Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/kvm.h>
5 #include <linux/kvm_host.h>
6 #include <kvm/arm_vgic.h>
7 #include <asm/kvm_hyp.h>
8 #include <asm/kvm_mmu.h>
9 #include <asm/kvm_asm.h>
10
11 #include "vgic.h"
12
13 static bool group0_trap;
14 static bool group1_trap;
15 static bool common_trap;
16 static bool gicv4_enable;
17
18 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
19 {
20         struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
21
22         cpuif->vgic_hcr |= ICH_HCR_UIE;
23 }
24
25 static bool lr_signals_eoi_mi(u64 lr_val)
26 {
27         return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
28                !(lr_val & ICH_LR_HW);
29 }
30
31 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
32 {
33         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
34         struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
35         u32 model = vcpu->kvm->arch.vgic.vgic_model;
36         int lr;
37
38         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
39
40         cpuif->vgic_hcr &= ~ICH_HCR_UIE;
41
42         for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
43                 u64 val = cpuif->vgic_lr[lr];
44                 u32 intid, cpuid;
45                 struct vgic_irq *irq;
46                 bool is_v2_sgi = false;
47
48                 cpuid = val & GICH_LR_PHYSID_CPUID;
49                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
50
51                 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
52                         intid = val & ICH_LR_VIRTUAL_ID_MASK;
53                 } else {
54                         intid = val & GICH_LR_VIRTUALID;
55                         is_v2_sgi = vgic_irq_is_sgi(intid);
56                 }
57
58                 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
59                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
60                         kvm_notify_acked_irq(vcpu->kvm, 0,
61                                              intid - VGIC_NR_PRIVATE_IRQS);
62
63                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
64                 if (!irq)       /* An LPI could have been unmapped. */
65                         continue;
66
67                 raw_spin_lock(&irq->irq_lock);
68
69                 /* Always preserve the active bit */
70                 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
71
72                 if (irq->active && is_v2_sgi)
73                         irq->active_source = cpuid;
74
75                 /* Edge is the only case where we preserve the pending bit */
76                 if (irq->config == VGIC_CONFIG_EDGE &&
77                     (val & ICH_LR_PENDING_BIT)) {
78                         irq->pending_latch = true;
79
80                         if (is_v2_sgi)
81                                 irq->source |= (1 << cpuid);
82                 }
83
84                 /*
85                  * Clear soft pending state when level irqs have been acked.
86                  */
87                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
88                         irq->pending_latch = false;
89
90                 /*
91                  * Level-triggered mapped IRQs are special because we only
92                  * observe rising edges as input to the VGIC.
93                  *
94                  * If the guest never acked the interrupt we have to sample
95                  * the physical line and set the line level, because the
96                  * device state could have changed or we simply need to
97                  * process the still pending interrupt later.
98                  *
99                  * If this causes us to lower the level, we have to also clear
100                  * the physical active state, since we will otherwise never be
101                  * told when the interrupt becomes asserted again.
102                  */
103                 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
104                         irq->line_level = vgic_get_phys_line_level(irq);
105
106                         if (!irq->line_level)
107                                 vgic_irq_set_phys_active(irq, false);
108                 }
109
110                 raw_spin_unlock(&irq->irq_lock);
111                 vgic_put_irq(vcpu->kvm, irq);
112         }
113
114         vgic_cpu->used_lrs = 0;
115 }
116
117 /* Requires the irq to be locked already */
118 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
119 {
120         u32 model = vcpu->kvm->arch.vgic.vgic_model;
121         u64 val = irq->intid;
122         bool allow_pending = true, is_v2_sgi;
123
124         is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
125                      model == KVM_DEV_TYPE_ARM_VGIC_V2);
126
127         if (irq->active) {
128                 val |= ICH_LR_ACTIVE_BIT;
129                 if (is_v2_sgi)
130                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
131                 if (vgic_irq_is_multi_sgi(irq)) {
132                         allow_pending = false;
133                         val |= ICH_LR_EOI;
134                 }
135         }
136
137         if (irq->hw) {
138                 val |= ICH_LR_HW;
139                 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
140                 /*
141                  * Never set pending+active on a HW interrupt, as the
142                  * pending state is kept at the physical distributor
143                  * level.
144                  */
145                 if (irq->active)
146                         allow_pending = false;
147         } else {
148                 if (irq->config == VGIC_CONFIG_LEVEL) {
149                         val |= ICH_LR_EOI;
150
151                         /*
152                          * Software resampling doesn't work very well
153                          * if we allow P+A, so let's not do that.
154                          */
155                         if (irq->active)
156                                 allow_pending = false;
157                 }
158         }
159
160         if (allow_pending && irq_is_pending(irq)) {
161                 val |= ICH_LR_PENDING_BIT;
162
163                 if (irq->config == VGIC_CONFIG_EDGE)
164                         irq->pending_latch = false;
165
166                 if (vgic_irq_is_sgi(irq->intid) &&
167                     model == KVM_DEV_TYPE_ARM_VGIC_V2) {
168                         u32 src = ffs(irq->source);
169
170                         BUG_ON(!src);
171                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
172                         irq->source &= ~(1 << (src - 1));
173                         if (irq->source) {
174                                 irq->pending_latch = true;
175                                 val |= ICH_LR_EOI;
176                         }
177                 }
178         }
179
180         /*
181          * Level-triggered mapped IRQs are special because we only observe
182          * rising edges as input to the VGIC.  We therefore lower the line
183          * level here, so that we can take new virtual IRQs.  See
184          * vgic_v3_fold_lr_state for more info.
185          */
186         if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
187                 irq->line_level = false;
188
189         if (irq->group)
190                 val |= ICH_LR_GROUP;
191
192         val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
193
194         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
195 }
196
197 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
198 {
199         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
200 }
201
202 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
203 {
204         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
205         u32 model = vcpu->kvm->arch.vgic.vgic_model;
206         u32 vmcr;
207
208         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
209                 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
210                         ICH_VMCR_ACK_CTL_MASK;
211                 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
212                         ICH_VMCR_FIQ_EN_MASK;
213         } else {
214                 /*
215                  * When emulating GICv3 on GICv3 with SRE=1 on the
216                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
217                  */
218                 vmcr = ICH_VMCR_FIQ_EN_MASK;
219         }
220
221         vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
222         vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
223         vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
224         vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
225         vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
226         vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
227         vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
228
229         cpu_if->vgic_vmcr = vmcr;
230 }
231
232 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
233 {
234         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
235         u32 model = vcpu->kvm->arch.vgic.vgic_model;
236         u32 vmcr;
237
238         vmcr = cpu_if->vgic_vmcr;
239
240         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
241                 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
242                         ICH_VMCR_ACK_CTL_SHIFT;
243                 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
244                         ICH_VMCR_FIQ_EN_SHIFT;
245         } else {
246                 /*
247                  * When emulating GICv3 on GICv3 with SRE=1 on the
248                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
249                  */
250                 vmcrp->fiqen = 1;
251                 vmcrp->ackctl = 0;
252         }
253
254         vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
255         vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
256         vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
257         vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
258         vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
259         vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
260         vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
261 }
262
263 #define INITIAL_PENDBASER_VALUE                                           \
264         (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
265         GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
266         GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
267
268 void vgic_v3_enable(struct kvm_vcpu *vcpu)
269 {
270         struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
271
272         /*
273          * By forcing VMCR to zero, the GIC will restore the binary
274          * points to their reset values. Anything else resets to zero
275          * anyway.
276          */
277         vgic_v3->vgic_vmcr = 0;
278
279         /*
280          * If we are emulating a GICv3, we do it in an non-GICv2-compatible
281          * way, so we force SRE to 1 to demonstrate this to the guest.
282          * Also, we don't support any form of IRQ/FIQ bypass.
283          * This goes with the spec allowing the value to be RAO/WI.
284          */
285         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
286                 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
287                                      ICC_SRE_EL1_DFB |
288                                      ICC_SRE_EL1_SRE);
289                 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
290         } else {
291                 vgic_v3->vgic_sre = 0;
292         }
293
294         vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
295                                            ICH_VTR_ID_BITS_MASK) >>
296                                            ICH_VTR_ID_BITS_SHIFT;
297         vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
298                                             ICH_VTR_PRI_BITS_MASK) >>
299                                             ICH_VTR_PRI_BITS_SHIFT) + 1;
300
301         /* Get the show on the road... */
302         vgic_v3->vgic_hcr = ICH_HCR_EN;
303         if (group0_trap)
304                 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
305         if (group1_trap)
306                 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
307         if (common_trap)
308                 vgic_v3->vgic_hcr |= ICH_HCR_TC;
309 }
310
311 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
312 {
313         struct kvm_vcpu *vcpu;
314         int byte_offset, bit_nr;
315         gpa_t pendbase, ptr;
316         bool status;
317         u8 val;
318         int ret;
319         unsigned long flags;
320
321 retry:
322         vcpu = irq->target_vcpu;
323         if (!vcpu)
324                 return 0;
325
326         pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
327
328         byte_offset = irq->intid / BITS_PER_BYTE;
329         bit_nr = irq->intid % BITS_PER_BYTE;
330         ptr = pendbase + byte_offset;
331
332         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
333         if (ret)
334                 return ret;
335
336         status = val & (1 << bit_nr);
337
338         raw_spin_lock_irqsave(&irq->irq_lock, flags);
339         if (irq->target_vcpu != vcpu) {
340                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
341                 goto retry;
342         }
343         irq->pending_latch = status;
344         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
345
346         if (status) {
347                 /* clear consumed data */
348                 val &= ~(1 << bit_nr);
349                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
350                 if (ret)
351                         return ret;
352         }
353         return 0;
354 }
355
356 /**
357  * vgic_its_save_pending_tables - Save the pending tables into guest RAM
358  * kvm lock and all vcpu lock must be held
359  */
360 int vgic_v3_save_pending_tables(struct kvm *kvm)
361 {
362         struct vgic_dist *dist = &kvm->arch.vgic;
363         int last_byte_offset = -1;
364         struct vgic_irq *irq;
365         int ret;
366         u8 val;
367
368         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
369                 int byte_offset, bit_nr;
370                 struct kvm_vcpu *vcpu;
371                 gpa_t pendbase, ptr;
372                 bool stored;
373
374                 vcpu = irq->target_vcpu;
375                 if (!vcpu)
376                         continue;
377
378                 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
379
380                 byte_offset = irq->intid / BITS_PER_BYTE;
381                 bit_nr = irq->intid % BITS_PER_BYTE;
382                 ptr = pendbase + byte_offset;
383
384                 if (byte_offset != last_byte_offset) {
385                         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
386                         if (ret)
387                                 return ret;
388                         last_byte_offset = byte_offset;
389                 }
390
391                 stored = val & (1U << bit_nr);
392                 if (stored == irq->pending_latch)
393                         continue;
394
395                 if (irq->pending_latch)
396                         val |= 1 << bit_nr;
397                 else
398                         val &= ~(1 << bit_nr);
399
400                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
401                 if (ret)
402                         return ret;
403         }
404         return 0;
405 }
406
407 /**
408  * vgic_v3_rdist_overlap - check if a region overlaps with any
409  * existing redistributor region
410  *
411  * @kvm: kvm handle
412  * @base: base of the region
413  * @size: size of region
414  *
415  * Return: true if there is an overlap
416  */
417 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
418 {
419         struct vgic_dist *d = &kvm->arch.vgic;
420         struct vgic_redist_region *rdreg;
421
422         list_for_each_entry(rdreg, &d->rd_regions, list) {
423                 if ((base + size > rdreg->base) &&
424                         (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
425                         return true;
426         }
427         return false;
428 }
429
430 /*
431  * Check for overlapping regions and for regions crossing the end of memory
432  * for base addresses which have already been set.
433  */
434 bool vgic_v3_check_base(struct kvm *kvm)
435 {
436         struct vgic_dist *d = &kvm->arch.vgic;
437         struct vgic_redist_region *rdreg;
438
439         if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
440             d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
441                 return false;
442
443         list_for_each_entry(rdreg, &d->rd_regions, list) {
444                 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
445                         rdreg->base)
446                         return false;
447         }
448
449         if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
450                 return true;
451
452         return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
453                                       KVM_VGIC_V3_DIST_SIZE);
454 }
455
456 /**
457  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
458  * which has free space to put a new rdist region.
459  *
460  * @rd_regions: redistributor region list head
461  *
462  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
463  * Stride between redistributors is 0 and regions are filled in the index order.
464  *
465  * Return: the redist region handle, if any, that has space to map a new rdist
466  * region.
467  */
468 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
469 {
470         struct vgic_redist_region *rdreg;
471
472         list_for_each_entry(rdreg, rd_regions, list) {
473                 if (!vgic_v3_redist_region_full(rdreg))
474                         return rdreg;
475         }
476         return NULL;
477 }
478
479 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
480                                                            u32 index)
481 {
482         struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
483         struct vgic_redist_region *rdreg;
484
485         list_for_each_entry(rdreg, rd_regions, list) {
486                 if (rdreg->index == index)
487                         return rdreg;
488         }
489         return NULL;
490 }
491
492
493 int vgic_v3_map_resources(struct kvm *kvm)
494 {
495         struct vgic_dist *dist = &kvm->arch.vgic;
496         struct kvm_vcpu *vcpu;
497         int ret = 0;
498         int c;
499
500         if (vgic_ready(kvm))
501                 goto out;
502
503         kvm_for_each_vcpu(c, vcpu, kvm) {
504                 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
505
506                 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
507                         kvm_debug("vcpu %d redistributor base not set\n", c);
508                         ret = -ENXIO;
509                         goto out;
510                 }
511         }
512
513         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
514                 kvm_err("Need to set vgic distributor addresses first\n");
515                 ret = -ENXIO;
516                 goto out;
517         }
518
519         if (!vgic_v3_check_base(kvm)) {
520                 kvm_err("VGIC redist and dist frames overlap\n");
521                 ret = -EINVAL;
522                 goto out;
523         }
524
525         /*
526          * For a VGICv3 we require the userland to explicitly initialize
527          * the VGIC before we need to use it.
528          */
529         if (!vgic_initialized(kvm)) {
530                 ret = -EBUSY;
531                 goto out;
532         }
533
534         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
535         if (ret) {
536                 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
537                 goto out;
538         }
539
540         dist->ready = true;
541
542 out:
543         return ret;
544 }
545
546 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
547
548 static int __init early_group0_trap_cfg(char *buf)
549 {
550         return strtobool(buf, &group0_trap);
551 }
552 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
553
554 static int __init early_group1_trap_cfg(char *buf)
555 {
556         return strtobool(buf, &group1_trap);
557 }
558 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
559
560 static int __init early_common_trap_cfg(char *buf)
561 {
562         return strtobool(buf, &common_trap);
563 }
564 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
565
566 static int __init early_gicv4_enable(char *buf)
567 {
568         return strtobool(buf, &gicv4_enable);
569 }
570 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
571
572 /**
573  * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
574  * @node:       pointer to the DT node
575  *
576  * Returns 0 if a GICv3 has been found, returns an error code otherwise
577  */
578 int vgic_v3_probe(const struct gic_kvm_info *info)
579 {
580         u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
581         int ret;
582
583         /*
584          * The ListRegs field is 5 bits, but there is a architectural
585          * maximum of 16 list registers. Just ignore bit 4...
586          */
587         kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
588         kvm_vgic_global_state.can_emulate_gicv2 = false;
589         kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
590
591         /* GICv4 support? */
592         if (info->has_v4) {
593                 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
594                 kvm_info("GICv4 support %sabled\n",
595                          gicv4_enable ? "en" : "dis");
596         }
597
598         if (!info->vcpu.start) {
599                 kvm_info("GICv3: no GICV resource entry\n");
600                 kvm_vgic_global_state.vcpu_base = 0;
601         } else if (!PAGE_ALIGNED(info->vcpu.start)) {
602                 pr_warn("GICV physical address 0x%llx not page aligned\n",
603                         (unsigned long long)info->vcpu.start);
604                 kvm_vgic_global_state.vcpu_base = 0;
605         } else {
606                 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
607                 kvm_vgic_global_state.can_emulate_gicv2 = true;
608                 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
609                 if (ret) {
610                         kvm_err("Cannot register GICv2 KVM device.\n");
611                         return ret;
612                 }
613                 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
614         }
615         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
616         if (ret) {
617                 kvm_err("Cannot register GICv3 KVM device.\n");
618                 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
619                 return ret;
620         }
621
622         if (kvm_vgic_global_state.vcpu_base == 0)
623                 kvm_info("disabling GICv2 emulation\n");
624
625 #ifdef CONFIG_ARM64
626         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
627                 group0_trap = true;
628                 group1_trap = true;
629         }
630 #endif
631
632         if (group0_trap || group1_trap || common_trap) {
633                 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
634                          group0_trap ? "G0" : "",
635                          group1_trap ? "G1" : "",
636                          common_trap ? "C"  : "");
637                 static_branch_enable(&vgic_v3_cpuif_trap);
638         }
639
640         kvm_vgic_global_state.vctrl_base = NULL;
641         kvm_vgic_global_state.type = VGIC_V3;
642         kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
643
644         return 0;
645 }
646
647 void vgic_v3_load(struct kvm_vcpu *vcpu)
648 {
649         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
650
651         /*
652          * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
653          * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
654          * VMCR_EL2 save/restore in the world switch.
655          */
656         if (likely(cpu_if->vgic_sre))
657                 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
658
659         kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
660
661         if (has_vhe())
662                 __vgic_v3_activate_traps(vcpu);
663 }
664
665 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
666 {
667         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
668
669         if (likely(cpu_if->vgic_sre))
670                 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
671 }
672
673 void vgic_v3_put(struct kvm_vcpu *vcpu)
674 {
675         vgic_v3_vmcr_sync(vcpu);
676
677         kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
678
679         if (has_vhe())
680                 __vgic_v3_deactivate_traps(vcpu);
681 }