Merge branches 'acpi-scan', 'acpi-tables', 'acpi-misc' and 'acpi-pm'
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/list_sort.h>
22 #include <linux/nospec.h>
23
24 #include <asm/kvm_hyp.h>
25
26 #include "vgic.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 struct vgic_global kvm_vgic_global_state __ro_after_init = {
32         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
33 };
34
35 /*
36  * Locking order is always:
37  * kvm->lock (mutex)
38  *   its->cmd_lock (mutex)
39  *     its->its_lock (mutex)
40  *       vgic_cpu->ap_list_lock         must be taken with IRQs disabled
41  *         kvm->lpi_list_lock           must be taken with IRQs disabled
42  *           vgic_irq->irq_lock         must be taken with IRQs disabled
43  *
44  * As the ap_list_lock might be taken from the timer interrupt handler,
45  * we have to disable IRQs before taking this lock and everything lower
46  * than it.
47  *
48  * If you need to take multiple locks, always take the upper lock first,
49  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
50  * If you are already holding a lock and need to take a higher one, you
51  * have to drop the lower ranking lock first and re-aquire it after having
52  * taken the upper one.
53  *
54  * When taking more than one ap_list_lock at the same time, always take the
55  * lowest numbered VCPU's ap_list_lock first, so:
56  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
57  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
58  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
59  *
60  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
61  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
62  * spinlocks for any lock that may be taken while injecting an interrupt.
63  */
64
65 /*
66  * Iterate over the VM's list of mapped LPIs to find the one with a
67  * matching interrupt ID and return a reference to the IRQ structure.
68  */
69 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
70 {
71         struct vgic_dist *dist = &kvm->arch.vgic;
72         struct vgic_irq *irq = NULL;
73         unsigned long flags;
74
75         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
76
77         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
78                 if (irq->intid != intid)
79                         continue;
80
81                 /*
82                  * This increases the refcount, the caller is expected to
83                  * call vgic_put_irq() later once it's finished with the IRQ.
84                  */
85                 vgic_get_irq_kref(irq);
86                 goto out_unlock;
87         }
88         irq = NULL;
89
90 out_unlock:
91         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
92
93         return irq;
94 }
95
96 /*
97  * This looks up the virtual interrupt ID to get the corresponding
98  * struct vgic_irq. It also increases the refcount, so any caller is expected
99  * to call vgic_put_irq() once it's finished with this IRQ.
100  */
101 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
102                               u32 intid)
103 {
104         /* SGIs and PPIs */
105         if (intid <= VGIC_MAX_PRIVATE) {
106                 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
107                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
108         }
109
110         /* SPIs */
111         if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
112                 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
113                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
114         }
115
116         /* LPIs */
117         if (intid >= VGIC_MIN_LPI)
118                 return vgic_get_lpi(kvm, intid);
119
120         WARN(1, "Looking up struct vgic_irq for reserved INTID");
121         return NULL;
122 }
123
124 /*
125  * We can't do anything in here, because we lack the kvm pointer to
126  * lock and remove the item from the lpi_list. So we keep this function
127  * empty and use the return value of kref_put() to trigger the freeing.
128  */
129 static void vgic_irq_release(struct kref *ref)
130 {
131 }
132
133 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
134 {
135         struct vgic_dist *dist = &kvm->arch.vgic;
136         unsigned long flags;
137
138         if (irq->intid < VGIC_MIN_LPI)
139                 return;
140
141         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
142         if (!kref_put(&irq->refcount, vgic_irq_release)) {
143                 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
144                 return;
145         };
146
147         list_del(&irq->lpi_list);
148         dist->lpi_list_count--;
149         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
150
151         kfree(irq);
152 }
153
154 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
155 {
156         WARN_ON(irq_set_irqchip_state(irq->host_irq,
157                                       IRQCHIP_STATE_PENDING,
158                                       pending));
159 }
160
161 bool vgic_get_phys_line_level(struct vgic_irq *irq)
162 {
163         bool line_level;
164
165         BUG_ON(!irq->hw);
166
167         if (irq->get_input_level)
168                 return irq->get_input_level(irq->intid);
169
170         WARN_ON(irq_get_irqchip_state(irq->host_irq,
171                                       IRQCHIP_STATE_PENDING,
172                                       &line_level));
173         return line_level;
174 }
175
176 /* Set/Clear the physical active state */
177 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
178 {
179
180         BUG_ON(!irq->hw);
181         WARN_ON(irq_set_irqchip_state(irq->host_irq,
182                                       IRQCHIP_STATE_ACTIVE,
183                                       active));
184 }
185
186 /**
187  * kvm_vgic_target_oracle - compute the target vcpu for an irq
188  *
189  * @irq:        The irq to route. Must be already locked.
190  *
191  * Based on the current state of the interrupt (enabled, pending,
192  * active, vcpu and target_vcpu), compute the next vcpu this should be
193  * given to. Return NULL if this shouldn't be injected at all.
194  *
195  * Requires the IRQ lock to be held.
196  */
197 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
198 {
199         lockdep_assert_held(&irq->irq_lock);
200
201         /* If the interrupt is active, it must stay on the current vcpu */
202         if (irq->active)
203                 return irq->vcpu ? : irq->target_vcpu;
204
205         /*
206          * If the IRQ is not active but enabled and pending, we should direct
207          * it to its configured target VCPU.
208          * If the distributor is disabled, pending interrupts shouldn't be
209          * forwarded.
210          */
211         if (irq->enabled && irq_is_pending(irq)) {
212                 if (unlikely(irq->target_vcpu &&
213                              !irq->target_vcpu->kvm->arch.vgic.enabled))
214                         return NULL;
215
216                 return irq->target_vcpu;
217         }
218
219         /* If neither active nor pending and enabled, then this IRQ should not
220          * be queued to any VCPU.
221          */
222         return NULL;
223 }
224
225 /*
226  * The order of items in the ap_lists defines how we'll pack things in LRs as
227  * well, the first items in the list being the first things populated in the
228  * LRs.
229  *
230  * A hard rule is that active interrupts can never be pushed out of the LRs
231  * (and therefore take priority) since we cannot reliably trap on deactivation
232  * of IRQs and therefore they have to be present in the LRs.
233  *
234  * Otherwise things should be sorted by the priority field and the GIC
235  * hardware support will take care of preemption of priority groups etc.
236  *
237  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
238  * to sort "b" before "a".
239  */
240 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
241 {
242         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
243         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
244         bool penda, pendb;
245         int ret;
246
247         raw_spin_lock(&irqa->irq_lock);
248         raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
249
250         if (irqa->active || irqb->active) {
251                 ret = (int)irqb->active - (int)irqa->active;
252                 goto out;
253         }
254
255         penda = irqa->enabled && irq_is_pending(irqa);
256         pendb = irqb->enabled && irq_is_pending(irqb);
257
258         if (!penda || !pendb) {
259                 ret = (int)pendb - (int)penda;
260                 goto out;
261         }
262
263         /* Both pending and enabled, sort by priority */
264         ret = irqa->priority - irqb->priority;
265 out:
266         raw_spin_unlock(&irqb->irq_lock);
267         raw_spin_unlock(&irqa->irq_lock);
268         return ret;
269 }
270
271 /* Must be called with the ap_list_lock held */
272 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
273 {
274         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
275
276         lockdep_assert_held(&vgic_cpu->ap_list_lock);
277
278         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
279 }
280
281 /*
282  * Only valid injection if changing level for level-triggered IRQs or for a
283  * rising edge, and in-kernel connected IRQ lines can only be controlled by
284  * their owner.
285  */
286 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
287 {
288         if (irq->owner != owner)
289                 return false;
290
291         switch (irq->config) {
292         case VGIC_CONFIG_LEVEL:
293                 return irq->line_level != level;
294         case VGIC_CONFIG_EDGE:
295                 return level;
296         }
297
298         return false;
299 }
300
301 /*
302  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
303  * Do the queuing if necessary, taking the right locks in the right order.
304  * Returns true when the IRQ was queued, false otherwise.
305  *
306  * Needs to be entered with the IRQ lock already held, but will return
307  * with all locks dropped.
308  */
309 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
310                            unsigned long flags)
311 {
312         struct kvm_vcpu *vcpu;
313
314         lockdep_assert_held(&irq->irq_lock);
315
316 retry:
317         vcpu = vgic_target_oracle(irq);
318         if (irq->vcpu || !vcpu) {
319                 /*
320                  * If this IRQ is already on a VCPU's ap_list, then it
321                  * cannot be moved or modified and there is no more work for
322                  * us to do.
323                  *
324                  * Otherwise, if the irq is not pending and enabled, it does
325                  * not need to be inserted into an ap_list and there is also
326                  * no more work for us to do.
327                  */
328                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
329
330                 /*
331                  * We have to kick the VCPU here, because we could be
332                  * queueing an edge-triggered interrupt for which we
333                  * get no EOI maintenance interrupt. In that case,
334                  * while the IRQ is already on the VCPU's AP list, the
335                  * VCPU could have EOI'ed the original interrupt and
336                  * won't see this one until it exits for some other
337                  * reason.
338                  */
339                 if (vcpu) {
340                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
341                         kvm_vcpu_kick(vcpu);
342                 }
343                 return false;
344         }
345
346         /*
347          * We must unlock the irq lock to take the ap_list_lock where
348          * we are going to insert this new pending interrupt.
349          */
350         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
351
352         /* someone can do stuff here, which we re-check below */
353
354         raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
355         raw_spin_lock(&irq->irq_lock);
356
357         /*
358          * Did something change behind our backs?
359          *
360          * There are two cases:
361          * 1) The irq lost its pending state or was disabled behind our
362          *    backs and/or it was queued to another VCPU's ap_list.
363          * 2) Someone changed the affinity on this irq behind our
364          *    backs and we are now holding the wrong ap_list_lock.
365          *
366          * In both cases, drop the locks and retry.
367          */
368
369         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
370                 raw_spin_unlock(&irq->irq_lock);
371                 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
372                                            flags);
373
374                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
375                 goto retry;
376         }
377
378         /*
379          * Grab a reference to the irq to reflect the fact that it is
380          * now in the ap_list.
381          */
382         vgic_get_irq_kref(irq);
383         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
384         irq->vcpu = vcpu;
385
386         raw_spin_unlock(&irq->irq_lock);
387         raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
388
389         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
390         kvm_vcpu_kick(vcpu);
391
392         return true;
393 }
394
395 /**
396  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
397  * @kvm:     The VM structure pointer
398  * @cpuid:   The CPU for PPIs
399  * @intid:   The INTID to inject a new state to.
400  * @level:   Edge-triggered:  true:  to trigger the interrupt
401  *                            false: to ignore the call
402  *           Level-sensitive  true:  raise the input signal
403  *                            false: lower the input signal
404  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
405  *           that the caller is allowed to inject this IRQ.  Userspace
406  *           injections will have owner == NULL.
407  *
408  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
409  * level-sensitive interrupts.  You can think of the level parameter as 1
410  * being HIGH and 0 being LOW and all devices being active-HIGH.
411  */
412 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
413                         bool level, void *owner)
414 {
415         struct kvm_vcpu *vcpu;
416         struct vgic_irq *irq;
417         unsigned long flags;
418         int ret;
419
420         trace_vgic_update_irq_pending(cpuid, intid, level);
421
422         ret = vgic_lazy_init(kvm);
423         if (ret)
424                 return ret;
425
426         vcpu = kvm_get_vcpu(kvm, cpuid);
427         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
428                 return -EINVAL;
429
430         irq = vgic_get_irq(kvm, vcpu, intid);
431         if (!irq)
432                 return -EINVAL;
433
434         raw_spin_lock_irqsave(&irq->irq_lock, flags);
435
436         if (!vgic_validate_injection(irq, level, owner)) {
437                 /* Nothing to see here, move along... */
438                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
439                 vgic_put_irq(kvm, irq);
440                 return 0;
441         }
442
443         if (irq->config == VGIC_CONFIG_LEVEL)
444                 irq->line_level = level;
445         else
446                 irq->pending_latch = true;
447
448         vgic_queue_irq_unlock(kvm, irq, flags);
449         vgic_put_irq(kvm, irq);
450
451         return 0;
452 }
453
454 /* @irq->irq_lock must be held */
455 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
456                             unsigned int host_irq,
457                             bool (*get_input_level)(int vindid))
458 {
459         struct irq_desc *desc;
460         struct irq_data *data;
461
462         /*
463          * Find the physical IRQ number corresponding to @host_irq
464          */
465         desc = irq_to_desc(host_irq);
466         if (!desc) {
467                 kvm_err("%s: no interrupt descriptor\n", __func__);
468                 return -EINVAL;
469         }
470         data = irq_desc_get_irq_data(desc);
471         while (data->parent_data)
472                 data = data->parent_data;
473
474         irq->hw = true;
475         irq->host_irq = host_irq;
476         irq->hwintid = data->hwirq;
477         irq->get_input_level = get_input_level;
478         return 0;
479 }
480
481 /* @irq->irq_lock must be held */
482 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
483 {
484         irq->hw = false;
485         irq->hwintid = 0;
486         irq->get_input_level = NULL;
487 }
488
489 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
490                           u32 vintid, bool (*get_input_level)(int vindid))
491 {
492         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
493         unsigned long flags;
494         int ret;
495
496         BUG_ON(!irq);
497
498         raw_spin_lock_irqsave(&irq->irq_lock, flags);
499         ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
500         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
501         vgic_put_irq(vcpu->kvm, irq);
502
503         return ret;
504 }
505
506 /**
507  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
508  * @vcpu: The VCPU pointer
509  * @vintid: The INTID of the interrupt
510  *
511  * Reset the active and pending states of a mapped interrupt.  Kernel
512  * subsystems injecting mapped interrupts should reset their interrupt lines
513  * when we are doing a reset of the VM.
514  */
515 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
516 {
517         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
518         unsigned long flags;
519
520         if (!irq->hw)
521                 goto out;
522
523         raw_spin_lock_irqsave(&irq->irq_lock, flags);
524         irq->active = false;
525         irq->pending_latch = false;
526         irq->line_level = false;
527         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
528 out:
529         vgic_put_irq(vcpu->kvm, irq);
530 }
531
532 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
533 {
534         struct vgic_irq *irq;
535         unsigned long flags;
536
537         if (!vgic_initialized(vcpu->kvm))
538                 return -EAGAIN;
539
540         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
541         BUG_ON(!irq);
542
543         raw_spin_lock_irqsave(&irq->irq_lock, flags);
544         kvm_vgic_unmap_irq(irq);
545         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
546         vgic_put_irq(vcpu->kvm, irq);
547
548         return 0;
549 }
550
551 /**
552  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
553  *
554  * @vcpu:   Pointer to the VCPU (used for PPIs)
555  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
556  * @owner:  Opaque pointer to the owner
557  *
558  * Returns 0 if intid is not already used by another in-kernel device and the
559  * owner is set, otherwise returns an error code.
560  */
561 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
562 {
563         struct vgic_irq *irq;
564         unsigned long flags;
565         int ret = 0;
566
567         if (!vgic_initialized(vcpu->kvm))
568                 return -EAGAIN;
569
570         /* SGIs and LPIs cannot be wired up to any device */
571         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
572                 return -EINVAL;
573
574         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
575         raw_spin_lock_irqsave(&irq->irq_lock, flags);
576         if (irq->owner && irq->owner != owner)
577                 ret = -EEXIST;
578         else
579                 irq->owner = owner;
580         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
581
582         return ret;
583 }
584
585 /**
586  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
587  *
588  * @vcpu: The VCPU pointer
589  *
590  * Go over the list of "interesting" interrupts, and prune those that we
591  * won't have to consider in the near future.
592  */
593 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
594 {
595         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
596         struct vgic_irq *irq, *tmp;
597
598         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
599
600 retry:
601         raw_spin_lock(&vgic_cpu->ap_list_lock);
602
603         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
604                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
605                 bool target_vcpu_needs_kick = false;
606
607                 raw_spin_lock(&irq->irq_lock);
608
609                 BUG_ON(vcpu != irq->vcpu);
610
611                 target_vcpu = vgic_target_oracle(irq);
612
613                 if (!target_vcpu) {
614                         /*
615                          * We don't need to process this interrupt any
616                          * further, move it off the list.
617                          */
618                         list_del(&irq->ap_list);
619                         irq->vcpu = NULL;
620                         raw_spin_unlock(&irq->irq_lock);
621
622                         /*
623                          * This vgic_put_irq call matches the
624                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
625                          * where we added the LPI to the ap_list. As
626                          * we remove the irq from the list, we drop
627                          * also drop the refcount.
628                          */
629                         vgic_put_irq(vcpu->kvm, irq);
630                         continue;
631                 }
632
633                 if (target_vcpu == vcpu) {
634                         /* We're on the right CPU */
635                         raw_spin_unlock(&irq->irq_lock);
636                         continue;
637                 }
638
639                 /* This interrupt looks like it has to be migrated. */
640
641                 raw_spin_unlock(&irq->irq_lock);
642                 raw_spin_unlock(&vgic_cpu->ap_list_lock);
643
644                 /*
645                  * Ensure locking order by always locking the smallest
646                  * ID first.
647                  */
648                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
649                         vcpuA = vcpu;
650                         vcpuB = target_vcpu;
651                 } else {
652                         vcpuA = target_vcpu;
653                         vcpuB = vcpu;
654                 }
655
656                 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
657                 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
658                                       SINGLE_DEPTH_NESTING);
659                 raw_spin_lock(&irq->irq_lock);
660
661                 /*
662                  * If the affinity has been preserved, move the
663                  * interrupt around. Otherwise, it means things have
664                  * changed while the interrupt was unlocked, and we
665                  * need to replay this.
666                  *
667                  * In all cases, we cannot trust the list not to have
668                  * changed, so we restart from the beginning.
669                  */
670                 if (target_vcpu == vgic_target_oracle(irq)) {
671                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
672
673                         list_del(&irq->ap_list);
674                         irq->vcpu = target_vcpu;
675                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
676                         target_vcpu_needs_kick = true;
677                 }
678
679                 raw_spin_unlock(&irq->irq_lock);
680                 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
681                 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
682
683                 if (target_vcpu_needs_kick) {
684                         kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
685                         kvm_vcpu_kick(target_vcpu);
686                 }
687
688                 goto retry;
689         }
690
691         raw_spin_unlock(&vgic_cpu->ap_list_lock);
692 }
693
694 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
695 {
696         if (kvm_vgic_global_state.type == VGIC_V2)
697                 vgic_v2_fold_lr_state(vcpu);
698         else
699                 vgic_v3_fold_lr_state(vcpu);
700 }
701
702 /* Requires the irq_lock to be held. */
703 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
704                                     struct vgic_irq *irq, int lr)
705 {
706         lockdep_assert_held(&irq->irq_lock);
707
708         if (kvm_vgic_global_state.type == VGIC_V2)
709                 vgic_v2_populate_lr(vcpu, irq, lr);
710         else
711                 vgic_v3_populate_lr(vcpu, irq, lr);
712 }
713
714 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
715 {
716         if (kvm_vgic_global_state.type == VGIC_V2)
717                 vgic_v2_clear_lr(vcpu, lr);
718         else
719                 vgic_v3_clear_lr(vcpu, lr);
720 }
721
722 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
723 {
724         if (kvm_vgic_global_state.type == VGIC_V2)
725                 vgic_v2_set_underflow(vcpu);
726         else
727                 vgic_v3_set_underflow(vcpu);
728 }
729
730 /* Requires the ap_list_lock to be held. */
731 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
732                                  bool *multi_sgi)
733 {
734         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
735         struct vgic_irq *irq;
736         int count = 0;
737
738         *multi_sgi = false;
739
740         lockdep_assert_held(&vgic_cpu->ap_list_lock);
741
742         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
743                 int w;
744
745                 raw_spin_lock(&irq->irq_lock);
746                 /* GICv2 SGIs can count for more than one... */
747                 w = vgic_irq_get_lr_count(irq);
748                 raw_spin_unlock(&irq->irq_lock);
749
750                 count += w;
751                 *multi_sgi |= (w > 1);
752         }
753         return count;
754 }
755
756 /* Requires the VCPU's ap_list_lock to be held. */
757 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
758 {
759         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
760         struct vgic_irq *irq;
761         int count;
762         bool multi_sgi;
763         u8 prio = 0xff;
764
765         lockdep_assert_held(&vgic_cpu->ap_list_lock);
766
767         count = compute_ap_list_depth(vcpu, &multi_sgi);
768         if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
769                 vgic_sort_ap_list(vcpu);
770
771         count = 0;
772
773         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
774                 raw_spin_lock(&irq->irq_lock);
775
776                 /*
777                  * If we have multi-SGIs in the pipeline, we need to
778                  * guarantee that they are all seen before any IRQ of
779                  * lower priority. In that case, we need to filter out
780                  * these interrupts by exiting early. This is easy as
781                  * the AP list has been sorted already.
782                  */
783                 if (multi_sgi && irq->priority > prio) {
784                         _raw_spin_unlock(&irq->irq_lock);
785                         break;
786                 }
787
788                 if (likely(vgic_target_oracle(irq) == vcpu)) {
789                         vgic_populate_lr(vcpu, irq, count++);
790
791                         if (irq->source)
792                                 prio = irq->priority;
793                 }
794
795                 raw_spin_unlock(&irq->irq_lock);
796
797                 if (count == kvm_vgic_global_state.nr_lr) {
798                         if (!list_is_last(&irq->ap_list,
799                                           &vgic_cpu->ap_list_head))
800                                 vgic_set_underflow(vcpu);
801                         break;
802                 }
803         }
804
805         vcpu->arch.vgic_cpu.used_lrs = count;
806
807         /* Nuke remaining LRs */
808         for ( ; count < kvm_vgic_global_state.nr_lr; count++)
809                 vgic_clear_lr(vcpu, count);
810 }
811
812 static inline bool can_access_vgic_from_kernel(void)
813 {
814         /*
815          * GICv2 can always be accessed from the kernel because it is
816          * memory-mapped, and VHE systems can access GICv3 EL2 system
817          * registers.
818          */
819         return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
820 }
821
822 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
823 {
824         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
825                 vgic_v2_save_state(vcpu);
826         else
827                 __vgic_v3_save_state(vcpu);
828 }
829
830 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
831 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
832 {
833         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
834
835         WARN_ON(vgic_v4_sync_hwstate(vcpu));
836
837         /* An empty ap_list_head implies used_lrs == 0 */
838         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
839                 return;
840
841         if (can_access_vgic_from_kernel())
842                 vgic_save_state(vcpu);
843
844         if (vgic_cpu->used_lrs)
845                 vgic_fold_lr_state(vcpu);
846         vgic_prune_ap_list(vcpu);
847 }
848
849 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
850 {
851         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
852                 vgic_v2_restore_state(vcpu);
853         else
854                 __vgic_v3_restore_state(vcpu);
855 }
856
857 /* Flush our emulation state into the GIC hardware before entering the guest. */
858 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
859 {
860         WARN_ON(vgic_v4_flush_hwstate(vcpu));
861
862         /*
863          * If there are no virtual interrupts active or pending for this
864          * VCPU, then there is no work to do and we can bail out without
865          * taking any lock.  There is a potential race with someone injecting
866          * interrupts to the VCPU, but it is a benign race as the VCPU will
867          * either observe the new interrupt before or after doing this check,
868          * and introducing additional synchronization mechanism doesn't change
869          * this.
870          *
871          * Note that we still need to go through the whole thing if anything
872          * can be directly injected (GICv4).
873          */
874         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
875             !vgic_supports_direct_msis(vcpu->kvm))
876                 return;
877
878         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
879
880         if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
881                 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
882                 vgic_flush_lr_state(vcpu);
883                 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
884         }
885
886         if (can_access_vgic_from_kernel())
887                 vgic_restore_state(vcpu);
888 }
889
890 void kvm_vgic_load(struct kvm_vcpu *vcpu)
891 {
892         if (unlikely(!vgic_initialized(vcpu->kvm)))
893                 return;
894
895         if (kvm_vgic_global_state.type == VGIC_V2)
896                 vgic_v2_load(vcpu);
897         else
898                 vgic_v3_load(vcpu);
899 }
900
901 void kvm_vgic_put(struct kvm_vcpu *vcpu)
902 {
903         if (unlikely(!vgic_initialized(vcpu->kvm)))
904                 return;
905
906         if (kvm_vgic_global_state.type == VGIC_V2)
907                 vgic_v2_put(vcpu);
908         else
909                 vgic_v3_put(vcpu);
910 }
911
912 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
913 {
914         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
915         struct vgic_irq *irq;
916         bool pending = false;
917         unsigned long flags;
918         struct vgic_vmcr vmcr;
919
920         if (!vcpu->kvm->arch.vgic.enabled)
921                 return false;
922
923         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
924                 return true;
925
926         vgic_get_vmcr(vcpu, &vmcr);
927
928         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
929
930         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
931                 raw_spin_lock(&irq->irq_lock);
932                 pending = irq_is_pending(irq) && irq->enabled &&
933                           !irq->active &&
934                           irq->priority < vmcr.pmr;
935                 raw_spin_unlock(&irq->irq_lock);
936
937                 if (pending)
938                         break;
939         }
940
941         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
942
943         return pending;
944 }
945
946 void vgic_kick_vcpus(struct kvm *kvm)
947 {
948         struct kvm_vcpu *vcpu;
949         int c;
950
951         /*
952          * We've injected an interrupt, time to find out who deserves
953          * a good kick...
954          */
955         kvm_for_each_vcpu(c, vcpu, kvm) {
956                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
957                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
958                         kvm_vcpu_kick(vcpu);
959                 }
960         }
961 }
962
963 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
964 {
965         struct vgic_irq *irq;
966         bool map_is_active;
967         unsigned long flags;
968
969         if (!vgic_initialized(vcpu->kvm))
970                 return false;
971
972         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
973         raw_spin_lock_irqsave(&irq->irq_lock, flags);
974         map_is_active = irq->hw && irq->active;
975         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
976         vgic_put_irq(vcpu->kvm, irq);
977
978         return map_is_active;
979 }