q;
1649         struct request *rq;
1650         LIST_HEAD(list);
1651         LIST_HEAD(ctx_list);
1652         unsigned int depth;
1653
1654         list_splice_init(&plug->mq_list, &list);
1655
1656         list_sort(NULL, &list, plug_ctx_cmp);
1657
1658         this_q = NULL;
1659         this_ctx = NULL;
1660         depth = 0;
1661
1662         while (!list_empty(&list)) {
1663                 rq = list_entry_rq(list.next);
1664                 list_del_init(&rq->queuelist);
1665                 BUG_ON(!rq->q);
1666                 if (rq->mq_ctx != this_ctx) {
1667                         if (this_ctx) {
1668                                 trace_block_unplug(this_q, depth, from_schedule);
1669                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1670                                                                 &ctx_list,
1671                                                                 from_schedule);
1672                         }
1673
1674                         this_ctx = rq->mq_ctx;
1675                         this_q = rq->q;
1676                         depth = 0;
1677                 }
1678
1679                 depth++;
1680                 list_add_tail(&rq->queuelist, &ctx_list);
1681         }
1682
1683         /*
1684          * If 'this_ctx' is set, we know we have entries to complete
1685          * on 'ctx_list'. Do those.
1686          */
1687         if (this_ctx) {
1688                 trace_block_unplug(this_q, depth, from_schedule);
1689                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1690                                                 from_schedule);
1691         }
1692 }
1693
1694 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1695 {
1696         blk_init_request_from_bio(rq, bio);
1697
1698         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1699
1700         blk_account_io_start(rq, true);
1701 }
1702
1703 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1704                                    struct blk_mq_ctx *ctx,
1705                                    struct request *rq)
1706 {
1707         spin_lock(&ctx->lock);
1708         __blk_mq_insert_request(hctx, rq, false);
1709         spin_unlock(&ctx->lock);
1710 }
1711
1712 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1713 {
1714         if (rq->tag != -1)
1715                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1716
1717         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1718 }
1719
1720 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1721                                             struct request *rq,
1722                                             blk_qc_t *cookie)
1723 {
1724         struct request_queue *q = rq->q;
1725         struct blk_mq_queue_data bd = {
1726                 .rq = rq,
1727                 .last = true,
1728         };
1729         blk_qc_t new_cookie;
1730         blk_status_t ret;
1731
1732         new_cookie = request_to_qc_t(hctx, rq);
1733
1734         /*
1735          * For OK queue, we are done. For error, caller may kill it.
1736          * Any other error (busy), just add it to our list as we
1737          * previously would have done.
1738          */
1739         ret = q->mq_ops->queue_rq(hctx, &bd);
1740         switch (ret) {
1741         case BLK_STS_OK:
1742                 *cookie = new_cookie;
1743                 break;
1744         case BLK_STS_RESOURCE:
1745         case BLK_STS_DEV_RESOURCE:
1746                 __blk_mq_requeue_request(rq);
1747                 break;
1748         default:
1749                 *cookie = BLK_QC_T_NONE;
1750                 break;
1751         }
1752
1753         return ret;
1754 }
1755
1756 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1757                                                 struct request *rq,
1758                                                 blk_qc_t *cookie,
1759                                                 bool bypass_insert)
1760 {
1761         struct request_queue *q = rq->q;
1762         bool run_queue = true;
1763
1764         /*
1765          * RCU or SRCU read lock is needed before checking quiesced flag.
1766          *
1767          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1768          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1769          * and avoid driver to try to dispatch again.
1770          */
1771         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1772                 run_queue = false;
1773                 bypass_insert = false;
1774                 goto insert;
1775         }
1776
1777         if (q->elevator && !bypass_insert)
1778                 goto insert;
1779
1780         if (!blk_mq_get_dispatch_budget(hctx))
1781                 goto insert;
1782
1783         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1784                 blk_mq_put_dispatch_budget(hctx);
1785                 goto insert;
1786         }
1787
1788         return __blk_mq_issue_directly(hctx, rq, cookie);
1789 insert:
1790         if (bypass_insert)
1791                 return BLK_STS_RESOURCE;
1792
1793         blk_mq_sched_insert_request(rq, false, run_queue, false);
1794         return BLK_STS_OK;
1795 }
1796
1797 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1798                 struct request *rq, blk_qc_t *cookie)
1799 {
1800         blk_status_t ret;
1801         int srcu_idx;
1802
1803         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1804
1805         hctx_lock(hctx, &srcu_idx);
1806
1807         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1808         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1809                 blk_mq_sched_insert_request(rq, false, true, false);
1810         else if (ret != BLK_STS_OK)
1811                 blk_mq_end_request(rq, ret);
1812
1813         hctx_unlock(hctx, srcu_idx);
1814 }
1815
1816 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1817 {
1818         blk_status_t ret;
1819         int srcu_idx;
1820         blk_qc_t unused_cookie;
1821         struct blk_mq_ctx *ctx = rq->mq_ctx;
1822         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1823
1824         hctx_lock(hctx, &srcu_idx);
1825         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1826         hctx_unlock(hctx, srcu_idx);
1827
1828         return ret;
1829 }
1830
1831 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1832 {
1833         const int is_sync = op_is_sync(bio->bi_opf);
1834         const int is_flush_fua = op_is_flush(bio->bi_opf);
1835         struct blk_mq_alloc_data data = { .flags = 0 };
1836         struct request *rq;
1837         unsigned int request_count = 0;
1838         struct blk_plug *plug;
1839         struct request *same_queue_rq = NULL;
1840         blk_qc_t cookie;
1841         unsigned int wb_acct;
1842
1843         blk_queue_bounce(q, &bio);
1844
1845         blk_queue_split(q, &bio);
1846
1847         if (!bio_integrity_prep(bio))
1848                 return BLK_QC_T_NONE;
1849
1850         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1851             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1852                 return BLK_QC_T_NONE;
1853
1854         if (blk_mq_sched_bio_merge(q, bio))
1855                 return BLK_QC_T_NONE;
1856
1857         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1858
1859         trace_block_getrq(q, bio, bio->bi_opf);
1860
1861         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1862         if (unlikely(!rq)) {
1863                 __wbt_done(q->rq_wb, wb_acct);
1864                 if (bio->bi_opf & REQ_NOWAIT)
1865                         bio_wouldblock_error(bio);
1866                 return BLK_QC_T_NONE;
1867         }
1868
1869         wbt_track(&rq->issue_stat, wb_acct);
1870
1871         cookie = request_to_qc_t(data.hctx, rq);
1872
1873         plug = current->plug;
1874         if (unlikely(is_flush_fua)) {
1875                 blk_mq_put_ctx(data.ctx);
1876                 blk_mq_bio_to_request(rq, bio);
1877
1878                 /* bypass scheduler for flush rq */
1879                 blk_insert_flush(rq);
1880                 blk_mq_run_hw_queue(data.hctx, true);
1881         } else if (plug && q->nr_hw_queues == 1) {
1882                 struct request *last = NULL;
1883
1884                 blk_mq_put_ctx(data.ctx);
1885                 blk_mq_bio_to_request(rq, bio);
1886
1887                 /*
1888                  * @request_count may become stale because of schedule
1889                  * out, so check the list again.
1890                  */
1891                 if (list_empty(&plug->mq_list))
1892                         request_count = 0;
1893                 else if (blk_queue_nomerges(q))
1894                         request_count = blk_plug_queued_count(q);
1895
1896                 if (!request_count)
1897                         trace_block_plug(q);
1898                 else
1899                         last = list_entry_rq(plug->mq_list.prev);
1900
1901                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1902                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1903                         blk_flush_plug_list(plug, false);
1904                         trace_block_plug(q);
1905                 }
1906
1907                 list_add_tail(&rq->queuelist, &plug->mq_list);
1908         } else if (plug && !blk_queue_nomerges(q)) {
1909                 blk_mq_bio_to_request(rq, bio);
1910
1911                 /*
1912                  * We do limited plugging. If the bio can be merged, do that.
1913                  * Otherwise the existing request in the plug list will be
1914                  * issued. So the plug list will have one request at most
1915                  * The plug list might get flushed before this. If that happens,
1916                  * the plug list is empty, and same_queue_rq is invalid.
1917                  */
1918                 if (list_empty(&plug->mq_list))
1919                         same_queue_rq = NULL;
1920                 if (same_queue_rq)
1921                         list_del_init(&same_queue_rq->queuelist);
1922                 list_add_tail(&rq->queuelist, &plug->mq_list);
1923
1924                 blk_mq_put_ctx(data.ctx);
1925
1926                 if (same_queue_rq) {
1927                         data.hctx = blk_mq_map_queue(q,
1928                                         same_queue_rq->mq_ctx->cpu);
1929                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1930                                         &cookie);
1931                 }
1932         } else if (q->nr_hw_queues > 1 && is_sync) {
1933                 blk_mq_put_ctx(data.ctx);
1934                 blk_mq_bio_to_request(rq, bio);
1935                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1936         } else if (q->elevator) {
1937                 blk_mq_put_ctx(data.ctx);
1938                 blk_mq_bio_to_request(rq, bio);
1939                 blk_mq_sched_insert_request(rq, false, true, true);
1940         } else {
1941                 blk_mq_put_ctx(data.ctx);
1942                 blk_mq_bio_to_request(rq, bio);
1943                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1944                 blk_mq_run_hw_queue(data.hctx, true);
1945         }
1946
1947         return cookie;
1948 }
1949
1950 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1951                      unsigned int hctx_idx)
1952 {
1953         struct page *page;
1954
1955         if (tags->rqs && set->ops->exit_request) {
1956                 int i;
1957
1958                 for (i = 0; i < tags->nr_tags; i++) {
1959                         struct request *rq = tags->static_rqs[i];
1960
1961                         if (!rq)
1962                                 continue;
1963                         set->ops->exit_request(set, rq, hctx_idx);
1964                         tags->static_rqs[i] = NULL;
1965                 }
1966         }
1967
1968         while (!list_empty(&tags->page_list)) {
1969                 page = list_first_entry(&tags->page_list, struct page, lru);
1970                 list_del_init(&page->lru);
1971                 /*
1972                  * Remove kmemleak object previously allocated in
1973                  * blk_mq_init_rq_map().
1974                  */
1975                 kmemleak_free(page_address(page));
1976                 __free_pages(page, page->private);
1977         }
1978 }
1979
1980 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1981 {
1982         kfree(tags->rqs);
1983         tags->rqs = NULL;
1984         kfree(tags->static_rqs);
1985         tags->static_rqs = NULL;
1986
1987         blk_mq_free_tags(tags);
1988 }
1989
1990 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1991                                         unsigned int hctx_idx,
1992                                         unsigned int nr_tags,
1993                                         unsigned int reserved_tags)
1994 {
1995         struct blk_mq_tags *tags;
1996         int node;
1997
1998         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1999         if (node == NUMA_NO_NODE)
2000                 node = set->numa_node;
2001
2002         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2003                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2004         if (!tags)
2005                 return NULL;
2006
2007         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2008                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2009                                  node);
2010         if (!tags->rqs) {
2011                 blk_mq_free_tags(tags);
2012                 return NULL;
2013         }
2014
2015         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2016                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2017                                  node);
2018         if (!tags->static_rqs) {
2019                 kfree(tags->rqs);
2020                 blk_mq_free_tags(tags);
2021                 return NULL;
2022         }
2023
2024         return tags;
2025 }
2026
2027 static size_t order_to_size(unsigned int order)
2028 {
2029         return (size_t)PAGE_SIZE << order;
2030 }
2031
2032 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2033                                unsigned int hctx_idx, int node)
2034 {
2035         int ret;
2036
2037         if (set->ops->init_request) {
2038                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2039                 if (ret)
2040                         return ret;
2041         }
2042
2043         seqcount_init(&rq->gstate_seq);
2044         u64_stats_init(&rq->aborted_gstate_sync);
2045         /*
2046          * start gstate with gen 1 instead of 0, otherwise it will be equal
2047          * to aborted_gstate, and be identified timed out by
2048          * blk_mq_terminate_expired.
2049          */
2050         WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2051
2052         return 0;
2053 }
2054
2055 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2056                      unsigned int hctx_idx, unsigned int depth)
2057 {
2058         unsigned int i, j, entries_per_page, max_order = 4;
2059         size_t rq_size, left;
2060         int node;
2061
2062         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2063         if (node == NUMA_NO_NODE)
2064                 node = set->numa_node;
2065
2066         INIT_LIST_HEAD(&tags->page_list);
2067
2068         /*
2069          * rq_size is the size of the request plus driver payload, rounded
2070          * to the cacheline size
2071          */
2072         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2073                                 cache_line_size());
2074         left = rq_size * depth;
2075
2076         for (i = 0; i < depth; ) {
2077                 int this_order = max_order;
2078                 struct page *page;
2079                 int to_do;
2080                 void *p;
2081
2082                 while (this_order && left < order_to_size(this_order - 1))
2083                         this_order--;
2084
2085                 do {
2086                         page = alloc_pages_node(node,
2087                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2088                                 this_order);
2089                         if (page)
2090                                 break;
2091                         if (!this_order--)
2092                                 break;
2093                         if (order_to_size(this_order) < rq_size)
2094                                 break;
2095                 } while (1);
2096
2097                 if (!page)
2098                         goto fail;
2099
2100                 page->private = this_order;
2101                 list_add_tail(&page->lru, &tags->page_list);
2102
2103                 p = page_address(page);
2104                 /*
2105                  * Allow kmemleak to scan these pages as they contain pointers
2106                  * to additional allocations like via ops->init_request().
2107                  */
2108                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2109                 entries_per_page = order_to_size(this_order) / rq_size;
2110                 to_do = min(entries_per_page, depth - i);
2111                 left -= to_do * rq_size;
2112                 for (j = 0; j < to_do; j++) {
2113                         struct request *rq = p;
2114
2115                         tags->static_rqs[i] = rq;
2116                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2117                                 tags->static_rqs[i] = NULL;
2118                                 goto fail;
2119                         }
2120
2121                         p += rq_size;
2122                         i++;
2123                 }
2124         }
2125         return 0;
2126
2127 fail:
2128         blk_mq_free_rqs(set, tags, hctx_idx);
2129         return -ENOMEM;
2130 }
2131
2132 /*
2133  * 'cpu' is going away. splice any existing rq_list entries from this
2134  * software queue to the hw queue dispatch list, and ensure that it
2135  * gets run.
2136  */
2137 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2138 {
2139         struct blk_mq_hw_ctx *hctx;
2140         struct blk_mq_ctx *ctx;
2141         LIST_HEAD(tmp);
2142
2143         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2144         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2145
2146         spin_lock(&ctx->lock);
2147         if (!list_empty(&ctx->rq_list)) {
2148                 list_splice_init(&ctx->rq_list, &tmp);
2149                 blk_mq_hctx_clear_pending(hctx, ctx);
2150         }
2151         spin_unlock(&ctx->lock);
2152
2153         if (list_empty(&tmp))
2154                 return 0;
2155
2156         spin_lock(&hctx->lock);
2157         list_splice_tail_init(&tmp, &hctx->dispatch);
2158         spin_unlock(&hctx->lock);
2159
2160         blk_mq_run_hw_queue(hctx, true);
2161         return 0;
2162 }
2163
2164 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2165 {
2166         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2167                                             &hctx->cpuhp_dead);
2168 }
2169
2170 /* hctx->ctxs will be freed in queue's release handler */
2171 static void blk_mq_exit_hctx(struct request_queue *q,
2172                 struct blk_mq_tag_set *set,
2173                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2174 {
2175         blk_mq_debugfs_unregister_hctx(hctx);
2176
2177         if (blk_mq_hw_queue_mapped(hctx))
2178                 blk_mq_tag_idle(hctx);
2179
2180         if (set->ops->exit_request)
2181                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2182
2183         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2184
2185         if (set->ops->exit_hctx)
2186                 set->ops->exit_hctx(hctx, hctx_idx);
2187
2188         if (hctx->flags & BLK_MQ_F_BLOCKING)
2189                 cleanup_srcu_struct(hctx->srcu);
2190
2191         blk_mq_remove_cpuhp(hctx);
2192         blk_free_flush_queue(hctx->fq);
2193         sbitmap_free(&hctx->ctx_map);
2194 }
2195
2196 static void blk_mq_exit_hw_queues(struct request_queue *q,
2197                 struct blk_mq_tag_set *set, int nr_queue)
2198 {
2199         struct blk_mq_hw_ctx *hctx;
2200         unsigned int i;
2201
2202         queue_for_each_hw_ctx(q, hctx, i) {
2203                 if (i == nr_queue)
2204                         break;
2205                 blk_mq_exit_hctx(q, set, hctx, i);
2206         }
2207 }
2208
2209 static int blk_mq_init_hctx(struct request_queue *q,
2210                 struct blk_mq_tag_set *set,
2211                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2212 {
2213         int node;
2214
2215         node = hctx->numa_node;
2216         if (node == NUMA_NO_NODE)
2217                 node = hctx->numa_node = set->numa_node;
2218
2219         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2220         spin_lock_init(&hctx->lock);
2221         INIT_LIST_HEAD(&hctx->dispatch);
2222         hctx->queue = q;
2223         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2224
2225         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2226
2227         hctx->tags = set->tags[hctx_idx];
2228
2229         /*
2230          * Allocate space for all possible cpus to avoid allocation at
2231          * runtime
2232          */
2233         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2234                                         GFP_KERNEL, node);
2235         if (!hctx->ctxs)
2236                 goto unregister_cpu_notifier;
2237
2238         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2239                               node))
2240                 goto free_ctxs;
2241
2242         hctx->nr_ctx = 0;
2243
2244         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2245         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2246
2247         if (set->ops->init_hctx &&
2248             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2249                 goto free_bitmap;
2250
2251         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2252                 goto exit_hctx;
2253
2254         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2255         if (!hctx->fq)
2256                 goto sched_exit_hctx;
2257
2258         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2259                 goto free_fq;
2260
2261         if (hctx->flags & BLK_MQ_F_BLOCKING)
2262                 init_srcu_struct(hctx->srcu);
2263
2264         blk_mq_debugfs_register_hctx(q, hctx);
2265
2266         return 0;
2267
2268  free_fq:
2269         kfree(hctx->fq);
2270  sched_exit_hctx:
2271         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2272  exit_hctx:
2273         if (set->ops->exit_hctx)
2274                 set->ops->exit_hctx(hctx, hctx_idx);
2275  free_bitmap:
2276         sbitmap_free(&hctx->ctx_map);
2277  free_ctxs:
2278         kfree(hctx->ctxs);
2279  unregister_cpu_notifier:
2280         blk_mq_remove_cpuhp(hctx);
2281         return -1;
2282 }
2283
2284 static void blk_mq_init_cpu_queues(struct request_queue *q,
2285                                    unsigned int nr_hw_queues)
2286 {
2287         unsigned int i;
2288
2289         for_each_possible_cpu(i) {
2290                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2291                 struct blk_mq_hw_ctx *hctx;
2292
2293                 __ctx->cpu = i;
2294                 spin_lock_init(&__ctx->lock);
2295                 INIT_LIST_HEAD(&__ctx->rq_list);
2296                 __ctx->queue = q;
2297
2298                 /*
2299                  * Set local node, IFF we have more than one hw queue. If
2300                  * not, we remain on the home node of the device
2301                  */
2302                 hctx = blk_mq_map_queue(q, i);
2303                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2304                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2305         }
2306 }
2307
2308 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2309 {
2310         int ret = 0;
2311
2312         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2313                                         set->queue_depth, set->reserved_tags);
2314         if (!set->tags[hctx_idx])
2315                 return false;
2316
2317         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2318                                 set->queue_depth);
2319         if (!ret)
2320                 return true;
2321
2322         blk_mq_free_rq_map(set->tags[hctx_idx]);
2323         set->tags[hctx_idx] = NULL;
2324         return false;
2325 }
2326
2327 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2328                                          unsigned int hctx_idx)
2329 {
2330         if (set->tags[hctx_idx]) {
2331                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2332                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2333                 set->tags[hctx_idx] = NULL;
2334         }
2335 }
2336
2337 static void blk_mq_map_swqueue(struct request_queue *q)
2338 {
2339         unsigned int i, hctx_idx;
2340         struct blk_mq_hw_ctx *hctx;
2341         struct blk_mq_ctx *ctx;
2342         struct blk_mq_tag_set *set = q->tag_set;
2343
2344         /*
2345          * Avoid others reading imcomplete hctx->cpumask through sysfs
2346          */
2347         mutex_lock(&q->sysfs_lock);
2348
2349         queue_for_each_hw_ctx(q, hctx, i) {
2350                 cpumask_clear(hctx->cpumask);
2351                 hctx->nr_ctx = 0;
2352         }
2353
2354         /*
2355          * Map software to hardware queues.
2356          *
2357          * If the cpu isn't present, the cpu is mapped to first hctx.
2358          */
2359         for_each_possible_cpu(i) {
2360                 hctx_idx = q->mq_map[i];
2361                 /* unmapped hw queue can be remapped after CPU topo changed */
2362                 if (!set->tags[hctx_idx] &&
2363                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2364                         /*
2365                          * If tags initialization fail for some hctx,
2366                          * that hctx won't be brought online.  In this
2367                          * case, remap the current ctx to hctx[0] which
2368                          * is guaranteed to always have tags allocated
2369                          */
2370                         q->mq_map[i] = 0;
2371                 }
2372
2373                 ctx = per_cpu_ptr(q->queue_ctx, i);
2374                 hctx = blk_mq_map_queue(q, i);
2375
2376                 cpumask_set_cpu(i, hctx->cpumask);
2377                 ctx->index_hw = hctx->nr_ctx;
2378                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2379         }
2380
2381         mutex_unlock(&q->sysfs_lock);
2382
2383         queue_for_each_hw_ctx(q, hctx, i) {
2384                 /*
2385                  * If no software queues are mapped to this hardware queue,
2386                  * disable it and free the request entries.
2387                  */
2388                 if (!hctx->nr_ctx) {
2389                         /* Never unmap queue 0.  We need it as a
2390                          * fallback in case of a new remap fails
2391                          * allocation
2392                          */
2393                         if (i && set->tags[i])
2394                                 blk_mq_free_map_and_requests(set, i);
2395
2396                         hctx->tags = NULL;
2397                         continue;
2398                 }
2399
2400                 hctx->tags = set->tags[i];
2401                 WARN_ON(!hctx->tags);
2402
2403                 /*
2404                  * Set the map size to the number of mapped software queues.
2405                  * This is more accurate and more efficient than looping
2406                  * over all possibly mapped software queues.
2407                  */
2408                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2409
2410                 /*
2411                  * Initialize batch roundrobin counts
2412                  */
2413                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2414                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2415         }
2416 }
2417
2418 /*
2419  * Caller needs to ensure that we're either frozen/quiesced, or that
2420  * the queue isn't live yet.
2421  */
2422 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2423 {
2424         struct blk_mq_hw_ctx *hctx;
2425         int i;
2426
2427         queue_for_each_hw_ctx(q, hctx, i) {
2428                 if (shared) {
2429                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2430                                 atomic_inc(&q->shared_hctx_restart);
2431                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2432                 } else {
2433                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2434                                 atomic_dec(&q->shared_hctx_restart);
2435                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2436                 }
2437         }
2438 }
2439
2440 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2441                                         bool shared)
2442 {
2443         struct request_queue *q;
2444
2445         lockdep_assert_held(&set->tag_list_lock);
2446
2447         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2448                 blk_mq_freeze_queue(q);
2449                 queue_set_hctx_shared(q, shared);
2450                 blk_mq_unfreeze_queue(q);
2451         }
2452 }
2453
2454 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2455 {
2456         struct blk_mq_tag_set *set = q->tag_set;
2457
2458         mutex_lock(&set->tag_list_lock);
2459         list_del_rcu(&q->tag_set_list);
2460         INIT_LIST_HEAD(&q->tag_set_list);
2461         if (list_is_singular(&set->tag_list)) {
2462                 /* just transitioned to unshared */
2463                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2464                 /* update existing queue */
2465                 blk_mq_update_tag_set_depth(set, false);
2466         }
2467         mutex_unlock(&set->tag_list_lock);
2468
2469         synchronize_rcu();
2470 }
2471
2472 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2473                                      struct request_queue *q)
2474 {
2475         q->tag_set = set;
2476
2477         mutex_lock(&set->tag_list_lock);
2478
2479         /*
2480          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2481          */
2482         if (!list_empty(&set->tag_list) &&
2483             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2484                 set->flags |= BLK_MQ_F_TAG_SHARED;
2485                 /* update existing queue */
2486                 blk_mq_update_tag_set_depth(set, true);
2487         }
2488         if (set->flags & BLK_MQ_F_TAG_SHARED)
2489                 queue_set_hctx_shared(q, true);
2490         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2491
2492         mutex_unlock(&set->tag_list_lock);
2493 }
2494
2495 /*
2496  * It is the actual release handler for mq, but we do it from
2497  * request queue's release handler for avoiding use-after-free
2498  * and headache because q->mq_kobj shouldn't have been introduced,
2499  * but we can't group ctx/kctx kobj without it.
2500  */
2501 void blk_mq_release(struct request_queue *q)
2502 {
2503         struct blk_mq_hw_ctx *hctx;
2504         unsigned int i;
2505
2506         /* hctx kobj stays in hctx */
2507         queue_for_each_hw_ctx(q, hctx, i) {
2508                 if (!hctx)
2509                         continue;
2510                 kobject_put(&hctx->kobj);
2511         }
2512
2513         q->mq_map = NULL;
2514
2515         kfree(q->queue_hw_ctx);
2516
2517         /*
2518          * release .mq_kobj and sw queue's kobject now because
2519          * both share lifetime with request queue.
2520          */
2521         blk_mq_sysfs_deinit(q);
2522
2523         free_percpu(q->queue_ctx);
2524 }
2525
2526 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2527 {
2528         struct request_queue *uninit_q, *q;
2529
2530         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2531         if (!uninit_q)
2532                 return ERR_PTR(-ENOMEM);
2533
2534         q = blk_mq_init_allocated_queue(set, uninit_q);
2535         if (IS_ERR(q))
2536                 blk_cleanup_queue(uninit_q);
2537
2538         return q;
2539 }
2540 EXPORT_SYMBOL(blk_mq_init_queue);
2541
2542 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2543 {
2544         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2545
2546         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2547                            __alignof__(struct blk_mq_hw_ctx)) !=
2548                      sizeof(struct blk_mq_hw_ctx));
2549
2550         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2551                 hw_ctx_size += sizeof(struct srcu_struct);
2552
2553         return hw_ctx_size;
2554 }
2555
2556 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2557                                                 struct request_queue *q)
2558 {
2559         int i, j;
2560         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2561
2562         blk_mq_sysfs_unregister(q);
2563
2564         /* protect against switching io scheduler  */
2565         mutex_lock(&q->sysfs_lock);
2566         for (i = 0; i < set->nr_hw_queues; i++) {
2567                 int node;
2568
2569                 if (hctxs[i])
2570                         continue;
2571
2572                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2573                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2574                                         GFP_KERNEL, node);
2575                 if (!hctxs[i])
2576                         break;
2577
2578                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2579                                                 node)) {
2580                         kfree(hctxs[i]);
2581                         hctxs[i] = NULL;
2582                         break;
2583                 }
2584
2585                 atomic_set(&hctxs[i]->nr_active, 0);
2586                 hctxs[i]->numa_node = node;
2587                 hctxs[i]->queue_num = i;
2588
2589                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2590                         free_cpumask_var(hctxs[i]->cpumask);
2591                         kfree(hctxs[i]);
2592                         hctxs[i] = NULL;
2593                         break;
2594                 }
2595                 blk_mq_hctx_kobj_init(hctxs[i]);
2596         }
2597         for (j = i; j < q->nr_hw_queues; j++) {
2598                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2599
2600                 if (hctx) {
2601                         if (hctx->tags)
2602                                 blk_mq_free_map_and_requests(set, j);
2603                         blk_mq_exit_hctx(q, set, hctx, j);
2604                         kobject_put(&hctx->kobj);
2605                         hctxs[j] = NULL;
2606
2607                 }
2608         }
2609         q->nr_hw_queues = i;
2610         mutex_unlock(&q->sysfs_lock);
2611         blk_mq_sysfs_register(q);
2612 }
2613
2614 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2615                                                   struct request_queue *q)
2616 {
2617         /* mark the queue as mq asap */
2618         q->mq_ops = set->ops;
2619
2620         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2621                                              blk_mq_poll_stats_bkt,
2622                                              BLK_MQ_POLL_STATS_BKTS, q);
2623         if (!q->poll_cb)
2624                 goto err_exit;
2625
2626         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2627         if (!q->queue_ctx)
2628                 goto err_exit;
2629
2630         /* init q->mq_kobj and sw queues' kobjects */
2631         blk_mq_sysfs_init(q);
2632
2633         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2634                                                 GFP_KERNEL, set->numa_node);
2635         if (!q->queue_hw_ctx)
2636                 goto err_percpu;
2637
2638         q->mq_map = set->mq_map;
2639
2640         blk_mq_realloc_hw_ctxs(set, q);
2641         if (!q->nr_hw_queues)
2642                 goto err_hctxs;
2643
2644         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2645         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2646
2647         q->nr_queues = nr_cpu_ids;
2648
2649         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2650
2651         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2652                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2653
2654         q->sg_reserved_size = INT_MAX;
2655
2656         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2657         INIT_LIST_HEAD(&q->requeue_list);
2658         spin_lock_init(&q->requeue_lock);
2659
2660         blk_queue_make_request(q, blk_mq_make_request);
2661         if (q->mq_ops->poll)
2662                 q->poll_fn = blk_mq_poll;
2663
2664         /*
2665          * Do this after blk_queue_make_request() overrides it...
2666          */
2667         q->nr_requests = set->queue_depth;
2668
2669         /*
2670          * Default to classic polling
2671          */
2672         q->poll_nsec = -1;
2673
2674         if (set->ops->complete)
2675                 blk_queue_softirq_done(q, set->ops->complete);
2676
2677         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2678         blk_mq_add_queue_tag_set(set, q);
2679         blk_mq_map_swqueue(q);
2680
2681         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2682                 int ret;
2683
2684                 ret = blk_mq_sched_init(q);
2685                 if (ret)
2686                         return ERR_PTR(ret);
2687         }
2688
2689         return q;
2690
2691 err_hctxs:
2692         kfree(q->queue_hw_ctx);
2693 err_percpu:
2694         free_percpu(q->queue_ctx);
2695 err_exit:
2696         q->mq_ops = NULL;
2697         return ERR_PTR(-ENOMEM);
2698 }
2699 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2700
2701 void blk_mq_free_queue(struct request_queue *q)
2702 {
2703         struct blk_mq_tag_set   *set = q->tag_set;
2704
2705         blk_mq_del_queue_tag_set(q);
2706         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2707 }
2708
2709 /* Basically redo blk_mq_init_queue with queue frozen */
2710 static void blk_mq_queue_reinit(struct request_queue *q)
2711 {
2712         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2713
2714         blk_mq_debugfs_unregister_hctxs(q);
2715         blk_mq_sysfs_unregister(q);
2716
2717         /*
2718          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2719          * we should change hctx numa_node according to the new topology (this
2720          * involves freeing and re-allocating memory, worth doing?)
2721          */
2722         blk_mq_map_swqueue(q);
2723
2724         blk_mq_sysfs_register(q);
2725         blk_mq_debugfs_register_hctxs(q);
2726 }
2727
2728 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2729 {
2730         int i;
2731
2732         for (i = 0; i < set->nr_hw_queues; i++)
2733                 if (!__blk_mq_alloc_rq_map(set, i))
2734                         goto out_unwind;
2735
2736         return 0;
2737
2738 out_unwind:
2739         while (--i >= 0)
2740                 blk_mq_free_rq_map(set->tags[i]);
2741
2742         return -ENOMEM;
2743 }
2744
2745 /*
2746  * Allocate the request maps associated with this tag_set. Note that this
2747  * may reduce the depth asked for, if memory is tight. set->queue_depth
2748  * will be updated to reflect the allocated depth.
2749  */
2750 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2751 {
2752         unsigned int depth;
2753         int err;
2754
2755         depth = set->queue_depth;
2756         do {
2757                 err = __blk_mq_alloc_rq_maps(set);
2758                 if (!err)
2759                         break;
2760
2761                 set->queue_depth >>= 1;
2762                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2763                         err = -ENOMEM;
2764                         break;
2765                 }
2766         } while (set->queue_depth);
2767
2768         if (!set->queue_depth || err) {
2769                 pr_err("blk-mq: failed to allocate request map\n");
2770                 return -ENOMEM;
2771         }
2772
2773         if (depth != set->queue_depth)
2774                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2775                                                 depth, set->queue_depth);
2776
2777         return 0;
2778 }
2779
2780 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2781 {
2782         if (set->ops->map_queues) {
2783                 int cpu;
2784                 /*
2785                  * transport .map_queues is usually done in the following
2786                  * way:
2787                  *
2788                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2789                  *      mask = get_cpu_mask(queue)
2790                  *      for_each_cpu(cpu, mask)
2791                  *              set->mq_map[cpu] = queue;
2792                  * }
2793                  *
2794                  * When we need to remap, the table has to be cleared for
2795                  * killing stale mapping since one CPU may not be mapped
2796                  * to any hw queue.
2797                  */
2798                 for_each_possible_cpu(cpu)
2799                         set->mq_map[cpu] = 0;
2800
2801                 return set->ops->map_queues(set);
2802         } else
2803                 return blk_mq_map_queues(set);
2804 }
2805
2806 /*
2807  * Alloc a tag set to be associated with one or more request queues.
2808  * May fail with EINVAL for various error conditions. May adjust the
2809  * requested depth down, if if it too large. In that case, the set
2810  * value will be stored in set->queue_depth.
2811  */
2812 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2813 {
2814         int ret;
2815
2816         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2817
2818         if (!set->nr_hw_queues)
2819                 return -EINVAL;
2820         if (!set->queue_depth)
2821                 return -EINVAL;
2822         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2823                 return -EINVAL;
2824
2825         if (!set->ops->queue_rq)
2826                 return -EINVAL;
2827
2828         if (!set->ops->get_budget ^ !set->ops->put_budget)
2829                 return -EINVAL;
2830
2831         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2832                 pr_info("blk-mq: reduced tag depth to %u\n",
2833                         BLK_MQ_MAX_DEPTH);
2834                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2835         }
2836
2837         /*
2838          * If a crashdump is active, then we are potentially in a very
2839          * memory constrained environment. Limit us to 1 queue and
2840          * 64 tags to prevent using too much memory.
2841          */
2842         if (is_kdump_kernel()) {
2843                 set->nr_hw_queues = 1;
2844                 set->queue_depth = min(64U, set->queue_depth);
2845         }
2846         /*
2847          * There is no use for more h/w queues than cpus.
2848          */
2849         if (set->nr_hw_queues > nr_cpu_ids)
2850                 set->nr_hw_queues = nr_cpu_ids;
2851
2852         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2853                                  GFP_KERNEL, set->numa_node);
2854         if (!set->tags)
2855                 return -ENOMEM;
2856
2857         ret = -ENOMEM;
2858         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2859                         GFP_KERNEL, set->numa_node);
2860         if (!set->mq_map)
2861                 goto out_free_tags;
2862
2863         ret = blk_mq_update_queue_map(set);
2864         if (ret)
2865                 goto out_free_mq_map;
2866
2867         ret = blk_mq_alloc_rq_maps(set);
2868         if (ret)
2869                 goto out_free_mq_map;
2870
2871         mutex_init(&set->tag_list_lock);
2872         INIT_LIST_HEAD(&set->tag_list);
2873
2874         return 0;
2875
2876 out_free_mq_map:
2877         kfree(set->mq_map);
2878         set->mq_map = NULL;
2879 out_free_tags:
2880         kfree(set->tags);
2881         set->tags = NULL;
2882         return ret;
2883 }
2884 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2885
2886 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2887 {
2888         int i;
2889
2890         for (i = 0; i < nr_cpu_ids; i++)
2891                 blk_mq_free_map_and_requests(set, i);
2892
2893         kfree(set->mq_map);
2894         set->mq_map = NULL;
2895
2896         kfree(set->tags);
2897         set->tags = NULL;
2898 }
2899 EXPORT_SYMBOL(blk_mq_free_tag_set);
2900
2901 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2902 {
2903         struct blk_mq_tag_set *set = q->tag_set;
2904         struct blk_mq_hw_ctx *hctx;
2905         int i, ret;
2906
2907         if (!set)
2908                 return -EINVAL;
2909
2910         blk_mq_freeze_queue(q);
2911         blk_mq_quiesce_queue(q);
2912
2913         ret = 0;
2914         queue_for_each_hw_ctx(q, hctx, i) {
2915                 if (!hctx->tags)
2916                         continue;
2917                 /*
2918                  * If we're using an MQ scheduler, just update the scheduler
2919                  * queue depth. This is similar to what the old code would do.
2920                  */
2921                 if (!hctx->sched_tags) {
2922                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2923                                                         false);
2924                 } else {
2925                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2926                                                         nr, true);
2927                 }
2928                 if (ret)
2929                         break;
2930         }
2931
2932         if (!ret)
2933                 q->nr_requests = nr;
2934
2935         blk_mq_unquiesce_queue(q);
2936         blk_mq_unfreeze_queue(q);
2937
2938         return ret;
2939 }
2940
2941 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2942                                                         int nr_hw_queues)
2943 {
2944         struct request_queue *q;
2945
2946         lockdep_assert_held(&set->tag_list_lock);
2947
2948         if (nr_hw_queues > nr_cpu_ids)
2949                 nr_hw_queues = nr_cpu_ids;
2950         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2951                 return;
2952
2953         list_for_each_entry(q, &set->tag_list, tag_set_list)
2954                 blk_mq_freeze_queue(q);
2955
2956         set->nr_hw_queues = nr_hw_queues;
2957         blk_mq_update_queue_map(set);
2958         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2959                 blk_mq_realloc_hw_ctxs(set, q);
2960                 blk_mq_queue_reinit(q);
2961         }
2962
2963         list_for_each_entry(q, &set->tag_list, tag_set_list)
2964                 blk_mq_unfreeze_queue(q);
2965 }
2966
2967 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2968 {
2969         mutex_lock(&set->tag_list_lock);
2970         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2971         mutex_unlock(&set->tag_list_lock);
2972 }
2973 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2974
2975 /* Enable polling stats and return whether they were already enabled. */
2976 static bool blk_poll_stats_enable(struct request_queue *q)
2977 {
2978         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2979             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2980                 return true;
2981         blk_stat_add_callback(q, q->poll_cb);
2982         return false;
2983 }
2984
2985 static void blk_mq_poll_stats_start(struct request_queue *q)
2986 {
2987         /*
2988          * We don't arm the callback if polling stats are not enabled or the
2989          * callback is already active.
2990          */
2991         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2992             blk_stat_is_active(q->poll_cb))
2993                 return;
2994
2995         blk_stat_activate_msecs(q->poll_cb, 100);
2996 }
2997
2998 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2999 {
3000         struct request_queue *q = cb->data;
3001         int bucket;
3002
3003         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3004                 if (cb->stat[bucket].nr_samples)
3005                         q->poll_stat[bucket] = cb->stat[bucket];
3006         }
3007 }
3008
3009 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3010                                        struct blk_mq_hw_ctx *hctx,
3011                                        struct request *rq)
3012 {
3013         unsigned long ret = 0;
3014         int bucket;
3015
3016         /*
3017          * If stats collection isn't on, don't sleep but turn it on for
3018          * future users
3019          */
3020         if (!blk_poll_stats_enable(q))
3021                 return 0;
3022
3023         /*
3024          * As an optimistic guess, use half of the mean service time
3025          * for this type of request. We can (and should) make this smarter.
3026          * For instance, if the completion latencies are tight, we can
3027          * get closer than just half the mean. This is especially
3028          * important on devices where the completion latencies are longer
3029          * than ~10 usec. We do use the stats for the relevant IO size
3030          * if available which does lead to better estimates.
3031          */
3032         bucket = blk_mq_poll_stats_bkt(rq);
3033         if (bucket < 0)
3034                 return ret;
3035
3036         if (q->poll_stat[bucket].nr_samples)
3037                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3038
3039         return ret;
3040 }
3041
3042 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3043                                      struct blk_mq_hw_ctx *hctx,
3044                                      struct request *rq)
3045 {
3046         struct hrtimer_sleeper hs;
3047         enum hrtimer_mode mode;
3048         unsigned int nsecs;
3049         ktime_t kt;
3050
3051         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3052                 return false;
3053
3054         /*
3055          * poll_nsec can be:
3056          *
3057          * -1:  don't ever hybrid sleep
3058          *  0:  use half of prev avg
3059          * >0:  use this specific value
3060          */
3061         if (q->poll_nsec == -1)
3062                 return false;
3063         else if (q->poll_nsec > 0)
3064                 nsecs = q->poll_nsec;
3065         else
3066                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3067
3068         if (!nsecs)
3069                 return false;
3070
3071         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3072
3073         /*
3074          * This will be replaced with the stats tracking code, using
3075          * 'avg_completion_time / 2' as the pre-sleep target.
3076          */
3077         kt = nsecs;
3078
3079         mode = HRTIMER_MODE_REL;
3080         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3081         hrtimer_set_expires(&hs.timer, kt);
3082
3083         hrtimer_init_sleeper(&hs, current);
3084         do {
3085                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3086                         break;
3087                 set_current_state(TASK_UNINTERRUPTIBLE);
3088                 hrtimer_start_expires(&hs.timer, mode);
3089                 if (hs.task)
3090                         io_schedule();
3091                 hrtimer_cancel(&hs.timer);
3092                 mode = HRTIMER_MODE_ABS;
3093         } while (hs.task && !signal_pending(current));
3094
3095         __set_current_state(TASK_RUNNING);
3096         destroy_hrtimer_on_stack(&hs.timer);
3097         return true;
3098 }
3099
3100 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3101 {
3102         struct request_queue *q = hctx->queue;
3103         long state;
3104
3105         /*
3106          * If we sleep, have the caller restart the poll loop to reset
3107          * the state. Like for the other success return cases, the
3108          * caller is responsible for checking if the IO completed. If
3109          * the IO isn't complete, we'll get called again and will go
3110          * straight to the busy poll loop.
3111          */
3112         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3113                 return true;
3114
3115         hctx->poll_considered++;
3116
3117         state = current->state;
3118         while (!need_resched()) {
3119                 int ret;
3120
3121                 hctx->poll_invoked++;
3122
3123                 ret = q->mq_ops->poll(hctx, rq->tag);
3124                 if (ret > 0) {
3125                         hctx->poll_success++;
3126                         set_current_state(TASK_RUNNING);
3127                         return true;
3128                 }
3129
3130                 if (signal_pending_state(state, current))
3131                         set_current_state(TASK_RUNNING);
3132
3133                 if (current->state == TASK_RUNNING)
3134                         return true;
3135                 if (ret < 0)
3136                         break;
3137                 cpu_relax();
3138         }
3139
3140         __set_current_state(TASK_RUNNING);
3141         return false;
3142 }
3143
3144 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3145 {
3146         struct blk_mq_hw_ctx *hctx;
3147         struct request *rq;
3148
3149         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3150                 return false;
3151
3152         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3153         if (!blk_qc_t_is_internal(cookie))
3154                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3155         else {
3156                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3157                 /*
3158                  * With scheduling, if the request has completed, we'll
3159                  * get a NULL return here, as we clear the sched tag when
3160                  * that happens. The request still remains valid, like always,
3161                  * so we should be safe with just the NULL check.
3162                  */
3163                 if (!rq)
3164                         return false;
3165         }
3166
3167         return __blk_mq_poll(hctx, rq);
3168 }
3169
3170 static int __init blk_mq_init(void)
3171 {
3172         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3173                                 blk_mq_hctx_notify_dead);
3174         return 0;
3175 }
3176 subsys_initcall(blk_mq_init);