Merge branch 'for-5.4/apple' into for-linus
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   its->cmd_lock (mutex)
28  *     its->its_lock (mutex)
29  *       vgic_cpu->ap_list_lock         must be taken with IRQs disabled
30  *         kvm->lpi_list_lock           must be taken with IRQs disabled
31  *           vgic_irq->irq_lock         must be taken with IRQs disabled
32  *
33  * As the ap_list_lock might be taken from the timer interrupt handler,
34  * we have to disable IRQs before taking this lock and everything lower
35  * than it.
36  *
37  * If you need to take multiple locks, always take the upper lock first,
38  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
39  * If you are already holding a lock and need to take a higher one, you
40  * have to drop the lower ranking lock first and re-aquire it after having
41  * taken the upper one.
42  *
43  * When taking more than one ap_list_lock at the same time, always take the
44  * lowest numbered VCPU's ap_list_lock first, so:
45  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
46  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
47  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
48  *
49  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
50  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
51  * spinlocks for any lock that may be taken while injecting an interrupt.
52  */
53
54 /*
55  * Iterate over the VM's list of mapped LPIs to find the one with a
56  * matching interrupt ID and return a reference to the IRQ structure.
57  */
58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
59 {
60         struct vgic_dist *dist = &kvm->arch.vgic;
61         struct vgic_irq *irq = NULL;
62         unsigned long flags;
63
64         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
65
66         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
67                 if (irq->intid != intid)
68                         continue;
69
70                 /*
71                  * This increases the refcount, the caller is expected to
72                  * call vgic_put_irq() later once it's finished with the IRQ.
73                  */
74                 vgic_get_irq_kref(irq);
75                 goto out_unlock;
76         }
77         irq = NULL;
78
79 out_unlock:
80         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
81
82         return irq;
83 }
84
85 /*
86  * This looks up the virtual interrupt ID to get the corresponding
87  * struct vgic_irq. It also increases the refcount, so any caller is expected
88  * to call vgic_put_irq() once it's finished with this IRQ.
89  */
90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
91                               u32 intid)
92 {
93         /* SGIs and PPIs */
94         if (intid <= VGIC_MAX_PRIVATE) {
95                 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
96                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
97         }
98
99         /* SPIs */
100         if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
101                 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
102                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
103         }
104
105         /* LPIs */
106         if (intid >= VGIC_MIN_LPI)
107                 return vgic_get_lpi(kvm, intid);
108
109         WARN(1, "Looking up struct vgic_irq for reserved INTID");
110         return NULL;
111 }
112
113 /*
114  * We can't do anything in here, because we lack the kvm pointer to
115  * lock and remove the item from the lpi_list. So we keep this function
116  * empty and use the return value of kref_put() to trigger the freeing.
117  */
118 static void vgic_irq_release(struct kref *ref)
119 {
120 }
121
122 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
123 {
124         struct vgic_dist *dist = &kvm->arch.vgic;
125         unsigned long flags;
126
127         if (irq->intid < VGIC_MIN_LPI)
128                 return;
129
130         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
131         if (!kref_put(&irq->refcount, vgic_irq_release)) {
132                 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
133                 return;
134         };
135
136         list_del(&irq->lpi_list);
137         dist->lpi_list_count--;
138         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
139
140         kfree(irq);
141 }
142
143 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
144 {
145         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
146         struct vgic_irq *irq, *tmp;
147         unsigned long flags;
148
149         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
150
151         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
152                 if (irq->intid >= VGIC_MIN_LPI) {
153                         raw_spin_lock(&irq->irq_lock);
154                         list_del(&irq->ap_list);
155                         irq->vcpu = NULL;
156                         raw_spin_unlock(&irq->irq_lock);
157                         vgic_put_irq(vcpu->kvm, irq);
158                 }
159         }
160
161         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
162 }
163
164 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
165 {
166         WARN_ON(irq_set_irqchip_state(irq->host_irq,
167                                       IRQCHIP_STATE_PENDING,
168                                       pending));
169 }
170
171 bool vgic_get_phys_line_level(struct vgic_irq *irq)
172 {
173         bool line_level;
174
175         BUG_ON(!irq->hw);
176
177         if (irq->get_input_level)
178                 return irq->get_input_level(irq->intid);
179
180         WARN_ON(irq_get_irqchip_state(irq->host_irq,
181                                       IRQCHIP_STATE_PENDING,
182                                       &line_level));
183         return line_level;
184 }
185
186 /* Set/Clear the physical active state */
187 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
188 {
189
190         BUG_ON(!irq->hw);
191         WARN_ON(irq_set_irqchip_state(irq->host_irq,
192                                       IRQCHIP_STATE_ACTIVE,
193                                       active));
194 }
195
196 /**
197  * kvm_vgic_target_oracle - compute the target vcpu for an irq
198  *
199  * @irq:        The irq to route. Must be already locked.
200  *
201  * Based on the current state of the interrupt (enabled, pending,
202  * active, vcpu and target_vcpu), compute the next vcpu this should be
203  * given to. Return NULL if this shouldn't be injected at all.
204  *
205  * Requires the IRQ lock to be held.
206  */
207 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
208 {
209         lockdep_assert_held(&irq->irq_lock);
210
211         /* If the interrupt is active, it must stay on the current vcpu */
212         if (irq->active)
213                 return irq->vcpu ? : irq->target_vcpu;
214
215         /*
216          * If the IRQ is not active but enabled and pending, we should direct
217          * it to its configured target VCPU.
218          * If the distributor is disabled, pending interrupts shouldn't be
219          * forwarded.
220          */
221         if (irq->enabled && irq_is_pending(irq)) {
222                 if (unlikely(irq->target_vcpu &&
223                              !irq->target_vcpu->kvm->arch.vgic.enabled))
224                         return NULL;
225
226                 return irq->target_vcpu;
227         }
228
229         /* If neither active nor pending and enabled, then this IRQ should not
230          * be queued to any VCPU.
231          */
232         return NULL;
233 }
234
235 /*
236  * The order of items in the ap_lists defines how we'll pack things in LRs as
237  * well, the first items in the list being the first things populated in the
238  * LRs.
239  *
240  * A hard rule is that active interrupts can never be pushed out of the LRs
241  * (and therefore take priority) since we cannot reliably trap on deactivation
242  * of IRQs and therefore they have to be present in the LRs.
243  *
244  * Otherwise things should be sorted by the priority field and the GIC
245  * hardware support will take care of preemption of priority groups etc.
246  *
247  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
248  * to sort "b" before "a".
249  */
250 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
251 {
252         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
253         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
254         bool penda, pendb;
255         int ret;
256
257         raw_spin_lock(&irqa->irq_lock);
258         raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
259
260         if (irqa->active || irqb->active) {
261                 ret = (int)irqb->active - (int)irqa->active;
262                 goto out;
263         }
264
265         penda = irqa->enabled && irq_is_pending(irqa);
266         pendb = irqb->enabled && irq_is_pending(irqb);
267
268         if (!penda || !pendb) {
269                 ret = (int)pendb - (int)penda;
270                 goto out;
271         }
272
273         /* Both pending and enabled, sort by priority */
274         ret = irqa->priority - irqb->priority;
275 out:
276         raw_spin_unlock(&irqb->irq_lock);
277         raw_spin_unlock(&irqa->irq_lock);
278         return ret;
279 }
280
281 /* Must be called with the ap_list_lock held */
282 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
283 {
284         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
285
286         lockdep_assert_held(&vgic_cpu->ap_list_lock);
287
288         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
289 }
290
291 /*
292  * Only valid injection if changing level for level-triggered IRQs or for a
293  * rising edge, and in-kernel connected IRQ lines can only be controlled by
294  * their owner.
295  */
296 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
297 {
298         if (irq->owner != owner)
299                 return false;
300
301         switch (irq->config) {
302         case VGIC_CONFIG_LEVEL:
303                 return irq->line_level != level;
304         case VGIC_CONFIG_EDGE:
305                 return level;
306         }
307
308         return false;
309 }
310
311 /*
312  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
313  * Do the queuing if necessary, taking the right locks in the right order.
314  * Returns true when the IRQ was queued, false otherwise.
315  *
316  * Needs to be entered with the IRQ lock already held, but will return
317  * with all locks dropped.
318  */
319 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
320                            unsigned long flags)
321 {
322         struct kvm_vcpu *vcpu;
323
324         lockdep_assert_held(&irq->irq_lock);
325
326 retry:
327         vcpu = vgic_target_oracle(irq);
328         if (irq->vcpu || !vcpu) {
329                 /*
330                  * If this IRQ is already on a VCPU's ap_list, then it
331                  * cannot be moved or modified and there is no more work for
332                  * us to do.
333                  *
334                  * Otherwise, if the irq is not pending and enabled, it does
335                  * not need to be inserted into an ap_list and there is also
336                  * no more work for us to do.
337                  */
338                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
339
340                 /*
341                  * We have to kick the VCPU here, because we could be
342                  * queueing an edge-triggered interrupt for which we
343                  * get no EOI maintenance interrupt. In that case,
344                  * while the IRQ is already on the VCPU's AP list, the
345                  * VCPU could have EOI'ed the original interrupt and
346                  * won't see this one until it exits for some other
347                  * reason.
348                  */
349                 if (vcpu) {
350                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
351                         kvm_vcpu_kick(vcpu);
352                 }
353                 return false;
354         }
355
356         /*
357          * We must unlock the irq lock to take the ap_list_lock where
358          * we are going to insert this new pending interrupt.
359          */
360         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
361
362         /* someone can do stuff here, which we re-check below */
363
364         raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
365         raw_spin_lock(&irq->irq_lock);
366
367         /*
368          * Did something change behind our backs?
369          *
370          * There are two cases:
371          * 1) The irq lost its pending state or was disabled behind our
372          *    backs and/or it was queued to another VCPU's ap_list.
373          * 2) Someone changed the affinity on this irq behind our
374          *    backs and we are now holding the wrong ap_list_lock.
375          *
376          * In both cases, drop the locks and retry.
377          */
378
379         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
380                 raw_spin_unlock(&irq->irq_lock);
381                 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
382                                            flags);
383
384                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
385                 goto retry;
386         }
387
388         /*
389          * Grab a reference to the irq to reflect the fact that it is
390          * now in the ap_list.
391          */
392         vgic_get_irq_kref(irq);
393         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
394         irq->vcpu = vcpu;
395
396         raw_spin_unlock(&irq->irq_lock);
397         raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
398
399         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
400         kvm_vcpu_kick(vcpu);
401
402         return true;
403 }
404
405 /**
406  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
407  * @kvm:     The VM structure pointer
408  * @cpuid:   The CPU for PPIs
409  * @intid:   The INTID to inject a new state to.
410  * @level:   Edge-triggered:  true:  to trigger the interrupt
411  *                            false: to ignore the call
412  *           Level-sensitive  true:  raise the input signal
413  *                            false: lower the input signal
414  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
415  *           that the caller is allowed to inject this IRQ.  Userspace
416  *           injections will have owner == NULL.
417  *
418  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
419  * level-sensitive interrupts.  You can think of the level parameter as 1
420  * being HIGH and 0 being LOW and all devices being active-HIGH.
421  */
422 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
423                         bool level, void *owner)
424 {
425         struct kvm_vcpu *vcpu;
426         struct vgic_irq *irq;
427         unsigned long flags;
428         int ret;
429
430         trace_vgic_update_irq_pending(cpuid, intid, level);
431
432         ret = vgic_lazy_init(kvm);
433         if (ret)
434                 return ret;
435
436         vcpu = kvm_get_vcpu(kvm, cpuid);
437         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
438                 return -EINVAL;
439
440         irq = vgic_get_irq(kvm, vcpu, intid);
441         if (!irq)
442                 return -EINVAL;
443
444         raw_spin_lock_irqsave(&irq->irq_lock, flags);
445
446         if (!vgic_validate_injection(irq, level, owner)) {
447                 /* Nothing to see here, move along... */
448                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
449                 vgic_put_irq(kvm, irq);
450                 return 0;
451         }
452
453         if (irq->config == VGIC_CONFIG_LEVEL)
454                 irq->line_level = level;
455         else
456                 irq->pending_latch = true;
457
458         vgic_queue_irq_unlock(kvm, irq, flags);
459         vgic_put_irq(kvm, irq);
460
461         return 0;
462 }
463
464 /* @irq->irq_lock must be held */
465 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
466                             unsigned int host_irq,
467                             bool (*get_input_level)(int vindid))
468 {
469         struct irq_desc *desc;
470         struct irq_data *data;
471
472         /*
473          * Find the physical IRQ number corresponding to @host_irq
474          */
475         desc = irq_to_desc(host_irq);
476         if (!desc) {
477                 kvm_err("%s: no interrupt descriptor\n", __func__);
478                 return -EINVAL;
479         }
480         data = irq_desc_get_irq_data(desc);
481         while (data->parent_data)
482                 data = data->parent_data;
483
484         irq->hw = true;
485         irq->host_irq = host_irq;
486         irq->hwintid = data->hwirq;
487         irq->get_input_level = get_input_level;
488         return 0;
489 }
490
491 /* @irq->irq_lock must be held */
492 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
493 {
494         irq->hw = false;
495         irq->hwintid = 0;
496         irq->get_input_level = NULL;
497 }
498
499 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
500                           u32 vintid, bool (*get_input_level)(int vindid))
501 {
502         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
503         unsigned long flags;
504         int ret;
505
506         BUG_ON(!irq);
507
508         raw_spin_lock_irqsave(&irq->irq_lock, flags);
509         ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
510         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
511         vgic_put_irq(vcpu->kvm, irq);
512
513         return ret;
514 }
515
516 /**
517  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
518  * @vcpu: The VCPU pointer
519  * @vintid: The INTID of the interrupt
520  *
521  * Reset the active and pending states of a mapped interrupt.  Kernel
522  * subsystems injecting mapped interrupts should reset their interrupt lines
523  * when we are doing a reset of the VM.
524  */
525 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
526 {
527         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
528         unsigned long flags;
529
530         if (!irq->hw)
531                 goto out;
532
533         raw_spin_lock_irqsave(&irq->irq_lock, flags);
534         irq->active = false;
535         irq->pending_latch = false;
536         irq->line_level = false;
537         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
538 out:
539         vgic_put_irq(vcpu->kvm, irq);
540 }
541
542 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
543 {
544         struct vgic_irq *irq;
545         unsigned long flags;
546
547         if (!vgic_initialized(vcpu->kvm))
548                 return -EAGAIN;
549
550         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
551         BUG_ON(!irq);
552
553         raw_spin_lock_irqsave(&irq->irq_lock, flags);
554         kvm_vgic_unmap_irq(irq);
555         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
556         vgic_put_irq(vcpu->kvm, irq);
557
558         return 0;
559 }
560
561 /**
562  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
563  *
564  * @vcpu:   Pointer to the VCPU (used for PPIs)
565  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
566  * @owner:  Opaque pointer to the owner
567  *
568  * Returns 0 if intid is not already used by another in-kernel device and the
569  * owner is set, otherwise returns an error code.
570  */
571 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
572 {
573         struct vgic_irq *irq;
574         unsigned long flags;
575         int ret = 0;
576
577         if (!vgic_initialized(vcpu->kvm))
578                 return -EAGAIN;
579
580         /* SGIs and LPIs cannot be wired up to any device */
581         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
582                 return -EINVAL;
583
584         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
585         raw_spin_lock_irqsave(&irq->irq_lock, flags);
586         if (irq->owner && irq->owner != owner)
587                 ret = -EEXIST;
588         else
589                 irq->owner = owner;
590         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
591
592         return ret;
593 }
594
595 /**
596  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
597  *
598  * @vcpu: The VCPU pointer
599  *
600  * Go over the list of "interesting" interrupts, and prune those that we
601  * won't have to consider in the near future.
602  */
603 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
604 {
605         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
606         struct vgic_irq *irq, *tmp;
607
608         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
609
610 retry:
611         raw_spin_lock(&vgic_cpu->ap_list_lock);
612
613         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
614                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
615                 bool target_vcpu_needs_kick = false;
616
617                 raw_spin_lock(&irq->irq_lock);
618
619                 BUG_ON(vcpu != irq->vcpu);
620
621                 target_vcpu = vgic_target_oracle(irq);
622
623                 if (!target_vcpu) {
624                         /*
625                          * We don't need to process this interrupt any
626                          * further, move it off the list.
627                          */
628                         list_del(&irq->ap_list);
629                         irq->vcpu = NULL;
630                         raw_spin_unlock(&irq->irq_lock);
631
632                         /*
633                          * This vgic_put_irq call matches the
634                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
635                          * where we added the LPI to the ap_list. As
636                          * we remove the irq from the list, we drop
637                          * also drop the refcount.
638                          */
639                         vgic_put_irq(vcpu->kvm, irq);
640                         continue;
641                 }
642
643                 if (target_vcpu == vcpu) {
644                         /* We're on the right CPU */
645                         raw_spin_unlock(&irq->irq_lock);
646                         continue;
647                 }
648
649                 /* This interrupt looks like it has to be migrated. */
650
651                 raw_spin_unlock(&irq->irq_lock);
652                 raw_spin_unlock(&vgic_cpu->ap_list_lock);
653
654                 /*
655                  * Ensure locking order by always locking the smallest
656                  * ID first.
657                  */
658                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
659                         vcpuA = vcpu;
660                         vcpuB = target_vcpu;
661                 } else {
662                         vcpuA = target_vcpu;
663                         vcpuB = vcpu;
664                 }
665
666                 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
667                 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
668                                       SINGLE_DEPTH_NESTING);
669                 raw_spin_lock(&irq->irq_lock);
670
671                 /*
672                  * If the affinity has been preserved, move the
673                  * interrupt around. Otherwise, it means things have
674                  * changed while the interrupt was unlocked, and we
675                  * need to replay this.
676                  *
677                  * In all cases, we cannot trust the list not to have
678                  * changed, so we restart from the beginning.
679                  */
680                 if (target_vcpu == vgic_target_oracle(irq)) {
681                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
682
683                         list_del(&irq->ap_list);
684                         irq->vcpu = target_vcpu;
685                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
686                         target_vcpu_needs_kick = true;
687                 }
688
689                 raw_spin_unlock(&irq->irq_lock);
690                 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
691                 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
692
693                 if (target_vcpu_needs_kick) {
694                         kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
695                         kvm_vcpu_kick(target_vcpu);
696                 }
697
698                 goto retry;
699         }
700
701         raw_spin_unlock(&vgic_cpu->ap_list_lock);
702 }
703
704 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
705 {
706         if (kvm_vgic_global_state.type == VGIC_V2)
707                 vgic_v2_fold_lr_state(vcpu);
708         else
709                 vgic_v3_fold_lr_state(vcpu);
710 }
711
712 /* Requires the irq_lock to be held. */
713 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
714                                     struct vgic_irq *irq, int lr)
715 {
716         lockdep_assert_held(&irq->irq_lock);
717
718         if (kvm_vgic_global_state.type == VGIC_V2)
719                 vgic_v2_populate_lr(vcpu, irq, lr);
720         else
721                 vgic_v3_populate_lr(vcpu, irq, lr);
722 }
723
724 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
725 {
726         if (kvm_vgic_global_state.type == VGIC_V2)
727                 vgic_v2_clear_lr(vcpu, lr);
728         else
729                 vgic_v3_clear_lr(vcpu, lr);
730 }
731
732 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
733 {
734         if (kvm_vgic_global_state.type == VGIC_V2)
735                 vgic_v2_set_underflow(vcpu);
736         else
737                 vgic_v3_set_underflow(vcpu);
738 }
739
740 /* Requires the ap_list_lock to be held. */
741 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
742                                  bool *multi_sgi)
743 {
744         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
745         struct vgic_irq *irq;
746         int count = 0;
747
748         *multi_sgi = false;
749
750         lockdep_assert_held(&vgic_cpu->ap_list_lock);
751
752         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
753                 int w;
754
755                 raw_spin_lock(&irq->irq_lock);
756                 /* GICv2 SGIs can count for more than one... */
757                 w = vgic_irq_get_lr_count(irq);
758                 raw_spin_unlock(&irq->irq_lock);
759
760                 count += w;
761                 *multi_sgi |= (w > 1);
762         }
763         return count;
764 }
765
766 /* Requires the VCPU's ap_list_lock to be held. */
767 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
768 {
769         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
770         struct vgic_irq *irq;
771         int count;
772         bool multi_sgi;
773         u8 prio = 0xff;
774
775         lockdep_assert_held(&vgic_cpu->ap_list_lock);
776
777         count = compute_ap_list_depth(vcpu, &multi_sgi);
778         if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
779                 vgic_sort_ap_list(vcpu);
780
781         count = 0;
782
783         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
784                 raw_spin_lock(&irq->irq_lock);
785
786                 /*
787                  * If we have multi-SGIs in the pipeline, we need to
788                  * guarantee that they are all seen before any IRQ of
789                  * lower priority. In that case, we need to filter out
790                  * these interrupts by exiting early. This is easy as
791                  * the AP list has been sorted already.
792                  */
793                 if (multi_sgi && irq->priority > prio) {
794                         _raw_spin_unlock(&irq->irq_lock);
795                         break;
796                 }
797
798                 if (likely(vgic_target_oracle(irq) == vcpu)) {
799                         vgic_populate_lr(vcpu, irq, count++);
800
801                         if (irq->source)
802                                 prio = irq->priority;
803                 }
804
805                 raw_spin_unlock(&irq->irq_lock);
806
807                 if (count == kvm_vgic_global_state.nr_lr) {
808                         if (!list_is_last(&irq->ap_list,
809                                           &vgic_cpu->ap_list_head))
810                                 vgic_set_underflow(vcpu);
811                         break;
812                 }
813         }
814
815         vcpu->arch.vgic_cpu.used_lrs = count;
816
817         /* Nuke remaining LRs */
818         for ( ; count < kvm_vgic_global_state.nr_lr; count++)
819                 vgic_clear_lr(vcpu, count);
820 }
821
822 static inline bool can_access_vgic_from_kernel(void)
823 {
824         /*
825          * GICv2 can always be accessed from the kernel because it is
826          * memory-mapped, and VHE systems can access GICv3 EL2 system
827          * registers.
828          */
829         return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
830 }
831
832 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
833 {
834         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
835                 vgic_v2_save_state(vcpu);
836         else
837                 __vgic_v3_save_state(vcpu);
838 }
839
840 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
841 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
842 {
843         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
844
845         WARN_ON(vgic_v4_sync_hwstate(vcpu));
846
847         /* An empty ap_list_head implies used_lrs == 0 */
848         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
849                 return;
850
851         if (can_access_vgic_from_kernel())
852                 vgic_save_state(vcpu);
853
854         if (vgic_cpu->used_lrs)
855                 vgic_fold_lr_state(vcpu);
856         vgic_prune_ap_list(vcpu);
857 }
858
859 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
860 {
861         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
862                 vgic_v2_restore_state(vcpu);
863         else
864                 __vgic_v3_restore_state(vcpu);
865 }
866
867 /* Flush our emulation state into the GIC hardware before entering the guest. */
868 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
869 {
870         WARN_ON(vgic_v4_flush_hwstate(vcpu));
871
872         /*
873          * If there are no virtual interrupts active or pending for this
874          * VCPU, then there is no work to do and we can bail out without
875          * taking any lock.  There is a potential race with someone injecting
876          * interrupts to the VCPU, but it is a benign race as the VCPU will
877          * either observe the new interrupt before or after doing this check,
878          * and introducing additional synchronization mechanism doesn't change
879          * this.
880          *
881          * Note that we still need to go through the whole thing if anything
882          * can be directly injected (GICv4).
883          */
884         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
885             !vgic_supports_direct_msis(vcpu->kvm))
886                 return;
887
888         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
889
890         if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
891                 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
892                 vgic_flush_lr_state(vcpu);
893                 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
894         }
895
896         if (can_access_vgic_from_kernel())
897                 vgic_restore_state(vcpu);
898 }
899
900 void kvm_vgic_load(struct kvm_vcpu *vcpu)
901 {
902         if (unlikely(!vgic_initialized(vcpu->kvm)))
903                 return;
904
905         if (kvm_vgic_global_state.type == VGIC_V2)
906                 vgic_v2_load(vcpu);
907         else
908                 vgic_v3_load(vcpu);
909 }
910
911 void kvm_vgic_put(struct kvm_vcpu *vcpu)
912 {
913         if (unlikely(!vgic_initialized(vcpu->kvm)))
914                 return;
915
916         if (kvm_vgic_global_state.type == VGIC_V2)
917                 vgic_v2_put(vcpu);
918         else
919                 vgic_v3_put(vcpu);
920 }
921
922 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
923 {
924         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
925                 return;
926
927         if (kvm_vgic_global_state.type == VGIC_V2)
928                 vgic_v2_vmcr_sync(vcpu);
929         else
930                 vgic_v3_vmcr_sync(vcpu);
931 }
932
933 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
934 {
935         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
936         struct vgic_irq *irq;
937         bool pending = false;
938         unsigned long flags;
939         struct vgic_vmcr vmcr;
940
941         if (!vcpu->kvm->arch.vgic.enabled)
942                 return false;
943
944         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
945                 return true;
946
947         vgic_get_vmcr(vcpu, &vmcr);
948
949         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
950
951         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
952                 raw_spin_lock(&irq->irq_lock);
953                 pending = irq_is_pending(irq) && irq->enabled &&
954                           !irq->active &&
955                           irq->priority < vmcr.pmr;
956                 raw_spin_unlock(&irq->irq_lock);
957
958                 if (pending)
959                         break;
960         }
961
962         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
963
964         return pending;
965 }
966
967 void vgic_kick_vcpus(struct kvm *kvm)
968 {
969         struct kvm_vcpu *vcpu;
970         int c;
971
972         /*
973          * We've injected an interrupt, time to find out who deserves
974          * a good kick...
975          */
976         kvm_for_each_vcpu(c, vcpu, kvm) {
977                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
978                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
979                         kvm_vcpu_kick(vcpu);
980                 }
981         }
982 }
983
984 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
985 {
986         struct vgic_irq *irq;
987         bool map_is_active;
988         unsigned long flags;
989
990         if (!vgic_initialized(vcpu->kvm))
991                 return false;
992
993         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
994         raw_spin_lock_irqsave(&irq->irq_lock, flags);
995         map_is_active = irq->hw && irq->active;
996         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
997         vgic_put_irq(vcpu->kvm, irq);
998
999         return map_is_active;
1000 }