blk-mq: allow setting of per-request timeouts
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31                                            unsigned int cpu)
32 {
33         return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37  * This assumes per-cpu software queueing queues. They could be per-node
38  * as well, for instance. For now this is hardcoded as-is. Note that we don't
39  * care about preemption, since we know the ctx's are persistent. This does
40  * mean that we can't rely on ctx always matching the currently running CPU.
41  */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44         return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49         put_cpu();
50 }
51
52 /*
53  * Check if any of the ctx's have pending work in this hardware queue
54  */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57         unsigned int i;
58
59         for (i = 0; i < hctx->ctx_map.map_size; i++)
60                 if (hctx->ctx_map.map[i].word)
61                         return true;
62
63         return false;
64 }
65
66 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67                                               struct blk_mq_ctx *ctx)
68 {
69         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70 }
71
72 #define CTX_TO_BIT(hctx, ctx)   \
73         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79                                      struct blk_mq_ctx *ctx)
80 {
81         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88                                       struct blk_mq_ctx *ctx)
89 {
90         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 }
94
95 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96                                               struct blk_mq_ctx *ctx,
97                                               gfp_t gfp, bool reserved)
98 {
99         struct request *rq;
100         unsigned int tag;
101
102         tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103         if (tag != BLK_MQ_TAG_FAIL) {
104                 rq = hctx->tags->rqs[tag];
105
106                 rq->cmd_flags = 0;
107                 if (blk_mq_tag_busy(hctx)) {
108                         rq->cmd_flags = REQ_MQ_INFLIGHT;
109                         atomic_inc(&hctx->nr_active);
110                 }
111
112                 rq->tag = tag;
113                 return rq;
114         }
115
116         return NULL;
117 }
118
119 static int blk_mq_queue_enter(struct request_queue *q)
120 {
121         int ret;
122
123         __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124         smp_wmb();
125         /* we have problems to freeze the queue if it's initializing */
126         if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127                 return 0;
128
129         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131         spin_lock_irq(q->queue_lock);
132         ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133                 !blk_queue_bypass(q) || blk_queue_dying(q),
134                 *q->queue_lock);
135         /* inc usage with lock hold to avoid freeze_queue runs here */
136         if (!ret && !blk_queue_dying(q))
137                 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138         else if (blk_queue_dying(q))
139                 ret = -ENODEV;
140         spin_unlock_irq(q->queue_lock);
141
142         return ret;
143 }
144
145 static void blk_mq_queue_exit(struct request_queue *q)
146 {
147         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148 }
149
150 static void __blk_mq_drain_queue(struct request_queue *q)
151 {
152         while (true) {
153                 s64 count;
154
155                 spin_lock_irq(q->queue_lock);
156                 count = percpu_counter_sum(&q->mq_usage_counter);
157                 spin_unlock_irq(q->queue_lock);
158
159                 if (count == 0)
160                         break;
161                 blk_mq_run_queues(q, false);
162                 msleep(10);
163         }
164 }
165
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 static void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         bool drain;
173
174         spin_lock_irq(q->queue_lock);
175         drain = !q->bypass_depth++;
176         queue_flag_set(QUEUE_FLAG_BYPASS, q);
177         spin_unlock_irq(q->queue_lock);
178
179         if (drain)
180                 __blk_mq_drain_queue(q);
181 }
182
183 void blk_mq_drain_queue(struct request_queue *q)
184 {
185         __blk_mq_drain_queue(q);
186 }
187
188 static void blk_mq_unfreeze_queue(struct request_queue *q)
189 {
190         bool wake = false;
191
192         spin_lock_irq(q->queue_lock);
193         if (!--q->bypass_depth) {
194                 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195                 wake = true;
196         }
197         WARN_ON_ONCE(q->bypass_depth < 0);
198         spin_unlock_irq(q->queue_lock);
199         if (wake)
200                 wake_up_all(&q->mq_freeze_wq);
201 }
202
203 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204 {
205         return blk_mq_has_free_tags(hctx->tags);
206 }
207 EXPORT_SYMBOL(blk_mq_can_queue);
208
209 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210                                struct request *rq, unsigned int rw_flags)
211 {
212         if (blk_queue_io_stat(q))
213                 rw_flags |= REQ_IO_STAT;
214
215         INIT_LIST_HEAD(&rq->queuelist);
216         /* csd/requeue_work/fifo_time is initialized before use */
217         rq->q = q;
218         rq->mq_ctx = ctx;
219         rq->cmd_flags |= rw_flags;
220         rq->cmd_type = 0;
221         /* do not touch atomic flags, it needs atomic ops against the timer */
222         rq->cpu = -1;
223         rq->__data_len = 0;
224         rq->__sector = (sector_t) -1;
225         rq->bio = NULL;
226         rq->biotail = NULL;
227         INIT_HLIST_NODE(&rq->hash);
228         RB_CLEAR_NODE(&rq->rb_node);
229         memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230         rq->rq_disk = NULL;
231         rq->part = NULL;
232         rq->start_time = jiffies;
233 #ifdef CONFIG_BLK_CGROUP
234         rq->rl = NULL;
235         set_start_time_ns(rq);
236         rq->io_start_time_ns = 0;
237 #endif
238         rq->nr_phys_segments = 0;
239 #if defined(CONFIG_BLK_DEV_INTEGRITY)
240         rq->nr_integrity_segments = 0;
241 #endif
242         rq->ioprio = 0;
243         rq->special = NULL;
244         /* tag was already set */
245         rq->errors = 0;
246         memset(rq->__cmd, 0, sizeof(rq->__cmd));
247         rq->cmd = rq->__cmd;
248         rq->cmd_len = BLK_MAX_CDB;
249
250         rq->extra_len = 0;
251         rq->sense_len = 0;
252         rq->resid_len = 0;
253         rq->sense = NULL;
254
255         rq->deadline = 0;
256         INIT_LIST_HEAD(&rq->timeout_list);
257         rq->timeout = 0;
258         rq->retries = 0;
259         rq->end_io = NULL;
260         rq->end_io_data = NULL;
261         rq->next_rq = NULL;
262
263         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264 }
265
266 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267                                                    int rw, gfp_t gfp,
268                                                    bool reserved)
269 {
270         struct request *rq;
271
272         do {
273                 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274                 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
276                 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277                                                 reserved);
278                 if (rq) {
279                         blk_mq_rq_ctx_init(q, ctx, rq, rw);
280                         break;
281                 }
282
283                 if (gfp & __GFP_WAIT) {
284                         __blk_mq_run_hw_queue(hctx);
285                         blk_mq_put_ctx(ctx);
286                 } else {
287                         blk_mq_put_ctx(ctx);
288                         break;
289                 }
290
291                 blk_mq_wait_for_tags(hctx, reserved);
292         } while (1);
293
294         return rq;
295 }
296
297 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
298 {
299         struct request *rq;
300
301         if (blk_mq_queue_enter(q))
302                 return NULL;
303
304         rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
305         if (rq)
306                 blk_mq_put_ctx(rq->mq_ctx);
307         return rq;
308 }
309 EXPORT_SYMBOL(blk_mq_alloc_request);
310
311 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312                                               gfp_t gfp)
313 {
314         struct request *rq;
315
316         if (blk_mq_queue_enter(q))
317                 return NULL;
318
319         rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
320         if (rq)
321                 blk_mq_put_ctx(rq->mq_ctx);
322         return rq;
323 }
324 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
326 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327                                   struct blk_mq_ctx *ctx, struct request *rq)
328 {
329         const int tag = rq->tag;
330         struct request_queue *q = rq->q;
331
332         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333                 atomic_dec(&hctx->nr_active);
334
335         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337         blk_mq_queue_exit(q);
338 }
339
340 void blk_mq_free_request(struct request *rq)
341 {
342         struct blk_mq_ctx *ctx = rq->mq_ctx;
343         struct blk_mq_hw_ctx *hctx;
344         struct request_queue *q = rq->q;
345
346         ctx->rq_completed[rq_is_sync(rq)]++;
347
348         hctx = q->mq_ops->map_queue(q, ctx->cpu);
349         __blk_mq_free_request(hctx, ctx, rq);
350 }
351
352 /*
353  * Clone all relevant state from a request that has been put on hold in
354  * the flush state machine into the preallocated flush request that hangs
355  * off the request queue.
356  *
357  * For a driver the flush request should be invisible, that's why we are
358  * impersonating the original request here.
359  */
360 void blk_mq_clone_flush_request(struct request *flush_rq,
361                 struct request *orig_rq)
362 {
363         struct blk_mq_hw_ctx *hctx =
364                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366         flush_rq->mq_ctx = orig_rq->mq_ctx;
367         flush_rq->tag = orig_rq->tag;
368         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369                 hctx->cmd_size);
370 }
371
372 inline void __blk_mq_end_io(struct request *rq, int error)
373 {
374         blk_account_io_done(rq);
375
376         if (rq->end_io) {
377                 rq->end_io(rq, error);
378         } else {
379                 if (unlikely(blk_bidi_rq(rq)))
380                         blk_mq_free_request(rq->next_rq);
381                 blk_mq_free_request(rq);
382         }
383 }
384 EXPORT_SYMBOL(__blk_mq_end_io);
385
386 void blk_mq_end_io(struct request *rq, int error)
387 {
388         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389                 BUG();
390         __blk_mq_end_io(rq, error);
391 }
392 EXPORT_SYMBOL(blk_mq_end_io);
393
394 static void __blk_mq_complete_request_remote(void *data)
395 {
396         struct request *rq = data;
397
398         rq->q->softirq_done_fn(rq);
399 }
400
401 void __blk_mq_complete_request(struct request *rq)
402 {
403         struct blk_mq_ctx *ctx = rq->mq_ctx;
404         bool shared = false;
405         int cpu;
406
407         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408                 rq->q->softirq_done_fn(rq);
409                 return;
410         }
411
412         cpu = get_cpu();
413         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414                 shared = cpus_share_cache(cpu, ctx->cpu);
415
416         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417                 rq->csd.func = __blk_mq_complete_request_remote;
418                 rq->csd.info = rq;
419                 rq->csd.flags = 0;
420                 smp_call_function_single_async(ctx->cpu, &rq->csd);
421         } else {
422                 rq->q->softirq_done_fn(rq);
423         }
424         put_cpu();
425 }
426
427 /**
428  * blk_mq_complete_request - end I/O on a request
429  * @rq:         the request being processed
430  *
431  * Description:
432  *      Ends all I/O on a request. It does not handle partial completions.
433  *      The actual completion happens out-of-order, through a IPI handler.
434  **/
435 void blk_mq_complete_request(struct request *rq)
436 {
437         if (unlikely(blk_should_fake_timeout(rq->q)))
438                 return;
439         if (!blk_mark_rq_complete(rq))
440                 __blk_mq_complete_request(rq);
441 }
442 EXPORT_SYMBOL(blk_mq_complete_request);
443
444 static void blk_mq_start_request(struct request *rq, bool last)
445 {
446         struct request_queue *q = rq->q;
447
448         trace_block_rq_issue(q, rq);
449
450         rq->resid_len = blk_rq_bytes(rq);
451         if (unlikely(blk_bidi_rq(rq)))
452                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
453
454         /*
455          * Just mark start time and set the started bit. Due to memory
456          * ordering, we know we'll see the correct deadline as long as
457          * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
458          * unless one has been set in the request.
459          */
460         if (!rq->timeout)
461                 rq->deadline = jiffies + q->rq_timeout;
462         else
463                 rq->deadline = jiffies + rq->timeout;
464
465         /*
466          * Mark us as started and clear complete. Complete might have been
467          * set if requeue raced with timeout, which then marked it as
468          * complete. So be sure to clear complete again when we start
469          * the request, otherwise we'll ignore the completion event.
470          */
471         set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
472         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
473
474         if (q->dma_drain_size && blk_rq_bytes(rq)) {
475                 /*
476                  * Make sure space for the drain appears.  We know we can do
477                  * this because max_hw_segments has been adjusted to be one
478                  * fewer than the device can handle.
479                  */
480                 rq->nr_phys_segments++;
481         }
482
483         /*
484          * Flag the last request in the series so that drivers know when IO
485          * should be kicked off, if they don't do it on a per-request basis.
486          *
487          * Note: the flag isn't the only condition drivers should do kick off.
488          * If drive is busy, the last request might not have the bit set.
489          */
490         if (last)
491                 rq->cmd_flags |= REQ_END;
492 }
493
494 static void __blk_mq_requeue_request(struct request *rq)
495 {
496         struct request_queue *q = rq->q;
497
498         trace_block_rq_requeue(q, rq);
499         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
500
501         rq->cmd_flags &= ~REQ_END;
502
503         if (q->dma_drain_size && blk_rq_bytes(rq))
504                 rq->nr_phys_segments--;
505 }
506
507 void blk_mq_requeue_request(struct request *rq)
508 {
509         __blk_mq_requeue_request(rq);
510         blk_clear_rq_complete(rq);
511
512         BUG_ON(blk_queued_rq(rq));
513         blk_mq_insert_request(rq, true, true, false);
514 }
515 EXPORT_SYMBOL(blk_mq_requeue_request);
516
517 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
518 {
519         return tags->rqs[tag];
520 }
521 EXPORT_SYMBOL(blk_mq_tag_to_rq);
522
523 struct blk_mq_timeout_data {
524         struct blk_mq_hw_ctx *hctx;
525         unsigned long *next;
526         unsigned int *next_set;
527 };
528
529 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
530 {
531         struct blk_mq_timeout_data *data = __data;
532         struct blk_mq_hw_ctx *hctx = data->hctx;
533         unsigned int tag;
534
535          /* It may not be in flight yet (this is where
536          * the REQ_ATOMIC_STARTED flag comes in). The requests are
537          * statically allocated, so we know it's always safe to access the
538          * memory associated with a bit offset into ->rqs[].
539          */
540         tag = 0;
541         do {
542                 struct request *rq;
543
544                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
545                 if (tag >= hctx->tags->nr_tags)
546                         break;
547
548                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
549                 if (rq->q != hctx->queue)
550                         continue;
551                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
552                         continue;
553
554                 blk_rq_check_expired(rq, data->next, data->next_set);
555         } while (1);
556 }
557
558 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
559                                         unsigned long *next,
560                                         unsigned int *next_set)
561 {
562         struct blk_mq_timeout_data data = {
563                 .hctx           = hctx,
564                 .next           = next,
565                 .next_set       = next_set,
566         };
567
568         /*
569          * Ask the tagging code to iterate busy requests, so we can
570          * check them for timeout.
571          */
572         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
573 }
574
575 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
576 {
577         struct request_queue *q = rq->q;
578
579         /*
580          * We know that complete is set at this point. If STARTED isn't set
581          * anymore, then the request isn't active and the "timeout" should
582          * just be ignored. This can happen due to the bitflag ordering.
583          * Timeout first checks if STARTED is set, and if it is, assumes
584          * the request is active. But if we race with completion, then
585          * we both flags will get cleared. So check here again, and ignore
586          * a timeout event with a request that isn't active.
587          */
588         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
589                 return BLK_EH_NOT_HANDLED;
590
591         if (!q->mq_ops->timeout)
592                 return BLK_EH_RESET_TIMER;
593
594         return q->mq_ops->timeout(rq);
595 }
596
597 static void blk_mq_rq_timer(unsigned long data)
598 {
599         struct request_queue *q = (struct request_queue *) data;
600         struct blk_mq_hw_ctx *hctx;
601         unsigned long next = 0;
602         int i, next_set = 0;
603
604         queue_for_each_hw_ctx(q, hctx, i) {
605                 /*
606                  * If not software queues are currently mapped to this
607                  * hardware queue, there's nothing to check
608                  */
609                 if (!hctx->nr_ctx || !hctx->tags)
610                         continue;
611
612                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
613         }
614
615         if (next_set) {
616                 next = blk_rq_timeout(round_jiffies_up(next));
617                 mod_timer(&q->timeout, next);
618         } else {
619                 queue_for_each_hw_ctx(q, hctx, i)
620                         blk_mq_tag_idle(hctx);
621         }
622 }
623
624 /*
625  * Reverse check our software queue for entries that we could potentially
626  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
627  * too much time checking for merges.
628  */
629 static bool blk_mq_attempt_merge(struct request_queue *q,
630                                  struct blk_mq_ctx *ctx, struct bio *bio)
631 {
632         struct request *rq;
633         int checked = 8;
634
635         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
636                 int el_ret;
637
638                 if (!checked--)
639                         break;
640
641                 if (!blk_rq_merge_ok(rq, bio))
642                         continue;
643
644                 el_ret = blk_try_merge(rq, bio);
645                 if (el_ret == ELEVATOR_BACK_MERGE) {
646                         if (bio_attempt_back_merge(q, rq, bio)) {
647                                 ctx->rq_merged++;
648                                 return true;
649                         }
650                         break;
651                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
652                         if (bio_attempt_front_merge(q, rq, bio)) {
653                                 ctx->rq_merged++;
654                                 return true;
655                         }
656                         break;
657                 }
658         }
659
660         return false;
661 }
662
663 /*
664  * Process software queues that have been marked busy, splicing them
665  * to the for-dispatch
666  */
667 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
668 {
669         struct blk_mq_ctx *ctx;
670         int i;
671
672         for (i = 0; i < hctx->ctx_map.map_size; i++) {
673                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
674                 unsigned int off, bit;
675
676                 if (!bm->word)
677                         continue;
678
679                 bit = 0;
680                 off = i * hctx->ctx_map.bits_per_word;
681                 do {
682                         bit = find_next_bit(&bm->word, bm->depth, bit);
683                         if (bit >= bm->depth)
684                                 break;
685
686                         ctx = hctx->ctxs[bit + off];
687                         clear_bit(bit, &bm->word);
688                         spin_lock(&ctx->lock);
689                         list_splice_tail_init(&ctx->rq_list, list);
690                         spin_unlock(&ctx->lock);
691
692                         bit++;
693                 } while (1);
694         }
695 }
696
697 /*
698  * Run this hardware queue, pulling any software queues mapped to it in.
699  * Note that this function currently has various problems around ordering
700  * of IO. In particular, we'd like FIFO behaviour on handling existing
701  * items on the hctx->dispatch list. Ignore that for now.
702  */
703 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
704 {
705         struct request_queue *q = hctx->queue;
706         struct request *rq;
707         LIST_HEAD(rq_list);
708         int queued;
709
710         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
711
712         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
713                 return;
714
715         hctx->run++;
716
717         /*
718          * Touch any software queue that has pending entries.
719          */
720         flush_busy_ctxs(hctx, &rq_list);
721
722         /*
723          * If we have previous entries on our dispatch list, grab them
724          * and stuff them at the front for more fair dispatch.
725          */
726         if (!list_empty_careful(&hctx->dispatch)) {
727                 spin_lock(&hctx->lock);
728                 if (!list_empty(&hctx->dispatch))
729                         list_splice_init(&hctx->dispatch, &rq_list);
730                 spin_unlock(&hctx->lock);
731         }
732
733         /*
734          * Now process all the entries, sending them to the driver.
735          */
736         queued = 0;
737         while (!list_empty(&rq_list)) {
738                 int ret;
739
740                 rq = list_first_entry(&rq_list, struct request, queuelist);
741                 list_del_init(&rq->queuelist);
742
743                 blk_mq_start_request(rq, list_empty(&rq_list));
744
745                 ret = q->mq_ops->queue_rq(hctx, rq);
746                 switch (ret) {
747                 case BLK_MQ_RQ_QUEUE_OK:
748                         queued++;
749                         continue;
750                 case BLK_MQ_RQ_QUEUE_BUSY:
751                         list_add(&rq->queuelist, &rq_list);
752                         __blk_mq_requeue_request(rq);
753                         break;
754                 default:
755                         pr_err("blk-mq: bad return on queue: %d\n", ret);
756                 case BLK_MQ_RQ_QUEUE_ERROR:
757                         rq->errors = -EIO;
758                         blk_mq_end_io(rq, rq->errors);
759                         break;
760                 }
761
762                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
763                         break;
764         }
765
766         if (!queued)
767                 hctx->dispatched[0]++;
768         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
769                 hctx->dispatched[ilog2(queued) + 1]++;
770
771         /*
772          * Any items that need requeuing? Stuff them into hctx->dispatch,
773          * that is where we will continue on next queue run.
774          */
775         if (!list_empty(&rq_list)) {
776                 spin_lock(&hctx->lock);
777                 list_splice(&rq_list, &hctx->dispatch);
778                 spin_unlock(&hctx->lock);
779         }
780 }
781
782 /*
783  * It'd be great if the workqueue API had a way to pass
784  * in a mask and had some smarts for more clever placement.
785  * For now we just round-robin here, switching for every
786  * BLK_MQ_CPU_WORK_BATCH queued items.
787  */
788 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
789 {
790         int cpu = hctx->next_cpu;
791
792         if (--hctx->next_cpu_batch <= 0) {
793                 int next_cpu;
794
795                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
796                 if (next_cpu >= nr_cpu_ids)
797                         next_cpu = cpumask_first(hctx->cpumask);
798
799                 hctx->next_cpu = next_cpu;
800                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
801         }
802
803         return cpu;
804 }
805
806 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
807 {
808         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
809                 return;
810
811         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
812                 __blk_mq_run_hw_queue(hctx);
813         else if (hctx->queue->nr_hw_queues == 1)
814                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
815         else {
816                 unsigned int cpu;
817
818                 cpu = blk_mq_hctx_next_cpu(hctx);
819                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
820         }
821 }
822
823 void blk_mq_run_queues(struct request_queue *q, bool async)
824 {
825         struct blk_mq_hw_ctx *hctx;
826         int i;
827
828         queue_for_each_hw_ctx(q, hctx, i) {
829                 if ((!blk_mq_hctx_has_pending(hctx) &&
830                     list_empty_careful(&hctx->dispatch)) ||
831                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
832                         continue;
833
834                 preempt_disable();
835                 blk_mq_run_hw_queue(hctx, async);
836                 preempt_enable();
837         }
838 }
839 EXPORT_SYMBOL(blk_mq_run_queues);
840
841 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
842 {
843         cancel_delayed_work(&hctx->run_work);
844         cancel_delayed_work(&hctx->delay_work);
845         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
846 }
847 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
848
849 void blk_mq_stop_hw_queues(struct request_queue *q)
850 {
851         struct blk_mq_hw_ctx *hctx;
852         int i;
853
854         queue_for_each_hw_ctx(q, hctx, i)
855                 blk_mq_stop_hw_queue(hctx);
856 }
857 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
858
859 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
860 {
861         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
862
863         preempt_disable();
864         __blk_mq_run_hw_queue(hctx);
865         preempt_enable();
866 }
867 EXPORT_SYMBOL(blk_mq_start_hw_queue);
868
869 void blk_mq_start_hw_queues(struct request_queue *q)
870 {
871         struct blk_mq_hw_ctx *hctx;
872         int i;
873
874         queue_for_each_hw_ctx(q, hctx, i)
875                 blk_mq_start_hw_queue(hctx);
876 }
877 EXPORT_SYMBOL(blk_mq_start_hw_queues);
878
879
880 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
881 {
882         struct blk_mq_hw_ctx *hctx;
883         int i;
884
885         queue_for_each_hw_ctx(q, hctx, i) {
886                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
887                         continue;
888
889                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
890                 preempt_disable();
891                 blk_mq_run_hw_queue(hctx, async);
892                 preempt_enable();
893         }
894 }
895 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
896
897 static void blk_mq_run_work_fn(struct work_struct *work)
898 {
899         struct blk_mq_hw_ctx *hctx;
900
901         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
902
903         __blk_mq_run_hw_queue(hctx);
904 }
905
906 static void blk_mq_delay_work_fn(struct work_struct *work)
907 {
908         struct blk_mq_hw_ctx *hctx;
909
910         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
911
912         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
913                 __blk_mq_run_hw_queue(hctx);
914 }
915
916 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
917 {
918         unsigned long tmo = msecs_to_jiffies(msecs);
919
920         if (hctx->queue->nr_hw_queues == 1)
921                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
922         else {
923                 unsigned int cpu;
924
925                 cpu = blk_mq_hctx_next_cpu(hctx);
926                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
927         }
928 }
929 EXPORT_SYMBOL(blk_mq_delay_queue);
930
931 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
932                                     struct request *rq, bool at_head)
933 {
934         struct blk_mq_ctx *ctx = rq->mq_ctx;
935
936         trace_block_rq_insert(hctx->queue, rq);
937
938         if (at_head)
939                 list_add(&rq->queuelist, &ctx->rq_list);
940         else
941                 list_add_tail(&rq->queuelist, &ctx->rq_list);
942
943         blk_mq_hctx_mark_pending(hctx, ctx);
944
945         /*
946          * We do this early, to ensure we are on the right CPU.
947          */
948         blk_add_timer(rq);
949 }
950
951 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
952                 bool async)
953 {
954         struct request_queue *q = rq->q;
955         struct blk_mq_hw_ctx *hctx;
956         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
957
958         current_ctx = blk_mq_get_ctx(q);
959         if (!cpu_online(ctx->cpu))
960                 rq->mq_ctx = ctx = current_ctx;
961
962         hctx = q->mq_ops->map_queue(q, ctx->cpu);
963
964         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
965             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
966                 blk_insert_flush(rq);
967         } else {
968                 spin_lock(&ctx->lock);
969                 __blk_mq_insert_request(hctx, rq, at_head);
970                 spin_unlock(&ctx->lock);
971         }
972
973         if (run_queue)
974                 blk_mq_run_hw_queue(hctx, async);
975
976         blk_mq_put_ctx(current_ctx);
977 }
978
979 static void blk_mq_insert_requests(struct request_queue *q,
980                                      struct blk_mq_ctx *ctx,
981                                      struct list_head *list,
982                                      int depth,
983                                      bool from_schedule)
984
985 {
986         struct blk_mq_hw_ctx *hctx;
987         struct blk_mq_ctx *current_ctx;
988
989         trace_block_unplug(q, depth, !from_schedule);
990
991         current_ctx = blk_mq_get_ctx(q);
992
993         if (!cpu_online(ctx->cpu))
994                 ctx = current_ctx;
995         hctx = q->mq_ops->map_queue(q, ctx->cpu);
996
997         /*
998          * preemption doesn't flush plug list, so it's possible ctx->cpu is
999          * offline now
1000          */
1001         spin_lock(&ctx->lock);
1002         while (!list_empty(list)) {
1003                 struct request *rq;
1004
1005                 rq = list_first_entry(list, struct request, queuelist);
1006                 list_del_init(&rq->queuelist);
1007                 rq->mq_ctx = ctx;
1008                 __blk_mq_insert_request(hctx, rq, false);
1009         }
1010         spin_unlock(&ctx->lock);
1011
1012         blk_mq_run_hw_queue(hctx, from_schedule);
1013         blk_mq_put_ctx(current_ctx);
1014 }
1015
1016 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1017 {
1018         struct request *rqa = container_of(a, struct request, queuelist);
1019         struct request *rqb = container_of(b, struct request, queuelist);
1020
1021         return !(rqa->mq_ctx < rqb->mq_ctx ||
1022                  (rqa->mq_ctx == rqb->mq_ctx &&
1023                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1024 }
1025
1026 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1027 {
1028         struct blk_mq_ctx *this_ctx;
1029         struct request_queue *this_q;
1030         struct request *rq;
1031         LIST_HEAD(list);
1032         LIST_HEAD(ctx_list);
1033         unsigned int depth;
1034
1035         list_splice_init(&plug->mq_list, &list);
1036
1037         list_sort(NULL, &list, plug_ctx_cmp);
1038
1039         this_q = NULL;
1040         this_ctx = NULL;
1041         depth = 0;
1042
1043         while (!list_empty(&list)) {
1044                 rq = list_entry_rq(list.next);
1045                 list_del_init(&rq->queuelist);
1046                 BUG_ON(!rq->q);
1047                 if (rq->mq_ctx != this_ctx) {
1048                         if (this_ctx) {
1049                                 blk_mq_insert_requests(this_q, this_ctx,
1050                                                         &ctx_list, depth,
1051                                                         from_schedule);
1052                         }
1053
1054                         this_ctx = rq->mq_ctx;
1055                         this_q = rq->q;
1056                         depth = 0;
1057                 }
1058
1059                 depth++;
1060                 list_add_tail(&rq->queuelist, &ctx_list);
1061         }
1062
1063         /*
1064          * If 'this_ctx' is set, we know we have entries to complete
1065          * on 'ctx_list'. Do those.
1066          */
1067         if (this_ctx) {
1068                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1069                                        from_schedule);
1070         }
1071 }
1072
1073 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1074 {
1075         init_request_from_bio(rq, bio);
1076         blk_account_io_start(rq, 1);
1077 }
1078
1079 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1080                                          struct blk_mq_ctx *ctx,
1081                                          struct request *rq, struct bio *bio)
1082 {
1083         struct request_queue *q = hctx->queue;
1084
1085         if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1086                 blk_mq_bio_to_request(rq, bio);
1087                 spin_lock(&ctx->lock);
1088 insert_rq:
1089                 __blk_mq_insert_request(hctx, rq, false);
1090                 spin_unlock(&ctx->lock);
1091                 return false;
1092         } else {
1093                 spin_lock(&ctx->lock);
1094                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1095                         blk_mq_bio_to_request(rq, bio);
1096                         goto insert_rq;
1097                 }
1098
1099                 spin_unlock(&ctx->lock);
1100                 __blk_mq_free_request(hctx, ctx, rq);
1101                 return true;
1102         }
1103 }
1104
1105 struct blk_map_ctx {
1106         struct blk_mq_hw_ctx *hctx;
1107         struct blk_mq_ctx *ctx;
1108 };
1109
1110 static struct request *blk_mq_map_request(struct request_queue *q,
1111                                           struct bio *bio,
1112                                           struct blk_map_ctx *data)
1113 {
1114         struct blk_mq_hw_ctx *hctx;
1115         struct blk_mq_ctx *ctx;
1116         struct request *rq;
1117         int rw = bio_data_dir(bio);
1118
1119         if (unlikely(blk_mq_queue_enter(q))) {
1120                 bio_endio(bio, -EIO);
1121                 return NULL;
1122         }
1123
1124         ctx = blk_mq_get_ctx(q);
1125         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1126
1127         if (rw_is_sync(bio->bi_rw))
1128                 rw |= REQ_SYNC;
1129
1130         trace_block_getrq(q, bio, rw);
1131         rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1132         if (likely(rq))
1133                 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1134         else {
1135                 blk_mq_put_ctx(ctx);
1136                 trace_block_sleeprq(q, bio, rw);
1137                 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1138                                                         false);
1139                 ctx = rq->mq_ctx;
1140                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1141         }
1142
1143         hctx->queued++;
1144         data->hctx = hctx;
1145         data->ctx = ctx;
1146         return rq;
1147 }
1148
1149 /*
1150  * Multiple hardware queue variant. This will not use per-process plugs,
1151  * but will attempt to bypass the hctx queueing if we can go straight to
1152  * hardware for SYNC IO.
1153  */
1154 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1155 {
1156         const int is_sync = rw_is_sync(bio->bi_rw);
1157         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1158         struct blk_map_ctx data;
1159         struct request *rq;
1160
1161         blk_queue_bounce(q, &bio);
1162
1163         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1164                 bio_endio(bio, -EIO);
1165                 return;
1166         }
1167
1168         rq = blk_mq_map_request(q, bio, &data);
1169         if (unlikely(!rq))
1170                 return;
1171
1172         if (unlikely(is_flush_fua)) {
1173                 blk_mq_bio_to_request(rq, bio);
1174                 blk_insert_flush(rq);
1175                 goto run_queue;
1176         }
1177
1178         if (is_sync) {
1179                 int ret;
1180
1181                 blk_mq_bio_to_request(rq, bio);
1182                 blk_mq_start_request(rq, true);
1183
1184                 /*
1185                  * For OK queue, we are done. For error, kill it. Any other
1186                  * error (busy), just add it to our list as we previously
1187                  * would have done
1188                  */
1189                 ret = q->mq_ops->queue_rq(data.hctx, rq);
1190                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1191                         goto done;
1192                 else {
1193                         __blk_mq_requeue_request(rq);
1194
1195                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1196                                 rq->errors = -EIO;
1197                                 blk_mq_end_io(rq, rq->errors);
1198                                 goto done;
1199                         }
1200                 }
1201         }
1202
1203         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1204                 /*
1205                  * For a SYNC request, send it to the hardware immediately. For
1206                  * an ASYNC request, just ensure that we run it later on. The
1207                  * latter allows for merging opportunities and more efficient
1208                  * dispatching.
1209                  */
1210 run_queue:
1211                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1212         }
1213 done:
1214         blk_mq_put_ctx(data.ctx);
1215 }
1216
1217 /*
1218  * Single hardware queue variant. This will attempt to use any per-process
1219  * plug for merging and IO deferral.
1220  */
1221 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1222 {
1223         const int is_sync = rw_is_sync(bio->bi_rw);
1224         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1225         unsigned int use_plug, request_count = 0;
1226         struct blk_map_ctx data;
1227         struct request *rq;
1228
1229         /*
1230          * If we have multiple hardware queues, just go directly to
1231          * one of those for sync IO.
1232          */
1233         use_plug = !is_flush_fua && !is_sync;
1234
1235         blk_queue_bounce(q, &bio);
1236
1237         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1238                 bio_endio(bio, -EIO);
1239                 return;
1240         }
1241
1242         if (use_plug && !blk_queue_nomerges(q) &&
1243             blk_attempt_plug_merge(q, bio, &request_count))
1244                 return;
1245
1246         rq = blk_mq_map_request(q, bio, &data);
1247
1248         if (unlikely(is_flush_fua)) {
1249                 blk_mq_bio_to_request(rq, bio);
1250                 blk_insert_flush(rq);
1251                 goto run_queue;
1252         }
1253
1254         /*
1255          * A task plug currently exists. Since this is completely lockless,
1256          * utilize that to temporarily store requests until the task is
1257          * either done or scheduled away.
1258          */
1259         if (use_plug) {
1260                 struct blk_plug *plug = current->plug;
1261
1262                 if (plug) {
1263                         blk_mq_bio_to_request(rq, bio);
1264                         if (list_empty(&plug->mq_list))
1265                                 trace_block_plug(q);
1266                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1267                                 blk_flush_plug_list(plug, false);
1268                                 trace_block_plug(q);
1269                         }
1270                         list_add_tail(&rq->queuelist, &plug->mq_list);
1271                         blk_mq_put_ctx(data.ctx);
1272                         return;
1273                 }
1274         }
1275
1276         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1277                 /*
1278                  * For a SYNC request, send it to the hardware immediately. For
1279                  * an ASYNC request, just ensure that we run it later on. The
1280                  * latter allows for merging opportunities and more efficient
1281                  * dispatching.
1282                  */
1283 run_queue:
1284                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1285         }
1286
1287         blk_mq_put_ctx(data.ctx);
1288 }
1289
1290 /*
1291  * Default mapping to a software queue, since we use one per CPU.
1292  */
1293 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1294 {
1295         return q->queue_hw_ctx[q->mq_map[cpu]];
1296 }
1297 EXPORT_SYMBOL(blk_mq_map_queue);
1298
1299 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1300                                                    unsigned int hctx_index)
1301 {
1302         return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
1303                                 set->numa_node);
1304 }
1305 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1306
1307 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1308                                  unsigned int hctx_index)
1309 {
1310         kfree(hctx);
1311 }
1312 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1313
1314 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1315                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1316 {
1317         struct page *page;
1318
1319         if (tags->rqs && set->ops->exit_request) {
1320                 int i;
1321
1322                 for (i = 0; i < tags->nr_tags; i++) {
1323                         if (!tags->rqs[i])
1324                                 continue;
1325                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1326                                                 hctx_idx, i);
1327                 }
1328         }
1329
1330         while (!list_empty(&tags->page_list)) {
1331                 page = list_first_entry(&tags->page_list, struct page, lru);
1332                 list_del_init(&page->lru);
1333                 __free_pages(page, page->private);
1334         }
1335
1336         kfree(tags->rqs);
1337
1338         blk_mq_free_tags(tags);
1339 }
1340
1341 static size_t order_to_size(unsigned int order)
1342 {
1343         return (size_t)PAGE_SIZE << order;
1344 }
1345
1346 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1347                 unsigned int hctx_idx)
1348 {
1349         struct blk_mq_tags *tags;
1350         unsigned int i, j, entries_per_page, max_order = 4;
1351         size_t rq_size, left;
1352
1353         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1354                                 set->numa_node);
1355         if (!tags)
1356                 return NULL;
1357
1358         INIT_LIST_HEAD(&tags->page_list);
1359
1360         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1361                                         GFP_KERNEL, set->numa_node);
1362         if (!tags->rqs) {
1363                 blk_mq_free_tags(tags);
1364                 return NULL;
1365         }
1366
1367         /*
1368          * rq_size is the size of the request plus driver payload, rounded
1369          * to the cacheline size
1370          */
1371         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1372                                 cache_line_size());
1373         left = rq_size * set->queue_depth;
1374
1375         for (i = 0; i < set->queue_depth; ) {
1376                 int this_order = max_order;
1377                 struct page *page;
1378                 int to_do;
1379                 void *p;
1380
1381                 while (left < order_to_size(this_order - 1) && this_order)
1382                         this_order--;
1383
1384                 do {
1385                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1386                                                 this_order);
1387                         if (page)
1388                                 break;
1389                         if (!this_order--)
1390                                 break;
1391                         if (order_to_size(this_order) < rq_size)
1392                                 break;
1393                 } while (1);
1394
1395                 if (!page)
1396                         goto fail;
1397
1398                 page->private = this_order;
1399                 list_add_tail(&page->lru, &tags->page_list);
1400
1401                 p = page_address(page);
1402                 entries_per_page = order_to_size(this_order) / rq_size;
1403                 to_do = min(entries_per_page, set->queue_depth - i);
1404                 left -= to_do * rq_size;
1405                 for (j = 0; j < to_do; j++) {
1406                         tags->rqs[i] = p;
1407                         if (set->ops->init_request) {
1408                                 if (set->ops->init_request(set->driver_data,
1409                                                 tags->rqs[i], hctx_idx, i,
1410                                                 set->numa_node))
1411                                         goto fail;
1412                         }
1413
1414                         p += rq_size;
1415                         i++;
1416                 }
1417         }
1418
1419         return tags;
1420
1421 fail:
1422         pr_warn("%s: failed to allocate requests\n", __func__);
1423         blk_mq_free_rq_map(set, tags, hctx_idx);
1424         return NULL;
1425 }
1426
1427 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1428 {
1429         kfree(bitmap->map);
1430 }
1431
1432 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1433 {
1434         unsigned int bpw = 8, total, num_maps, i;
1435
1436         bitmap->bits_per_word = bpw;
1437
1438         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1439         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1440                                         GFP_KERNEL, node);
1441         if (!bitmap->map)
1442                 return -ENOMEM;
1443
1444         bitmap->map_size = num_maps;
1445
1446         total = nr_cpu_ids;
1447         for (i = 0; i < num_maps; i++) {
1448                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1449                 total -= bitmap->map[i].depth;
1450         }
1451
1452         return 0;
1453 }
1454
1455 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1456 {
1457         struct request_queue *q = hctx->queue;
1458         struct blk_mq_ctx *ctx;
1459         LIST_HEAD(tmp);
1460
1461         /*
1462          * Move ctx entries to new CPU, if this one is going away.
1463          */
1464         ctx = __blk_mq_get_ctx(q, cpu);
1465
1466         spin_lock(&ctx->lock);
1467         if (!list_empty(&ctx->rq_list)) {
1468                 list_splice_init(&ctx->rq_list, &tmp);
1469                 blk_mq_hctx_clear_pending(hctx, ctx);
1470         }
1471         spin_unlock(&ctx->lock);
1472
1473         if (list_empty(&tmp))
1474                 return NOTIFY_OK;
1475
1476         ctx = blk_mq_get_ctx(q);
1477         spin_lock(&ctx->lock);
1478
1479         while (!list_empty(&tmp)) {
1480                 struct request *rq;
1481
1482                 rq = list_first_entry(&tmp, struct request, queuelist);
1483                 rq->mq_ctx = ctx;
1484                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1485         }
1486
1487         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1488         blk_mq_hctx_mark_pending(hctx, ctx);
1489
1490         spin_unlock(&ctx->lock);
1491
1492         blk_mq_run_hw_queue(hctx, true);
1493         blk_mq_put_ctx(ctx);
1494         return NOTIFY_OK;
1495 }
1496
1497 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1498 {
1499         struct request_queue *q = hctx->queue;
1500         struct blk_mq_tag_set *set = q->tag_set;
1501
1502         if (set->tags[hctx->queue_num])
1503                 return NOTIFY_OK;
1504
1505         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1506         if (!set->tags[hctx->queue_num])
1507                 return NOTIFY_STOP;
1508
1509         hctx->tags = set->tags[hctx->queue_num];
1510         return NOTIFY_OK;
1511 }
1512
1513 static int blk_mq_hctx_notify(void *data, unsigned long action,
1514                               unsigned int cpu)
1515 {
1516         struct blk_mq_hw_ctx *hctx = data;
1517
1518         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1519                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1520         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1521                 return blk_mq_hctx_cpu_online(hctx, cpu);
1522
1523         return NOTIFY_OK;
1524 }
1525
1526 static int blk_mq_init_hw_queues(struct request_queue *q,
1527                 struct blk_mq_tag_set *set)
1528 {
1529         struct blk_mq_hw_ctx *hctx;
1530         unsigned int i, j;
1531
1532         /*
1533          * Initialize hardware queues
1534          */
1535         queue_for_each_hw_ctx(q, hctx, i) {
1536                 int node;
1537
1538                 node = hctx->numa_node;
1539                 if (node == NUMA_NO_NODE)
1540                         node = hctx->numa_node = set->numa_node;
1541
1542                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1543                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1544                 spin_lock_init(&hctx->lock);
1545                 INIT_LIST_HEAD(&hctx->dispatch);
1546                 hctx->queue = q;
1547                 hctx->queue_num = i;
1548                 hctx->flags = set->flags;
1549                 hctx->cmd_size = set->cmd_size;
1550
1551                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1552                                                 blk_mq_hctx_notify, hctx);
1553                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1554
1555                 hctx->tags = set->tags[i];
1556
1557                 /*
1558                  * Allocate space for all possible cpus to avoid allocation in
1559                  * runtime
1560                  */
1561                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1562                                                 GFP_KERNEL, node);
1563                 if (!hctx->ctxs)
1564                         break;
1565
1566                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1567                         break;
1568
1569                 hctx->nr_ctx = 0;
1570
1571                 if (set->ops->init_hctx &&
1572                     set->ops->init_hctx(hctx, set->driver_data, i))
1573                         break;
1574         }
1575
1576         if (i == q->nr_hw_queues)
1577                 return 0;
1578
1579         /*
1580          * Init failed
1581          */
1582         queue_for_each_hw_ctx(q, hctx, j) {
1583                 if (i == j)
1584                         break;
1585
1586                 if (set->ops->exit_hctx)
1587                         set->ops->exit_hctx(hctx, j);
1588
1589                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1590                 kfree(hctx->ctxs);
1591                 blk_mq_free_bitmap(&hctx->ctx_map);
1592         }
1593
1594         return 1;
1595 }
1596
1597 static void blk_mq_init_cpu_queues(struct request_queue *q,
1598                                    unsigned int nr_hw_queues)
1599 {
1600         unsigned int i;
1601
1602         for_each_possible_cpu(i) {
1603                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1604                 struct blk_mq_hw_ctx *hctx;
1605
1606                 memset(__ctx, 0, sizeof(*__ctx));
1607                 __ctx->cpu = i;
1608                 spin_lock_init(&__ctx->lock);
1609                 INIT_LIST_HEAD(&__ctx->rq_list);
1610                 __ctx->queue = q;
1611
1612                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1613                 if (!cpu_online(i))
1614                         continue;
1615
1616                 hctx = q->mq_ops->map_queue(q, i);
1617                 cpumask_set_cpu(i, hctx->cpumask);
1618                 hctx->nr_ctx++;
1619
1620                 /*
1621                  * Set local node, IFF we have more than one hw queue. If
1622                  * not, we remain on the home node of the device
1623                  */
1624                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1625                         hctx->numa_node = cpu_to_node(i);
1626         }
1627 }
1628
1629 static void blk_mq_map_swqueue(struct request_queue *q)
1630 {
1631         unsigned int i;
1632         struct blk_mq_hw_ctx *hctx;
1633         struct blk_mq_ctx *ctx;
1634
1635         queue_for_each_hw_ctx(q, hctx, i) {
1636                 cpumask_clear(hctx->cpumask);
1637                 hctx->nr_ctx = 0;
1638         }
1639
1640         /*
1641          * Map software to hardware queues
1642          */
1643         queue_for_each_ctx(q, ctx, i) {
1644                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1645                 if (!cpu_online(i))
1646                         continue;
1647
1648                 hctx = q->mq_ops->map_queue(q, i);
1649                 cpumask_set_cpu(i, hctx->cpumask);
1650                 ctx->index_hw = hctx->nr_ctx;
1651                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1652         }
1653
1654         queue_for_each_hw_ctx(q, hctx, i) {
1655                 /*
1656                  * If not software queues are mapped to this hardware queue,
1657                  * disable it and free the request entries
1658                  */
1659                 if (!hctx->nr_ctx) {
1660                         struct blk_mq_tag_set *set = q->tag_set;
1661
1662                         if (set->tags[i]) {
1663                                 blk_mq_free_rq_map(set, set->tags[i], i);
1664                                 set->tags[i] = NULL;
1665                                 hctx->tags = NULL;
1666                         }
1667                         continue;
1668                 }
1669
1670                 /*
1671                  * Initialize batch roundrobin counts
1672                  */
1673                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1674                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1675         }
1676 }
1677
1678 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1679 {
1680         struct blk_mq_hw_ctx *hctx;
1681         struct request_queue *q;
1682         bool shared;
1683         int i;
1684
1685         if (set->tag_list.next == set->tag_list.prev)
1686                 shared = false;
1687         else
1688                 shared = true;
1689
1690         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1691                 blk_mq_freeze_queue(q);
1692
1693                 queue_for_each_hw_ctx(q, hctx, i) {
1694                         if (shared)
1695                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1696                         else
1697                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1698                 }
1699                 blk_mq_unfreeze_queue(q);
1700         }
1701 }
1702
1703 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1704 {
1705         struct blk_mq_tag_set *set = q->tag_set;
1706
1707         blk_mq_freeze_queue(q);
1708
1709         mutex_lock(&set->tag_list_lock);
1710         list_del_init(&q->tag_set_list);
1711         blk_mq_update_tag_set_depth(set);
1712         mutex_unlock(&set->tag_list_lock);
1713
1714         blk_mq_unfreeze_queue(q);
1715 }
1716
1717 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1718                                      struct request_queue *q)
1719 {
1720         q->tag_set = set;
1721
1722         mutex_lock(&set->tag_list_lock);
1723         list_add_tail(&q->tag_set_list, &set->tag_list);
1724         blk_mq_update_tag_set_depth(set);
1725         mutex_unlock(&set->tag_list_lock);
1726 }
1727
1728 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1729 {
1730         struct blk_mq_hw_ctx **hctxs;
1731         struct blk_mq_ctx *ctx;
1732         struct request_queue *q;
1733         int i;
1734
1735         ctx = alloc_percpu(struct blk_mq_ctx);
1736         if (!ctx)
1737                 return ERR_PTR(-ENOMEM);
1738
1739         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1740                         set->numa_node);
1741
1742         if (!hctxs)
1743                 goto err_percpu;
1744
1745         for (i = 0; i < set->nr_hw_queues; i++) {
1746                 hctxs[i] = set->ops->alloc_hctx(set, i);
1747                 if (!hctxs[i])
1748                         goto err_hctxs;
1749
1750                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1751                         goto err_hctxs;
1752
1753                 atomic_set(&hctxs[i]->nr_active, 0);
1754                 hctxs[i]->numa_node = NUMA_NO_NODE;
1755                 hctxs[i]->queue_num = i;
1756         }
1757
1758         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1759         if (!q)
1760                 goto err_hctxs;
1761
1762         q->mq_map = blk_mq_make_queue_map(set);
1763         if (!q->mq_map)
1764                 goto err_map;
1765
1766         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1767         blk_queue_rq_timeout(q, 30000);
1768
1769         q->nr_queues = nr_cpu_ids;
1770         q->nr_hw_queues = set->nr_hw_queues;
1771
1772         q->queue_ctx = ctx;
1773         q->queue_hw_ctx = hctxs;
1774
1775         q->mq_ops = set->ops;
1776         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1777
1778         q->sg_reserved_size = INT_MAX;
1779
1780         if (q->nr_hw_queues > 1)
1781                 blk_queue_make_request(q, blk_mq_make_request);
1782         else
1783                 blk_queue_make_request(q, blk_sq_make_request);
1784
1785         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1786         if (set->timeout)
1787                 blk_queue_rq_timeout(q, set->timeout);
1788
1789         /*
1790          * Do this after blk_queue_make_request() overrides it...
1791          */
1792         q->nr_requests = set->queue_depth;
1793
1794         if (set->ops->complete)
1795                 blk_queue_softirq_done(q, set->ops->complete);
1796
1797         blk_mq_init_flush(q);
1798         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1799
1800         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1801                                 set->cmd_size, cache_line_size()),
1802                                 GFP_KERNEL);
1803         if (!q->flush_rq)
1804                 goto err_hw;
1805
1806         if (blk_mq_init_hw_queues(q, set))
1807                 goto err_flush_rq;
1808
1809         mutex_lock(&all_q_mutex);
1810         list_add_tail(&q->all_q_node, &all_q_list);
1811         mutex_unlock(&all_q_mutex);
1812
1813         blk_mq_add_queue_tag_set(set, q);
1814
1815         blk_mq_map_swqueue(q);
1816
1817         return q;
1818
1819 err_flush_rq:
1820         kfree(q->flush_rq);
1821 err_hw:
1822         kfree(q->mq_map);
1823 err_map:
1824         blk_cleanup_queue(q);
1825 err_hctxs:
1826         for (i = 0; i < set->nr_hw_queues; i++) {
1827                 if (!hctxs[i])
1828                         break;
1829                 free_cpumask_var(hctxs[i]->cpumask);
1830                 set->ops->free_hctx(hctxs[i], i);
1831         }
1832         kfree(hctxs);
1833 err_percpu:
1834         free_percpu(ctx);
1835         return ERR_PTR(-ENOMEM);
1836 }
1837 EXPORT_SYMBOL(blk_mq_init_queue);
1838
1839 void blk_mq_free_queue(struct request_queue *q)
1840 {
1841         struct blk_mq_hw_ctx *hctx;
1842         int i;
1843
1844         blk_mq_del_queue_tag_set(q);
1845
1846         queue_for_each_hw_ctx(q, hctx, i) {
1847                 kfree(hctx->ctxs);
1848                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1849                 if (q->mq_ops->exit_hctx)
1850                         q->mq_ops->exit_hctx(hctx, i);
1851                 free_cpumask_var(hctx->cpumask);
1852                 q->mq_ops->free_hctx(hctx, i);
1853         }
1854
1855         free_percpu(q->queue_ctx);
1856         kfree(q->queue_hw_ctx);
1857         kfree(q->mq_map);
1858
1859         q->queue_ctx = NULL;
1860         q->queue_hw_ctx = NULL;
1861         q->mq_map = NULL;
1862
1863         mutex_lock(&all_q_mutex);
1864         list_del_init(&q->all_q_node);
1865         mutex_unlock(&all_q_mutex);
1866 }
1867
1868 /* Basically redo blk_mq_init_queue with queue frozen */
1869 static void blk_mq_queue_reinit(struct request_queue *q)
1870 {
1871         blk_mq_freeze_queue(q);
1872
1873         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1874
1875         /*
1876          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1877          * we should change hctx numa_node according to new topology (this
1878          * involves free and re-allocate memory, worthy doing?)
1879          */
1880
1881         blk_mq_map_swqueue(q);
1882
1883         blk_mq_unfreeze_queue(q);
1884 }
1885
1886 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1887                                       unsigned long action, void *hcpu)
1888 {
1889         struct request_queue *q;
1890
1891         /*
1892          * Before new mappings are established, hotadded cpu might already
1893          * start handling requests. This doesn't break anything as we map
1894          * offline CPUs to first hardware queue. We will re-init the queue
1895          * below to get optimal settings.
1896          */
1897         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1898             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1899                 return NOTIFY_OK;
1900
1901         mutex_lock(&all_q_mutex);
1902         list_for_each_entry(q, &all_q_list, all_q_node)
1903                 blk_mq_queue_reinit(q);
1904         mutex_unlock(&all_q_mutex);
1905         return NOTIFY_OK;
1906 }
1907
1908 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1909 {
1910         int i;
1911
1912         if (!set->nr_hw_queues)
1913                 return -EINVAL;
1914         if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1915                 return -EINVAL;
1916         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1917                 return -EINVAL;
1918
1919         if (!set->nr_hw_queues ||
1920             !set->ops->queue_rq || !set->ops->map_queue ||
1921             !set->ops->alloc_hctx || !set->ops->free_hctx)
1922                 return -EINVAL;
1923
1924
1925         set->tags = kmalloc_node(set->nr_hw_queues *
1926                                  sizeof(struct blk_mq_tags *),
1927                                  GFP_KERNEL, set->numa_node);
1928         if (!set->tags)
1929                 goto out;
1930
1931         for (i = 0; i < set->nr_hw_queues; i++) {
1932                 set->tags[i] = blk_mq_init_rq_map(set, i);
1933                 if (!set->tags[i])
1934                         goto out_unwind;
1935         }
1936
1937         mutex_init(&set->tag_list_lock);
1938         INIT_LIST_HEAD(&set->tag_list);
1939
1940         return 0;
1941
1942 out_unwind:
1943         while (--i >= 0)
1944                 blk_mq_free_rq_map(set, set->tags[i], i);
1945 out:
1946         return -ENOMEM;
1947 }
1948 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1949
1950 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1951 {
1952         int i;
1953
1954         for (i = 0; i < set->nr_hw_queues; i++) {
1955                 if (set->tags[i])
1956                         blk_mq_free_rq_map(set, set->tags[i], i);
1957         }
1958
1959         kfree(set->tags);
1960 }
1961 EXPORT_SYMBOL(blk_mq_free_tag_set);
1962
1963 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1964 {
1965         struct blk_mq_tag_set *set = q->tag_set;
1966         struct blk_mq_hw_ctx *hctx;
1967         int i, ret;
1968
1969         if (!set || nr > set->queue_depth)
1970                 return -EINVAL;
1971
1972         ret = 0;
1973         queue_for_each_hw_ctx(q, hctx, i) {
1974                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
1975                 if (ret)
1976                         break;
1977         }
1978
1979         if (!ret)
1980                 q->nr_requests = nr;
1981
1982         return ret;
1983 }
1984
1985 void blk_mq_disable_hotplug(void)
1986 {
1987         mutex_lock(&all_q_mutex);
1988 }
1989
1990 void blk_mq_enable_hotplug(void)
1991 {
1992         mutex_unlock(&all_q_mutex);
1993 }
1994
1995 static int __init blk_mq_init(void)
1996 {
1997         blk_mq_cpu_init();
1998
1999         /* Must be called after percpu_counter_hotcpu_callback() */
2000         hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2001
2002         return 0;
2003 }
2004 subsys_initcall(blk_mq_init);