Merge tag 'for-linus' of git://github.com/openrisc/linux
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end, bool blockable)
145 {
146         return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151         if (pfn_valid(pfn))
152                 return PageReserved(pfn_to_page(pfn));
153
154         return true;
155 }
156
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162         int cpu = get_cpu();
163         preempt_notifier_register(&vcpu->preempt_notifier);
164         kvm_arch_vcpu_load(vcpu, cpu);
165         put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215         int i, cpu, me;
216         struct kvm_vcpu *vcpu;
217         bool called;
218
219         me = get_cpu();
220
221         kvm_for_each_vcpu(i, vcpu, kvm) {
222                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223                         continue;
224
225                 kvm_make_request(req, vcpu);
226                 cpu = vcpu->cpu;
227
228                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229                         continue;
230
231                 if (tmp != NULL && cpu != -1 && cpu != me &&
232                     kvm_request_needs_ipi(vcpu, req))
233                         __cpumask_set_cpu(cpu, tmp);
234         }
235
236         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237         put_cpu();
238
239         return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244         cpumask_var_t cpus;
245         bool called;
246
247         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251         free_cpumask_var(cpus);
252         return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258         /*
259          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260          * kvm_make_all_cpus_request.
261          */
262         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264         /*
265          * We want to publish modifications to the page tables before reading
266          * mode. Pairs with a memory barrier in arch-specific code.
267          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268          * and smp_mb in walk_shadow_page_lockless_begin/end.
269          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270          *
271          * There is already an smp_mb__after_atomic() before
272          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273          * barrier here.
274          */
275         if (!kvm_arch_flush_remote_tlb(kvm)
276             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357
358         if (kvm_set_spte_hva(kvm, address, pte))
359                 kvm_flush_remote_tlbs(kvm);
360
361         spin_unlock(&kvm->mmu_lock);
362         srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366                                         const struct mmu_notifier_range *range)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370         int ret;
371
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * The count increase must become visible at unlock time as no
376          * spte can be established without taking the mmu_lock and
377          * count is also read inside the mmu_lock critical section.
378          */
379         kvm->mmu_notifier_count++;
380         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381         need_tlb_flush |= kvm->tlbs_dirty;
382         /* we've to flush the tlb before the pages can be freed */
383         if (need_tlb_flush)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387
388         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389                                         range->end, range->blockable);
390
391         srcu_read_unlock(&kvm->srcu, idx);
392
393         return ret;
394 }
395
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397                                         const struct mmu_notifier_range *range)
398 {
399         struct kvm *kvm = mmu_notifier_to_kvm(mn);
400
401         spin_lock(&kvm->mmu_lock);
402         /*
403          * This sequence increase will notify the kvm page fault that
404          * the page that is going to be mapped in the spte could have
405          * been freed.
406          */
407         kvm->mmu_notifier_seq++;
408         smp_wmb();
409         /*
410          * The above sequence increase must be visible before the
411          * below count decrease, which is ensured by the smp_wmb above
412          * in conjunction with the smp_rmb in mmu_notifier_retry().
413          */
414         kvm->mmu_notifier_count--;
415         spin_unlock(&kvm->mmu_lock);
416
417         BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421                                               struct mm_struct *mm,
422                                               unsigned long start,
423                                               unsigned long end)
424 {
425         struct kvm *kvm = mmu_notifier_to_kvm(mn);
426         int young, idx;
427
428         idx = srcu_read_lock(&kvm->srcu);
429         spin_lock(&kvm->mmu_lock);
430
431         young = kvm_age_hva(kvm, start, end);
432         if (young)
433                 kvm_flush_remote_tlbs(kvm);
434
435         spin_unlock(&kvm->mmu_lock);
436         srcu_read_unlock(&kvm->srcu, idx);
437
438         return young;
439 }
440
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442                                         struct mm_struct *mm,
443                                         unsigned long start,
444                                         unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int young, idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         spin_lock(&kvm->mmu_lock);
451         /*
452          * Even though we do not flush TLB, this will still adversely
453          * affect performance on pre-Haswell Intel EPT, where there is
454          * no EPT Access Bit to clear so that we have to tear down EPT
455          * tables instead. If we find this unacceptable, we can always
456          * add a parameter to kvm_age_hva so that it effectively doesn't
457          * do anything on clear_young.
458          *
459          * Also note that currently we never issue secondary TLB flushes
460          * from clear_young, leaving this job up to the regular system
461          * cadence. If we find this inaccurate, we might come up with a
462          * more sophisticated heuristic later.
463          */
464         young = kvm_age_hva(kvm, start, end);
465         spin_unlock(&kvm->mmu_lock);
466         srcu_read_unlock(&kvm->srcu, idx);
467
468         return young;
469 }
470
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472                                        struct mm_struct *mm,
473                                        unsigned long address)
474 {
475         struct kvm *kvm = mmu_notifier_to_kvm(mn);
476         int young, idx;
477
478         idx = srcu_read_lock(&kvm->srcu);
479         spin_lock(&kvm->mmu_lock);
480         young = kvm_test_age_hva(kvm, address);
481         spin_unlock(&kvm->mmu_lock);
482         srcu_read_unlock(&kvm->srcu, idx);
483
484         return young;
485 }
486
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488                                      struct mm_struct *mm)
489 {
490         struct kvm *kvm = mmu_notifier_to_kvm(mn);
491         int idx;
492
493         idx = srcu_read_lock(&kvm->srcu);
494         kvm_arch_flush_shadow_all(kvm);
495         srcu_read_unlock(&kvm->srcu, idx);
496 }
497
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
500         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
501         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
502         .clear_young            = kvm_mmu_notifier_clear_young,
503         .test_young             = kvm_mmu_notifier_test_young,
504         .change_pte             = kvm_mmu_notifier_change_pte,
505         .release                = kvm_mmu_notifier_release,
506 };
507
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518         return 0;
519 }
520
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525         int i;
526         struct kvm_memslots *slots;
527
528         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529         if (!slots)
530                 return NULL;
531
532         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533                 slots->id_to_index[i] = slots->memslots[i].id = i;
534
535         return slots;
536 }
537
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540         if (!memslot->dirty_bitmap)
541                 return;
542
543         kvfree(memslot->dirty_bitmap);
544         memslot->dirty_bitmap = NULL;
545 }
546
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551                               struct kvm_memory_slot *dont)
552 {
553         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554                 kvm_destroy_dirty_bitmap(free);
555
556         kvm_arch_free_memslot(kvm, free, dont);
557
558         free->npages = 0;
559 }
560
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563         struct kvm_memory_slot *memslot;
564
565         if (!slots)
566                 return;
567
568         kvm_for_each_memslot(memslot, slots)
569                 kvm_free_memslot(kvm, memslot, NULL);
570
571         kvfree(slots);
572 }
573
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576         int i;
577
578         if (!kvm->debugfs_dentry)
579                 return;
580
581         debugfs_remove_recursive(kvm->debugfs_dentry);
582
583         if (kvm->debugfs_stat_data) {
584                 for (i = 0; i < kvm_debugfs_num_entries; i++)
585                         kfree(kvm->debugfs_stat_data[i]);
586                 kfree(kvm->debugfs_stat_data);
587         }
588 }
589
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592         char dir_name[ITOA_MAX_LEN * 2];
593         struct kvm_stat_data *stat_data;
594         struct kvm_stats_debugfs_item *p;
595
596         if (!debugfs_initialized())
597                 return 0;
598
599         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601
602         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603                                          sizeof(*kvm->debugfs_stat_data),
604                                          GFP_KERNEL);
605         if (!kvm->debugfs_stat_data)
606                 return -ENOMEM;
607
608         for (p = debugfs_entries; p->name; p++) {
609                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610                 if (!stat_data)
611                         return -ENOMEM;
612
613                 stat_data->kvm = kvm;
614                 stat_data->offset = p->offset;
615                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617                                     stat_data, stat_fops_per_vm[p->kind]);
618         }
619         return 0;
620 }
621
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624         int r, i;
625         struct kvm *kvm = kvm_arch_alloc_vm();
626
627         if (!kvm)
628                 return ERR_PTR(-ENOMEM);
629
630         spin_lock_init(&kvm->mmu_lock);
631         mmgrab(current->mm);
632         kvm->mm = current->mm;
633         kvm_eventfd_init(kvm);
634         mutex_init(&kvm->lock);
635         mutex_init(&kvm->irq_lock);
636         mutex_init(&kvm->slots_lock);
637         refcount_set(&kvm->users_count, 1);
638         INIT_LIST_HEAD(&kvm->devices);
639
640         r = kvm_arch_init_vm(kvm, type);
641         if (r)
642                 goto out_err_no_disable;
643
644         r = hardware_enable_all();
645         if (r)
646                 goto out_err_no_disable;
647
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651
652         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653
654         r = -ENOMEM;
655         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656                 struct kvm_memslots *slots = kvm_alloc_memslots();
657                 if (!slots)
658                         goto out_err_no_srcu;
659                 /*
660                  * Generations must be different for each address space.
661                  * Init kvm generation close to the maximum to easily test the
662                  * code of handling generation number wrap-around.
663                  */
664                 slots->generation = i * 2 - 150;
665                 rcu_assign_pointer(kvm->memslots[i], slots);
666         }
667
668         if (init_srcu_struct(&kvm->srcu))
669                 goto out_err_no_srcu;
670         if (init_srcu_struct(&kvm->irq_srcu))
671                 goto out_err_no_irq_srcu;
672         for (i = 0; i < KVM_NR_BUSES; i++) {
673                 rcu_assign_pointer(kvm->buses[i],
674                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675                 if (!kvm->buses[i])
676                         goto out_err;
677         }
678
679         r = kvm_init_mmu_notifier(kvm);
680         if (r)
681                 goto out_err;
682
683         spin_lock(&kvm_lock);
684         list_add(&kvm->vm_list, &vm_list);
685         spin_unlock(&kvm_lock);
686
687         preempt_notifier_inc();
688
689         return kvm;
690
691 out_err:
692         cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694         cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696         hardware_disable_all();
697 out_err_no_disable:
698         refcount_set(&kvm->users_count, 0);
699         for (i = 0; i < KVM_NR_BUSES; i++)
700                 kfree(kvm_get_bus(kvm, i));
701         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703         kvm_arch_free_vm(kvm);
704         mmdrop(current->mm);
705         return ERR_PTR(r);
706 }
707
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710         struct kvm_device *dev, *tmp;
711
712         /*
713          * We do not need to take the kvm->lock here, because nobody else
714          * has a reference to the struct kvm at this point and therefore
715          * cannot access the devices list anyhow.
716          */
717         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718                 list_del(&dev->vm_node);
719                 dev->ops->destroy(dev);
720         }
721 }
722
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725         int i;
726         struct mm_struct *mm = kvm->mm;
727
728         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729         kvm_destroy_vm_debugfs(kvm);
730         kvm_arch_sync_events(kvm);
731         spin_lock(&kvm_lock);
732         list_del(&kvm->vm_list);
733         spin_unlock(&kvm_lock);
734         kvm_free_irq_routing(kvm);
735         for (i = 0; i < KVM_NR_BUSES; i++) {
736                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737
738                 if (bus)
739                         kvm_io_bus_destroy(bus);
740                 kvm->buses[i] = NULL;
741         }
742         kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746         kvm_arch_flush_shadow_all(kvm);
747 #endif
748         kvm_arch_destroy_vm(kvm);
749         kvm_destroy_devices(kvm);
750         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752         cleanup_srcu_struct(&kvm->irq_srcu);
753         cleanup_srcu_struct(&kvm->srcu);
754         kvm_arch_free_vm(kvm);
755         preempt_notifier_dec();
756         hardware_disable_all();
757         mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762         refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768         if (refcount_dec_and_test(&kvm->users_count))
769                 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776         struct kvm *kvm = filp->private_data;
777
778         kvm_irqfd_release(kvm);
779
780         kvm_put_kvm(kvm);
781         return 0;
782 }
783
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793         if (!memslot->dirty_bitmap)
794                 return -ENOMEM;
795
796         return 0;
797 }
798
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806                             struct kvm_memory_slot *new,
807                             enum kvm_mr_change change)
808 {
809         int id = new->id;
810         int i = slots->id_to_index[id];
811         struct kvm_memory_slot *mslots = slots->memslots;
812
813         WARN_ON(mslots[i].id != id);
814         switch (change) {
815         case KVM_MR_CREATE:
816                 slots->used_slots++;
817                 WARN_ON(mslots[i].npages || !new->npages);
818                 break;
819         case KVM_MR_DELETE:
820                 slots->used_slots--;
821                 WARN_ON(new->npages || !mslots[i].npages);
822                 break;
823         default:
824                 break;
825         }
826
827         while (i < KVM_MEM_SLOTS_NUM - 1 &&
828                new->base_gfn <= mslots[i + 1].base_gfn) {
829                 if (!mslots[i + 1].npages)
830                         break;
831                 mslots[i] = mslots[i + 1];
832                 slots->id_to_index[mslots[i].id] = i;
833                 i++;
834         }
835
836         /*
837          * The ">=" is needed when creating a slot with base_gfn == 0,
838          * so that it moves before all those with base_gfn == npages == 0.
839          *
840          * On the other hand, if new->npages is zero, the above loop has
841          * already left i pointing to the beginning of the empty part of
842          * mslots, and the ">=" would move the hole backwards in this
843          * case---which is wrong.  So skip the loop when deleting a slot.
844          */
845         if (new->npages) {
846                 while (i > 0 &&
847                        new->base_gfn >= mslots[i - 1].base_gfn) {
848                         mslots[i] = mslots[i - 1];
849                         slots->id_to_index[mslots[i].id] = i;
850                         i--;
851                 }
852         } else
853                 WARN_ON_ONCE(i != slots->used_slots);
854
855         mslots[i] = *new;
856         slots->id_to_index[mslots[i].id] = i;
857 }
858
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862
863 #ifdef __KVM_HAVE_READONLY_MEM
864         valid_flags |= KVM_MEM_READONLY;
865 #endif
866
867         if (mem->flags & ~valid_flags)
868                 return -EINVAL;
869
870         return 0;
871 }
872
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874                 int as_id, struct kvm_memslots *slots)
875 {
876         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877
878         /*
879          * Set the low bit in the generation, which disables SPTE caching
880          * until the end of synchronize_srcu_expedited.
881          */
882         WARN_ON(old_memslots->generation & 1);
883         slots->generation = old_memslots->generation + 1;
884
885         rcu_assign_pointer(kvm->memslots[as_id], slots);
886         synchronize_srcu_expedited(&kvm->srcu);
887
888         /*
889          * Increment the new memslot generation a second time. This prevents
890          * vm exits that race with memslot updates from caching a memslot
891          * generation that will (potentially) be valid forever.
892          *
893          * Generations must be unique even across address spaces.  We do not need
894          * a global counter for that, instead the generation space is evenly split
895          * across address spaces.  For example, with two address spaces, address
896          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897          * use generations 2, 6, 10, 14, ...
898          */
899         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900
901         kvm_arch_memslots_updated(kvm, slots);
902
903         return old_memslots;
904 }
905
906 /*
907  * Allocate some memory and give it an address in the guest physical address
908  * space.
909  *
910  * Discontiguous memory is allowed, mostly for framebuffers.
911  *
912  * Must be called holding kvm->slots_lock for write.
913  */
914 int __kvm_set_memory_region(struct kvm *kvm,
915                             const struct kvm_userspace_memory_region *mem)
916 {
917         int r;
918         gfn_t base_gfn;
919         unsigned long npages;
920         struct kvm_memory_slot *slot;
921         struct kvm_memory_slot old, new;
922         struct kvm_memslots *slots = NULL, *old_memslots;
923         int as_id, id;
924         enum kvm_mr_change change;
925
926         r = check_memory_region_flags(mem);
927         if (r)
928                 goto out;
929
930         r = -EINVAL;
931         as_id = mem->slot >> 16;
932         id = (u16)mem->slot;
933
934         /* General sanity checks */
935         if (mem->memory_size & (PAGE_SIZE - 1))
936                 goto out;
937         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938                 goto out;
939         /* We can read the guest memory with __xxx_user() later on. */
940         if ((id < KVM_USER_MEM_SLOTS) &&
941             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942              !access_ok(VERIFY_WRITE,
943                         (void __user *)(unsigned long)mem->userspace_addr,
944                         mem->memory_size)))
945                 goto out;
946         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
947                 goto out;
948         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
949                 goto out;
950
951         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
952         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
953         npages = mem->memory_size >> PAGE_SHIFT;
954
955         if (npages > KVM_MEM_MAX_NR_PAGES)
956                 goto out;
957
958         new = old = *slot;
959
960         new.id = id;
961         new.base_gfn = base_gfn;
962         new.npages = npages;
963         new.flags = mem->flags;
964
965         if (npages) {
966                 if (!old.npages)
967                         change = KVM_MR_CREATE;
968                 else { /* Modify an existing slot. */
969                         if ((mem->userspace_addr != old.userspace_addr) ||
970                             (npages != old.npages) ||
971                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
972                                 goto out;
973
974                         if (base_gfn != old.base_gfn)
975                                 change = KVM_MR_MOVE;
976                         else if (new.flags != old.flags)
977                                 change = KVM_MR_FLAGS_ONLY;
978                         else { /* Nothing to change. */
979                                 r = 0;
980                                 goto out;
981                         }
982                 }
983         } else {
984                 if (!old.npages)
985                         goto out;
986
987                 change = KVM_MR_DELETE;
988                 new.base_gfn = 0;
989                 new.flags = 0;
990         }
991
992         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
993                 /* Check for overlaps */
994                 r = -EEXIST;
995                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
996                         if (slot->id == id)
997                                 continue;
998                         if (!((base_gfn + npages <= slot->base_gfn) ||
999                               (base_gfn >= slot->base_gfn + slot->npages)))
1000                                 goto out;
1001                 }
1002         }
1003
1004         /* Free page dirty bitmap if unneeded */
1005         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1006                 new.dirty_bitmap = NULL;
1007
1008         r = -ENOMEM;
1009         if (change == KVM_MR_CREATE) {
1010                 new.userspace_addr = mem->userspace_addr;
1011
1012                 if (kvm_arch_create_memslot(kvm, &new, npages))
1013                         goto out_free;
1014         }
1015
1016         /* Allocate page dirty bitmap if needed */
1017         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1018                 if (kvm_create_dirty_bitmap(&new) < 0)
1019                         goto out_free;
1020         }
1021
1022         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1023         if (!slots)
1024                 goto out_free;
1025         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1026
1027         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1028                 slot = id_to_memslot(slots, id);
1029                 slot->flags |= KVM_MEMSLOT_INVALID;
1030
1031                 old_memslots = install_new_memslots(kvm, as_id, slots);
1032
1033                 /* From this point no new shadow pages pointing to a deleted,
1034                  * or moved, memslot will be created.
1035                  *
1036                  * validation of sp->gfn happens in:
1037                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1038                  *      - kvm_is_visible_gfn (mmu_check_roots)
1039                  */
1040                 kvm_arch_flush_shadow_memslot(kvm, slot);
1041
1042                 /*
1043                  * We can re-use the old_memslots from above, the only difference
1044                  * from the currently installed memslots is the invalid flag.  This
1045                  * will get overwritten by update_memslots anyway.
1046                  */
1047                 slots = old_memslots;
1048         }
1049
1050         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1051         if (r)
1052                 goto out_slots;
1053
1054         /* actual memory is freed via old in kvm_free_memslot below */
1055         if (change == KVM_MR_DELETE) {
1056                 new.dirty_bitmap = NULL;
1057                 memset(&new.arch, 0, sizeof(new.arch));
1058         }
1059
1060         update_memslots(slots, &new, change);
1061         old_memslots = install_new_memslots(kvm, as_id, slots);
1062
1063         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1064
1065         kvm_free_memslot(kvm, &old, &new);
1066         kvfree(old_memslots);
1067         return 0;
1068
1069 out_slots:
1070         kvfree(slots);
1071 out_free:
1072         kvm_free_memslot(kvm, &new, &old);
1073 out:
1074         return r;
1075 }
1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1077
1078 int kvm_set_memory_region(struct kvm *kvm,
1079                           const struct kvm_userspace_memory_region *mem)
1080 {
1081         int r;
1082
1083         mutex_lock(&kvm->slots_lock);
1084         r = __kvm_set_memory_region(kvm, mem);
1085         mutex_unlock(&kvm->slots_lock);
1086         return r;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1089
1090 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1091                                           struct kvm_userspace_memory_region *mem)
1092 {
1093         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1094                 return -EINVAL;
1095
1096         return kvm_set_memory_region(kvm, mem);
1097 }
1098
1099 int kvm_get_dirty_log(struct kvm *kvm,
1100                         struct kvm_dirty_log *log, int *is_dirty)
1101 {
1102         struct kvm_memslots *slots;
1103         struct kvm_memory_slot *memslot;
1104         int i, as_id, id;
1105         unsigned long n;
1106         unsigned long any = 0;
1107
1108         as_id = log->slot >> 16;
1109         id = (u16)log->slot;
1110         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1111                 return -EINVAL;
1112
1113         slots = __kvm_memslots(kvm, as_id);
1114         memslot = id_to_memslot(slots, id);
1115         if (!memslot->dirty_bitmap)
1116                 return -ENOENT;
1117
1118         n = kvm_dirty_bitmap_bytes(memslot);
1119
1120         for (i = 0; !any && i < n/sizeof(long); ++i)
1121                 any = memslot->dirty_bitmap[i];
1122
1123         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1124                 return -EFAULT;
1125
1126         if (any)
1127                 *is_dirty = 1;
1128         return 0;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1131
1132 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1133 /**
1134  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1135  *      and reenable dirty page tracking for the corresponding pages.
1136  * @kvm:        pointer to kvm instance
1137  * @log:        slot id and address to which we copy the log
1138  * @is_dirty:   flag set if any page is dirty
1139  *
1140  * We need to keep it in mind that VCPU threads can write to the bitmap
1141  * concurrently. So, to avoid losing track of dirty pages we keep the
1142  * following order:
1143  *
1144  *    1. Take a snapshot of the bit and clear it if needed.
1145  *    2. Write protect the corresponding page.
1146  *    3. Copy the snapshot to the userspace.
1147  *    4. Upon return caller flushes TLB's if needed.
1148  *
1149  * Between 2 and 4, the guest may write to the page using the remaining TLB
1150  * entry.  This is not a problem because the page is reported dirty using
1151  * the snapshot taken before and step 4 ensures that writes done after
1152  * exiting to userspace will be logged for the next call.
1153  *
1154  */
1155 int kvm_get_dirty_log_protect(struct kvm *kvm,
1156                         struct kvm_dirty_log *log, bool *flush)
1157 {
1158         struct kvm_memslots *slots;
1159         struct kvm_memory_slot *memslot;
1160         int i, as_id, id;
1161         unsigned long n;
1162         unsigned long *dirty_bitmap;
1163         unsigned long *dirty_bitmap_buffer;
1164
1165         as_id = log->slot >> 16;
1166         id = (u16)log->slot;
1167         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168                 return -EINVAL;
1169
1170         slots = __kvm_memslots(kvm, as_id);
1171         memslot = id_to_memslot(slots, id);
1172
1173         dirty_bitmap = memslot->dirty_bitmap;
1174         if (!dirty_bitmap)
1175                 return -ENOENT;
1176
1177         n = kvm_dirty_bitmap_bytes(memslot);
1178         *flush = false;
1179         if (kvm->manual_dirty_log_protect) {
1180                 /*
1181                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1182                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1183                  * is some code duplication between this function and
1184                  * kvm_get_dirty_log, but hopefully all architecture
1185                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1186                  * can be eliminated.
1187                  */
1188                 dirty_bitmap_buffer = dirty_bitmap;
1189         } else {
1190                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1191                 memset(dirty_bitmap_buffer, 0, n);
1192
1193                 spin_lock(&kvm->mmu_lock);
1194                 for (i = 0; i < n / sizeof(long); i++) {
1195                         unsigned long mask;
1196                         gfn_t offset;
1197
1198                         if (!dirty_bitmap[i])
1199                                 continue;
1200
1201                         *flush = true;
1202                         mask = xchg(&dirty_bitmap[i], 0);
1203                         dirty_bitmap_buffer[i] = mask;
1204
1205                         if (mask) {
1206                                 offset = i * BITS_PER_LONG;
1207                                 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1208                                                                         offset, mask);
1209                         }
1210                 }
1211                 spin_unlock(&kvm->mmu_lock);
1212         }
1213
1214         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215                 return -EFAULT;
1216         return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1219
1220 /**
1221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1222  *      and reenable dirty page tracking for the corresponding pages.
1223  * @kvm:        pointer to kvm instance
1224  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1225  */
1226 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1227                                 struct kvm_clear_dirty_log *log, bool *flush)
1228 {
1229         struct kvm_memslots *slots;
1230         struct kvm_memory_slot *memslot;
1231         int as_id, id, n;
1232         gfn_t offset;
1233         unsigned long i;
1234         unsigned long *dirty_bitmap;
1235         unsigned long *dirty_bitmap_buffer;
1236
1237         as_id = log->slot >> 16;
1238         id = (u16)log->slot;
1239         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1240                 return -EINVAL;
1241
1242         if ((log->first_page & 63) || (log->num_pages & 63))
1243                 return -EINVAL;
1244
1245         slots = __kvm_memslots(kvm, as_id);
1246         memslot = id_to_memslot(slots, id);
1247
1248         dirty_bitmap = memslot->dirty_bitmap;
1249         if (!dirty_bitmap)
1250                 return -ENOENT;
1251
1252         n = kvm_dirty_bitmap_bytes(memslot);
1253         *flush = false;
1254         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1255         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1256                 return -EFAULT;
1257
1258         spin_lock(&kvm->mmu_lock);
1259         for (offset = log->first_page,
1260              i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1261              i++, offset += BITS_PER_LONG) {
1262                 unsigned long mask = *dirty_bitmap_buffer++;
1263                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1264                 if (!mask)
1265                         continue;
1266
1267                 mask &= atomic_long_fetch_andnot(mask, p);
1268
1269                 /*
1270                  * mask contains the bits that really have been cleared.  This
1271                  * never includes any bits beyond the length of the memslot (if
1272                  * the length is not aligned to 64 pages), therefore it is not
1273                  * a problem if userspace sets them in log->dirty_bitmap.
1274                 */
1275                 if (mask) {
1276                         *flush = true;
1277                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1278                                                                 offset, mask);
1279                 }
1280         }
1281         spin_unlock(&kvm->mmu_lock);
1282
1283         return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1286 #endif
1287
1288 bool kvm_largepages_enabled(void)
1289 {
1290         return largepages_enabled;
1291 }
1292
1293 void kvm_disable_largepages(void)
1294 {
1295         largepages_enabled = false;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1298
1299 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1300 {
1301         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1304
1305 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1306 {
1307         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1308 }
1309
1310 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1311 {
1312         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1313
1314         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1315               memslot->flags & KVM_MEMSLOT_INVALID)
1316                 return false;
1317
1318         return true;
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1321
1322 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1323 {
1324         struct vm_area_struct *vma;
1325         unsigned long addr, size;
1326
1327         size = PAGE_SIZE;
1328
1329         addr = gfn_to_hva(kvm, gfn);
1330         if (kvm_is_error_hva(addr))
1331                 return PAGE_SIZE;
1332
1333         down_read(&current->mm->mmap_sem);
1334         vma = find_vma(current->mm, addr);
1335         if (!vma)
1336                 goto out;
1337
1338         size = vma_kernel_pagesize(vma);
1339
1340 out:
1341         up_read(&current->mm->mmap_sem);
1342
1343         return size;
1344 }
1345
1346 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1347 {
1348         return slot->flags & KVM_MEM_READONLY;
1349 }
1350
1351 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1352                                        gfn_t *nr_pages, bool write)
1353 {
1354         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1355                 return KVM_HVA_ERR_BAD;
1356
1357         if (memslot_is_readonly(slot) && write)
1358                 return KVM_HVA_ERR_RO_BAD;
1359
1360         if (nr_pages)
1361                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1362
1363         return __gfn_to_hva_memslot(slot, gfn);
1364 }
1365
1366 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1367                                      gfn_t *nr_pages)
1368 {
1369         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1370 }
1371
1372 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1373                                         gfn_t gfn)
1374 {
1375         return gfn_to_hva_many(slot, gfn, NULL);
1376 }
1377 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1378
1379 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1380 {
1381         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1382 }
1383 EXPORT_SYMBOL_GPL(gfn_to_hva);
1384
1385 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1386 {
1387         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1390
1391 /*
1392  * Return the hva of a @gfn and the R/W attribute if possible.
1393  *
1394  * @slot: the kvm_memory_slot which contains @gfn
1395  * @gfn: the gfn to be translated
1396  * @writable: used to return the read/write attribute of the @slot if the hva
1397  * is valid and @writable is not NULL
1398  */
1399 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1400                                       gfn_t gfn, bool *writable)
1401 {
1402         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1403
1404         if (!kvm_is_error_hva(hva) && writable)
1405                 *writable = !memslot_is_readonly(slot);
1406
1407         return hva;
1408 }
1409
1410 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1411 {
1412         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1413
1414         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1415 }
1416
1417 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1418 {
1419         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1420
1421         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422 }
1423
1424 static inline int check_user_page_hwpoison(unsigned long addr)
1425 {
1426         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1427
1428         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1429         return rc == -EHWPOISON;
1430 }
1431
1432 /*
1433  * The fast path to get the writable pfn which will be stored in @pfn,
1434  * true indicates success, otherwise false is returned.  It's also the
1435  * only part that runs if we can are in atomic context.
1436  */
1437 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1438                             bool *writable, kvm_pfn_t *pfn)
1439 {
1440         struct page *page[1];
1441         int npages;
1442
1443         /*
1444          * Fast pin a writable pfn only if it is a write fault request
1445          * or the caller allows to map a writable pfn for a read fault
1446          * request.
1447          */
1448         if (!(write_fault || writable))
1449                 return false;
1450
1451         npages = __get_user_pages_fast(addr, 1, 1, page);
1452         if (npages == 1) {
1453                 *pfn = page_to_pfn(page[0]);
1454
1455                 if (writable)
1456                         *writable = true;
1457                 return true;
1458         }
1459
1460         return false;
1461 }
1462
1463 /*
1464  * The slow path to get the pfn of the specified host virtual address,
1465  * 1 indicates success, -errno is returned if error is detected.
1466  */
1467 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1468                            bool *writable, kvm_pfn_t *pfn)
1469 {
1470         unsigned int flags = FOLL_HWPOISON;
1471         struct page *page;
1472         int npages = 0;
1473
1474         might_sleep();
1475
1476         if (writable)
1477                 *writable = write_fault;
1478
1479         if (write_fault)
1480                 flags |= FOLL_WRITE;
1481         if (async)
1482                 flags |= FOLL_NOWAIT;
1483
1484         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1485         if (npages != 1)
1486                 return npages;
1487
1488         /* map read fault as writable if possible */
1489         if (unlikely(!write_fault) && writable) {
1490                 struct page *wpage;
1491
1492                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1493                         *writable = true;
1494                         put_page(page);
1495                         page = wpage;
1496                 }
1497         }
1498         *pfn = page_to_pfn(page);
1499         return npages;
1500 }
1501
1502 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1503 {
1504         if (unlikely(!(vma->vm_flags & VM_READ)))
1505                 return false;
1506
1507         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1508                 return false;
1509
1510         return true;
1511 }
1512
1513 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1514                                unsigned long addr, bool *async,
1515                                bool write_fault, bool *writable,
1516                                kvm_pfn_t *p_pfn)
1517 {
1518         unsigned long pfn;
1519         int r;
1520
1521         r = follow_pfn(vma, addr, &pfn);
1522         if (r) {
1523                 /*
1524                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1525                  * not call the fault handler, so do it here.
1526                  */
1527                 bool unlocked = false;
1528                 r = fixup_user_fault(current, current->mm, addr,
1529                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1530                                      &unlocked);
1531                 if (unlocked)
1532                         return -EAGAIN;
1533                 if (r)
1534                         return r;
1535
1536                 r = follow_pfn(vma, addr, &pfn);
1537                 if (r)
1538                         return r;
1539
1540         }
1541
1542         if (writable)
1543                 *writable = true;
1544
1545         /*
1546          * Get a reference here because callers of *hva_to_pfn* and
1547          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1548          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1549          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1550          * simply do nothing for reserved pfns.
1551          *
1552          * Whoever called remap_pfn_range is also going to call e.g.
1553          * unmap_mapping_range before the underlying pages are freed,
1554          * causing a call to our MMU notifier.
1555          */ 
1556         kvm_get_pfn(pfn);
1557
1558         *p_pfn = pfn;
1559         return 0;
1560 }
1561
1562 /*
1563  * Pin guest page in memory and return its pfn.
1564  * @addr: host virtual address which maps memory to the guest
1565  * @atomic: whether this function can sleep
1566  * @async: whether this function need to wait IO complete if the
1567  *         host page is not in the memory
1568  * @write_fault: whether we should get a writable host page
1569  * @writable: whether it allows to map a writable host page for !@write_fault
1570  *
1571  * The function will map a writable host page for these two cases:
1572  * 1): @write_fault = true
1573  * 2): @write_fault = false && @writable, @writable will tell the caller
1574  *     whether the mapping is writable.
1575  */
1576 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1577                         bool write_fault, bool *writable)
1578 {
1579         struct vm_area_struct *vma;
1580         kvm_pfn_t pfn = 0;
1581         int npages, r;
1582
1583         /* we can do it either atomically or asynchronously, not both */
1584         BUG_ON(atomic && async);
1585
1586         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1587                 return pfn;
1588
1589         if (atomic)
1590                 return KVM_PFN_ERR_FAULT;
1591
1592         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1593         if (npages == 1)
1594                 return pfn;
1595
1596         down_read(&current->mm->mmap_sem);
1597         if (npages == -EHWPOISON ||
1598               (!async && check_user_page_hwpoison(addr))) {
1599                 pfn = KVM_PFN_ERR_HWPOISON;
1600                 goto exit;
1601         }
1602
1603 retry:
1604         vma = find_vma_intersection(current->mm, addr, addr + 1);
1605
1606         if (vma == NULL)
1607                 pfn = KVM_PFN_ERR_FAULT;
1608         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1609                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1610                 if (r == -EAGAIN)
1611                         goto retry;
1612                 if (r < 0)
1613                         pfn = KVM_PFN_ERR_FAULT;
1614         } else {
1615                 if (async && vma_is_valid(vma, write_fault))
1616                         *async = true;
1617                 pfn = KVM_PFN_ERR_FAULT;
1618         }
1619 exit:
1620         up_read(&current->mm->mmap_sem);
1621         return pfn;
1622 }
1623
1624 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1625                                bool atomic, bool *async, bool write_fault,
1626                                bool *writable)
1627 {
1628         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1629
1630         if (addr == KVM_HVA_ERR_RO_BAD) {
1631                 if (writable)
1632                         *writable = false;
1633                 return KVM_PFN_ERR_RO_FAULT;
1634         }
1635
1636         if (kvm_is_error_hva(addr)) {
1637                 if (writable)
1638                         *writable = false;
1639                 return KVM_PFN_NOSLOT;
1640         }
1641
1642         /* Do not map writable pfn in the readonly memslot. */
1643         if (writable && memslot_is_readonly(slot)) {
1644                 *writable = false;
1645                 writable = NULL;
1646         }
1647
1648         return hva_to_pfn(addr, atomic, async, write_fault,
1649                           writable);
1650 }
1651 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1652
1653 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1654                       bool *writable)
1655 {
1656         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1657                                     write_fault, writable);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1660
1661 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1662 {
1663         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1666
1667 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1668 {
1669         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1670 }
1671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1672
1673 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1674 {
1675         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1676 }
1677 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1678
1679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1680 {
1681         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1684
1685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1686 {
1687         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1688 }
1689 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1690
1691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1692 {
1693         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1696
1697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1698                             struct page **pages, int nr_pages)
1699 {
1700         unsigned long addr;
1701         gfn_t entry = 0;
1702
1703         addr = gfn_to_hva_many(slot, gfn, &entry);
1704         if (kvm_is_error_hva(addr))
1705                 return -1;
1706
1707         if (entry < nr_pages)
1708                 return 0;
1709
1710         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1711 }
1712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1713
1714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1715 {
1716         if (is_error_noslot_pfn(pfn))
1717                 return KVM_ERR_PTR_BAD_PAGE;
1718
1719         if (kvm_is_reserved_pfn(pfn)) {
1720                 WARN_ON(1);
1721                 return KVM_ERR_PTR_BAD_PAGE;
1722         }
1723
1724         return pfn_to_page(pfn);
1725 }
1726
1727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1728 {
1729         kvm_pfn_t pfn;
1730
1731         pfn = gfn_to_pfn(kvm, gfn);
1732
1733         return kvm_pfn_to_page(pfn);
1734 }
1735 EXPORT_SYMBOL_GPL(gfn_to_page);
1736
1737 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1738 {
1739         kvm_pfn_t pfn;
1740
1741         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1742
1743         return kvm_pfn_to_page(pfn);
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1746
1747 void kvm_release_page_clean(struct page *page)
1748 {
1749         WARN_ON(is_error_page(page));
1750
1751         kvm_release_pfn_clean(page_to_pfn(page));
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1754
1755 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1756 {
1757         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1758                 put_page(pfn_to_page(pfn));
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1761
1762 void kvm_release_page_dirty(struct page *page)
1763 {
1764         WARN_ON(is_error_page(page));
1765
1766         kvm_release_pfn_dirty(page_to_pfn(page));
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1769
1770 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1771 {
1772         kvm_set_pfn_dirty(pfn);
1773         kvm_release_pfn_clean(pfn);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1776
1777 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1778 {
1779         if (!kvm_is_reserved_pfn(pfn)) {
1780                 struct page *page = pfn_to_page(pfn);
1781
1782                 if (!PageReserved(page))
1783                         SetPageDirty(page);
1784         }
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1787
1788 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1789 {
1790         if (!kvm_is_reserved_pfn(pfn))
1791                 mark_page_accessed(pfn_to_page(pfn));
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1794
1795 void kvm_get_pfn(kvm_pfn_t pfn)
1796 {
1797         if (!kvm_is_reserved_pfn(pfn))
1798                 get_page(pfn_to_page(pfn));
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1801
1802 static int next_segment(unsigned long len, int offset)
1803 {
1804         if (len > PAGE_SIZE - offset)
1805                 return PAGE_SIZE - offset;
1806         else
1807                 return len;
1808 }
1809
1810 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1811                                  void *data, int offset, int len)
1812 {
1813         int r;
1814         unsigned long addr;
1815
1816         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1817         if (kvm_is_error_hva(addr))
1818                 return -EFAULT;
1819         r = __copy_from_user(data, (void __user *)addr + offset, len);
1820         if (r)
1821                 return -EFAULT;
1822         return 0;
1823 }
1824
1825 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1826                         int len)
1827 {
1828         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829
1830         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1833
1834 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1835                              int offset, int len)
1836 {
1837         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1838
1839         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1842
1843 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1844 {
1845         gfn_t gfn = gpa >> PAGE_SHIFT;
1846         int seg;
1847         int offset = offset_in_page(gpa);
1848         int ret;
1849
1850         while ((seg = next_segment(len, offset)) != 0) {
1851                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1852                 if (ret < 0)
1853                         return ret;
1854                 offset = 0;
1855                 len -= seg;
1856                 data += seg;
1857                 ++gfn;
1858         }
1859         return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_read_guest);
1862
1863 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1864 {
1865         gfn_t gfn = gpa >> PAGE_SHIFT;
1866         int seg;
1867         int offset = offset_in_page(gpa);
1868         int ret;
1869
1870         while ((seg = next_segment(len, offset)) != 0) {
1871                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1872                 if (ret < 0)
1873                         return ret;
1874                 offset = 0;
1875                 len -= seg;
1876                 data += seg;
1877                 ++gfn;
1878         }
1879         return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1882
1883 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1884                                    void *data, int offset, unsigned long len)
1885 {
1886         int r;
1887         unsigned long addr;
1888
1889         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1890         if (kvm_is_error_hva(addr))
1891                 return -EFAULT;
1892         pagefault_disable();
1893         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1894         pagefault_enable();
1895         if (r)
1896                 return -EFAULT;
1897         return 0;
1898 }
1899
1900 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1901                           unsigned long len)
1902 {
1903         gfn_t gfn = gpa >> PAGE_SHIFT;
1904         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905         int offset = offset_in_page(gpa);
1906
1907         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1910
1911 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1912                                void *data, unsigned long len)
1913 {
1914         gfn_t gfn = gpa >> PAGE_SHIFT;
1915         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1916         int offset = offset_in_page(gpa);
1917
1918         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1921
1922 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1923                                   const void *data, int offset, int len)
1924 {
1925         int r;
1926         unsigned long addr;
1927
1928         addr = gfn_to_hva_memslot(memslot, gfn);
1929         if (kvm_is_error_hva(addr))
1930                 return -EFAULT;
1931         r = __copy_to_user((void __user *)addr + offset, data, len);
1932         if (r)
1933                 return -EFAULT;
1934         mark_page_dirty_in_slot(memslot, gfn);
1935         return 0;
1936 }
1937
1938 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1939                          const void *data, int offset, int len)
1940 {
1941         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1942
1943         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1946
1947 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1948                               const void *data, int offset, int len)
1949 {
1950         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1951
1952         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1955
1956 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1957                     unsigned long len)
1958 {
1959         gfn_t gfn = gpa >> PAGE_SHIFT;
1960         int seg;
1961         int offset = offset_in_page(gpa);
1962         int ret;
1963
1964         while ((seg = next_segment(len, offset)) != 0) {
1965                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1966                 if (ret < 0)
1967                         return ret;
1968                 offset = 0;
1969                 len -= seg;
1970                 data += seg;
1971                 ++gfn;
1972         }
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_write_guest);
1976
1977 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1978                          unsigned long len)
1979 {
1980         gfn_t gfn = gpa >> PAGE_SHIFT;
1981         int seg;
1982         int offset = offset_in_page(gpa);
1983         int ret;
1984
1985         while ((seg = next_segment(len, offset)) != 0) {
1986                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1987                 if (ret < 0)
1988                         return ret;
1989                 offset = 0;
1990                 len -= seg;
1991                 data += seg;
1992                 ++gfn;
1993         }
1994         return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1997
1998 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1999                                        struct gfn_to_hva_cache *ghc,
2000                                        gpa_t gpa, unsigned long len)
2001 {
2002         int offset = offset_in_page(gpa);
2003         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2004         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2005         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2006         gfn_t nr_pages_avail;
2007         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2008
2009         ghc->gpa = gpa;
2010         ghc->generation = slots->generation;
2011         ghc->len = len;
2012         ghc->hva = KVM_HVA_ERR_BAD;
2013
2014         /*
2015          * If the requested region crosses two memslots, we still
2016          * verify that the entire region is valid here.
2017          */
2018         while (!r && start_gfn <= end_gfn) {
2019                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2020                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2021                                            &nr_pages_avail);
2022                 if (kvm_is_error_hva(ghc->hva))
2023                         r = -EFAULT;
2024                 start_gfn += nr_pages_avail;
2025         }
2026
2027         /* Use the slow path for cross page reads and writes. */
2028         if (!r && nr_pages_needed == 1)
2029                 ghc->hva += offset;
2030         else
2031                 ghc->memslot = NULL;
2032
2033         return r;
2034 }
2035
2036 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2037                               gpa_t gpa, unsigned long len)
2038 {
2039         struct kvm_memslots *slots = kvm_memslots(kvm);
2040         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2043
2044 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2045                                   void *data, unsigned int offset,
2046                                   unsigned long len)
2047 {
2048         struct kvm_memslots *slots = kvm_memslots(kvm);
2049         int r;
2050         gpa_t gpa = ghc->gpa + offset;
2051
2052         BUG_ON(len + offset > ghc->len);
2053
2054         if (slots->generation != ghc->generation)
2055                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2056
2057         if (unlikely(!ghc->memslot))
2058                 return kvm_write_guest(kvm, gpa, data, len);
2059
2060         if (kvm_is_error_hva(ghc->hva))
2061                 return -EFAULT;
2062
2063         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2064         if (r)
2065                 return -EFAULT;
2066         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2067
2068         return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2071
2072 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2073                            void *data, unsigned long len)
2074 {
2075         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2078
2079 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2080                            void *data, unsigned long len)
2081 {
2082         struct kvm_memslots *slots = kvm_memslots(kvm);
2083         int r;
2084
2085         BUG_ON(len > ghc->len);
2086
2087         if (slots->generation != ghc->generation)
2088                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2089
2090         if (unlikely(!ghc->memslot))
2091                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2092
2093         if (kvm_is_error_hva(ghc->hva))
2094                 return -EFAULT;
2095
2096         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2097         if (r)
2098                 return -EFAULT;
2099
2100         return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2103
2104 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2105 {
2106         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2107
2108         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2111
2112 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2113 {
2114         gfn_t gfn = gpa >> PAGE_SHIFT;
2115         int seg;
2116         int offset = offset_in_page(gpa);
2117         int ret;
2118
2119         while ((seg = next_segment(len, offset)) != 0) {
2120                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2121                 if (ret < 0)
2122                         return ret;
2123                 offset = 0;
2124                 len -= seg;
2125                 ++gfn;
2126         }
2127         return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2130
2131 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2132                                     gfn_t gfn)
2133 {
2134         if (memslot && memslot->dirty_bitmap) {
2135                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2136
2137                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2138         }
2139 }
2140
2141 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2142 {
2143         struct kvm_memory_slot *memslot;
2144
2145         memslot = gfn_to_memslot(kvm, gfn);
2146         mark_page_dirty_in_slot(memslot, gfn);
2147 }
2148 EXPORT_SYMBOL_GPL(mark_page_dirty);
2149
2150 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2151 {
2152         struct kvm_memory_slot *memslot;
2153
2154         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2155         mark_page_dirty_in_slot(memslot, gfn);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2158
2159 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2160 {
2161         if (!vcpu->sigset_active)
2162                 return;
2163
2164         /*
2165          * This does a lockless modification of ->real_blocked, which is fine
2166          * because, only current can change ->real_blocked and all readers of
2167          * ->real_blocked don't care as long ->real_blocked is always a subset
2168          * of ->blocked.
2169          */
2170         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2171 }
2172
2173 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2174 {
2175         if (!vcpu->sigset_active)
2176                 return;
2177
2178         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2179         sigemptyset(&current->real_blocked);
2180 }
2181
2182 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2183 {
2184         unsigned int old, val, grow;
2185
2186         old = val = vcpu->halt_poll_ns;
2187         grow = READ_ONCE(halt_poll_ns_grow);
2188         /* 10us base */
2189         if (val == 0 && grow)
2190                 val = 10000;
2191         else
2192                 val *= grow;
2193
2194         if (val > halt_poll_ns)
2195                 val = halt_poll_ns;
2196
2197         vcpu->halt_poll_ns = val;
2198         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2199 }
2200
2201 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2202 {
2203         unsigned int old, val, shrink;
2204
2205         old = val = vcpu->halt_poll_ns;
2206         shrink = READ_ONCE(halt_poll_ns_shrink);
2207         if (shrink == 0)
2208                 val = 0;
2209         else
2210                 val /= shrink;
2211
2212         vcpu->halt_poll_ns = val;
2213         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2214 }
2215
2216 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2217 {
2218         int ret = -EINTR;
2219         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2220
2221         if (kvm_arch_vcpu_runnable(vcpu)) {
2222                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2223                 goto out;
2224         }
2225         if (kvm_cpu_has_pending_timer(vcpu))
2226                 goto out;
2227         if (signal_pending(current))
2228                 goto out;
2229
2230         ret = 0;
2231 out:
2232         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2233         return ret;
2234 }
2235
2236 /*
2237  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2238  */
2239 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2240 {
2241         ktime_t start, cur;
2242         DECLARE_SWAITQUEUE(wait);
2243         bool waited = false;
2244         u64 block_ns;
2245
2246         start = cur = ktime_get();
2247         if (vcpu->halt_poll_ns) {
2248                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2249
2250                 ++vcpu->stat.halt_attempted_poll;
2251                 do {
2252                         /*
2253                          * This sets KVM_REQ_UNHALT if an interrupt
2254                          * arrives.
2255                          */
2256                         if (kvm_vcpu_check_block(vcpu) < 0) {
2257                                 ++vcpu->stat.halt_successful_poll;
2258                                 if (!vcpu_valid_wakeup(vcpu))
2259                                         ++vcpu->stat.halt_poll_invalid;
2260                                 goto out;
2261                         }
2262                         cur = ktime_get();
2263                 } while (single_task_running() && ktime_before(cur, stop));
2264         }
2265
2266         kvm_arch_vcpu_blocking(vcpu);
2267
2268         for (;;) {
2269                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2270
2271                 if (kvm_vcpu_check_block(vcpu) < 0)
2272                         break;
2273
2274                 waited = true;
2275                 schedule();
2276         }
2277
2278         finish_swait(&vcpu->wq, &wait);
2279         cur = ktime_get();
2280
2281         kvm_arch_vcpu_unblocking(vcpu);
2282 out:
2283         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2284
2285         if (!vcpu_valid_wakeup(vcpu))
2286                 shrink_halt_poll_ns(vcpu);
2287         else if (halt_poll_ns) {
2288                 if (block_ns <= vcpu->halt_poll_ns)
2289                         ;
2290                 /* we had a long block, shrink polling */
2291                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2292                         shrink_halt_poll_ns(vcpu);
2293                 /* we had a short halt and our poll time is too small */
2294                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2295                         block_ns < halt_poll_ns)
2296                         grow_halt_poll_ns(vcpu);
2297         } else
2298                 vcpu->halt_poll_ns = 0;
2299
2300         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2301         kvm_arch_vcpu_block_finish(vcpu);
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2304
2305 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2306 {
2307         struct swait_queue_head *wqp;
2308
2309         wqp = kvm_arch_vcpu_wq(vcpu);
2310         if (swq_has_sleeper(wqp)) {
2311                 swake_up_one(wqp);
2312                 ++vcpu->stat.halt_wakeup;
2313                 return true;
2314         }
2315
2316         return false;
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2319
2320 #ifndef CONFIG_S390
2321 /*
2322  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2323  */
2324 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2325 {
2326         int me;
2327         int cpu = vcpu->cpu;
2328
2329         if (kvm_vcpu_wake_up(vcpu))
2330                 return;
2331
2332         me = get_cpu();
2333         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2334                 if (kvm_arch_vcpu_should_kick(vcpu))
2335                         smp_send_reschedule(cpu);
2336         put_cpu();
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2339 #endif /* !CONFIG_S390 */
2340
2341 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2342 {
2343         struct pid *pid;
2344         struct task_struct *task = NULL;
2345         int ret = 0;
2346
2347         rcu_read_lock();
2348         pid = rcu_dereference(target->pid);
2349         if (pid)
2350                 task = get_pid_task(pid, PIDTYPE_PID);
2351         rcu_read_unlock();
2352         if (!task)
2353                 return ret;
2354         ret = yield_to(task, 1);
2355         put_task_struct(task);
2356
2357         return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2360
2361 /*
2362  * Helper that checks whether a VCPU is eligible for directed yield.
2363  * Most eligible candidate to yield is decided by following heuristics:
2364  *
2365  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2366  *  (preempted lock holder), indicated by @in_spin_loop.
2367  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2368  *
2369  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2370  *  chance last time (mostly it has become eligible now since we have probably
2371  *  yielded to lockholder in last iteration. This is done by toggling
2372  *  @dy_eligible each time a VCPU checked for eligibility.)
2373  *
2374  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2375  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2376  *  burning. Giving priority for a potential lock-holder increases lock
2377  *  progress.
2378  *
2379  *  Since algorithm is based on heuristics, accessing another VCPU data without
2380  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2381  *  and continue with next VCPU and so on.
2382  */
2383 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2384 {
2385 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2386         bool eligible;
2387
2388         eligible = !vcpu->spin_loop.in_spin_loop ||
2389                     vcpu->spin_loop.dy_eligible;
2390
2391         if (vcpu->spin_loop.in_spin_loop)
2392                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2393
2394         return eligible;
2395 #else
2396         return true;
2397 #endif
2398 }
2399
2400 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2401 {
2402         struct kvm *kvm = me->kvm;
2403         struct kvm_vcpu *vcpu;
2404         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2405         int yielded = 0;
2406         int try = 3;
2407         int pass;
2408         int i;
2409
2410         kvm_vcpu_set_in_spin_loop(me, true);
2411         /*
2412          * We boost the priority of a VCPU that is runnable but not
2413          * currently running, because it got preempted by something
2414          * else and called schedule in __vcpu_run.  Hopefully that
2415          * VCPU is holding the lock that we need and will release it.
2416          * We approximate round-robin by starting at the last boosted VCPU.
2417          */
2418         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2419                 kvm_for_each_vcpu(i, vcpu, kvm) {
2420                         if (!pass && i <= last_boosted_vcpu) {
2421                                 i = last_boosted_vcpu;
2422                                 continue;
2423                         } else if (pass && i > last_boosted_vcpu)
2424                                 break;
2425                         if (!READ_ONCE(vcpu->preempted))
2426                                 continue;
2427                         if (vcpu == me)
2428                                 continue;
2429                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2430                                 continue;
2431                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2432                                 continue;
2433                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2434                                 continue;
2435
2436                         yielded = kvm_vcpu_yield_to(vcpu);
2437                         if (yielded > 0) {
2438                                 kvm->last_boosted_vcpu = i;
2439                                 break;
2440                         } else if (yielded < 0) {
2441                                 try--;
2442                                 if (!try)
2443                                         break;
2444                         }
2445                 }
2446         }
2447         kvm_vcpu_set_in_spin_loop(me, false);
2448
2449         /* Ensure vcpu is not eligible during next spinloop */
2450         kvm_vcpu_set_dy_eligible(me, false);
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2453
2454 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2455 {
2456         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2457         struct page *page;
2458
2459         if (vmf->pgoff == 0)
2460                 page = virt_to_page(vcpu->run);
2461 #ifdef CONFIG_X86
2462         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2463                 page = virt_to_page(vcpu->arch.pio_data);
2464 #endif
2465 #ifdef CONFIG_KVM_MMIO
2466         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2467                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2468 #endif
2469         else
2470                 return kvm_arch_vcpu_fault(vcpu, vmf);
2471         get_page(page);
2472         vmf->page = page;
2473         return 0;
2474 }
2475
2476 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2477         .fault = kvm_vcpu_fault,
2478 };
2479
2480 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2481 {
2482         vma->vm_ops = &kvm_vcpu_vm_ops;
2483         return 0;
2484 }
2485
2486 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2487 {
2488         struct kvm_vcpu *vcpu = filp->private_data;
2489
2490         debugfs_remove_recursive(vcpu->debugfs_dentry);
2491         kvm_put_kvm(vcpu->kvm);
2492         return 0;
2493 }
2494
2495 static struct file_operations kvm_vcpu_fops = {
2496         .release        = kvm_vcpu_release,
2497         .unlocked_ioctl = kvm_vcpu_ioctl,
2498         .mmap           = kvm_vcpu_mmap,
2499         .llseek         = noop_llseek,
2500         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2501 };
2502
2503 /*
2504  * Allocates an inode for the vcpu.
2505  */
2506 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2507 {
2508         char name[8 + 1 + ITOA_MAX_LEN + 1];
2509
2510         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2511         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2512 }
2513
2514 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2515 {
2516         char dir_name[ITOA_MAX_LEN * 2];
2517         int ret;
2518
2519         if (!kvm_arch_has_vcpu_debugfs())
2520                 return 0;
2521
2522         if (!debugfs_initialized())
2523                 return 0;
2524
2525         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2526         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2527                                                                 vcpu->kvm->debugfs_dentry);
2528         if (!vcpu->debugfs_dentry)
2529                 return -ENOMEM;
2530
2531         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2532         if (ret < 0) {
2533                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2534                 return ret;
2535         }
2536
2537         return 0;
2538 }
2539
2540 /*
2541  * Creates some virtual cpus.  Good luck creating more than one.
2542  */
2543 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2544 {
2545         int r;
2546         struct kvm_vcpu *vcpu;
2547
2548         if (id >= KVM_MAX_VCPU_ID)
2549                 return -EINVAL;
2550
2551         mutex_lock(&kvm->lock);
2552         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2553                 mutex_unlock(&kvm->lock);
2554                 return -EINVAL;
2555         }
2556
2557         kvm->created_vcpus++;
2558         mutex_unlock(&kvm->lock);
2559
2560         vcpu = kvm_arch_vcpu_create(kvm, id);
2561         if (IS_ERR(vcpu)) {
2562                 r = PTR_ERR(vcpu);
2563                 goto vcpu_decrement;
2564         }
2565
2566         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2567
2568         r = kvm_arch_vcpu_setup(vcpu);
2569         if (r)
2570                 goto vcpu_destroy;
2571
2572         r = kvm_create_vcpu_debugfs(vcpu);
2573         if (r)
2574                 goto vcpu_destroy;
2575
2576         mutex_lock(&kvm->lock);
2577         if (kvm_get_vcpu_by_id(kvm, id)) {
2578                 r = -EEXIST;
2579                 goto unlock_vcpu_destroy;
2580         }
2581
2582         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2583
2584         /* Now it's all set up, let userspace reach it */
2585         kvm_get_kvm(kvm);
2586         r = create_vcpu_fd(vcpu);
2587         if (r < 0) {
2588                 kvm_put_kvm(kvm);
2589                 goto unlock_vcpu_destroy;
2590         }
2591
2592         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2593
2594         /*
2595          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2596          * before kvm->online_vcpu's incremented value.
2597          */
2598         smp_wmb();
2599         atomic_inc(&kvm->online_vcpus);
2600
2601         mutex_unlock(&kvm->lock);
2602         kvm_arch_vcpu_postcreate(vcpu);
2603         return r;
2604
2605 unlock_vcpu_destroy:
2606         mutex_unlock(&kvm->lock);
2607         debugfs_remove_recursive(vcpu->debugfs_dentry);
2608 vcpu_destroy:
2609         kvm_arch_vcpu_destroy(vcpu);
2610 vcpu_decrement:
2611         mutex_lock(&kvm->lock);
2612         kvm->created_vcpus--;
2613         mutex_unlock(&kvm->lock);
2614         return r;
2615 }
2616
2617 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2618 {
2619         if (sigset) {
2620                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2621                 vcpu->sigset_active = 1;
2622                 vcpu->sigset = *sigset;
2623         } else
2624                 vcpu->sigset_active = 0;
2625         return 0;
2626 }
2627
2628 static long kvm_vcpu_ioctl(struct file *filp,
2629                            unsigned int ioctl, unsigned long arg)
2630 {
2631         struct kvm_vcpu *vcpu = filp->private_data;
2632         void __user *argp = (void __user *)arg;
2633         int r;
2634         struct kvm_fpu *fpu = NULL;
2635         struct kvm_sregs *kvm_sregs = NULL;
2636
2637         if (vcpu->kvm->mm != current->mm)
2638                 return -EIO;
2639
2640         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2641                 return -EINVAL;
2642
2643         /*
2644          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2645          * execution; mutex_lock() would break them.
2646          */
2647         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2648         if (r != -ENOIOCTLCMD)
2649                 return r;
2650
2651         if (mutex_lock_killable(&vcpu->mutex))
2652                 return -EINTR;
2653         switch (ioctl) {
2654         case KVM_RUN: {
2655                 struct pid *oldpid;
2656                 r = -EINVAL;
2657                 if (arg)
2658                         goto out;
2659                 oldpid = rcu_access_pointer(vcpu->pid);
2660                 if (unlikely(oldpid != task_pid(current))) {
2661                         /* The thread running this VCPU changed. */
2662                         struct pid *newpid;
2663
2664                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2665                         if (r)
2666                                 break;
2667
2668                         newpid = get_task_pid(current, PIDTYPE_PID);
2669                         rcu_assign_pointer(vcpu->pid, newpid);
2670                         if (oldpid)
2671                                 synchronize_rcu();
2672                         put_pid(oldpid);
2673                 }
2674                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2675                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2676                 break;
2677         }
2678         case KVM_GET_REGS: {
2679                 struct kvm_regs *kvm_regs;
2680
2681                 r = -ENOMEM;
2682                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2683                 if (!kvm_regs)
2684                         goto out;
2685                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2686                 if (r)
2687                         goto out_free1;
2688                 r = -EFAULT;
2689                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2690                         goto out_free1;
2691                 r = 0;
2692 out_free1:
2693                 kfree(kvm_regs);
2694                 break;
2695         }
2696         case KVM_SET_REGS: {
2697                 struct kvm_regs *kvm_regs;
2698
2699                 r = -ENOMEM;
2700                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2701                 if (IS_ERR(kvm_regs)) {
2702                         r = PTR_ERR(kvm_regs);
2703                         goto out;
2704                 }
2705                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2706                 kfree(kvm_regs);
2707                 break;
2708         }
2709         case KVM_GET_SREGS: {
2710                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2711                 r = -ENOMEM;
2712                 if (!kvm_sregs)
2713                         goto out;
2714                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2715                 if (r)
2716                         goto out;
2717                 r = -EFAULT;
2718                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2719                         goto out;
2720                 r = 0;
2721                 break;
2722         }
2723         case KVM_SET_SREGS: {
2724                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2725                 if (IS_ERR(kvm_sregs)) {
2726                         r = PTR_ERR(kvm_sregs);
2727                         kvm_sregs = NULL;
2728                         goto out;
2729                 }
2730                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2731                 break;
2732         }
2733         case KVM_GET_MP_STATE: {
2734                 struct kvm_mp_state mp_state;
2735
2736                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2737                 if (r)
2738                         goto out;
2739                 r = -EFAULT;
2740                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2741                         goto out;
2742                 r = 0;
2743                 break;
2744         }
2745         case KVM_SET_MP_STATE: {
2746                 struct kvm_mp_state mp_state;
2747
2748                 r = -EFAULT;
2749                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2750                         goto out;
2751                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2752                 break;
2753         }
2754         case KVM_TRANSLATE: {
2755                 struct kvm_translation tr;
2756
2757                 r = -EFAULT;
2758                 if (copy_from_user(&tr, argp, sizeof(tr)))
2759                         goto out;
2760                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2761                 if (r)
2762                         goto out;
2763                 r = -EFAULT;
2764                 if (copy_to_user(argp, &tr, sizeof(tr)))
2765                         goto out;
2766                 r = 0;
2767                 break;
2768         }
2769         case KVM_SET_GUEST_DEBUG: {
2770                 struct kvm_guest_debug dbg;
2771
2772                 r = -EFAULT;
2773                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2774                         goto out;
2775                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2776                 break;
2777         }
2778         case KVM_SET_SIGNAL_MASK: {
2779                 struct kvm_signal_mask __user *sigmask_arg = argp;
2780                 struct kvm_signal_mask kvm_sigmask;
2781                 sigset_t sigset, *p;
2782
2783                 p = NULL;
2784                 if (argp) {
2785                         r = -EFAULT;
2786                         if (copy_from_user(&kvm_sigmask, argp,
2787                                            sizeof(kvm_sigmask)))
2788                                 goto out;
2789                         r = -EINVAL;
2790                         if (kvm_sigmask.len != sizeof(sigset))
2791                                 goto out;
2792                         r = -EFAULT;
2793                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2794                                            sizeof(sigset)))
2795                                 goto out;
2796                         p = &sigset;
2797                 }
2798                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2799                 break;
2800         }
2801         case KVM_GET_FPU: {
2802                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2803                 r = -ENOMEM;
2804                 if (!fpu)
2805                         goto out;
2806                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2807                 if (r)
2808                         goto out;
2809                 r = -EFAULT;
2810                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2811                         goto out;
2812                 r = 0;
2813                 break;
2814         }
2815         case KVM_SET_FPU: {
2816                 fpu = memdup_user(argp, sizeof(*fpu));
2817                 if (IS_ERR(fpu)) {
2818                         r = PTR_ERR(fpu);
2819                         fpu = NULL;
2820                         goto out;
2821                 }
2822                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2823                 break;
2824         }
2825         default:
2826                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2827         }
2828 out:
2829         mutex_unlock(&vcpu->mutex);
2830         kfree(fpu);
2831         kfree(kvm_sregs);
2832         return r;
2833 }
2834
2835 #ifdef CONFIG_KVM_COMPAT
2836 static long kvm_vcpu_compat_ioctl(struct file *filp,
2837                                   unsigned int ioctl, unsigned long arg)
2838 {
2839         struct kvm_vcpu *vcpu = filp->private_data;
2840         void __user *argp = compat_ptr(arg);
2841         int r;
2842
2843         if (vcpu->kvm->mm != current->mm)
2844                 return -EIO;
2845
2846         switch (ioctl) {
2847         case KVM_SET_SIGNAL_MASK: {
2848                 struct kvm_signal_mask __user *sigmask_arg = argp;
2849                 struct kvm_signal_mask kvm_sigmask;
2850                 sigset_t sigset;
2851
2852                 if (argp) {
2853                         r = -EFAULT;
2854                         if (copy_from_user(&kvm_sigmask, argp,
2855                                            sizeof(kvm_sigmask)))
2856                                 goto out;
2857                         r = -EINVAL;
2858                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2859                                 goto out;
2860                         r = -EFAULT;
2861                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2862                                 goto out;
2863                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2864                 } else
2865                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2866                 break;
2867         }
2868         default:
2869                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2870         }
2871
2872 out:
2873         return r;
2874 }
2875 #endif
2876
2877 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2878                                  int (*accessor)(struct kvm_device *dev,
2879                                                  struct kvm_device_attr *attr),
2880                                  unsigned long arg)
2881 {
2882         struct kvm_device_attr attr;
2883
2884         if (!accessor)
2885                 return -EPERM;
2886
2887         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2888                 return -EFAULT;
2889
2890         return accessor(dev, &attr);
2891 }
2892
2893 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2894                              unsigned long arg)
2895 {
2896         struct kvm_device *dev = filp->private_data;
2897
2898         switch (ioctl) {
2899         case KVM_SET_DEVICE_ATTR:
2900                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2901         case KVM_GET_DEVICE_ATTR:
2902                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2903         case KVM_HAS_DEVICE_ATTR:
2904                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2905         default:
2906                 if (dev->ops->ioctl)
2907                         return dev->ops->ioctl(dev, ioctl, arg);
2908
2909                 return -ENOTTY;
2910         }
2911 }
2912
2913 static int kvm_device_release(struct inode *inode, struct file *filp)
2914 {
2915         struct kvm_device *dev = filp->private_data;
2916         struct kvm *kvm = dev->kvm;
2917
2918         kvm_put_kvm(kvm);
2919         return 0;
2920 }
2921
2922 static const struct file_operations kvm_device_fops = {
2923         .unlocked_ioctl = kvm_device_ioctl,
2924         .release = kvm_device_release,
2925         KVM_COMPAT(kvm_device_ioctl),
2926 };
2927
2928 struct kvm_device *kvm_device_from_filp(struct file *filp)
2929 {
2930         if (filp->f_op != &kvm_device_fops)
2931                 return NULL;
2932
2933         return filp->private_data;
2934 }
2935
2936 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2937 #ifdef CONFIG_KVM_MPIC
2938         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2939         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2940 #endif
2941 };
2942
2943 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2944 {
2945         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2946                 return -ENOSPC;
2947
2948         if (kvm_device_ops_table[type] != NULL)
2949                 return -EEXIST;
2950
2951         kvm_device_ops_table[type] = ops;
2952         return 0;
2953 }
2954
2955 void kvm_unregister_device_ops(u32 type)
2956 {
2957         if (kvm_device_ops_table[type] != NULL)
2958                 kvm_device_ops_table[type] = NULL;
2959 }
2960
2961 static int kvm_ioctl_create_device(struct kvm *kvm,
2962                                    struct kvm_create_device *cd)
2963 {
2964         struct kvm_device_ops *ops = NULL;
2965         struct kvm_device *dev;
2966         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2967         int ret;
2968
2969         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2970                 return -ENODEV;
2971
2972         ops = kvm_device_ops_table[cd->type];
2973         if (ops == NULL)
2974                 return -ENODEV;
2975
2976         if (test)
2977                 return 0;
2978
2979         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2980         if (!dev)
2981                 return -ENOMEM;
2982
2983         dev->ops = ops;
2984         dev->kvm = kvm;
2985
2986         mutex_lock(&kvm->lock);
2987         ret = ops->create(dev, cd->type);
2988         if (ret < 0) {
2989                 mutex_unlock(&kvm->lock);
2990                 kfree(dev);
2991                 return ret;
2992         }
2993         list_add(&dev->vm_node, &kvm->devices);
2994         mutex_unlock(&kvm->lock);
2995
2996         if (ops->init)
2997                 ops->init(dev);
2998
2999         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3000         if (ret < 0) {
3001                 mutex_lock(&kvm->lock);
3002                 list_del(&dev->vm_node);
3003                 mutex_unlock(&kvm->lock);
3004                 ops->destroy(dev);
3005                 return ret;
3006         }
3007
3008         kvm_get_kvm(kvm);
3009         cd->fd = ret;
3010         return 0;
3011 }
3012
3013 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3014 {
3015         switch (arg) {
3016         case KVM_CAP_USER_MEMORY:
3017         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3018         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3019         case KVM_CAP_INTERNAL_ERROR_DATA:
3020 #ifdef CONFIG_HAVE_KVM_MSI
3021         case KVM_CAP_SIGNAL_MSI:
3022 #endif
3023 #ifdef CONFIG_HAVE_KVM_IRQFD
3024         case KVM_CAP_IRQFD:
3025         case KVM_CAP_IRQFD_RESAMPLE:
3026 #endif
3027         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3028         case KVM_CAP_CHECK_EXTENSION_VM:
3029         case KVM_CAP_ENABLE_CAP_VM:
3030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3031         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3032 #endif
3033                 return 1;
3034 #ifdef CONFIG_KVM_MMIO
3035         case KVM_CAP_COALESCED_MMIO:
3036                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3037         case KVM_CAP_COALESCED_PIO:
3038                 return 1;
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3041         case KVM_CAP_IRQ_ROUTING:
3042                 return KVM_MAX_IRQ_ROUTES;
3043 #endif
3044 #if KVM_ADDRESS_SPACE_NUM > 1
3045         case KVM_CAP_MULTI_ADDRESS_SPACE:
3046                 return KVM_ADDRESS_SPACE_NUM;
3047 #endif
3048         case KVM_CAP_MAX_VCPU_ID:
3049                 return KVM_MAX_VCPU_ID;
3050         default:
3051                 break;
3052         }
3053         return kvm_vm_ioctl_check_extension(kvm, arg);
3054 }
3055
3056 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3057                                                   struct kvm_enable_cap *cap)
3058 {
3059         return -EINVAL;
3060 }
3061
3062 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3063                                            struct kvm_enable_cap *cap)
3064 {
3065         switch (cap->cap) {
3066 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3067         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3068                 if (cap->flags || (cap->args[0] & ~1))
3069                         return -EINVAL;
3070                 kvm->manual_dirty_log_protect = cap->args[0];
3071                 return 0;
3072 #endif
3073         default:
3074                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3075         }
3076 }
3077
3078 static long kvm_vm_ioctl(struct file *filp,
3079                            unsigned int ioctl, unsigned long arg)
3080 {
3081         struct kvm *kvm = filp->private_data;
3082         void __user *argp = (void __user *)arg;
3083         int r;
3084
3085         if (kvm->mm != current->mm)
3086                 return -EIO;
3087         switch (ioctl) {
3088         case KVM_CREATE_VCPU:
3089                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3090                 break;
3091         case KVM_ENABLE_CAP: {
3092                 struct kvm_enable_cap cap;
3093
3094                 r = -EFAULT;
3095                 if (copy_from_user(&cap, argp, sizeof(cap)))
3096                         goto out;
3097                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3098                 break;
3099         }
3100         case KVM_SET_USER_MEMORY_REGION: {
3101                 struct kvm_userspace_memory_region kvm_userspace_mem;
3102
3103                 r = -EFAULT;
3104                 if (copy_from_user(&kvm_userspace_mem, argp,
3105                                                 sizeof(kvm_userspace_mem)))
3106                         goto out;
3107
3108                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3109                 break;
3110         }
3111         case KVM_GET_DIRTY_LOG: {
3112                 struct kvm_dirty_log log;
3113
3114                 r = -EFAULT;
3115                 if (copy_from_user(&log, argp, sizeof(log)))
3116                         goto out;
3117                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3118                 break;
3119         }
3120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3121         case KVM_CLEAR_DIRTY_LOG: {
3122                 struct kvm_clear_dirty_log log;
3123
3124                 r = -EFAULT;
3125                 if (copy_from_user(&log, argp, sizeof(log)))
3126                         goto out;
3127                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3128                 break;
3129         }
3130 #endif
3131 #ifdef CONFIG_KVM_MMIO
3132         case KVM_REGISTER_COALESCED_MMIO: {
3133                 struct kvm_coalesced_mmio_zone zone;
3134
3135                 r = -EFAULT;
3136                 if (copy_from_user(&zone, argp, sizeof(zone)))
3137                         goto out;
3138                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3139                 break;
3140         }
3141         case KVM_UNREGISTER_COALESCED_MMIO: {
3142                 struct kvm_coalesced_mmio_zone zone;
3143
3144                 r = -EFAULT;
3145                 if (copy_from_user(&zone, argp, sizeof(zone)))
3146                         goto out;
3147                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3148                 break;
3149         }
3150 #endif
3151         case KVM_IRQFD: {
3152                 struct kvm_irqfd data;
3153
3154                 r = -EFAULT;
3155                 if (copy_from_user(&data, argp, sizeof(data)))
3156                         goto out;
3157                 r = kvm_irqfd(kvm, &data);
3158                 break;
3159         }
3160         case KVM_IOEVENTFD: {
3161                 struct kvm_ioeventfd data;
3162
3163                 r = -EFAULT;
3164                 if (copy_from_user(&data, argp, sizeof(data)))
3165                         goto out;
3166                 r = kvm_ioeventfd(kvm, &data);
3167                 break;
3168         }
3169 #ifdef CONFIG_HAVE_KVM_MSI
3170         case KVM_SIGNAL_MSI: {
3171                 struct kvm_msi msi;
3172
3173                 r = -EFAULT;
3174                 if (copy_from_user(&msi, argp, sizeof(msi)))
3175                         goto out;
3176                 r = kvm_send_userspace_msi(kvm, &msi);
3177                 break;
3178         }
3179 #endif
3180 #ifdef __KVM_HAVE_IRQ_LINE
3181         case KVM_IRQ_LINE_STATUS:
3182         case KVM_IRQ_LINE: {
3183                 struct kvm_irq_level irq_event;
3184
3185                 r = -EFAULT;
3186                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3187                         goto out;
3188
3189                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3190                                         ioctl == KVM_IRQ_LINE_STATUS);
3191                 if (r)
3192                         goto out;
3193
3194                 r = -EFAULT;
3195                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3196                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3197                                 goto out;
3198                 }
3199
3200                 r = 0;
3201                 break;
3202         }
3203 #endif
3204 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3205         case KVM_SET_GSI_ROUTING: {
3206                 struct kvm_irq_routing routing;
3207                 struct kvm_irq_routing __user *urouting;
3208                 struct kvm_irq_routing_entry *entries = NULL;
3209
3210                 r = -EFAULT;
3211                 if (copy_from_user(&routing, argp, sizeof(routing)))
3212                         goto out;
3213                 r = -EINVAL;
3214                 if (!kvm_arch_can_set_irq_routing(kvm))
3215                         goto out;
3216                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3217                         goto out;
3218                 if (routing.flags)
3219                         goto out;
3220                 if (routing.nr) {
3221                         r = -ENOMEM;
3222                         entries = vmalloc(array_size(sizeof(*entries),
3223                                                      routing.nr));
3224                         if (!entries)
3225                                 goto out;
3226                         r = -EFAULT;
3227                         urouting = argp;
3228                         if (copy_from_user(entries, urouting->entries,
3229                                            routing.nr * sizeof(*entries)))
3230                                 goto out_free_irq_routing;
3231                 }
3232                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3233                                         routing.flags);
3234 out_free_irq_routing:
3235                 vfree(entries);
3236                 break;
3237         }
3238 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3239         case KVM_CREATE_DEVICE: {
3240                 struct kvm_create_device cd;
3241
3242                 r = -EFAULT;
3243                 if (copy_from_user(&cd, argp, sizeof(cd)))
3244                         goto out;
3245
3246                 r = kvm_ioctl_create_device(kvm, &cd);
3247                 if (r)
3248                         goto out;
3249
3250                 r = -EFAULT;
3251                 if (copy_to_user(argp, &cd, sizeof(cd)))
3252                         goto out;
3253
3254                 r = 0;
3255                 break;
3256         }
3257         case KVM_CHECK_EXTENSION:
3258                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3259                 break;
3260         default:
3261                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3262         }
3263 out:
3264         return r;
3265 }
3266
3267 #ifdef CONFIG_KVM_COMPAT
3268 struct compat_kvm_dirty_log {
3269         __u32 slot;
3270         __u32 padding1;
3271         union {
3272                 compat_uptr_t dirty_bitmap; /* one bit per page */
3273                 __u64 padding2;
3274         };
3275 };
3276
3277 static long kvm_vm_compat_ioctl(struct file *filp,
3278                            unsigned int ioctl, unsigned long arg)
3279 {
3280         struct kvm *kvm = filp->private_data;
3281         int r;
3282
3283         if (kvm->mm != current->mm)
3284                 return -EIO;
3285         switch (ioctl) {
3286         case KVM_GET_DIRTY_LOG: {
3287                 struct compat_kvm_dirty_log compat_log;
3288                 struct kvm_dirty_log log;
3289
3290                 if (copy_from_user(&compat_log, (void __user *)arg,
3291                                    sizeof(compat_log)))
3292                         return -EFAULT;
3293                 log.slot         = compat_log.slot;
3294                 log.padding1     = compat_log.padding1;
3295                 log.padding2     = compat_log.padding2;
3296                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3297
3298                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3299                 break;
3300         }
3301         default:
3302                 r = kvm_vm_ioctl(filp, ioctl, arg);
3303         }
3304         return r;
3305 }
3306 #endif
3307
3308 static struct file_operations kvm_vm_fops = {
3309         .release        = kvm_vm_release,
3310         .unlocked_ioctl = kvm_vm_ioctl,
3311         .llseek         = noop_llseek,
3312         KVM_COMPAT(kvm_vm_compat_ioctl),
3313 };
3314
3315 static int kvm_dev_ioctl_create_vm(unsigned long type)
3316 {
3317         int r;
3318         struct kvm *kvm;
3319         struct file *file;
3320
3321         kvm = kvm_create_vm(type);
3322         if (IS_ERR(kvm))
3323                 return PTR_ERR(kvm);
3324 #ifdef CONFIG_KVM_MMIO
3325         r = kvm_coalesced_mmio_init(kvm);
3326         if (r < 0)
3327                 goto put_kvm;
3328 #endif
3329         r = get_unused_fd_flags(O_CLOEXEC);
3330         if (r < 0)
3331                 goto put_kvm;
3332
3333         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3334         if (IS_ERR(file)) {
3335                 put_unused_fd(r);
3336                 r = PTR_ERR(file);
3337                 goto put_kvm;
3338         }
3339
3340         /*
3341          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3342          * already set, with ->release() being kvm_vm_release().  In error
3343          * cases it will be called by the final fput(file) and will take
3344          * care of doing kvm_put_kvm(kvm).
3345          */
3346         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3347                 put_unused_fd(r);
3348                 fput(file);
3349                 return -ENOMEM;
3350         }
3351         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3352
3353         fd_install(r, file);
3354         return r;
3355
3356 put_kvm:
3357         kvm_put_kvm(kvm);
3358         return r;
3359 }
3360
3361 static long kvm_dev_ioctl(struct file *filp,
3362                           unsigned int ioctl, unsigned long arg)
3363 {
3364         long r = -EINVAL;
3365
3366         switch (ioctl) {
3367         case KVM_GET_API_VERSION:
3368                 if (arg)
3369                         goto out;
3370                 r = KVM_API_VERSION;
3371                 break;
3372         case KVM_CREATE_VM:
3373                 r = kvm_dev_ioctl_create_vm(arg);
3374                 break;
3375         case KVM_CHECK_EXTENSION:
3376                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3377                 break;
3378         case KVM_GET_VCPU_MMAP_SIZE:
3379                 if (arg)
3380                         goto out;
3381                 r = PAGE_SIZE;     /* struct kvm_run */
3382 #ifdef CONFIG_X86
3383                 r += PAGE_SIZE;    /* pio data page */
3384 #endif
3385 #ifdef CONFIG_KVM_MMIO
3386                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3387 #endif
3388                 break;
3389         case KVM_TRACE_ENABLE:
3390         case KVM_TRACE_PAUSE:
3391         case KVM_TRACE_DISABLE:
3392                 r = -EOPNOTSUPP;
3393                 break;
3394         default:
3395                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3396         }
3397 out:
3398         return r;
3399 }
3400
3401 static struct file_operations kvm_chardev_ops = {
3402         .unlocked_ioctl = kvm_dev_ioctl,
3403         .llseek         = noop_llseek,
3404         KVM_COMPAT(kvm_dev_ioctl),
3405 };
3406
3407 static struct miscdevice kvm_dev = {
3408         KVM_MINOR,
3409         "kvm",
3410         &kvm_chardev_ops,
3411 };
3412
3413 static void hardware_enable_nolock(void *junk)
3414 {
3415         int cpu = raw_smp_processor_id();
3416         int r;
3417
3418         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3419                 return;
3420
3421         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3422
3423         r = kvm_arch_hardware_enable();
3424
3425         if (r) {
3426                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3427                 atomic_inc(&hardware_enable_failed);
3428                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3429         }
3430 }
3431
3432 static int kvm_starting_cpu(unsigned int cpu)
3433 {
3434         raw_spin_lock(&kvm_count_lock);
3435         if (kvm_usage_count)
3436                 hardware_enable_nolock(NULL);
3437         raw_spin_unlock(&kvm_count_lock);
3438         return 0;
3439 }
3440
3441 static void hardware_disable_nolock(void *junk)
3442 {
3443         int cpu = raw_smp_processor_id();
3444
3445         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3446                 return;
3447         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3448         kvm_arch_hardware_disable();
3449 }
3450
3451 static int kvm_dying_cpu(unsigned int cpu)
3452 {
3453         raw_spin_lock(&kvm_count_lock);
3454         if (kvm_usage_count)
3455                 hardware_disable_nolock(NULL);
3456         raw_spin_unlock(&kvm_count_lock);
3457         return 0;
3458 }
3459
3460 static void hardware_disable_all_nolock(void)
3461 {
3462         BUG_ON(!kvm_usage_count);
3463
3464         kvm_usage_count--;
3465         if (!kvm_usage_count)
3466                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3467 }
3468
3469 static void hardware_disable_all(void)
3470 {
3471         raw_spin_lock(&kvm_count_lock);
3472         hardware_disable_all_nolock();
3473         raw_spin_unlock(&kvm_count_lock);
3474 }
3475
3476 static int hardware_enable_all(void)
3477 {
3478         int r = 0;
3479
3480         raw_spin_lock(&kvm_count_lock);
3481
3482         kvm_usage_count++;
3483         if (kvm_usage_count == 1) {
3484                 atomic_set(&hardware_enable_failed, 0);
3485                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3486
3487                 if (atomic_read(&hardware_enable_failed)) {
3488                         hardware_disable_all_nolock();
3489                         r = -EBUSY;
3490                 }
3491         }
3492
3493         raw_spin_unlock(&kvm_count_lock);
3494
3495         return r;
3496 }
3497
3498 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3499                       void *v)
3500 {
3501         /*
3502          * Some (well, at least mine) BIOSes hang on reboot if
3503          * in vmx root mode.
3504          *
3505          * And Intel TXT required VMX off for all cpu when system shutdown.
3506          */
3507         pr_info("kvm: exiting hardware virtualization\n");
3508         kvm_rebooting = true;
3509         on_each_cpu(hardware_disable_nolock, NULL, 1);
3510         return NOTIFY_OK;
3511 }
3512
3513 static struct notifier_block kvm_reboot_notifier = {
3514         .notifier_call = kvm_reboot,
3515         .priority = 0,
3516 };
3517
3518 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3519 {
3520         int i;
3521
3522         for (i = 0; i < bus->dev_count; i++) {
3523                 struct kvm_io_device *pos = bus->range[i].dev;
3524
3525                 kvm_iodevice_destructor(pos);
3526         }
3527         kfree(bus);
3528 }
3529
3530 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3531                                  const struct kvm_io_range *r2)
3532 {
3533         gpa_t addr1 = r1->addr;
3534         gpa_t addr2 = r2->addr;
3535
3536         if (addr1 < addr2)
3537                 return -1;
3538
3539         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3540          * accept any overlapping write.  Any order is acceptable for
3541          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3542          * we process all of them.
3543          */
3544         if (r2->len) {
3545                 addr1 += r1->len;
3546                 addr2 += r2->len;
3547         }
3548
3549         if (addr1 > addr2)
3550                 return 1;
3551
3552         return 0;
3553 }
3554
3555 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3556 {
3557         return kvm_io_bus_cmp(p1, p2);
3558 }
3559
3560 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3561                              gpa_t addr, int len)
3562 {
3563         struct kvm_io_range *range, key;
3564         int off;
3565
3566         key = (struct kvm_io_range) {
3567                 .addr = addr,
3568                 .len = len,
3569         };
3570
3571         range = bsearch(&key, bus->range, bus->dev_count,
3572                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3573         if (range == NULL)
3574                 return -ENOENT;
3575
3576         off = range - bus->range;
3577
3578         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3579                 off--;
3580
3581         return off;
3582 }
3583
3584 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3585                               struct kvm_io_range *range, const void *val)
3586 {
3587         int idx;
3588
3589         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3590         if (idx < 0)
3591                 return -EOPNOTSUPP;
3592
3593         while (idx < bus->dev_count &&
3594                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3595                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3596                                         range->len, val))
3597                         return idx;
3598                 idx++;
3599         }
3600
3601         return -EOPNOTSUPP;
3602 }
3603
3604 /* kvm_io_bus_write - called under kvm->slots_lock */
3605 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3606                      int len, const void *val)
3607 {
3608         struct kvm_io_bus *bus;
3609         struct kvm_io_range range;
3610         int r;
3611
3612         range = (struct kvm_io_range) {
3613                 .addr = addr,
3614                 .len = len,
3615         };
3616
3617         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3618         if (!bus)
3619                 return -ENOMEM;
3620         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3621         return r < 0 ? r : 0;
3622 }
3623
3624 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3625 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3626                             gpa_t addr, int len, const void *val, long cookie)
3627 {
3628         struct kvm_io_bus *bus;
3629         struct kvm_io_range range;
3630
3631         range = (struct kvm_io_range) {
3632                 .addr = addr,
3633                 .len = len,
3634         };
3635
3636         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3637         if (!bus)
3638                 return -ENOMEM;
3639
3640         /* First try the device referenced by cookie. */
3641         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3642             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3643                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3644                                         val))
3645                         return cookie;
3646
3647         /*
3648          * cookie contained garbage; fall back to search and return the
3649          * correct cookie value.
3650          */
3651         return __kvm_io_bus_write(vcpu, bus, &range, val);
3652 }
3653
3654 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3655                              struct kvm_io_range *range, void *val)
3656 {
3657         int idx;
3658
3659         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3660         if (idx < 0)
3661                 return -EOPNOTSUPP;
3662
3663         while (idx < bus->dev_count &&
3664                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3665                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3666                                        range->len, val))
3667                         return idx;
3668                 idx++;
3669         }
3670
3671         return -EOPNOTSUPP;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3674
3675 /* kvm_io_bus_read - called under kvm->slots_lock */
3676 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3677                     int len, void *val)
3678 {
3679         struct kvm_io_bus *bus;
3680         struct kvm_io_range range;
3681         int r;
3682
3683         range = (struct kvm_io_range) {
3684                 .addr = addr,
3685                 .len = len,
3686         };
3687
3688         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3689         if (!bus)
3690                 return -ENOMEM;
3691         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3692         return r < 0 ? r : 0;
3693 }
3694
3695
3696 /* Caller must hold slots_lock. */
3697 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3698                             int len, struct kvm_io_device *dev)
3699 {
3700         int i;
3701         struct kvm_io_bus *new_bus, *bus;
3702         struct kvm_io_range range;
3703
3704         bus = kvm_get_bus(kvm, bus_idx);
3705         if (!bus)
3706                 return -ENOMEM;
3707
3708         /* exclude ioeventfd which is limited by maximum fd */
3709         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3710                 return -ENOSPC;
3711
3712         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3713                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3714         if (!new_bus)
3715                 return -ENOMEM;
3716
3717         range = (struct kvm_io_range) {
3718                 .addr = addr,
3719                 .len = len,
3720                 .dev = dev,
3721         };
3722
3723         for (i = 0; i < bus->dev_count; i++)
3724                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3725                         break;
3726
3727         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3728         new_bus->dev_count++;
3729         new_bus->range[i] = range;
3730         memcpy(new_bus->range + i + 1, bus->range + i,
3731                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3732         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3733         synchronize_srcu_expedited(&kvm->srcu);
3734         kfree(bus);
3735
3736         return 0;
3737 }
3738
3739 /* Caller must hold slots_lock. */
3740 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3741                                struct kvm_io_device *dev)
3742 {
3743         int i;
3744         struct kvm_io_bus *new_bus, *bus;
3745
3746         bus = kvm_get_bus(kvm, bus_idx);
3747         if (!bus)
3748                 return;
3749
3750         for (i = 0; i < bus->dev_count; i++)
3751                 if (bus->range[i].dev == dev) {
3752                         break;
3753                 }
3754
3755         if (i == bus->dev_count)
3756                 return;
3757
3758         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3759                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3760         if (!new_bus)  {
3761                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3762                 goto broken;
3763         }
3764
3765         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3766         new_bus->dev_count--;
3767         memcpy(new_bus->range + i, bus->range + i + 1,
3768                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3769
3770 broken:
3771         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3772         synchronize_srcu_expedited(&kvm->srcu);
3773         kfree(bus);
3774         return;
3775 }
3776
3777 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3778                                          gpa_t addr)
3779 {
3780         struct kvm_io_bus *bus;
3781         int dev_idx, srcu_idx;
3782         struct kvm_io_device *iodev = NULL;
3783
3784         srcu_idx = srcu_read_lock(&kvm->srcu);
3785
3786         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3787         if (!bus)
3788                 goto out_unlock;
3789
3790         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3791         if (dev_idx < 0)
3792                 goto out_unlock;
3793
3794         iodev = bus->range[dev_idx].dev;
3795
3796 out_unlock:
3797         srcu_read_unlock(&kvm->srcu, srcu_idx);
3798
3799         return iodev;
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3802
3803 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3804                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3805                            const char *fmt)
3806 {
3807         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3808                                           inode->i_private;
3809
3810         /* The debugfs files are a reference to the kvm struct which
3811          * is still valid when kvm_destroy_vm is called.
3812          * To avoid the race between open and the removal of the debugfs
3813          * directory we test against the users count.
3814          */
3815         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3816                 return -ENOENT;
3817
3818         if (simple_attr_open(inode, file, get, set, fmt)) {
3819                 kvm_put_kvm(stat_data->kvm);
3820                 return -ENOMEM;
3821         }
3822
3823         return 0;
3824 }
3825
3826 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3827 {
3828         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3829                                           inode->i_private;
3830
3831         simple_attr_release(inode, file);
3832         kvm_put_kvm(stat_data->kvm);
3833
3834         return 0;
3835 }
3836
3837 static int vm_stat_get_per_vm(void *data, u64 *val)
3838 {
3839         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3840
3841         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3842
3843         return 0;
3844 }
3845
3846 static int vm_stat_clear_per_vm(void *data, u64 val)
3847 {
3848         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3849
3850         if (val)
3851                 return -EINVAL;
3852
3853         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3854
3855         return 0;
3856 }
3857
3858 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3859 {
3860         __simple_attr_check_format("%llu\n", 0ull);
3861         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3862                                 vm_stat_clear_per_vm, "%llu\n");
3863 }
3864
3865 static const struct file_operations vm_stat_get_per_vm_fops = {
3866         .owner   = THIS_MODULE,
3867         .open    = vm_stat_get_per_vm_open,
3868         .release = kvm_debugfs_release,
3869         .read    = simple_attr_read,
3870         .write   = simple_attr_write,
3871         .llseek  = no_llseek,
3872 };
3873
3874 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3875 {
3876         int i;
3877         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3878         struct kvm_vcpu *vcpu;
3879
3880         *val = 0;
3881
3882         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3883                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3884
3885         return 0;
3886 }
3887
3888 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3889 {
3890         int i;
3891         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3892         struct kvm_vcpu *vcpu;
3893
3894         if (val)
3895                 return -EINVAL;
3896
3897         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3898                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3899
3900         return 0;
3901 }
3902
3903 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3904 {
3905         __simple_attr_check_format("%llu\n", 0ull);
3906         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3907                                  vcpu_stat_clear_per_vm, "%llu\n");
3908 }
3909
3910 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3911         .owner   = THIS_MODULE,
3912         .open    = vcpu_stat_get_per_vm_open,
3913         .release = kvm_debugfs_release,
3914         .read    = simple_attr_read,
3915         .write   = simple_attr_write,
3916         .llseek  = no_llseek,
3917 };
3918
3919 static const struct file_operations *stat_fops_per_vm[] = {
3920         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3921         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3922 };
3923
3924 static int vm_stat_get(void *_offset, u64 *val)
3925 {
3926         unsigned offset = (long)_offset;
3927         struct kvm *kvm;
3928         struct kvm_stat_data stat_tmp = {.offset = offset};
3929         u64 tmp_val;
3930
3931         *val = 0;
3932         spin_lock(&kvm_lock);
3933         list_for_each_entry(kvm, &vm_list, vm_list) {
3934                 stat_tmp.kvm = kvm;
3935                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3936                 *val += tmp_val;
3937         }
3938         spin_unlock(&kvm_lock);
3939         return 0;
3940 }
3941
3942 static int vm_stat_clear(void *_offset, u64 val)
3943 {
3944         unsigned offset = (long)_offset;
3945         struct kvm *kvm;
3946         struct kvm_stat_data stat_tmp = {.offset = offset};
3947
3948         if (val)
3949                 return -EINVAL;
3950
3951         spin_lock(&kvm_lock);
3952         list_for_each_entry(kvm, &vm_list, vm_list) {
3953                 stat_tmp.kvm = kvm;
3954                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3955         }
3956         spin_unlock(&kvm_lock);
3957
3958         return 0;
3959 }
3960
3961 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3962
3963 static int vcpu_stat_get(void *_offset, u64 *val)
3964 {
3965         unsigned offset = (long)_offset;
3966         struct kvm *kvm;
3967         struct kvm_stat_data stat_tmp = {.offset = offset};
3968         u64 tmp_val;
3969
3970         *val = 0;
3971         spin_lock(&kvm_lock);
3972         list_for_each_entry(kvm, &vm_list, vm_list) {
3973                 stat_tmp.kvm = kvm;
3974                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3975                 *val += tmp_val;
3976         }
3977         spin_unlock(&kvm_lock);
3978         return 0;
3979 }
3980
3981 static int vcpu_stat_clear(void *_offset, u64 val)
3982 {
3983         unsigned offset = (long)_offset;
3984         struct kvm *kvm;
3985         struct kvm_stat_data stat_tmp = {.offset = offset};
3986
3987         if (val)
3988                 return -EINVAL;
3989
3990         spin_lock(&kvm_lock);
3991         list_for_each_entry(kvm, &vm_list, vm_list) {
3992                 stat_tmp.kvm = kvm;
3993                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3994         }
3995         spin_unlock(&kvm_lock);
3996
3997         return 0;
3998 }
3999
4000 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4001                         "%llu\n");
4002
4003 static const struct file_operations *stat_fops[] = {
4004         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4005         [KVM_STAT_VM]   = &vm_stat_fops,
4006 };
4007
4008 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4009 {
4010         struct kobj_uevent_env *env;
4011         unsigned long long created, active;
4012
4013         if (!kvm_dev.this_device || !kvm)
4014                 return;
4015
4016         spin_lock(&kvm_lock);
4017         if (type == KVM_EVENT_CREATE_VM) {
4018                 kvm_createvm_count++;
4019                 kvm_active_vms++;
4020         } else if (type == KVM_EVENT_DESTROY_VM) {
4021                 kvm_active_vms--;
4022         }
4023         created = kvm_createvm_count;
4024         active = kvm_active_vms;
4025         spin_unlock(&kvm_lock);
4026
4027         env = kzalloc(sizeof(*env), GFP_KERNEL);
4028         if (!env)
4029                 return;
4030
4031         add_uevent_var(env, "CREATED=%llu", created);
4032         add_uevent_var(env, "COUNT=%llu", active);
4033
4034         if (type == KVM_EVENT_CREATE_VM) {
4035                 add_uevent_var(env, "EVENT=create");
4036                 kvm->userspace_pid = task_pid_nr(current);
4037         } else if (type == KVM_EVENT_DESTROY_VM) {
4038                 add_uevent_var(env, "EVENT=destroy");
4039         }
4040         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4041
4042         if (kvm->debugfs_dentry) {
4043                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4044
4045                 if (p) {
4046                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4047                         if (!IS_ERR(tmp))
4048                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4049                         kfree(p);
4050                 }
4051         }
4052         /* no need for checks, since we are adding at most only 5 keys */
4053         env->envp[env->envp_idx++] = NULL;
4054         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4055         kfree(env);
4056 }
4057
4058 static void kvm_init_debug(void)
4059 {
4060         struct kvm_stats_debugfs_item *p;
4061
4062         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4063
4064         kvm_debugfs_num_entries = 0;
4065         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4066                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4067                                     (void *)(long)p->offset,
4068                                     stat_fops[p->kind]);
4069         }
4070 }
4071
4072 static int kvm_suspend(void)
4073 {
4074         if (kvm_usage_count)
4075                 hardware_disable_nolock(NULL);
4076         return 0;
4077 }
4078
4079 static void kvm_resume(void)
4080 {
4081         if (kvm_usage_count) {
4082                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4083                 hardware_enable_nolock(NULL);
4084         }
4085 }
4086
4087 static struct syscore_ops kvm_syscore_ops = {
4088         .suspend = kvm_suspend,
4089         .resume = kvm_resume,
4090 };
4091
4092 static inline
4093 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4094 {
4095         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4096 }
4097
4098 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4099 {
4100         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4101
4102         if (vcpu->preempted)
4103                 vcpu->preempted = false;
4104
4105         kvm_arch_sched_in(vcpu, cpu);
4106
4107         kvm_arch_vcpu_load(vcpu, cpu);
4108 }
4109
4110 static void kvm_sched_out(struct preempt_notifier *pn,
4111                           struct task_struct *next)
4112 {
4113         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4114
4115         if (current->state == TASK_RUNNING)
4116                 vcpu->preempted = true;
4117         kvm_arch_vcpu_put(vcpu);
4118 }
4119
4120 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4121                   struct module *module)
4122 {
4123         int r;
4124         int cpu;
4125
4126         r = kvm_arch_init(opaque);
4127         if (r)
4128                 goto out_fail;
4129
4130         /*
4131          * kvm_arch_init makes sure there's at most one caller
4132          * for architectures that support multiple implementations,
4133          * like intel and amd on x86.
4134          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4135          * conflicts in case kvm is already setup for another implementation.
4136          */
4137         r = kvm_irqfd_init();
4138         if (r)
4139                 goto out_irqfd;
4140
4141         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4142                 r = -ENOMEM;
4143                 goto out_free_0;
4144         }
4145
4146         r = kvm_arch_hardware_setup();
4147         if (r < 0)
4148                 goto out_free_0a;
4149
4150         for_each_online_cpu(cpu) {
4151                 smp_call_function_single(cpu,
4152                                 kvm_arch_check_processor_compat,
4153                                 &r, 1);
4154                 if (r < 0)
4155                         goto out_free_1;
4156         }
4157
4158         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4159                                       kvm_starting_cpu, kvm_dying_cpu);
4160         if (r)
4161                 goto out_free_2;
4162         register_reboot_notifier(&kvm_reboot_notifier);
4163
4164         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4165         if (!vcpu_align)
4166                 vcpu_align = __alignof__(struct kvm_vcpu);
4167         kvm_vcpu_cache =
4168                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4169                                            SLAB_ACCOUNT,
4170                                            offsetof(struct kvm_vcpu, arch),
4171                                            sizeof_field(struct kvm_vcpu, arch),
4172                                            NULL);
4173         if (!kvm_vcpu_cache) {
4174                 r = -ENOMEM;
4175                 goto out_free_3;
4176         }
4177
4178         r = kvm_async_pf_init();
4179         if (r)
4180                 goto out_free;
4181
4182         kvm_chardev_ops.owner = module;
4183         kvm_vm_fops.owner = module;
4184         kvm_vcpu_fops.owner = module;
4185
4186         r = misc_register(&kvm_dev);
4187         if (r) {
4188                 pr_err("kvm: misc device register failed\n");
4189                 goto out_unreg;
4190         }
4191
4192         register_syscore_ops(&kvm_syscore_ops);
4193
4194         kvm_preempt_ops.sched_in = kvm_sched_in;
4195         kvm_preempt_ops.sched_out = kvm_sched_out;
4196
4197         kvm_init_debug();
4198
4199         r = kvm_vfio_ops_init();
4200         WARN_ON(r);
4201
4202         return 0;
4203
4204 out_unreg:
4205         kvm_async_pf_deinit();
4206 out_free:
4207         kmem_cache_destroy(kvm_vcpu_cache);
4208 out_free_3:
4209         unregister_reboot_notifier(&kvm_reboot_notifier);
4210         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4211 out_free_2:
4212 out_free_1:
4213         kvm_arch_hardware_unsetup();
4214 out_free_0a:
4215         free_cpumask_var(cpus_hardware_enabled);
4216 out_free_0:
4217         kvm_irqfd_exit();
4218 out_irqfd:
4219         kvm_arch_exit();
4220 out_fail:
4221         return r;
4222 }
4223 EXPORT_SYMBOL_GPL(kvm_init);
4224
4225 void kvm_exit(void)
4226 {
4227         debugfs_remove_recursive(kvm_debugfs_dir);
4228         misc_deregister(&kvm_dev);
4229         kmem_cache_destroy(kvm_vcpu_cache);
4230         kvm_async_pf_deinit();
4231         unregister_syscore_ops(&kvm_syscore_ops);
4232         unregister_reboot_notifier(&kvm_reboot_notifier);
4233         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4234         on_each_cpu(hardware_disable_nolock, NULL, 1);
4235         kvm_arch_hardware_unsetup();
4236         kvm_arch_exit();
4237         kvm_irqfd_exit();
4238         free_cpumask_var(cpus_hardware_enabled);
4239         kvm_vfio_ops_exit();
4240 }
4241 EXPORT_SYMBOL_GPL(kvm_exit);