Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99                 /*
100                  * index[0] counts the specific partition that was asked
101                  * for. index[1] counts the ones that are active on the
102                  * whole device, so increment that if mi->part is indeed
103                  * a partition, and not a whole device.
104                  */
105                 if (rq->part == mi->part)
106                         mi->inflight[0]++;
107                 if (mi->part->partno)
108                         mi->inflight[1]++;
109         }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113                       unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117         inflight[0] = inflight[1] = 0;
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123         int freeze_depth;
124
125         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126         if (freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 if (q->mq_ops)
129                         blk_mq_run_hw_queues(q, false);
130         }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141                                      unsigned long timeout)
142 {
143         return wait_event_timeout(q->mq_freeze_wq,
144                                         percpu_ref_is_zero(&q->q_usage_counter),
145                                         timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155         /*
156          * In the !blk_mq case we are only calling this to kill the
157          * q_usage_counter, otherwise this increases the freeze depth
158          * and waits for it to return to zero.  For this reason there is
159          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160          * exported to drivers as the only user for unfreeze is blk_mq.
161          */
162         blk_freeze_queue_start(q);
163         if (!q->mq_ops)
164                 blk_drain_queue(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180         int freeze_depth;
181
182         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183         WARN_ON_ONCE(freeze_depth < 0);
184         if (!freeze_depth) {
185                 percpu_ref_reinit(&q->q_usage_counter);
186                 wake_up_all(&q->mq_freeze_wq);
187         }
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197         unsigned long flags;
198
199         spin_lock_irqsave(q->queue_lock, flags);
200         queue_flag_set(QUEUE_FLAG_QUIESCED, q);
201         spin_unlock_irqrestore(q->queue_lock, flags);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
204
205 /**
206  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207  * @q: request queue.
208  *
209  * Note: this function does not prevent that the struct request end_io()
210  * callback function is invoked. Once this function is returned, we make
211  * sure no dispatch can happen until the queue is unquiesced via
212  * blk_mq_unquiesce_queue().
213  */
214 void blk_mq_quiesce_queue(struct request_queue *q)
215 {
216         struct blk_mq_hw_ctx *hctx;
217         unsigned int i;
218         bool rcu = false;
219
220         blk_mq_quiesce_queue_nowait(q);
221
222         queue_for_each_hw_ctx(q, hctx, i) {
223                 if (hctx->flags & BLK_MQ_F_BLOCKING)
224                         synchronize_srcu(hctx->srcu);
225                 else
226                         rcu = true;
227         }
228         if (rcu)
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
232
233 /*
234  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
235  * @q: request queue.
236  *
237  * This function recovers queue into the state before quiescing
238  * which is done by blk_mq_quiesce_queue.
239  */
240 void blk_mq_unquiesce_queue(struct request_queue *q)
241 {
242         unsigned long flags;
243
244         spin_lock_irqsave(q->queue_lock, flags);
245         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246         spin_unlock_irqrestore(q->queue_lock, flags);
247
248         /* dispatch requests which are inserted during quiescing */
249         blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255         struct blk_mq_hw_ctx *hctx;
256         unsigned int i;
257
258         queue_for_each_hw_ctx(q, hctx, i)
259                 if (blk_mq_hw_queue_mapped(hctx))
260                         blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264 {
265         return blk_mq_has_free_tags(hctx->tags);
266 }
267 EXPORT_SYMBOL(blk_mq_can_queue);
268
269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270                 unsigned int tag, unsigned int op)
271 {
272         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273         struct request *rq = tags->static_rqs[tag];
274         req_flags_t rq_flags = 0;
275
276         if (data->flags & BLK_MQ_REQ_INTERNAL) {
277                 rq->tag = -1;
278                 rq->internal_tag = tag;
279         } else {
280                 if (blk_mq_tag_busy(data->hctx)) {
281                         rq_flags = RQF_MQ_INFLIGHT;
282                         atomic_inc(&data->hctx->nr_active);
283                 }
284                 rq->tag = tag;
285                 rq->internal_tag = -1;
286                 data->hctx->tags->rqs[rq->tag] = rq;
287         }
288
289         /* csd/requeue_work/fifo_time is initialized before use */
290         rq->q = data->q;
291         rq->mq_ctx = data->ctx;
292         rq->rq_flags = rq_flags;
293         rq->cpu = -1;
294         rq->cmd_flags = op;
295         if (data->flags & BLK_MQ_REQ_PREEMPT)
296                 rq->rq_flags |= RQF_PREEMPT;
297         if (blk_queue_io_stat(data->q))
298                 rq->rq_flags |= RQF_IO_STAT;
299         INIT_LIST_HEAD(&rq->queuelist);
300         INIT_HLIST_NODE(&rq->hash);
301         RB_CLEAR_NODE(&rq->rb_node);
302         rq->rq_disk = NULL;
303         rq->part = NULL;
304         rq->start_time = jiffies;
305         rq->nr_phys_segments = 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307         rq->nr_integrity_segments = 0;
308 #endif
309         rq->special = NULL;
310         /* tag was already set */
311         rq->extra_len = 0;
312         rq->__deadline = 0;
313
314         INIT_LIST_HEAD(&rq->timeout_list);
315         rq->timeout = 0;
316
317         rq->end_io = NULL;
318         rq->end_io_data = NULL;
319         rq->next_rq = NULL;
320
321 #ifdef CONFIG_BLK_CGROUP
322         rq->rl = NULL;
323         set_start_time_ns(rq);
324         rq->io_start_time_ns = 0;
325 #endif
326
327         data->ctx->rq_dispatched[op_is_sync(op)]++;
328         return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332                 struct bio *bio, unsigned int op,
333                 struct blk_mq_alloc_data *data)
334 {
335         struct elevator_queue *e = q->elevator;
336         struct request *rq;
337         unsigned int tag;
338         bool put_ctx_on_error = false;
339
340         blk_queue_enter_live(q);
341         data->q = q;
342         if (likely(!data->ctx)) {
343                 data->ctx = blk_mq_get_ctx(q);
344                 put_ctx_on_error = true;
345         }
346         if (likely(!data->hctx))
347                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348         if (op & REQ_NOWAIT)
349                 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351         if (e) {
352                 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354                 /*
355                  * Flush requests are special and go directly to the
356                  * dispatch list.
357                  */
358                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359                         e->type->ops.mq.limit_depth(op, data);
360         }
361
362         tag = blk_mq_get_tag(data);
363         if (tag == BLK_MQ_TAG_FAIL) {
364                 if (put_ctx_on_error) {
365                         blk_mq_put_ctx(data->ctx);
366                         data->ctx = NULL;
367                 }
368                 blk_queue_exit(q);
369                 return NULL;
370         }
371
372         rq = blk_mq_rq_ctx_init(data, tag, op);
373         if (!op_is_flush(op)) {
374                 rq->elv.icq = NULL;
375                 if (e && e->type->ops.mq.prepare_request) {
376                         if (e->type->icq_cache && rq_ioc(bio))
377                                 blk_mq_sched_assign_ioc(rq, bio);
378
379                         e->type->ops.mq.prepare_request(rq, bio);
380                         rq->rq_flags |= RQF_ELVPRIV;
381                 }
382         }
383         data->hctx->queued++;
384         return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388                 blk_mq_req_flags_t flags)
389 {
390         struct blk_mq_alloc_data alloc_data = { .flags = flags };
391         struct request *rq;
392         int ret;
393
394         ret = blk_queue_enter(q, flags);
395         if (ret)
396                 return ERR_PTR(ret);
397
398         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399         blk_queue_exit(q);
400
401         if (!rq)
402                 return ERR_PTR(-EWOULDBLOCK);
403
404         blk_mq_put_ctx(alloc_data.ctx);
405
406         rq->__data_len = 0;
407         rq->__sector = (sector_t) -1;
408         rq->bio = rq->biotail = NULL;
409         return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416         struct blk_mq_alloc_data alloc_data = { .flags = flags };
417         struct request *rq;
418         unsigned int cpu;
419         int ret;
420
421         /*
422          * If the tag allocator sleeps we could get an allocation for a
423          * different hardware context.  No need to complicate the low level
424          * allocator for this for the rare use case of a command tied to
425          * a specific queue.
426          */
427         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428                 return ERR_PTR(-EINVAL);
429
430         if (hctx_idx >= q->nr_hw_queues)
431                 return ERR_PTR(-EIO);
432
433         ret = blk_queue_enter(q, flags);
434         if (ret)
435                 return ERR_PTR(ret);
436
437         /*
438          * Check if the hardware context is actually mapped to anything.
439          * If not tell the caller that it should skip this queue.
440          */
441         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443                 blk_queue_exit(q);
444                 return ERR_PTR(-EXDEV);
445         }
446         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450         blk_queue_exit(q);
451
452         if (!rq)
453                 return ERR_PTR(-EWOULDBLOCK);
454
455         return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461         struct request_queue *q = rq->q;
462         struct elevator_queue *e = q->elevator;
463         struct blk_mq_ctx *ctx = rq->mq_ctx;
464         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465         const int sched_tag = rq->internal_tag;
466
467         if (rq->rq_flags & RQF_ELVPRIV) {
468                 if (e && e->type->ops.mq.finish_request)
469                         e->type->ops.mq.finish_request(rq);
470                 if (rq->elv.icq) {
471                         put_io_context(rq->elv.icq->ioc);
472                         rq->elv.icq = NULL;
473                 }
474         }
475
476         ctx->rq_completed[rq_is_sync(rq)]++;
477         if (rq->rq_flags & RQF_MQ_INFLIGHT)
478                 atomic_dec(&hctx->nr_active);
479
480         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481                 laptop_io_completion(q->backing_dev_info);
482
483         wbt_done(q->rq_wb, &rq->issue_stat);
484
485         if (blk_rq_rl(rq))
486                 blk_put_rl(blk_rq_rl(rq));
487
488         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489         if (rq->tag != -1)
490                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491         if (sched_tag != -1)
492                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493         blk_mq_sched_restart(hctx);
494         blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500         blk_account_io_done(rq);
501
502         if (rq->end_io) {
503                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504                 rq->end_io(rq, error);
505         } else {
506                 if (unlikely(blk_bidi_rq(rq)))
507                         blk_mq_free_request(rq->next_rq);
508                 blk_mq_free_request(rq);
509         }
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516                 BUG();
517         __blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523         struct request *rq = data;
524
525         rq->q->softirq_done_fn(rq);
526 }
527
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530         struct blk_mq_ctx *ctx = rq->mq_ctx;
531         bool shared = false;
532         int cpu;
533
534         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
535         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536
537         if (rq->internal_tag != -1)
538                 blk_mq_sched_completed_request(rq);
539         if (rq->rq_flags & RQF_STATS) {
540                 blk_mq_poll_stats_start(rq->q);
541                 blk_stat_add(rq);
542         }
543
544         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545                 rq->q->softirq_done_fn(rq);
546                 return;
547         }
548
549         cpu = get_cpu();
550         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551                 shared = cpus_share_cache(cpu, ctx->cpu);
552
553         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554                 rq->csd.func = __blk_mq_complete_request_remote;
555                 rq->csd.info = rq;
556                 rq->csd.flags = 0;
557                 smp_call_function_single_async(ctx->cpu, &rq->csd);
558         } else {
559                 rq->q->softirq_done_fn(rq);
560         }
561         put_cpu();
562 }
563
564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565         __releases(hctx->srcu)
566 {
567         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
568                 rcu_read_unlock();
569         else
570                 srcu_read_unlock(hctx->srcu, srcu_idx);
571 }
572
573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574         __acquires(hctx->srcu)
575 {
576         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
577                 /* shut up gcc false positive */
578                 *srcu_idx = 0;
579                 rcu_read_lock();
580         } else
581                 *srcu_idx = srcu_read_lock(hctx->srcu);
582 }
583
584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
585 {
586         unsigned long flags;
587
588         /*
589          * blk_mq_rq_aborted_gstate() is used from the completion path and
590          * can thus be called from irq context.  u64_stats_fetch in the
591          * middle of update on the same CPU leads to lockup.  Disable irq
592          * while updating.
593          */
594         local_irq_save(flags);
595         u64_stats_update_begin(&rq->aborted_gstate_sync);
596         rq->aborted_gstate = gstate;
597         u64_stats_update_end(&rq->aborted_gstate_sync);
598         local_irq_restore(flags);
599 }
600
601 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
602 {
603         unsigned int start;
604         u64 aborted_gstate;
605
606         do {
607                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
608                 aborted_gstate = rq->aborted_gstate;
609         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
610
611         return aborted_gstate;
612 }
613
614 /**
615  * blk_mq_complete_request - end I/O on a request
616  * @rq:         the request being processed
617  *
618  * Description:
619  *      Ends all I/O on a request. It does not handle partial completions.
620  *      The actual completion happens out-of-order, through a IPI handler.
621  **/
622 void blk_mq_complete_request(struct request *rq)
623 {
624         struct request_queue *q = rq->q;
625         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
626         int srcu_idx;
627
628         if (unlikely(blk_should_fake_timeout(q)))
629                 return;
630
631         /*
632          * If @rq->aborted_gstate equals the current instance, timeout is
633          * claiming @rq and we lost.  This is synchronized through
634          * hctx_lock().  See blk_mq_timeout_work() for details.
635          *
636          * Completion path never blocks and we can directly use RCU here
637          * instead of hctx_lock() which can be either RCU or SRCU.
638          * However, that would complicate paths which want to synchronize
639          * against us.  Let stay in sync with the issue path so that
640          * hctx_lock() covers both issue and completion paths.
641          */
642         hctx_lock(hctx, &srcu_idx);
643         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644                 __blk_mq_complete_request(rq);
645         hctx_unlock(hctx, srcu_idx);
646 }
647 EXPORT_SYMBOL(blk_mq_complete_request);
648
649 int blk_mq_request_started(struct request *rq)
650 {
651         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 }
653 EXPORT_SYMBOL_GPL(blk_mq_request_started);
654
655 void blk_mq_start_request(struct request *rq)
656 {
657         struct request_queue *q = rq->q;
658
659         blk_mq_sched_started_request(rq);
660
661         trace_block_rq_issue(q, rq);
662
663         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665                 rq->rq_flags |= RQF_STATS;
666                 wbt_issue(q->rq_wb, &rq->issue_stat);
667         }
668
669         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670
671         /*
672          * Mark @rq in-flight which also advances the generation number,
673          * and register for timeout.  Protect with a seqcount to allow the
674          * timeout path to read both @rq->gstate and @rq->deadline
675          * coherently.
676          *
677          * This is the only place where a request is marked in-flight.  If
678          * the timeout path reads an in-flight @rq->gstate, the
679          * @rq->deadline it reads together under @rq->gstate_seq is
680          * guaranteed to be the matching one.
681          */
682         preempt_disable();
683         write_seqcount_begin(&rq->gstate_seq);
684
685         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
686         blk_add_timer(rq);
687
688         write_seqcount_end(&rq->gstate_seq);
689         preempt_enable();
690
691         if (q->dma_drain_size && blk_rq_bytes(rq)) {
692                 /*
693                  * Make sure space for the drain appears.  We know we can do
694                  * this because max_hw_segments has been adjusted to be one
695                  * fewer than the device can handle.
696                  */
697                 rq->nr_phys_segments++;
698         }
699 }
700 EXPORT_SYMBOL(blk_mq_start_request);
701
702 /*
703  * When we reach here because queue is busy, it's safe to change the state
704  * to IDLE without checking @rq->aborted_gstate because we should still be
705  * holding the RCU read lock and thus protected against timeout.
706  */
707 static void __blk_mq_requeue_request(struct request *rq)
708 {
709         struct request_queue *q = rq->q;
710
711         blk_mq_put_driver_tag(rq);
712
713         trace_block_rq_requeue(q, rq);
714         wbt_requeue(q->rq_wb, &rq->issue_stat);
715         blk_mq_sched_requeue_request(rq);
716
717         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
718                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
719                 if (q->dma_drain_size && blk_rq_bytes(rq))
720                         rq->nr_phys_segments--;
721         }
722 }
723
724 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
725 {
726         __blk_mq_requeue_request(rq);
727
728         BUG_ON(blk_queued_rq(rq));
729         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
730 }
731 EXPORT_SYMBOL(blk_mq_requeue_request);
732
733 static void blk_mq_requeue_work(struct work_struct *work)
734 {
735         struct request_queue *q =
736                 container_of(work, struct request_queue, requeue_work.work);
737         LIST_HEAD(rq_list);
738         struct request *rq, *next;
739
740         spin_lock_irq(&q->requeue_lock);
741         list_splice_init(&q->requeue_list, &rq_list);
742         spin_unlock_irq(&q->requeue_lock);
743
744         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
745                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
746                         continue;
747
748                 rq->rq_flags &= ~RQF_SOFTBARRIER;
749                 list_del_init(&rq->queuelist);
750                 blk_mq_sched_insert_request(rq, true, false, false);
751         }
752
753         while (!list_empty(&rq_list)) {
754                 rq = list_entry(rq_list.next, struct request, queuelist);
755                 list_del_init(&rq->queuelist);
756                 blk_mq_sched_insert_request(rq, false, false, false);
757         }
758
759         blk_mq_run_hw_queues(q, false);
760 }
761
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763                                 bool kick_requeue_list)
764 {
765         struct request_queue *q = rq->q;
766         unsigned long flags;
767
768         /*
769          * We abuse this flag that is otherwise used by the I/O scheduler to
770          * request head insertion from the workqueue.
771          */
772         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773
774         spin_lock_irqsave(&q->requeue_lock, flags);
775         if (at_head) {
776                 rq->rq_flags |= RQF_SOFTBARRIER;
777                 list_add(&rq->queuelist, &q->requeue_list);
778         } else {
779                 list_add_tail(&rq->queuelist, &q->requeue_list);
780         }
781         spin_unlock_irqrestore(&q->requeue_lock, flags);
782
783         if (kick_requeue_list)
784                 blk_mq_kick_requeue_list(q);
785 }
786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
787
788 void blk_mq_kick_requeue_list(struct request_queue *q)
789 {
790         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
791 }
792 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
793
794 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
795                                     unsigned long msecs)
796 {
797         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
798                                     msecs_to_jiffies(msecs));
799 }
800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
801
802 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
803 {
804         if (tag < tags->nr_tags) {
805                 prefetch(tags->rqs[tag]);
806                 return tags->rqs[tag];
807         }
808
809         return NULL;
810 }
811 EXPORT_SYMBOL(blk_mq_tag_to_rq);
812
813 struct blk_mq_timeout_data {
814         unsigned long next;
815         unsigned int next_set;
816         unsigned int nr_expired;
817 };
818
819 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
820 {
821         const struct blk_mq_ops *ops = req->q->mq_ops;
822         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
823
824         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
825
826         if (ops->timeout)
827                 ret = ops->timeout(req, reserved);
828
829         switch (ret) {
830         case BLK_EH_HANDLED:
831                 __blk_mq_complete_request(req);
832                 break;
833         case BLK_EH_RESET_TIMER:
834                 /*
835                  * As nothing prevents from completion happening while
836                  * ->aborted_gstate is set, this may lead to ignored
837                  * completions and further spurious timeouts.
838                  */
839                 blk_mq_rq_update_aborted_gstate(req, 0);
840                 blk_add_timer(req);
841                 break;
842         case BLK_EH_NOT_HANDLED:
843                 break;
844         default:
845                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
846                 break;
847         }
848 }
849
850 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
851                 struct request *rq, void *priv, bool reserved)
852 {
853         struct blk_mq_timeout_data *data = priv;
854         unsigned long gstate, deadline;
855         int start;
856
857         might_sleep();
858
859         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
860                 return;
861
862         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
863         while (true) {
864                 start = read_seqcount_begin(&rq->gstate_seq);
865                 gstate = READ_ONCE(rq->gstate);
866                 deadline = blk_rq_deadline(rq);
867                 if (!read_seqcount_retry(&rq->gstate_seq, start))
868                         break;
869                 cond_resched();
870         }
871
872         /* if in-flight && overdue, mark for abortion */
873         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
874             time_after_eq(jiffies, deadline)) {
875                 blk_mq_rq_update_aborted_gstate(rq, gstate);
876                 data->nr_expired++;
877                 hctx->nr_expired++;
878         } else if (!data->next_set || time_after(data->next, deadline)) {
879                 data->next = deadline;
880                 data->next_set = 1;
881         }
882 }
883
884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
885                 struct request *rq, void *priv, bool reserved)
886 {
887         /*
888          * We marked @rq->aborted_gstate and waited for RCU.  If there were
889          * completions that we lost to, they would have finished and
890          * updated @rq->gstate by now; otherwise, the completion path is
891          * now guaranteed to see @rq->aborted_gstate and yield.  If
892          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
893          */
894         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
895             READ_ONCE(rq->gstate) == rq->aborted_gstate)
896                 blk_mq_rq_timed_out(rq, reserved);
897 }
898
899 static void blk_mq_timeout_work(struct work_struct *work)
900 {
901         struct request_queue *q =
902                 container_of(work, struct request_queue, timeout_work);
903         struct blk_mq_timeout_data data = {
904                 .next           = 0,
905                 .next_set       = 0,
906                 .nr_expired     = 0,
907         };
908         struct blk_mq_hw_ctx *hctx;
909         int i;
910
911         /* A deadlock might occur if a request is stuck requiring a
912          * timeout at the same time a queue freeze is waiting
913          * completion, since the timeout code would not be able to
914          * acquire the queue reference here.
915          *
916          * That's why we don't use blk_queue_enter here; instead, we use
917          * percpu_ref_tryget directly, because we need to be able to
918          * obtain a reference even in the short window between the queue
919          * starting to freeze, by dropping the first reference in
920          * blk_freeze_queue_start, and the moment the last request is
921          * consumed, marked by the instant q_usage_counter reaches
922          * zero.
923          */
924         if (!percpu_ref_tryget(&q->q_usage_counter))
925                 return;
926
927         /* scan for the expired ones and set their ->aborted_gstate */
928         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
929
930         if (data.nr_expired) {
931                 bool has_rcu = false;
932
933                 /*
934                  * Wait till everyone sees ->aborted_gstate.  The
935                  * sequential waits for SRCUs aren't ideal.  If this ever
936                  * becomes a problem, we can add per-hw_ctx rcu_head and
937                  * wait in parallel.
938                  */
939                 queue_for_each_hw_ctx(q, hctx, i) {
940                         if (!hctx->nr_expired)
941                                 continue;
942
943                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
944                                 has_rcu = true;
945                         else
946                                 synchronize_srcu(hctx->srcu);
947
948                         hctx->nr_expired = 0;
949                 }
950                 if (has_rcu)
951                         synchronize_rcu();
952
953                 /* terminate the ones we won */
954                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
955         }
956
957         if (data.next_set) {
958                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
959                 mod_timer(&q->timeout, data.next);
960         } else {
961                 /*
962                  * Request timeouts are handled as a forward rolling timer. If
963                  * we end up here it means that no requests are pending and
964                  * also that no request has been pending for a while. Mark
965                  * each hctx as idle.
966                  */
967                 queue_for_each_hw_ctx(q, hctx, i) {
968                         /* the hctx may be unmapped, so check it here */
969                         if (blk_mq_hw_queue_mapped(hctx))
970                                 blk_mq_tag_idle(hctx);
971                 }
972         }
973         blk_queue_exit(q);
974 }
975
976 struct flush_busy_ctx_data {
977         struct blk_mq_hw_ctx *hctx;
978         struct list_head *list;
979 };
980
981 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
982 {
983         struct flush_busy_ctx_data *flush_data = data;
984         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
985         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
986
987         sbitmap_clear_bit(sb, bitnr);
988         spin_lock(&ctx->lock);
989         list_splice_tail_init(&ctx->rq_list, flush_data->list);
990         spin_unlock(&ctx->lock);
991         return true;
992 }
993
994 /*
995  * Process software queues that have been marked busy, splicing them
996  * to the for-dispatch
997  */
998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
999 {
1000         struct flush_busy_ctx_data data = {
1001                 .hctx = hctx,
1002                 .list = list,
1003         };
1004
1005         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1008
1009 struct dispatch_rq_data {
1010         struct blk_mq_hw_ctx *hctx;
1011         struct request *rq;
1012 };
1013
1014 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1015                 void *data)
1016 {
1017         struct dispatch_rq_data *dispatch_data = data;
1018         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1019         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1020
1021         spin_lock(&ctx->lock);
1022         if (unlikely(!list_empty(&ctx->rq_list))) {
1023                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1024                 list_del_init(&dispatch_data->rq->queuelist);
1025                 if (list_empty(&ctx->rq_list))
1026                         sbitmap_clear_bit(sb, bitnr);
1027         }
1028         spin_unlock(&ctx->lock);
1029
1030         return !dispatch_data->rq;
1031 }
1032
1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034                                         struct blk_mq_ctx *start)
1035 {
1036         unsigned off = start ? start->index_hw : 0;
1037         struct dispatch_rq_data data = {
1038                 .hctx = hctx,
1039                 .rq   = NULL,
1040         };
1041
1042         __sbitmap_for_each_set(&hctx->ctx_map, off,
1043                                dispatch_rq_from_ctx, &data);
1044
1045         return data.rq;
1046 }
1047
1048 static inline unsigned int queued_to_index(unsigned int queued)
1049 {
1050         if (!queued)
1051                 return 0;
1052
1053         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054 }
1055
1056 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1057                            bool wait)
1058 {
1059         struct blk_mq_alloc_data data = {
1060                 .q = rq->q,
1061                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1062                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1063         };
1064
1065         might_sleep_if(wait);
1066
1067         if (rq->tag != -1)
1068                 goto done;
1069
1070         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1071                 data.flags |= BLK_MQ_REQ_RESERVED;
1072
1073         rq->tag = blk_mq_get_tag(&data);
1074         if (rq->tag >= 0) {
1075                 if (blk_mq_tag_busy(data.hctx)) {
1076                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1077                         atomic_inc(&data.hctx->nr_active);
1078                 }
1079                 data.hctx->tags->rqs[rq->tag] = rq;
1080         }
1081
1082 done:
1083         if (hctx)
1084                 *hctx = data.hctx;
1085         return rq->tag != -1;
1086 }
1087
1088 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1089                                 int flags, void *key)
1090 {
1091         struct blk_mq_hw_ctx *hctx;
1092
1093         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1094
1095         list_del_init(&wait->entry);
1096         blk_mq_run_hw_queue(hctx, true);
1097         return 1;
1098 }
1099
1100 /*
1101  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1102  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1103  * restart. For both cases, take care to check the condition again after
1104  * marking us as waiting.
1105  */
1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1107                                  struct request *rq)
1108 {
1109         struct blk_mq_hw_ctx *this_hctx = *hctx;
1110         struct sbq_wait_state *ws;
1111         wait_queue_entry_t *wait;
1112         bool ret;
1113
1114         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1115                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1116                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1117
1118                 /*
1119                  * It's possible that a tag was freed in the window between the
1120                  * allocation failure and adding the hardware queue to the wait
1121                  * queue.
1122                  *
1123                  * Don't clear RESTART here, someone else could have set it.
1124                  * At most this will cost an extra queue run.
1125                  */
1126                 return blk_mq_get_driver_tag(rq, hctx, false);
1127         }
1128
1129         wait = &this_hctx->dispatch_wait;
1130         if (!list_empty_careful(&wait->entry))
1131                 return false;
1132
1133         spin_lock(&this_hctx->lock);
1134         if (!list_empty(&wait->entry)) {
1135                 spin_unlock(&this_hctx->lock);
1136                 return false;
1137         }
1138
1139         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1140         add_wait_queue(&ws->wait, wait);
1141
1142         /*
1143          * It's possible that a tag was freed in the window between the
1144          * allocation failure and adding the hardware queue to the wait
1145          * queue.
1146          */
1147         ret = blk_mq_get_driver_tag(rq, hctx, false);
1148         if (!ret) {
1149                 spin_unlock(&this_hctx->lock);
1150                 return false;
1151         }
1152
1153         /*
1154          * We got a tag, remove ourselves from the wait queue to ensure
1155          * someone else gets the wakeup.
1156          */
1157         spin_lock_irq(&ws->wait.lock);
1158         list_del_init(&wait->entry);
1159         spin_unlock_irq(&ws->wait.lock);
1160         spin_unlock(&this_hctx->lock);
1161
1162         return true;
1163 }
1164
1165 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1166
1167 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1168                              bool got_budget)
1169 {
1170         struct blk_mq_hw_ctx *hctx;
1171         struct request *rq, *nxt;
1172         bool no_tag = false;
1173         int errors, queued;
1174         blk_status_t ret = BLK_STS_OK;
1175
1176         if (list_empty(list))
1177                 return false;
1178
1179         WARN_ON(!list_is_singular(list) && got_budget);
1180
1181         /*
1182          * Now process all the entries, sending them to the driver.
1183          */
1184         errors = queued = 0;
1185         do {
1186                 struct blk_mq_queue_data bd;
1187
1188                 rq = list_first_entry(list, struct request, queuelist);
1189                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1190                         /*
1191                          * The initial allocation attempt failed, so we need to
1192                          * rerun the hardware queue when a tag is freed. The
1193                          * waitqueue takes care of that. If the queue is run
1194                          * before we add this entry back on the dispatch list,
1195                          * we'll re-run it below.
1196                          */
1197                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1198                                 if (got_budget)
1199                                         blk_mq_put_dispatch_budget(hctx);
1200                                 /*
1201                                  * For non-shared tags, the RESTART check
1202                                  * will suffice.
1203                                  */
1204                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1205                                         no_tag = true;
1206                                 break;
1207                         }
1208                 }
1209
1210                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1211                         blk_mq_put_driver_tag(rq);
1212                         break;
1213                 }
1214
1215                 list_del_init(&rq->queuelist);
1216
1217                 bd.rq = rq;
1218
1219                 /*
1220                  * Flag last if we have no more requests, or if we have more
1221                  * but can't assign a driver tag to it.
1222                  */
1223                 if (list_empty(list))
1224                         bd.last = true;
1225                 else {
1226                         nxt = list_first_entry(list, struct request, queuelist);
1227                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1228                 }
1229
1230                 ret = q->mq_ops->queue_rq(hctx, &bd);
1231                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1232                         /*
1233                          * If an I/O scheduler has been configured and we got a
1234                          * driver tag for the next request already, free it
1235                          * again.
1236                          */
1237                         if (!list_empty(list)) {
1238                                 nxt = list_first_entry(list, struct request, queuelist);
1239                                 blk_mq_put_driver_tag(nxt);
1240                         }
1241                         list_add(&rq->queuelist, list);
1242                         __blk_mq_requeue_request(rq);
1243                         break;
1244                 }
1245
1246                 if (unlikely(ret != BLK_STS_OK)) {
1247                         errors++;
1248                         blk_mq_end_request(rq, BLK_STS_IOERR);
1249                         continue;
1250                 }
1251
1252                 queued++;
1253         } while (!list_empty(list));
1254
1255         hctx->dispatched[queued_to_index(queued)]++;
1256
1257         /*
1258          * Any items that need requeuing? Stuff them into hctx->dispatch,
1259          * that is where we will continue on next queue run.
1260          */
1261         if (!list_empty(list)) {
1262                 bool needs_restart;
1263
1264                 spin_lock(&hctx->lock);
1265                 list_splice_init(list, &hctx->dispatch);
1266                 spin_unlock(&hctx->lock);
1267
1268                 /*
1269                  * If SCHED_RESTART was set by the caller of this function and
1270                  * it is no longer set that means that it was cleared by another
1271                  * thread and hence that a queue rerun is needed.
1272                  *
1273                  * If 'no_tag' is set, that means that we failed getting
1274                  * a driver tag with an I/O scheduler attached. If our dispatch
1275                  * waitqueue is no longer active, ensure that we run the queue
1276                  * AFTER adding our entries back to the list.
1277                  *
1278                  * If no I/O scheduler has been configured it is possible that
1279                  * the hardware queue got stopped and restarted before requests
1280                  * were pushed back onto the dispatch list. Rerun the queue to
1281                  * avoid starvation. Notes:
1282                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1283                  *   been stopped before rerunning a queue.
1284                  * - Some but not all block drivers stop a queue before
1285                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1286                  *   and dm-rq.
1287                  *
1288                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1289                  * bit is set, run queue after a delay to avoid IO stalls
1290                  * that could otherwise occur if the queue is idle.
1291                  */
1292                 needs_restart = blk_mq_sched_needs_restart(hctx);
1293                 if (!needs_restart ||
1294                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1295                         blk_mq_run_hw_queue(hctx, true);
1296                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1297                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1298         }
1299
1300         return (queued + errors) != 0;
1301 }
1302
1303 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1304 {
1305         int srcu_idx;
1306
1307         /*
1308          * We should be running this queue from one of the CPUs that
1309          * are mapped to it.
1310          *
1311          * There are at least two related races now between setting
1312          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1313          * __blk_mq_run_hw_queue():
1314          *
1315          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1316          *   but later it becomes online, then this warning is harmless
1317          *   at all
1318          *
1319          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1320          *   but later it becomes offline, then the warning can't be
1321          *   triggered, and we depend on blk-mq timeout handler to
1322          *   handle dispatched requests to this hctx
1323          */
1324         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1325                 cpu_online(hctx->next_cpu)) {
1326                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1327                         raw_smp_processor_id(),
1328                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1329                 dump_stack();
1330         }
1331
1332         /*
1333          * We can't run the queue inline with ints disabled. Ensure that
1334          * we catch bad users of this early.
1335          */
1336         WARN_ON_ONCE(in_interrupt());
1337
1338         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1339
1340         hctx_lock(hctx, &srcu_idx);
1341         blk_mq_sched_dispatch_requests(hctx);
1342         hctx_unlock(hctx, srcu_idx);
1343 }
1344
1345 /*
1346  * It'd be great if the workqueue API had a way to pass
1347  * in a mask and had some smarts for more clever placement.
1348  * For now we just round-robin here, switching for every
1349  * BLK_MQ_CPU_WORK_BATCH queued items.
1350  */
1351 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1352 {
1353         bool tried = false;
1354
1355         if (hctx->queue->nr_hw_queues == 1)
1356                 return WORK_CPU_UNBOUND;
1357
1358         if (--hctx->next_cpu_batch <= 0) {
1359                 int next_cpu;
1360 select_cpu:
1361                 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1362                                 cpu_online_mask);
1363                 if (next_cpu >= nr_cpu_ids)
1364                         next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1365
1366                 /*
1367                  * No online CPU is found, so have to make sure hctx->next_cpu
1368                  * is set correctly for not breaking workqueue.
1369                  */
1370                 if (next_cpu >= nr_cpu_ids)
1371                         hctx->next_cpu = cpumask_first(hctx->cpumask);
1372                 else
1373                         hctx->next_cpu = next_cpu;
1374                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1375         }
1376
1377         /*
1378          * Do unbound schedule if we can't find a online CPU for this hctx,
1379          * and it should only happen in the path of handling CPU DEAD.
1380          */
1381         if (!cpu_online(hctx->next_cpu)) {
1382                 if (!tried) {
1383                         tried = true;
1384                         goto select_cpu;
1385                 }
1386
1387                 /*
1388                  * Make sure to re-select CPU next time once after CPUs
1389                  * in hctx->cpumask become online again.
1390                  */
1391                 hctx->next_cpu_batch = 1;
1392                 return WORK_CPU_UNBOUND;
1393         }
1394         return hctx->next_cpu;
1395 }
1396
1397 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1398                                         unsigned long msecs)
1399 {
1400         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1401                 return;
1402
1403         if (unlikely(blk_mq_hctx_stopped(hctx)))
1404                 return;
1405
1406         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1407                 int cpu = get_cpu();
1408                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1409                         __blk_mq_run_hw_queue(hctx);
1410                         put_cpu();
1411                         return;
1412                 }
1413
1414                 put_cpu();
1415         }
1416
1417         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1418                                     msecs_to_jiffies(msecs));
1419 }
1420
1421 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1422 {
1423         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1424 }
1425 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1426
1427 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1428 {
1429         int srcu_idx;
1430         bool need_run;
1431
1432         /*
1433          * When queue is quiesced, we may be switching io scheduler, or
1434          * updating nr_hw_queues, or other things, and we can't run queue
1435          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1436          *
1437          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1438          * quiesced.
1439          */
1440         hctx_lock(hctx, &srcu_idx);
1441         need_run = !blk_queue_quiesced(hctx->queue) &&
1442                 blk_mq_hctx_has_pending(hctx);
1443         hctx_unlock(hctx, srcu_idx);
1444
1445         if (need_run) {
1446                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1447                 return true;
1448         }
1449
1450         return false;
1451 }
1452 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1453
1454 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1455 {
1456         struct blk_mq_hw_ctx *hctx;
1457         int i;
1458
1459         queue_for_each_hw_ctx(q, hctx, i) {
1460                 if (blk_mq_hctx_stopped(hctx))
1461                         continue;
1462
1463                 blk_mq_run_hw_queue(hctx, async);
1464         }
1465 }
1466 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1467
1468 /**
1469  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1470  * @q: request queue.
1471  *
1472  * The caller is responsible for serializing this function against
1473  * blk_mq_{start,stop}_hw_queue().
1474  */
1475 bool blk_mq_queue_stopped(struct request_queue *q)
1476 {
1477         struct blk_mq_hw_ctx *hctx;
1478         int i;
1479
1480         queue_for_each_hw_ctx(q, hctx, i)
1481                 if (blk_mq_hctx_stopped(hctx))
1482                         return true;
1483
1484         return false;
1485 }
1486 EXPORT_SYMBOL(blk_mq_queue_stopped);
1487
1488 /*
1489  * This function is often used for pausing .queue_rq() by driver when
1490  * there isn't enough resource or some conditions aren't satisfied, and
1491  * BLK_STS_RESOURCE is usually returned.
1492  *
1493  * We do not guarantee that dispatch can be drained or blocked
1494  * after blk_mq_stop_hw_queue() returns. Please use
1495  * blk_mq_quiesce_queue() for that requirement.
1496  */
1497 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1498 {
1499         cancel_delayed_work(&hctx->run_work);
1500
1501         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1502 }
1503 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1504
1505 /*
1506  * This function is often used for pausing .queue_rq() by driver when
1507  * there isn't enough resource or some conditions aren't satisfied, and
1508  * BLK_STS_RESOURCE is usually returned.
1509  *
1510  * We do not guarantee that dispatch can be drained or blocked
1511  * after blk_mq_stop_hw_queues() returns. Please use
1512  * blk_mq_quiesce_queue() for that requirement.
1513  */
1514 void blk_mq_stop_hw_queues(struct request_queue *q)
1515 {
1516         struct blk_mq_hw_ctx *hctx;
1517         int i;
1518
1519         queue_for_each_hw_ctx(q, hctx, i)
1520                 blk_mq_stop_hw_queue(hctx);
1521 }
1522 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1523
1524 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1525 {
1526         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1527
1528         blk_mq_run_hw_queue(hctx, false);
1529 }
1530 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1531
1532 void blk_mq_start_hw_queues(struct request_queue *q)
1533 {
1534         struct blk_mq_hw_ctx *hctx;
1535         int i;
1536
1537         queue_for_each_hw_ctx(q, hctx, i)
1538                 blk_mq_start_hw_queue(hctx);
1539 }
1540 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1541
1542 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1543 {
1544         if (!blk_mq_hctx_stopped(hctx))
1545                 return;
1546
1547         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1548         blk_mq_run_hw_queue(hctx, async);
1549 }
1550 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1551
1552 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1553 {
1554         struct blk_mq_hw_ctx *hctx;
1555         int i;
1556
1557         queue_for_each_hw_ctx(q, hctx, i)
1558                 blk_mq_start_stopped_hw_queue(hctx, async);
1559 }
1560 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1561
1562 static void blk_mq_run_work_fn(struct work_struct *work)
1563 {
1564         struct blk_mq_hw_ctx *hctx;
1565
1566         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1567
1568         /*
1569          * If we are stopped, don't run the queue. The exception is if
1570          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1571          * the STOPPED bit and run it.
1572          */
1573         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1574                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1575                         return;
1576
1577                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1578                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579         }
1580
1581         __blk_mq_run_hw_queue(hctx);
1582 }
1583
1584
1585 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1586 {
1587         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1588                 return;
1589
1590         /*
1591          * Stop the hw queue, then modify currently delayed work.
1592          * This should prevent us from running the queue prematurely.
1593          * Mark the queue as auto-clearing STOPPED when it runs.
1594          */
1595         blk_mq_stop_hw_queue(hctx);
1596         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1597         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1598                                         &hctx->run_work,
1599                                         msecs_to_jiffies(msecs));
1600 }
1601 EXPORT_SYMBOL(blk_mq_delay_queue);
1602
1603 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1604                                             struct request *rq,
1605                                             bool at_head)
1606 {
1607         struct blk_mq_ctx *ctx = rq->mq_ctx;
1608
1609         lockdep_assert_held(&ctx->lock);
1610
1611         trace_block_rq_insert(hctx->queue, rq);
1612
1613         if (at_head)
1614                 list_add(&rq->queuelist, &ctx->rq_list);
1615         else
1616                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1617 }
1618
1619 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1620                              bool at_head)
1621 {
1622         struct blk_mq_ctx *ctx = rq->mq_ctx;
1623
1624         lockdep_assert_held(&ctx->lock);
1625
1626         __blk_mq_insert_req_list(hctx, rq, at_head);
1627         blk_mq_hctx_mark_pending(hctx, ctx);
1628 }
1629
1630 /*
1631  * Should only be used carefully, when the caller knows we want to
1632  * bypass a potential IO scheduler on the target device.
1633  */
1634 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1635 {
1636         struct blk_mq_ctx *ctx = rq->mq_ctx;
1637         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1638
1639         spin_lock(&hctx->lock);
1640         list_add_tail(&rq->queuelist, &hctx->dispatch);
1641         spin_unlock(&hctx->lock);
1642
1643         if (run_queue)
1644                 blk_mq_run_hw_queue(hctx, false);
1645 }
1646
1647 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1648                             struct list_head *list)
1649
1650 {
1651         /*
1652          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1653          * offline now
1654          */
1655         spin_lock(&ctx->lock);
1656         while (!list_empty(list)) {
1657                 struct request *rq;
1658
1659                 rq = list_first_entry(list, struct request, queuelist);
1660                 BUG_ON(rq->mq_ctx != ctx);
1661                 list_del_init(&rq->queuelist);
1662                 __blk_mq_insert_req_list(hctx, rq, false);
1663         }
1664         blk_mq_hctx_mark_pending(hctx, ctx);
1665         spin_unlock(&ctx->lock);
1666 }
1667
1668 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1669 {
1670         struct request *rqa = container_of(a, struct request, queuelist);
1671         struct request *rqb = container_of(b, struct request, queuelist);
1672
1673         return !(rqa->mq_ctx < rqb->mq_ctx ||
1674                  (rqa->mq_ctx == rqb->mq_ctx &&
1675                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1676 }
1677
1678 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1679 {
1680         struct blk_mq_ctx *this_ctx;
1681         struct request_queue *this_q;
1682         struct request *rq;
1683         LIST_HEAD(list);
1684         LIST_HEAD(ctx_list);
1685         unsigned int depth;
1686
1687         list_splice_init(&plug->mq_list, &list);
1688
1689         list_sort(NULL, &list, plug_ctx_cmp);
1690
1691         this_q = NULL;
1692         this_ctx = NULL;
1693         depth = 0;
1694
1695         while (!list_empty(&list)) {
1696                 rq = list_entry_rq(list.next);
1697                 list_del_init(&rq->queuelist);
1698                 BUG_ON(!rq->q);
1699                 if (rq->mq_ctx != this_ctx) {
1700                         if (this_ctx) {
1701                                 trace_block_unplug(this_q, depth, from_schedule);
1702                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1703                                                                 &ctx_list,
1704                                                                 from_schedule);
1705                         }
1706
1707                         this_ctx = rq->mq_ctx;
1708                         this_q = rq->q;
1709                         depth = 0;
1710                 }
1711
1712                 depth++;
1713                 list_add_tail(&rq->queuelist, &ctx_list);
1714         }
1715
1716         /*
1717          * If 'this_ctx' is set, we know we have entries to complete
1718          * on 'ctx_list'. Do those.
1719          */
1720         if (this_ctx) {
1721                 trace_block_unplug(this_q, depth, from_schedule);
1722                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1723                                                 from_schedule);
1724         }
1725 }
1726
1727 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1728 {
1729         blk_init_request_from_bio(rq, bio);
1730
1731         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1732
1733         blk_account_io_start(rq, true);
1734 }
1735
1736 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1737                                    struct blk_mq_ctx *ctx,
1738                                    struct request *rq)
1739 {
1740         spin_lock(&ctx->lock);
1741         __blk_mq_insert_request(hctx, rq, false);
1742         spin_unlock(&ctx->lock);
1743 }
1744
1745 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1746 {
1747         if (rq->tag != -1)
1748                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1749
1750         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1751 }
1752
1753 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1754                                             struct request *rq,
1755                                             blk_qc_t *cookie)
1756 {
1757         struct request_queue *q = rq->q;
1758         struct blk_mq_queue_data bd = {
1759                 .rq = rq,
1760                 .last = true,
1761         };
1762         blk_qc_t new_cookie;
1763         blk_status_t ret;
1764
1765         new_cookie = request_to_qc_t(hctx, rq);
1766
1767         /*
1768          * For OK queue, we are done. For error, caller may kill it.
1769          * Any other error (busy), just add it to our list as we
1770          * previously would have done.
1771          */
1772         ret = q->mq_ops->queue_rq(hctx, &bd);
1773         switch (ret) {
1774         case BLK_STS_OK:
1775                 *cookie = new_cookie;
1776                 break;
1777         case BLK_STS_RESOURCE:
1778         case BLK_STS_DEV_RESOURCE:
1779                 __blk_mq_requeue_request(rq);
1780                 break;
1781         default:
1782                 *cookie = BLK_QC_T_NONE;
1783                 break;
1784         }
1785
1786         return ret;
1787 }
1788
1789 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1790                                                 struct request *rq,
1791                                                 blk_qc_t *cookie,
1792                                                 bool bypass_insert)
1793 {
1794         struct request_queue *q = rq->q;
1795         bool run_queue = true;
1796
1797         /*
1798          * RCU or SRCU read lock is needed before checking quiesced flag.
1799          *
1800          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1801          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1802          * and avoid driver to try to dispatch again.
1803          */
1804         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1805                 run_queue = false;
1806                 bypass_insert = false;
1807                 goto insert;
1808         }
1809
1810         if (q->elevator && !bypass_insert)
1811                 goto insert;
1812
1813         if (!blk_mq_get_driver_tag(rq, NULL, false))
1814                 goto insert;
1815
1816         if (!blk_mq_get_dispatch_budget(hctx)) {
1817                 blk_mq_put_driver_tag(rq);
1818                 goto insert;
1819         }
1820
1821         return __blk_mq_issue_directly(hctx, rq, cookie);
1822 insert:
1823         if (bypass_insert)
1824                 return BLK_STS_RESOURCE;
1825
1826         blk_mq_sched_insert_request(rq, false, run_queue, false);
1827         return BLK_STS_OK;
1828 }
1829
1830 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1831                 struct request *rq, blk_qc_t *cookie)
1832 {
1833         blk_status_t ret;
1834         int srcu_idx;
1835
1836         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1837
1838         hctx_lock(hctx, &srcu_idx);
1839
1840         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1841         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1842                 blk_mq_sched_insert_request(rq, false, true, false);
1843         else if (ret != BLK_STS_OK)
1844                 blk_mq_end_request(rq, ret);
1845
1846         hctx_unlock(hctx, srcu_idx);
1847 }
1848
1849 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1850 {
1851         blk_status_t ret;
1852         int srcu_idx;
1853         blk_qc_t unused_cookie;
1854         struct blk_mq_ctx *ctx = rq->mq_ctx;
1855         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1856
1857         hctx_lock(hctx, &srcu_idx);
1858         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1859         hctx_unlock(hctx, srcu_idx);
1860
1861         return ret;
1862 }
1863
1864 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1865 {
1866         const int is_sync = op_is_sync(bio->bi_opf);
1867         const int is_flush_fua = op_is_flush(bio->bi_opf);
1868         struct blk_mq_alloc_data data = { .flags = 0 };
1869         struct request *rq;
1870         unsigned int request_count = 0;
1871         struct blk_plug *plug;
1872         struct request *same_queue_rq = NULL;
1873         blk_qc_t cookie;
1874         unsigned int wb_acct;
1875
1876         blk_queue_bounce(q, &bio);
1877
1878         blk_queue_split(q, &bio);
1879
1880         if (!bio_integrity_prep(bio))
1881                 return BLK_QC_T_NONE;
1882
1883         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1884             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1885                 return BLK_QC_T_NONE;
1886
1887         if (blk_mq_sched_bio_merge(q, bio))
1888                 return BLK_QC_T_NONE;
1889
1890         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1891
1892         trace_block_getrq(q, bio, bio->bi_opf);
1893
1894         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1895         if (unlikely(!rq)) {
1896                 __wbt_done(q->rq_wb, wb_acct);
1897                 if (bio->bi_opf & REQ_NOWAIT)
1898                         bio_wouldblock_error(bio);
1899                 return BLK_QC_T_NONE;
1900         }
1901
1902         wbt_track(&rq->issue_stat, wb_acct);
1903
1904         cookie = request_to_qc_t(data.hctx, rq);
1905
1906         plug = current->plug;
1907         if (unlikely(is_flush_fua)) {
1908                 blk_mq_put_ctx(data.ctx);
1909                 blk_mq_bio_to_request(rq, bio);
1910
1911                 /* bypass scheduler for flush rq */
1912                 blk_insert_flush(rq);
1913                 blk_mq_run_hw_queue(data.hctx, true);
1914         } else if (plug && q->nr_hw_queues == 1) {
1915                 struct request *last = NULL;
1916
1917                 blk_mq_put_ctx(data.ctx);
1918                 blk_mq_bio_to_request(rq, bio);
1919
1920                 /*
1921                  * @request_count may become stale because of schedule
1922                  * out, so check the list again.
1923                  */
1924                 if (list_empty(&plug->mq_list))
1925                         request_count = 0;
1926                 else if (blk_queue_nomerges(q))
1927                         request_count = blk_plug_queued_count(q);
1928
1929                 if (!request_count)
1930                         trace_block_plug(q);
1931                 else
1932                         last = list_entry_rq(plug->mq_list.prev);
1933
1934                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1935                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1936                         blk_flush_plug_list(plug, false);
1937                         trace_block_plug(q);
1938                 }
1939
1940                 list_add_tail(&rq->queuelist, &plug->mq_list);
1941         } else if (plug && !blk_queue_nomerges(q)) {
1942                 blk_mq_bio_to_request(rq, bio);
1943
1944                 /*
1945                  * We do limited plugging. If the bio can be merged, do that.
1946                  * Otherwise the existing request in the plug list will be
1947                  * issued. So the plug list will have one request at most
1948                  * The plug list might get flushed before this. If that happens,
1949                  * the plug list is empty, and same_queue_rq is invalid.
1950                  */
1951                 if (list_empty(&plug->mq_list))
1952                         same_queue_rq = NULL;
1953                 if (same_queue_rq)
1954                         list_del_init(&same_queue_rq->queuelist);
1955                 list_add_tail(&rq->queuelist, &plug->mq_list);
1956
1957                 blk_mq_put_ctx(data.ctx);
1958
1959                 if (same_queue_rq) {
1960                         data.hctx = blk_mq_map_queue(q,
1961                                         same_queue_rq->mq_ctx->cpu);
1962                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1963                                         &cookie);
1964                 }
1965         } else if (q->nr_hw_queues > 1 && is_sync) {
1966                 blk_mq_put_ctx(data.ctx);
1967                 blk_mq_bio_to_request(rq, bio);
1968                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1969         } else if (q->elevator) {
1970                 blk_mq_put_ctx(data.ctx);
1971                 blk_mq_bio_to_request(rq, bio);
1972                 blk_mq_sched_insert_request(rq, false, true, true);
1973         } else {
1974                 blk_mq_put_ctx(data.ctx);
1975                 blk_mq_bio_to_request(rq, bio);
1976                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1977                 blk_mq_run_hw_queue(data.hctx, true);
1978         }
1979
1980         return cookie;
1981 }
1982
1983 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1984                      unsigned int hctx_idx)
1985 {
1986         struct page *page;
1987
1988         if (tags->rqs && set->ops->exit_request) {
1989                 int i;
1990
1991                 for (i = 0; i < tags->nr_tags; i++) {
1992                         struct request *rq = tags->static_rqs[i];
1993
1994                         if (!rq)
1995                                 continue;
1996                         set->ops->exit_request(set, rq, hctx_idx);
1997                         tags->static_rqs[i] = NULL;
1998                 }
1999         }
2000
2001         while (!list_empty(&tags->page_list)) {
2002                 page = list_first_entry(&tags->page_list, struct page, lru);
2003                 list_del_init(&page->lru);
2004                 /*
2005                  * Remove kmemleak object previously allocated in
2006                  * blk_mq_init_rq_map().
2007                  */
2008                 kmemleak_free(page_address(page));
2009                 __free_pages(page, page->private);
2010         }
2011 }
2012
2013 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2014 {
2015         kfree(tags->rqs);
2016         tags->rqs = NULL;
2017         kfree(tags->static_rqs);
2018         tags->static_rqs = NULL;
2019
2020         blk_mq_free_tags(tags);
2021 }
2022
2023 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2024                                         unsigned int hctx_idx,
2025                                         unsigned int nr_tags,
2026                                         unsigned int reserved_tags)
2027 {
2028         struct blk_mq_tags *tags;
2029         int node;
2030
2031         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2032         if (node == NUMA_NO_NODE)
2033                 node = set->numa_node;
2034
2035         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2036                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2037         if (!tags)
2038                 return NULL;
2039
2040         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2041                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2042                                  node);
2043         if (!tags->rqs) {
2044                 blk_mq_free_tags(tags);
2045                 return NULL;
2046         }
2047
2048         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2049                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2050                                  node);
2051         if (!tags->static_rqs) {
2052                 kfree(tags->rqs);
2053                 blk_mq_free_tags(tags);
2054                 return NULL;
2055         }
2056
2057         return tags;
2058 }
2059
2060 static size_t order_to_size(unsigned int order)
2061 {
2062         return (size_t)PAGE_SIZE << order;
2063 }
2064
2065 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2066                                unsigned int hctx_idx, int node)
2067 {
2068         int ret;
2069
2070         if (set->ops->init_request) {
2071                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2072                 if (ret)
2073                         return ret;
2074         }
2075
2076         seqcount_init(&rq->gstate_seq);
2077         u64_stats_init(&rq->aborted_gstate_sync);
2078         return 0;
2079 }
2080
2081 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2082                      unsigned int hctx_idx, unsigned int depth)
2083 {
2084         unsigned int i, j, entries_per_page, max_order = 4;
2085         size_t rq_size, left;
2086         int node;
2087
2088         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2089         if (node == NUMA_NO_NODE)
2090                 node = set->numa_node;
2091
2092         INIT_LIST_HEAD(&tags->page_list);
2093
2094         /*
2095          * rq_size is the size of the request plus driver payload, rounded
2096          * to the cacheline size
2097          */
2098         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2099                                 cache_line_size());
2100         left = rq_size * depth;
2101
2102         for (i = 0; i < depth; ) {
2103                 int this_order = max_order;
2104                 struct page *page;
2105                 int to_do;
2106                 void *p;
2107
2108                 while (this_order && left < order_to_size(this_order - 1))
2109                         this_order--;
2110
2111                 do {
2112                         page = alloc_pages_node(node,
2113                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2114                                 this_order);
2115                         if (page)
2116                                 break;
2117                         if (!this_order--)
2118                                 break;
2119                         if (order_to_size(this_order) < rq_size)
2120                                 break;
2121                 } while (1);
2122
2123                 if (!page)
2124                         goto fail;
2125
2126                 page->private = this_order;
2127                 list_add_tail(&page->lru, &tags->page_list);
2128
2129                 p = page_address(page);
2130                 /*
2131                  * Allow kmemleak to scan these pages as they contain pointers
2132                  * to additional allocations like via ops->init_request().
2133                  */
2134                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2135                 entries_per_page = order_to_size(this_order) / rq_size;
2136                 to_do = min(entries_per_page, depth - i);
2137                 left -= to_do * rq_size;
2138                 for (j = 0; j < to_do; j++) {
2139                         struct request *rq = p;
2140
2141                         tags->static_rqs[i] = rq;
2142                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2143                                 tags->static_rqs[i] = NULL;
2144                                 goto fail;
2145                         }
2146
2147                         p += rq_size;
2148                         i++;
2149                 }
2150         }
2151         return 0;
2152
2153 fail:
2154         blk_mq_free_rqs(set, tags, hctx_idx);
2155         return -ENOMEM;
2156 }
2157
2158 /*
2159  * 'cpu' is going away. splice any existing rq_list entries from this
2160  * software queue to the hw queue dispatch list, and ensure that it
2161  * gets run.
2162  */
2163 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2164 {
2165         struct blk_mq_hw_ctx *hctx;
2166         struct blk_mq_ctx *ctx;
2167         LIST_HEAD(tmp);
2168
2169         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2170         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2171
2172         spin_lock(&ctx->lock);
2173         if (!list_empty(&ctx->rq_list)) {
2174                 list_splice_init(&ctx->rq_list, &tmp);
2175                 blk_mq_hctx_clear_pending(hctx, ctx);
2176         }
2177         spin_unlock(&ctx->lock);
2178
2179         if (list_empty(&tmp))
2180                 return 0;
2181
2182         spin_lock(&hctx->lock);
2183         list_splice_tail_init(&tmp, &hctx->dispatch);
2184         spin_unlock(&hctx->lock);
2185
2186         blk_mq_run_hw_queue(hctx, true);
2187         return 0;
2188 }
2189
2190 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2191 {
2192         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2193                                             &hctx->cpuhp_dead);
2194 }
2195
2196 /* hctx->ctxs will be freed in queue's release handler */
2197 static void blk_mq_exit_hctx(struct request_queue *q,
2198                 struct blk_mq_tag_set *set,
2199                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2200 {
2201         blk_mq_debugfs_unregister_hctx(hctx);
2202
2203         if (blk_mq_hw_queue_mapped(hctx))
2204                 blk_mq_tag_idle(hctx);
2205
2206         if (set->ops->exit_request)
2207                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2208
2209         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2210
2211         if (set->ops->exit_hctx)
2212                 set->ops->exit_hctx(hctx, hctx_idx);
2213
2214         if (hctx->flags & BLK_MQ_F_BLOCKING)
2215                 cleanup_srcu_struct(hctx->srcu);
2216
2217         blk_mq_remove_cpuhp(hctx);
2218         blk_free_flush_queue(hctx->fq);
2219         sbitmap_free(&hctx->ctx_map);
2220 }
2221
2222 static void blk_mq_exit_hw_queues(struct request_queue *q,
2223                 struct blk_mq_tag_set *set, int nr_queue)
2224 {
2225         struct blk_mq_hw_ctx *hctx;
2226         unsigned int i;
2227
2228         queue_for_each_hw_ctx(q, hctx, i) {
2229                 if (i == nr_queue)
2230                         break;
2231                 blk_mq_exit_hctx(q, set, hctx, i);
2232         }
2233 }
2234
2235 static int blk_mq_init_hctx(struct request_queue *q,
2236                 struct blk_mq_tag_set *set,
2237                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2238 {
2239         int node;
2240
2241         node = hctx->numa_node;
2242         if (node == NUMA_NO_NODE)
2243                 node = hctx->numa_node = set->numa_node;
2244
2245         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2246         spin_lock_init(&hctx->lock);
2247         INIT_LIST_HEAD(&hctx->dispatch);
2248         hctx->queue = q;
2249         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2250
2251         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2252
2253         hctx->tags = set->tags[hctx_idx];
2254
2255         /*
2256          * Allocate space for all possible cpus to avoid allocation at
2257          * runtime
2258          */
2259         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2260                                         GFP_KERNEL, node);
2261         if (!hctx->ctxs)
2262                 goto unregister_cpu_notifier;
2263
2264         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2265                               node))
2266                 goto free_ctxs;
2267
2268         hctx->nr_ctx = 0;
2269
2270         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2271         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2272
2273         if (set->ops->init_hctx &&
2274             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2275                 goto free_bitmap;
2276
2277         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2278                 goto exit_hctx;
2279
2280         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2281         if (!hctx->fq)
2282                 goto sched_exit_hctx;
2283
2284         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2285                 goto free_fq;
2286
2287         if (hctx->flags & BLK_MQ_F_BLOCKING)
2288                 init_srcu_struct(hctx->srcu);
2289
2290         blk_mq_debugfs_register_hctx(q, hctx);
2291
2292         return 0;
2293
2294  free_fq:
2295         kfree(hctx->fq);
2296  sched_exit_hctx:
2297         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2298  exit_hctx:
2299         if (set->ops->exit_hctx)
2300                 set->ops->exit_hctx(hctx, hctx_idx);
2301  free_bitmap:
2302         sbitmap_free(&hctx->ctx_map);
2303  free_ctxs:
2304         kfree(hctx->ctxs);
2305  unregister_cpu_notifier:
2306         blk_mq_remove_cpuhp(hctx);
2307         return -1;
2308 }
2309
2310 static void blk_mq_init_cpu_queues(struct request_queue *q,
2311                                    unsigned int nr_hw_queues)
2312 {
2313         unsigned int i;
2314
2315         for_each_possible_cpu(i) {
2316                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2317                 struct blk_mq_hw_ctx *hctx;
2318
2319                 __ctx->cpu = i;
2320                 spin_lock_init(&__ctx->lock);
2321                 INIT_LIST_HEAD(&__ctx->rq_list);
2322                 __ctx->queue = q;
2323
2324                 /*
2325                  * Set local node, IFF we have more than one hw queue. If
2326                  * not, we remain on the home node of the device
2327                  */
2328                 hctx = blk_mq_map_queue(q, i);
2329                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2330                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2331         }
2332 }
2333
2334 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2335 {
2336         int ret = 0;
2337
2338         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2339                                         set->queue_depth, set->reserved_tags);
2340         if (!set->tags[hctx_idx])
2341                 return false;
2342
2343         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2344                                 set->queue_depth);
2345         if (!ret)
2346                 return true;
2347
2348         blk_mq_free_rq_map(set->tags[hctx_idx]);
2349         set->tags[hctx_idx] = NULL;
2350         return false;
2351 }
2352
2353 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2354                                          unsigned int hctx_idx)
2355 {
2356         if (set->tags[hctx_idx]) {
2357                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2358                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2359                 set->tags[hctx_idx] = NULL;
2360         }
2361 }
2362
2363 static void blk_mq_map_swqueue(struct request_queue *q)
2364 {
2365         unsigned int i, hctx_idx;
2366         struct blk_mq_hw_ctx *hctx;
2367         struct blk_mq_ctx *ctx;
2368         struct blk_mq_tag_set *set = q->tag_set;
2369
2370         /*
2371          * Avoid others reading imcomplete hctx->cpumask through sysfs
2372          */
2373         mutex_lock(&q->sysfs_lock);
2374
2375         queue_for_each_hw_ctx(q, hctx, i) {
2376                 cpumask_clear(hctx->cpumask);
2377                 hctx->nr_ctx = 0;
2378         }
2379
2380         /*
2381          * Map software to hardware queues.
2382          *
2383          * If the cpu isn't present, the cpu is mapped to first hctx.
2384          */
2385         for_each_possible_cpu(i) {
2386                 hctx_idx = q->mq_map[i];
2387                 /* unmapped hw queue can be remapped after CPU topo changed */
2388                 if (!set->tags[hctx_idx] &&
2389                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2390                         /*
2391                          * If tags initialization fail for some hctx,
2392                          * that hctx won't be brought online.  In this
2393                          * case, remap the current ctx to hctx[0] which
2394                          * is guaranteed to always have tags allocated
2395                          */
2396                         q->mq_map[i] = 0;
2397                 }
2398
2399                 ctx = per_cpu_ptr(q->queue_ctx, i);
2400                 hctx = blk_mq_map_queue(q, i);
2401
2402                 cpumask_set_cpu(i, hctx->cpumask);
2403                 ctx->index_hw = hctx->nr_ctx;
2404                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2405         }
2406
2407         mutex_unlock(&q->sysfs_lock);
2408
2409         queue_for_each_hw_ctx(q, hctx, i) {
2410                 /*
2411                  * If no software queues are mapped to this hardware queue,
2412                  * disable it and free the request entries.
2413                  */
2414                 if (!hctx->nr_ctx) {
2415                         /* Never unmap queue 0.  We need it as a
2416                          * fallback in case of a new remap fails
2417                          * allocation
2418                          */
2419                         if (i && set->tags[i])
2420                                 blk_mq_free_map_and_requests(set, i);
2421
2422                         hctx->tags = NULL;
2423                         continue;
2424                 }
2425
2426                 hctx->tags = set->tags[i];
2427                 WARN_ON(!hctx->tags);
2428
2429                 /*
2430                  * Set the map size to the number of mapped software queues.
2431                  * This is more accurate and more efficient than looping
2432                  * over all possibly mapped software queues.
2433                  */
2434                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2435
2436                 /*
2437                  * Initialize batch roundrobin counts
2438                  */
2439                 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2440                                 cpu_online_mask);
2441                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2442         }
2443 }
2444
2445 /*
2446  * Caller needs to ensure that we're either frozen/quiesced, or that
2447  * the queue isn't live yet.
2448  */
2449 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2450 {
2451         struct blk_mq_hw_ctx *hctx;
2452         int i;
2453
2454         queue_for_each_hw_ctx(q, hctx, i) {
2455                 if (shared) {
2456                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2457                                 atomic_inc(&q->shared_hctx_restart);
2458                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2459                 } else {
2460                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2461                                 atomic_dec(&q->shared_hctx_restart);
2462                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2463                 }
2464         }
2465 }
2466
2467 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2468                                         bool shared)
2469 {
2470         struct request_queue *q;
2471
2472         lockdep_assert_held(&set->tag_list_lock);
2473
2474         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2475                 blk_mq_freeze_queue(q);
2476                 queue_set_hctx_shared(q, shared);
2477                 blk_mq_unfreeze_queue(q);
2478         }
2479 }
2480
2481 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2482 {
2483         struct blk_mq_tag_set *set = q->tag_set;
2484
2485         mutex_lock(&set->tag_list_lock);
2486         list_del_rcu(&q->tag_set_list);
2487         INIT_LIST_HEAD(&q->tag_set_list);
2488         if (list_is_singular(&set->tag_list)) {
2489                 /* just transitioned to unshared */
2490                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2491                 /* update existing queue */
2492                 blk_mq_update_tag_set_depth(set, false);
2493         }
2494         mutex_unlock(&set->tag_list_lock);
2495
2496         synchronize_rcu();
2497 }
2498
2499 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2500                                      struct request_queue *q)
2501 {
2502         q->tag_set = set;
2503
2504         mutex_lock(&set->tag_list_lock);
2505
2506         /*
2507          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2508          */
2509         if (!list_empty(&set->tag_list) &&
2510             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2511                 set->flags |= BLK_MQ_F_TAG_SHARED;
2512                 /* update existing queue */
2513                 blk_mq_update_tag_set_depth(set, true);
2514         }
2515         if (set->flags & BLK_MQ_F_TAG_SHARED)
2516                 queue_set_hctx_shared(q, true);
2517         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2518
2519         mutex_unlock(&set->tag_list_lock);
2520 }
2521
2522 /*
2523  * It is the actual release handler for mq, but we do it from
2524  * request queue's release handler for avoiding use-after-free
2525  * and headache because q->mq_kobj shouldn't have been introduced,
2526  * but we can't group ctx/kctx kobj without it.
2527  */
2528 void blk_mq_release(struct request_queue *q)
2529 {
2530         struct blk_mq_hw_ctx *hctx;
2531         unsigned int i;
2532
2533         /* hctx kobj stays in hctx */
2534         queue_for_each_hw_ctx(q, hctx, i) {
2535                 if (!hctx)
2536                         continue;
2537                 kobject_put(&hctx->kobj);
2538         }
2539
2540         q->mq_map = NULL;
2541
2542         kfree(q->queue_hw_ctx);
2543
2544         /*
2545          * release .mq_kobj and sw queue's kobject now because
2546          * both share lifetime with request queue.
2547          */
2548         blk_mq_sysfs_deinit(q);
2549
2550         free_percpu(q->queue_ctx);
2551 }
2552
2553 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2554 {
2555         struct request_queue *uninit_q, *q;
2556
2557         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2558         if (!uninit_q)
2559                 return ERR_PTR(-ENOMEM);
2560
2561         q = blk_mq_init_allocated_queue(set, uninit_q);
2562         if (IS_ERR(q))
2563                 blk_cleanup_queue(uninit_q);
2564
2565         return q;
2566 }
2567 EXPORT_SYMBOL(blk_mq_init_queue);
2568
2569 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2570 {
2571         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2572
2573         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2574                            __alignof__(struct blk_mq_hw_ctx)) !=
2575                      sizeof(struct blk_mq_hw_ctx));
2576
2577         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2578                 hw_ctx_size += sizeof(struct srcu_struct);
2579
2580         return hw_ctx_size;
2581 }
2582
2583 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2584                                                 struct request_queue *q)
2585 {
2586         int i, j;
2587         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2588
2589         blk_mq_sysfs_unregister(q);
2590
2591         /* protect against switching io scheduler  */
2592         mutex_lock(&q->sysfs_lock);
2593         for (i = 0; i < set->nr_hw_queues; i++) {
2594                 int node;
2595
2596                 if (hctxs[i])
2597                         continue;
2598
2599                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2600                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2601                                         GFP_KERNEL, node);
2602                 if (!hctxs[i])
2603                         break;
2604
2605                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2606                                                 node)) {
2607                         kfree(hctxs[i]);
2608                         hctxs[i] = NULL;
2609                         break;
2610                 }
2611
2612                 atomic_set(&hctxs[i]->nr_active, 0);
2613                 hctxs[i]->numa_node = node;
2614                 hctxs[i]->queue_num = i;
2615
2616                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2617                         free_cpumask_var(hctxs[i]->cpumask);
2618                         kfree(hctxs[i]);
2619                         hctxs[i] = NULL;
2620                         break;
2621                 }
2622                 blk_mq_hctx_kobj_init(hctxs[i]);
2623         }
2624         for (j = i; j < q->nr_hw_queues; j++) {
2625                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2626
2627                 if (hctx) {
2628                         if (hctx->tags)
2629                                 blk_mq_free_map_and_requests(set, j);
2630                         blk_mq_exit_hctx(q, set, hctx, j);
2631                         kobject_put(&hctx->kobj);
2632                         hctxs[j] = NULL;
2633
2634                 }
2635         }
2636         q->nr_hw_queues = i;
2637         mutex_unlock(&q->sysfs_lock);
2638         blk_mq_sysfs_register(q);
2639 }
2640
2641 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2642                                                   struct request_queue *q)
2643 {
2644         /* mark the queue as mq asap */
2645         q->mq_ops = set->ops;
2646
2647         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2648                                              blk_mq_poll_stats_bkt,
2649                                              BLK_MQ_POLL_STATS_BKTS, q);
2650         if (!q->poll_cb)
2651                 goto err_exit;
2652
2653         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2654         if (!q->queue_ctx)
2655                 goto err_exit;
2656
2657         /* init q->mq_kobj and sw queues' kobjects */
2658         blk_mq_sysfs_init(q);
2659
2660         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2661                                                 GFP_KERNEL, set->numa_node);
2662         if (!q->queue_hw_ctx)
2663                 goto err_percpu;
2664
2665         q->mq_map = set->mq_map;
2666
2667         blk_mq_realloc_hw_ctxs(set, q);
2668         if (!q->nr_hw_queues)
2669                 goto err_hctxs;
2670
2671         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2672         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2673
2674         q->nr_queues = nr_cpu_ids;
2675
2676         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2677
2678         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2679                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2680
2681         q->sg_reserved_size = INT_MAX;
2682
2683         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2684         INIT_LIST_HEAD(&q->requeue_list);
2685         spin_lock_init(&q->requeue_lock);
2686
2687         blk_queue_make_request(q, blk_mq_make_request);
2688         if (q->mq_ops->poll)
2689                 q->poll_fn = blk_mq_poll;
2690
2691         /*
2692          * Do this after blk_queue_make_request() overrides it...
2693          */
2694         q->nr_requests = set->queue_depth;
2695
2696         /*
2697          * Default to classic polling
2698          */
2699         q->poll_nsec = -1;
2700
2701         if (set->ops->complete)
2702                 blk_queue_softirq_done(q, set->ops->complete);
2703
2704         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2705         blk_mq_add_queue_tag_set(set, q);
2706         blk_mq_map_swqueue(q);
2707
2708         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2709                 int ret;
2710
2711                 ret = blk_mq_sched_init(q);
2712                 if (ret)
2713                         return ERR_PTR(ret);
2714         }
2715
2716         return q;
2717
2718 err_hctxs:
2719         kfree(q->queue_hw_ctx);
2720 err_percpu:
2721         free_percpu(q->queue_ctx);
2722 err_exit:
2723         q->mq_ops = NULL;
2724         return ERR_PTR(-ENOMEM);
2725 }
2726 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2727
2728 void blk_mq_free_queue(struct request_queue *q)
2729 {
2730         struct blk_mq_tag_set   *set = q->tag_set;
2731
2732         blk_mq_del_queue_tag_set(q);
2733         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2734 }
2735
2736 /* Basically redo blk_mq_init_queue with queue frozen */
2737 static void blk_mq_queue_reinit(struct request_queue *q)
2738 {
2739         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2740
2741         blk_mq_debugfs_unregister_hctxs(q);
2742         blk_mq_sysfs_unregister(q);
2743
2744         /*
2745          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2746          * we should change hctx numa_node according to the new topology (this
2747          * involves freeing and re-allocating memory, worth doing?)
2748          */
2749         blk_mq_map_swqueue(q);
2750
2751         blk_mq_sysfs_register(q);
2752         blk_mq_debugfs_register_hctxs(q);
2753 }
2754
2755 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2756 {
2757         int i;
2758
2759         for (i = 0; i < set->nr_hw_queues; i++)
2760                 if (!__blk_mq_alloc_rq_map(set, i))
2761                         goto out_unwind;
2762
2763         return 0;
2764
2765 out_unwind:
2766         while (--i >= 0)
2767                 blk_mq_free_rq_map(set->tags[i]);
2768
2769         return -ENOMEM;
2770 }
2771
2772 /*
2773  * Allocate the request maps associated with this tag_set. Note that this
2774  * may reduce the depth asked for, if memory is tight. set->queue_depth
2775  * will be updated to reflect the allocated depth.
2776  */
2777 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2778 {
2779         unsigned int depth;
2780         int err;
2781
2782         depth = set->queue_depth;
2783         do {
2784                 err = __blk_mq_alloc_rq_maps(set);
2785                 if (!err)
2786                         break;
2787
2788                 set->queue_depth >>= 1;
2789                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2790                         err = -ENOMEM;
2791                         break;
2792                 }
2793         } while (set->queue_depth);
2794
2795         if (!set->queue_depth || err) {
2796                 pr_err("blk-mq: failed to allocate request map\n");
2797                 return -ENOMEM;
2798         }
2799
2800         if (depth != set->queue_depth)
2801                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2802                                                 depth, set->queue_depth);
2803
2804         return 0;
2805 }
2806
2807 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2808 {
2809         if (set->ops->map_queues) {
2810                 int cpu;
2811                 /*
2812                  * transport .map_queues is usually done in the following
2813                  * way:
2814                  *
2815                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2816                  *      mask = get_cpu_mask(queue)
2817                  *      for_each_cpu(cpu, mask)
2818                  *              set->mq_map[cpu] = queue;
2819                  * }
2820                  *
2821                  * When we need to remap, the table has to be cleared for
2822                  * killing stale mapping since one CPU may not be mapped
2823                  * to any hw queue.
2824                  */
2825                 for_each_possible_cpu(cpu)
2826                         set->mq_map[cpu] = 0;
2827
2828                 return set->ops->map_queues(set);
2829         } else
2830                 return blk_mq_map_queues(set);
2831 }
2832
2833 /*
2834  * Alloc a tag set to be associated with one or more request queues.
2835  * May fail with EINVAL for various error conditions. May adjust the
2836  * requested depth down, if if it too large. In that case, the set
2837  * value will be stored in set->queue_depth.
2838  */
2839 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2840 {
2841         int ret;
2842
2843         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2844
2845         if (!set->nr_hw_queues)
2846                 return -EINVAL;
2847         if (!set->queue_depth)
2848                 return -EINVAL;
2849         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2850                 return -EINVAL;
2851
2852         if (!set->ops->queue_rq)
2853                 return -EINVAL;
2854
2855         if (!set->ops->get_budget ^ !set->ops->put_budget)
2856                 return -EINVAL;
2857
2858         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2859                 pr_info("blk-mq: reduced tag depth to %u\n",
2860                         BLK_MQ_MAX_DEPTH);
2861                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2862         }
2863
2864         /*
2865          * If a crashdump is active, then we are potentially in a very
2866          * memory constrained environment. Limit us to 1 queue and
2867          * 64 tags to prevent using too much memory.
2868          */
2869         if (is_kdump_kernel()) {
2870                 set->nr_hw_queues = 1;
2871                 set->queue_depth = min(64U, set->queue_depth);
2872         }
2873         /*
2874          * There is no use for more h/w queues than cpus.
2875          */
2876         if (set->nr_hw_queues > nr_cpu_ids)
2877                 set->nr_hw_queues = nr_cpu_ids;
2878
2879         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2880                                  GFP_KERNEL, set->numa_node);
2881         if (!set->tags)
2882                 return -ENOMEM;
2883
2884         ret = -ENOMEM;
2885         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2886                         GFP_KERNEL, set->numa_node);
2887         if (!set->mq_map)
2888                 goto out_free_tags;
2889
2890         ret = blk_mq_update_queue_map(set);
2891         if (ret)
2892                 goto out_free_mq_map;
2893
2894         ret = blk_mq_alloc_rq_maps(set);
2895         if (ret)
2896                 goto out_free_mq_map;
2897
2898         mutex_init(&set->tag_list_lock);
2899         INIT_LIST_HEAD(&set->tag_list);
2900
2901         return 0;
2902
2903 out_free_mq_map:
2904         kfree(set->mq_map);
2905         set->mq_map = NULL;
2906 out_free_tags:
2907         kfree(set->tags);
2908         set->tags = NULL;
2909         return ret;
2910 }
2911 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2912
2913 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2914 {
2915         int i;
2916
2917         for (i = 0; i < nr_cpu_ids; i++)
2918                 blk_mq_free_map_and_requests(set, i);
2919
2920         kfree(set->mq_map);
2921         set->mq_map = NULL;
2922
2923         kfree(set->tags);
2924         set->tags = NULL;
2925 }
2926 EXPORT_SYMBOL(blk_mq_free_tag_set);
2927
2928 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2929 {
2930         struct blk_mq_tag_set *set = q->tag_set;
2931         struct blk_mq_hw_ctx *hctx;
2932         int i, ret;
2933
2934         if (!set)
2935                 return -EINVAL;
2936
2937         blk_mq_freeze_queue(q);
2938         blk_mq_quiesce_queue(q);
2939
2940         ret = 0;
2941         queue_for_each_hw_ctx(q, hctx, i) {
2942                 if (!hctx->tags)
2943                         continue;
2944                 /*
2945                  * If we're using an MQ scheduler, just update the scheduler
2946                  * queue depth. This is similar to what the old code would do.
2947                  */
2948                 if (!hctx->sched_tags) {
2949                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2950                                                         false);
2951                 } else {
2952                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2953                                                         nr, true);
2954                 }
2955                 if (ret)
2956                         break;
2957         }
2958
2959         if (!ret)
2960                 q->nr_requests = nr;
2961
2962         blk_mq_unquiesce_queue(q);
2963         blk_mq_unfreeze_queue(q);
2964
2965         return ret;
2966 }
2967
2968 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2969                                                         int nr_hw_queues)
2970 {
2971         struct request_queue *q;
2972
2973         lockdep_assert_held(&set->tag_list_lock);
2974
2975         if (nr_hw_queues > nr_cpu_ids)
2976                 nr_hw_queues = nr_cpu_ids;
2977         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2978                 return;
2979
2980         list_for_each_entry(q, &set->tag_list, tag_set_list)
2981                 blk_mq_freeze_queue(q);
2982
2983         set->nr_hw_queues = nr_hw_queues;
2984         blk_mq_update_queue_map(set);
2985         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2986                 blk_mq_realloc_hw_ctxs(set, q);
2987                 blk_mq_queue_reinit(q);
2988         }
2989
2990         list_for_each_entry(q, &set->tag_list, tag_set_list)
2991                 blk_mq_unfreeze_queue(q);
2992 }
2993
2994 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2995 {
2996         mutex_lock(&set->tag_list_lock);
2997         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2998         mutex_unlock(&set->tag_list_lock);
2999 }
3000 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3001
3002 /* Enable polling stats and return whether they were already enabled. */
3003 static bool blk_poll_stats_enable(struct request_queue *q)
3004 {
3005         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3006             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3007                 return true;
3008         blk_stat_add_callback(q, q->poll_cb);
3009         return false;
3010 }
3011
3012 static void blk_mq_poll_stats_start(struct request_queue *q)
3013 {
3014         /*
3015          * We don't arm the callback if polling stats are not enabled or the
3016          * callback is already active.
3017          */
3018         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3019             blk_stat_is_active(q->poll_cb))
3020                 return;
3021
3022         blk_stat_activate_msecs(q->poll_cb, 100);
3023 }
3024
3025 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3026 {
3027         struct request_queue *q = cb->data;
3028         int bucket;
3029
3030         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3031                 if (cb->stat[bucket].nr_samples)
3032                         q->poll_stat[bucket] = cb->stat[bucket];
3033         }
3034 }
3035
3036 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3037                                        struct blk_mq_hw_ctx *hctx,
3038                                        struct request *rq)
3039 {
3040         unsigned long ret = 0;
3041         int bucket;
3042
3043         /*
3044          * If stats collection isn't on, don't sleep but turn it on for
3045          * future users
3046          */
3047         if (!blk_poll_stats_enable(q))
3048                 return 0;
3049
3050         /*
3051          * As an optimistic guess, use half of the mean service time
3052          * for this type of request. We can (and should) make this smarter.
3053          * For instance, if the completion latencies are tight, we can
3054          * get closer than just half the mean. This is especially
3055          * important on devices where the completion latencies are longer
3056          * than ~10 usec. We do use the stats for the relevant IO size
3057          * if available which does lead to better estimates.
3058          */
3059         bucket = blk_mq_poll_stats_bkt(rq);
3060         if (bucket < 0)
3061                 return ret;
3062
3063         if (q->poll_stat[bucket].nr_samples)
3064                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3065
3066         return ret;
3067 }
3068
3069 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3070                                      struct blk_mq_hw_ctx *hctx,
3071                                      struct request *rq)
3072 {
3073         struct hrtimer_sleeper hs;
3074         enum hrtimer_mode mode;
3075         unsigned int nsecs;
3076         ktime_t kt;
3077
3078         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3079                 return false;
3080
3081         /*
3082          * poll_nsec can be:
3083          *
3084          * -1:  don't ever hybrid sleep
3085          *  0:  use half of prev avg
3086          * >0:  use this specific value
3087          */
3088         if (q->poll_nsec == -1)
3089                 return false;
3090         else if (q->poll_nsec > 0)
3091                 nsecs = q->poll_nsec;
3092         else
3093                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3094
3095         if (!nsecs)
3096                 return false;
3097
3098         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3099
3100         /*
3101          * This will be replaced with the stats tracking code, using
3102          * 'avg_completion_time / 2' as the pre-sleep target.
3103          */
3104         kt = nsecs;
3105
3106         mode = HRTIMER_MODE_REL;
3107         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3108         hrtimer_set_expires(&hs.timer, kt);
3109
3110         hrtimer_init_sleeper(&hs, current);
3111         do {
3112                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3113                         break;
3114                 set_current_state(TASK_UNINTERRUPTIBLE);
3115                 hrtimer_start_expires(&hs.timer, mode);
3116                 if (hs.task)
3117                         io_schedule();
3118                 hrtimer_cancel(&hs.timer);
3119                 mode = HRTIMER_MODE_ABS;
3120         } while (hs.task && !signal_pending(current));
3121
3122         __set_current_state(TASK_RUNNING);
3123         destroy_hrtimer_on_stack(&hs.timer);
3124         return true;
3125 }
3126
3127 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3128 {
3129         struct request_queue *q = hctx->queue;
3130         long state;
3131
3132         /*
3133          * If we sleep, have the caller restart the poll loop to reset
3134          * the state. Like for the other success return cases, the
3135          * caller is responsible for checking if the IO completed. If
3136          * the IO isn't complete, we'll get called again and will go
3137          * straight to the busy poll loop.
3138          */
3139         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3140                 return true;
3141
3142         hctx->poll_considered++;
3143
3144         state = current->state;
3145         while (!need_resched()) {
3146                 int ret;
3147
3148                 hctx->poll_invoked++;
3149
3150                 ret = q->mq_ops->poll(hctx, rq->tag);
3151                 if (ret > 0) {
3152                         hctx->poll_success++;
3153                         set_current_state(TASK_RUNNING);
3154                         return true;
3155                 }
3156
3157                 if (signal_pending_state(state, current))
3158                         set_current_state(TASK_RUNNING);
3159
3160                 if (current->state == TASK_RUNNING)
3161                         return true;
3162                 if (ret < 0)
3163                         break;
3164                 cpu_relax();
3165         }
3166
3167         return false;
3168 }
3169
3170 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3171 {
3172         struct blk_mq_hw_ctx *hctx;
3173         struct request *rq;
3174
3175         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3176                 return false;
3177
3178         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3179         if (!blk_qc_t_is_internal(cookie))
3180                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3181         else {
3182                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3183                 /*
3184                  * With scheduling, if the request has completed, we'll
3185                  * get a NULL return here, as we clear the sched tag when
3186                  * that happens. The request still remains valid, like always,
3187                  * so we should be safe with just the NULL check.
3188                  */
3189                 if (!rq)
3190                         return false;
3191         }
3192
3193         return __blk_mq_poll(hctx, rq);
3194 }
3195
3196 static int __init blk_mq_init(void)
3197 {
3198         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3199                                 blk_mq_hctx_notify_dead);
3200         return 0;
3201 }
3202 subsys_initcall(blk_mq_init);