Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[sfrench/cifs-2.6.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
51
52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56
57 /**
58  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59  * @kvm:        pointer to kvm structure.
60  *
61  * Interface to HYP function to flush all VM TLB entries
62  */
63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67
68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72
73 /*
74  * D-Cache management functions. They take the page table entries by
75  * value, as they are flushing the cache using the kernel mapping (or
76  * kmap on 32bit).
77  */
78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80         __kvm_flush_dcache_pte(pte);
81 }
82
83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85         __kvm_flush_dcache_pmd(pmd);
86 }
87
88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90         __kvm_flush_dcache_pud(pud);
91 }
92
93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95         return !pfn_valid(pfn);
96 }
97
98 /**
99  * stage2_dissolve_pmd() - clear and flush huge PMD entry
100  * @kvm:        pointer to kvm structure.
101  * @addr:       IPA
102  * @pmd:        pmd pointer for IPA
103  *
104  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105  * pages in the range dirty.
106  */
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109         if (!pmd_thp_or_huge(*pmd))
110                 return;
111
112         pmd_clear(pmd);
113         kvm_tlb_flush_vmid_ipa(kvm, addr);
114         put_page(virt_to_page(pmd));
115 }
116
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118                                   int min, int max)
119 {
120         void *page;
121
122         BUG_ON(max > KVM_NR_MEM_OBJS);
123         if (cache->nobjs >= min)
124                 return 0;
125         while (cache->nobjs < max) {
126                 page = (void *)__get_free_page(PGALLOC_GFP);
127                 if (!page)
128                         return -ENOMEM;
129                 cache->objects[cache->nobjs++] = page;
130         }
131         return 0;
132 }
133
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136         while (mc->nobjs)
137                 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142         void *p;
143
144         BUG_ON(!mc || !mc->nobjs);
145         p = mc->objects[--mc->nobjs];
146         return p;
147 }
148
149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152         stage2_pgd_clear(pgd);
153         kvm_tlb_flush_vmid_ipa(kvm, addr);
154         stage2_pud_free(pud_table);
155         put_page(virt_to_page(pgd));
156 }
157
158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161         VM_BUG_ON(stage2_pud_huge(*pud));
162         stage2_pud_clear(pud);
163         kvm_tlb_flush_vmid_ipa(kvm, addr);
164         stage2_pmd_free(pmd_table);
165         put_page(virt_to_page(pud));
166 }
167
168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170         pte_t *pte_table = pte_offset_kernel(pmd, 0);
171         VM_BUG_ON(pmd_thp_or_huge(*pmd));
172         pmd_clear(pmd);
173         kvm_tlb_flush_vmid_ipa(kvm, addr);
174         pte_free_kernel(NULL, pte_table);
175         put_page(virt_to_page(pmd));
176 }
177
178 /*
179  * Unmapping vs dcache management:
180  *
181  * If a guest maps certain memory pages as uncached, all writes will
182  * bypass the data cache and go directly to RAM.  However, the CPUs
183  * can still speculate reads (not writes) and fill cache lines with
184  * data.
185  *
186  * Those cache lines will be *clean* cache lines though, so a
187  * clean+invalidate operation is equivalent to an invalidate
188  * operation, because no cache lines are marked dirty.
189  *
190  * Those clean cache lines could be filled prior to an uncached write
191  * by the guest, and the cache coherent IO subsystem would therefore
192  * end up writing old data to disk.
193  *
194  * This is why right after unmapping a page/section and invalidating
195  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196  * the IO subsystem will never hit in the cache.
197  */
198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199                        phys_addr_t addr, phys_addr_t end)
200 {
201         phys_addr_t start_addr = addr;
202         pte_t *pte, *start_pte;
203
204         start_pte = pte = pte_offset_kernel(pmd, addr);
205         do {
206                 if (!pte_none(*pte)) {
207                         pte_t old_pte = *pte;
208
209                         kvm_set_pte(pte, __pte(0));
210                         kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212                         /* No need to invalidate the cache for device mappings */
213                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214                                 kvm_flush_dcache_pte(old_pte);
215
216                         put_page(virt_to_page(pte));
217                 }
218         } while (pte++, addr += PAGE_SIZE, addr != end);
219
220         if (stage2_pte_table_empty(start_pte))
221                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223
224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225                        phys_addr_t addr, phys_addr_t end)
226 {
227         phys_addr_t next, start_addr = addr;
228         pmd_t *pmd, *start_pmd;
229
230         start_pmd = pmd = stage2_pmd_offset(pud, addr);
231         do {
232                 next = stage2_pmd_addr_end(addr, end);
233                 if (!pmd_none(*pmd)) {
234                         if (pmd_thp_or_huge(*pmd)) {
235                                 pmd_t old_pmd = *pmd;
236
237                                 pmd_clear(pmd);
238                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240                                 kvm_flush_dcache_pmd(old_pmd);
241
242                                 put_page(virt_to_page(pmd));
243                         } else {
244                                 unmap_stage2_ptes(kvm, pmd, addr, next);
245                         }
246                 }
247         } while (pmd++, addr = next, addr != end);
248
249         if (stage2_pmd_table_empty(start_pmd))
250                 clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252
253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254                        phys_addr_t addr, phys_addr_t end)
255 {
256         phys_addr_t next, start_addr = addr;
257         pud_t *pud, *start_pud;
258
259         start_pud = pud = stage2_pud_offset(pgd, addr);
260         do {
261                 next = stage2_pud_addr_end(addr, end);
262                 if (!stage2_pud_none(*pud)) {
263                         if (stage2_pud_huge(*pud)) {
264                                 pud_t old_pud = *pud;
265
266                                 stage2_pud_clear(pud);
267                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
268                                 kvm_flush_dcache_pud(old_pud);
269                                 put_page(virt_to_page(pud));
270                         } else {
271                                 unmap_stage2_pmds(kvm, pud, addr, next);
272                         }
273                 }
274         } while (pud++, addr = next, addr != end);
275
276         if (stage2_pud_table_empty(start_pud))
277                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279
280 /**
281  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282  * @kvm:   The VM pointer
283  * @start: The intermediate physical base address of the range to unmap
284  * @size:  The size of the area to unmap
285  *
286  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
287  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288  * destroying the VM), otherwise another faulting VCPU may come in and mess
289  * with things behind our backs.
290  */
291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293         pgd_t *pgd;
294         phys_addr_t addr = start, end = start + size;
295         phys_addr_t next;
296
297         assert_spin_locked(&kvm->mmu_lock);
298         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299         do {
300                 /*
301                  * Make sure the page table is still active, as another thread
302                  * could have possibly freed the page table, while we released
303                  * the lock.
304                  */
305                 if (!READ_ONCE(kvm->arch.pgd))
306                         break;
307                 next = stage2_pgd_addr_end(addr, end);
308                 if (!stage2_pgd_none(*pgd))
309                         unmap_stage2_puds(kvm, pgd, addr, next);
310                 /*
311                  * If the range is too large, release the kvm->mmu_lock
312                  * to prevent starvation and lockup detector warnings.
313                  */
314                 if (next != end)
315                         cond_resched_lock(&kvm->mmu_lock);
316         } while (pgd++, addr = next, addr != end);
317 }
318
319 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
320                               phys_addr_t addr, phys_addr_t end)
321 {
322         pte_t *pte;
323
324         pte = pte_offset_kernel(pmd, addr);
325         do {
326                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327                         kvm_flush_dcache_pte(*pte);
328         } while (pte++, addr += PAGE_SIZE, addr != end);
329 }
330
331 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
332                               phys_addr_t addr, phys_addr_t end)
333 {
334         pmd_t *pmd;
335         phys_addr_t next;
336
337         pmd = stage2_pmd_offset(pud, addr);
338         do {
339                 next = stage2_pmd_addr_end(addr, end);
340                 if (!pmd_none(*pmd)) {
341                         if (pmd_thp_or_huge(*pmd))
342                                 kvm_flush_dcache_pmd(*pmd);
343                         else
344                                 stage2_flush_ptes(kvm, pmd, addr, next);
345                 }
346         } while (pmd++, addr = next, addr != end);
347 }
348
349 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
350                               phys_addr_t addr, phys_addr_t end)
351 {
352         pud_t *pud;
353         phys_addr_t next;
354
355         pud = stage2_pud_offset(pgd, addr);
356         do {
357                 next = stage2_pud_addr_end(addr, end);
358                 if (!stage2_pud_none(*pud)) {
359                         if (stage2_pud_huge(*pud))
360                                 kvm_flush_dcache_pud(*pud);
361                         else
362                                 stage2_flush_pmds(kvm, pud, addr, next);
363                 }
364         } while (pud++, addr = next, addr != end);
365 }
366
367 static void stage2_flush_memslot(struct kvm *kvm,
368                                  struct kvm_memory_slot *memslot)
369 {
370         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
371         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
372         phys_addr_t next;
373         pgd_t *pgd;
374
375         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376         do {
377                 next = stage2_pgd_addr_end(addr, end);
378                 stage2_flush_puds(kvm, pgd, addr, next);
379         } while (pgd++, addr = next, addr != end);
380 }
381
382 /**
383  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
384  * @kvm: The struct kvm pointer
385  *
386  * Go through the stage 2 page tables and invalidate any cache lines
387  * backing memory already mapped to the VM.
388  */
389 static void stage2_flush_vm(struct kvm *kvm)
390 {
391         struct kvm_memslots *slots;
392         struct kvm_memory_slot *memslot;
393         int idx;
394
395         idx = srcu_read_lock(&kvm->srcu);
396         spin_lock(&kvm->mmu_lock);
397
398         slots = kvm_memslots(kvm);
399         kvm_for_each_memslot(memslot, slots)
400                 stage2_flush_memslot(kvm, memslot);
401
402         spin_unlock(&kvm->mmu_lock);
403         srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static void clear_hyp_pgd_entry(pgd_t *pgd)
407 {
408         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
409         pgd_clear(pgd);
410         pud_free(NULL, pud_table);
411         put_page(virt_to_page(pgd));
412 }
413
414 static void clear_hyp_pud_entry(pud_t *pud)
415 {
416         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
417         VM_BUG_ON(pud_huge(*pud));
418         pud_clear(pud);
419         pmd_free(NULL, pmd_table);
420         put_page(virt_to_page(pud));
421 }
422
423 static void clear_hyp_pmd_entry(pmd_t *pmd)
424 {
425         pte_t *pte_table = pte_offset_kernel(pmd, 0);
426         VM_BUG_ON(pmd_thp_or_huge(*pmd));
427         pmd_clear(pmd);
428         pte_free_kernel(NULL, pte_table);
429         put_page(virt_to_page(pmd));
430 }
431
432 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
433 {
434         pte_t *pte, *start_pte;
435
436         start_pte = pte = pte_offset_kernel(pmd, addr);
437         do {
438                 if (!pte_none(*pte)) {
439                         kvm_set_pte(pte, __pte(0));
440                         put_page(virt_to_page(pte));
441                 }
442         } while (pte++, addr += PAGE_SIZE, addr != end);
443
444         if (hyp_pte_table_empty(start_pte))
445                 clear_hyp_pmd_entry(pmd);
446 }
447
448 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
449 {
450         phys_addr_t next;
451         pmd_t *pmd, *start_pmd;
452
453         start_pmd = pmd = pmd_offset(pud, addr);
454         do {
455                 next = pmd_addr_end(addr, end);
456                 /* Hyp doesn't use huge pmds */
457                 if (!pmd_none(*pmd))
458                         unmap_hyp_ptes(pmd, addr, next);
459         } while (pmd++, addr = next, addr != end);
460
461         if (hyp_pmd_table_empty(start_pmd))
462                 clear_hyp_pud_entry(pud);
463 }
464
465 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
466 {
467         phys_addr_t next;
468         pud_t *pud, *start_pud;
469
470         start_pud = pud = pud_offset(pgd, addr);
471         do {
472                 next = pud_addr_end(addr, end);
473                 /* Hyp doesn't use huge puds */
474                 if (!pud_none(*pud))
475                         unmap_hyp_pmds(pud, addr, next);
476         } while (pud++, addr = next, addr != end);
477
478         if (hyp_pud_table_empty(start_pud))
479                 clear_hyp_pgd_entry(pgd);
480 }
481
482 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
483 {
484         pgd_t *pgd;
485         phys_addr_t addr = start, end = start + size;
486         phys_addr_t next;
487
488         /*
489          * We don't unmap anything from HYP, except at the hyp tear down.
490          * Hence, we don't have to invalidate the TLBs here.
491          */
492         pgd = pgdp + pgd_index(addr);
493         do {
494                 next = pgd_addr_end(addr, end);
495                 if (!pgd_none(*pgd))
496                         unmap_hyp_puds(pgd, addr, next);
497         } while (pgd++, addr = next, addr != end);
498 }
499
500 /**
501  * free_hyp_pgds - free Hyp-mode page tables
502  *
503  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
504  * therefore contains either mappings in the kernel memory area (above
505  * PAGE_OFFSET), or device mappings in the vmalloc range (from
506  * VMALLOC_START to VMALLOC_END).
507  *
508  * boot_hyp_pgd should only map two pages for the init code.
509  */
510 void free_hyp_pgds(void)
511 {
512         mutex_lock(&kvm_hyp_pgd_mutex);
513
514         if (boot_hyp_pgd) {
515                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
516                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
517                 boot_hyp_pgd = NULL;
518         }
519
520         if (hyp_pgd) {
521                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
523                                 (uintptr_t)high_memory - PAGE_OFFSET);
524                 unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
525                                 VMALLOC_END - VMALLOC_START);
526
527                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528                 hyp_pgd = NULL;
529         }
530         if (merged_hyp_pgd) {
531                 clear_page(merged_hyp_pgd);
532                 free_page((unsigned long)merged_hyp_pgd);
533                 merged_hyp_pgd = NULL;
534         }
535
536         mutex_unlock(&kvm_hyp_pgd_mutex);
537 }
538
539 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540                                     unsigned long end, unsigned long pfn,
541                                     pgprot_t prot)
542 {
543         pte_t *pte;
544         unsigned long addr;
545
546         addr = start;
547         do {
548                 pte = pte_offset_kernel(pmd, addr);
549                 kvm_set_pte(pte, pfn_pte(pfn, prot));
550                 get_page(virt_to_page(pte));
551                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552                 pfn++;
553         } while (addr += PAGE_SIZE, addr != end);
554 }
555
556 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557                                    unsigned long end, unsigned long pfn,
558                                    pgprot_t prot)
559 {
560         pmd_t *pmd;
561         pte_t *pte;
562         unsigned long addr, next;
563
564         addr = start;
565         do {
566                 pmd = pmd_offset(pud, addr);
567
568                 BUG_ON(pmd_sect(*pmd));
569
570                 if (pmd_none(*pmd)) {
571                         pte = pte_alloc_one_kernel(NULL, addr);
572                         if (!pte) {
573                                 kvm_err("Cannot allocate Hyp pte\n");
574                                 return -ENOMEM;
575                         }
576                         pmd_populate_kernel(NULL, pmd, pte);
577                         get_page(virt_to_page(pmd));
578                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
579                 }
580
581                 next = pmd_addr_end(addr, end);
582
583                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
584                 pfn += (next - addr) >> PAGE_SHIFT;
585         } while (addr = next, addr != end);
586
587         return 0;
588 }
589
590 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
591                                    unsigned long end, unsigned long pfn,
592                                    pgprot_t prot)
593 {
594         pud_t *pud;
595         pmd_t *pmd;
596         unsigned long addr, next;
597         int ret;
598
599         addr = start;
600         do {
601                 pud = pud_offset(pgd, addr);
602
603                 if (pud_none_or_clear_bad(pud)) {
604                         pmd = pmd_alloc_one(NULL, addr);
605                         if (!pmd) {
606                                 kvm_err("Cannot allocate Hyp pmd\n");
607                                 return -ENOMEM;
608                         }
609                         pud_populate(NULL, pud, pmd);
610                         get_page(virt_to_page(pud));
611                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
612                 }
613
614                 next = pud_addr_end(addr, end);
615                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
616                 if (ret)
617                         return ret;
618                 pfn += (next - addr) >> PAGE_SHIFT;
619         } while (addr = next, addr != end);
620
621         return 0;
622 }
623
624 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
625                                  unsigned long start, unsigned long end,
626                                  unsigned long pfn, pgprot_t prot)
627 {
628         pgd_t *pgd;
629         pud_t *pud;
630         unsigned long addr, next;
631         int err = 0;
632
633         mutex_lock(&kvm_hyp_pgd_mutex);
634         addr = start & PAGE_MASK;
635         end = PAGE_ALIGN(end);
636         do {
637                 pgd = pgdp + ((addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1));
638
639                 if (pgd_none(*pgd)) {
640                         pud = pud_alloc_one(NULL, addr);
641                         if (!pud) {
642                                 kvm_err("Cannot allocate Hyp pud\n");
643                                 err = -ENOMEM;
644                                 goto out;
645                         }
646                         pgd_populate(NULL, pgd, pud);
647                         get_page(virt_to_page(pgd));
648                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
649                 }
650
651                 next = pgd_addr_end(addr, end);
652                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653                 if (err)
654                         goto out;
655                 pfn += (next - addr) >> PAGE_SHIFT;
656         } while (addr = next, addr != end);
657 out:
658         mutex_unlock(&kvm_hyp_pgd_mutex);
659         return err;
660 }
661
662 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
663 {
664         if (!is_vmalloc_addr(kaddr)) {
665                 BUG_ON(!virt_addr_valid(kaddr));
666                 return __pa(kaddr);
667         } else {
668                 return page_to_phys(vmalloc_to_page(kaddr)) +
669                        offset_in_page(kaddr);
670         }
671 }
672
673 /**
674  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675  * @from:       The virtual kernel start address of the range
676  * @to:         The virtual kernel end address of the range (exclusive)
677  * @prot:       The protection to be applied to this range
678  *
679  * The same virtual address as the kernel virtual address is also used
680  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
681  * physical pages.
682  */
683 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
684 {
685         phys_addr_t phys_addr;
686         unsigned long virt_addr;
687         unsigned long start = kern_hyp_va((unsigned long)from);
688         unsigned long end = kern_hyp_va((unsigned long)to);
689
690         if (is_kernel_in_hyp_mode())
691                 return 0;
692
693         start = start & PAGE_MASK;
694         end = PAGE_ALIGN(end);
695
696         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
697                 int err;
698
699                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700                 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
701                                             virt_addr, virt_addr + PAGE_SIZE,
702                                             __phys_to_pfn(phys_addr),
703                                             prot);
704                 if (err)
705                         return err;
706         }
707
708         return 0;
709 }
710
711 /**
712  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
713  * @from:       The kernel start VA of the range
714  * @to:         The kernel end VA of the range (exclusive)
715  * @phys_addr:  The physical start address which gets mapped
716  *
717  * The resulting HYP VA is the same as the kernel VA, modulo
718  * HYP_PAGE_OFFSET.
719  */
720 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
721 {
722         unsigned long start = kern_hyp_va((unsigned long)from);
723         unsigned long end = kern_hyp_va((unsigned long)to);
724
725         if (is_kernel_in_hyp_mode())
726                 return 0;
727
728         /* Check for a valid kernel IO mapping */
729         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
730                 return -EINVAL;
731
732         return __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, start, end,
733                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
734 }
735
736 /**
737  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
738  * @kvm:        The KVM struct pointer for the VM.
739  *
740  * Allocates only the stage-2 HW PGD level table(s) (can support either full
741  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
742  * allocated pages.
743  *
744  * Note we don't need locking here as this is only called when the VM is
745  * created, which can only be done once.
746  */
747 int kvm_alloc_stage2_pgd(struct kvm *kvm)
748 {
749         pgd_t *pgd;
750
751         if (kvm->arch.pgd != NULL) {
752                 kvm_err("kvm_arch already initialized?\n");
753                 return -EINVAL;
754         }
755
756         /* Allocate the HW PGD, making sure that each page gets its own refcount */
757         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
758         if (!pgd)
759                 return -ENOMEM;
760
761         kvm->arch.pgd = pgd;
762         return 0;
763 }
764
765 static void stage2_unmap_memslot(struct kvm *kvm,
766                                  struct kvm_memory_slot *memslot)
767 {
768         hva_t hva = memslot->userspace_addr;
769         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
770         phys_addr_t size = PAGE_SIZE * memslot->npages;
771         hva_t reg_end = hva + size;
772
773         /*
774          * A memory region could potentially cover multiple VMAs, and any holes
775          * between them, so iterate over all of them to find out if we should
776          * unmap any of them.
777          *
778          *     +--------------------------------------------+
779          * +---------------+----------------+   +----------------+
780          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
781          * +---------------+----------------+   +----------------+
782          *     |               memory region                |
783          *     +--------------------------------------------+
784          */
785         do {
786                 struct vm_area_struct *vma = find_vma(current->mm, hva);
787                 hva_t vm_start, vm_end;
788
789                 if (!vma || vma->vm_start >= reg_end)
790                         break;
791
792                 /*
793                  * Take the intersection of this VMA with the memory region
794                  */
795                 vm_start = max(hva, vma->vm_start);
796                 vm_end = min(reg_end, vma->vm_end);
797
798                 if (!(vma->vm_flags & VM_PFNMAP)) {
799                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
800                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
801                 }
802                 hva = vm_end;
803         } while (hva < reg_end);
804 }
805
806 /**
807  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
808  * @kvm: The struct kvm pointer
809  *
810  * Go through the memregions and unmap any reguler RAM
811  * backing memory already mapped to the VM.
812  */
813 void stage2_unmap_vm(struct kvm *kvm)
814 {
815         struct kvm_memslots *slots;
816         struct kvm_memory_slot *memslot;
817         int idx;
818
819         idx = srcu_read_lock(&kvm->srcu);
820         down_read(&current->mm->mmap_sem);
821         spin_lock(&kvm->mmu_lock);
822
823         slots = kvm_memslots(kvm);
824         kvm_for_each_memslot(memslot, slots)
825                 stage2_unmap_memslot(kvm, memslot);
826
827         spin_unlock(&kvm->mmu_lock);
828         up_read(&current->mm->mmap_sem);
829         srcu_read_unlock(&kvm->srcu, idx);
830 }
831
832 /**
833  * kvm_free_stage2_pgd - free all stage-2 tables
834  * @kvm:        The KVM struct pointer for the VM.
835  *
836  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
837  * underlying level-2 and level-3 tables before freeing the actual level-1 table
838  * and setting the struct pointer to NULL.
839  */
840 void kvm_free_stage2_pgd(struct kvm *kvm)
841 {
842         void *pgd = NULL;
843
844         spin_lock(&kvm->mmu_lock);
845         if (kvm->arch.pgd) {
846                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
847                 pgd = READ_ONCE(kvm->arch.pgd);
848                 kvm->arch.pgd = NULL;
849         }
850         spin_unlock(&kvm->mmu_lock);
851
852         /* Free the HW pgd, one page at a time */
853         if (pgd)
854                 free_pages_exact(pgd, S2_PGD_SIZE);
855 }
856
857 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858                              phys_addr_t addr)
859 {
860         pgd_t *pgd;
861         pud_t *pud;
862
863         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
864         if (WARN_ON(stage2_pgd_none(*pgd))) {
865                 if (!cache)
866                         return NULL;
867                 pud = mmu_memory_cache_alloc(cache);
868                 stage2_pgd_populate(pgd, pud);
869                 get_page(virt_to_page(pgd));
870         }
871
872         return stage2_pud_offset(pgd, addr);
873 }
874
875 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
876                              phys_addr_t addr)
877 {
878         pud_t *pud;
879         pmd_t *pmd;
880
881         pud = stage2_get_pud(kvm, cache, addr);
882         if (!pud)
883                 return NULL;
884
885         if (stage2_pud_none(*pud)) {
886                 if (!cache)
887                         return NULL;
888                 pmd = mmu_memory_cache_alloc(cache);
889                 stage2_pud_populate(pud, pmd);
890                 get_page(virt_to_page(pud));
891         }
892
893         return stage2_pmd_offset(pud, addr);
894 }
895
896 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
897                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
898 {
899         pmd_t *pmd, old_pmd;
900
901         pmd = stage2_get_pmd(kvm, cache, addr);
902         VM_BUG_ON(!pmd);
903
904         /*
905          * Mapping in huge pages should only happen through a fault.  If a
906          * page is merged into a transparent huge page, the individual
907          * subpages of that huge page should be unmapped through MMU
908          * notifiers before we get here.
909          *
910          * Merging of CompoundPages is not supported; they should become
911          * splitting first, unmapped, merged, and mapped back in on-demand.
912          */
913         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
914
915         old_pmd = *pmd;
916         if (pmd_present(old_pmd)) {
917                 pmd_clear(pmd);
918                 kvm_tlb_flush_vmid_ipa(kvm, addr);
919         } else {
920                 get_page(virt_to_page(pmd));
921         }
922
923         kvm_set_pmd(pmd, *new_pmd);
924         return 0;
925 }
926
927 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
928                           phys_addr_t addr, const pte_t *new_pte,
929                           unsigned long flags)
930 {
931         pmd_t *pmd;
932         pte_t *pte, old_pte;
933         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
934         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
935
936         VM_BUG_ON(logging_active && !cache);
937
938         /* Create stage-2 page table mapping - Levels 0 and 1 */
939         pmd = stage2_get_pmd(kvm, cache, addr);
940         if (!pmd) {
941                 /*
942                  * Ignore calls from kvm_set_spte_hva for unallocated
943                  * address ranges.
944                  */
945                 return 0;
946         }
947
948         /*
949          * While dirty page logging - dissolve huge PMD, then continue on to
950          * allocate page.
951          */
952         if (logging_active)
953                 stage2_dissolve_pmd(kvm, addr, pmd);
954
955         /* Create stage-2 page mappings - Level 2 */
956         if (pmd_none(*pmd)) {
957                 if (!cache)
958                         return 0; /* ignore calls from kvm_set_spte_hva */
959                 pte = mmu_memory_cache_alloc(cache);
960                 pmd_populate_kernel(NULL, pmd, pte);
961                 get_page(virt_to_page(pmd));
962         }
963
964         pte = pte_offset_kernel(pmd, addr);
965
966         if (iomap && pte_present(*pte))
967                 return -EFAULT;
968
969         /* Create 2nd stage page table mapping - Level 3 */
970         old_pte = *pte;
971         if (pte_present(old_pte)) {
972                 kvm_set_pte(pte, __pte(0));
973                 kvm_tlb_flush_vmid_ipa(kvm, addr);
974         } else {
975                 get_page(virt_to_page(pte));
976         }
977
978         kvm_set_pte(pte, *new_pte);
979         return 0;
980 }
981
982 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
983 static int stage2_ptep_test_and_clear_young(pte_t *pte)
984 {
985         if (pte_young(*pte)) {
986                 *pte = pte_mkold(*pte);
987                 return 1;
988         }
989         return 0;
990 }
991 #else
992 static int stage2_ptep_test_and_clear_young(pte_t *pte)
993 {
994         return __ptep_test_and_clear_young(pte);
995 }
996 #endif
997
998 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
999 {
1000         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1001 }
1002
1003 /**
1004  * kvm_phys_addr_ioremap - map a device range to guest IPA
1005  *
1006  * @kvm:        The KVM pointer
1007  * @guest_ipa:  The IPA at which to insert the mapping
1008  * @pa:         The physical address of the device
1009  * @size:       The size of the mapping
1010  */
1011 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1012                           phys_addr_t pa, unsigned long size, bool writable)
1013 {
1014         phys_addr_t addr, end;
1015         int ret = 0;
1016         unsigned long pfn;
1017         struct kvm_mmu_memory_cache cache = { 0, };
1018
1019         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1020         pfn = __phys_to_pfn(pa);
1021
1022         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1023                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1024
1025                 if (writable)
1026                         pte = kvm_s2pte_mkwrite(pte);
1027
1028                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1029                                                 KVM_NR_MEM_OBJS);
1030                 if (ret)
1031                         goto out;
1032                 spin_lock(&kvm->mmu_lock);
1033                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1034                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1035                 spin_unlock(&kvm->mmu_lock);
1036                 if (ret)
1037                         goto out;
1038
1039                 pfn++;
1040         }
1041
1042 out:
1043         mmu_free_memory_cache(&cache);
1044         return ret;
1045 }
1046
1047 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1048 {
1049         kvm_pfn_t pfn = *pfnp;
1050         gfn_t gfn = *ipap >> PAGE_SHIFT;
1051
1052         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1053                 unsigned long mask;
1054                 /*
1055                  * The address we faulted on is backed by a transparent huge
1056                  * page.  However, because we map the compound huge page and
1057                  * not the individual tail page, we need to transfer the
1058                  * refcount to the head page.  We have to be careful that the
1059                  * THP doesn't start to split while we are adjusting the
1060                  * refcounts.
1061                  *
1062                  * We are sure this doesn't happen, because mmu_notifier_retry
1063                  * was successful and we are holding the mmu_lock, so if this
1064                  * THP is trying to split, it will be blocked in the mmu
1065                  * notifier before touching any of the pages, specifically
1066                  * before being able to call __split_huge_page_refcount().
1067                  *
1068                  * We can therefore safely transfer the refcount from PG_tail
1069                  * to PG_head and switch the pfn from a tail page to the head
1070                  * page accordingly.
1071                  */
1072                 mask = PTRS_PER_PMD - 1;
1073                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1074                 if (pfn & mask) {
1075                         *ipap &= PMD_MASK;
1076                         kvm_release_pfn_clean(pfn);
1077                         pfn &= ~mask;
1078                         kvm_get_pfn(pfn);
1079                         *pfnp = pfn;
1080                 }
1081
1082                 return true;
1083         }
1084
1085         return false;
1086 }
1087
1088 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1089 {
1090         if (kvm_vcpu_trap_is_iabt(vcpu))
1091                 return false;
1092
1093         return kvm_vcpu_dabt_iswrite(vcpu);
1094 }
1095
1096 /**
1097  * stage2_wp_ptes - write protect PMD range
1098  * @pmd:        pointer to pmd entry
1099  * @addr:       range start address
1100  * @end:        range end address
1101  */
1102 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1103 {
1104         pte_t *pte;
1105
1106         pte = pte_offset_kernel(pmd, addr);
1107         do {
1108                 if (!pte_none(*pte)) {
1109                         if (!kvm_s2pte_readonly(pte))
1110                                 kvm_set_s2pte_readonly(pte);
1111                 }
1112         } while (pte++, addr += PAGE_SIZE, addr != end);
1113 }
1114
1115 /**
1116  * stage2_wp_pmds - write protect PUD range
1117  * @pud:        pointer to pud entry
1118  * @addr:       range start address
1119  * @end:        range end address
1120  */
1121 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1122 {
1123         pmd_t *pmd;
1124         phys_addr_t next;
1125
1126         pmd = stage2_pmd_offset(pud, addr);
1127
1128         do {
1129                 next = stage2_pmd_addr_end(addr, end);
1130                 if (!pmd_none(*pmd)) {
1131                         if (pmd_thp_or_huge(*pmd)) {
1132                                 if (!kvm_s2pmd_readonly(pmd))
1133                                         kvm_set_s2pmd_readonly(pmd);
1134                         } else {
1135                                 stage2_wp_ptes(pmd, addr, next);
1136                         }
1137                 }
1138         } while (pmd++, addr = next, addr != end);
1139 }
1140
1141 /**
1142   * stage2_wp_puds - write protect PGD range
1143   * @pgd:       pointer to pgd entry
1144   * @addr:      range start address
1145   * @end:       range end address
1146   *
1147   * Process PUD entries, for a huge PUD we cause a panic.
1148   */
1149 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1150 {
1151         pud_t *pud;
1152         phys_addr_t next;
1153
1154         pud = stage2_pud_offset(pgd, addr);
1155         do {
1156                 next = stage2_pud_addr_end(addr, end);
1157                 if (!stage2_pud_none(*pud)) {
1158                         /* TODO:PUD not supported, revisit later if supported */
1159                         BUG_ON(stage2_pud_huge(*pud));
1160                         stage2_wp_pmds(pud, addr, next);
1161                 }
1162         } while (pud++, addr = next, addr != end);
1163 }
1164
1165 /**
1166  * stage2_wp_range() - write protect stage2 memory region range
1167  * @kvm:        The KVM pointer
1168  * @addr:       Start address of range
1169  * @end:        End address of range
1170  */
1171 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1172 {
1173         pgd_t *pgd;
1174         phys_addr_t next;
1175
1176         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1177         do {
1178                 /*
1179                  * Release kvm_mmu_lock periodically if the memory region is
1180                  * large. Otherwise, we may see kernel panics with
1181                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1182                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1183                  * will also starve other vCPUs. We have to also make sure
1184                  * that the page tables are not freed while we released
1185                  * the lock.
1186                  */
1187                 cond_resched_lock(&kvm->mmu_lock);
1188                 if (!READ_ONCE(kvm->arch.pgd))
1189                         break;
1190                 next = stage2_pgd_addr_end(addr, end);
1191                 if (stage2_pgd_present(*pgd))
1192                         stage2_wp_puds(pgd, addr, next);
1193         } while (pgd++, addr = next, addr != end);
1194 }
1195
1196 /**
1197  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1198  * @kvm:        The KVM pointer
1199  * @slot:       The memory slot to write protect
1200  *
1201  * Called to start logging dirty pages after memory region
1202  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1203  * all present PMD and PTEs are write protected in the memory region.
1204  * Afterwards read of dirty page log can be called.
1205  *
1206  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1207  * serializing operations for VM memory regions.
1208  */
1209 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1210 {
1211         struct kvm_memslots *slots = kvm_memslots(kvm);
1212         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1213         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1214         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1215
1216         spin_lock(&kvm->mmu_lock);
1217         stage2_wp_range(kvm, start, end);
1218         spin_unlock(&kvm->mmu_lock);
1219         kvm_flush_remote_tlbs(kvm);
1220 }
1221
1222 /**
1223  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1224  * @kvm:        The KVM pointer
1225  * @slot:       The memory slot associated with mask
1226  * @gfn_offset: The gfn offset in memory slot
1227  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1228  *              slot to be write protected
1229  *
1230  * Walks bits set in mask write protects the associated pte's. Caller must
1231  * acquire kvm_mmu_lock.
1232  */
1233 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1234                 struct kvm_memory_slot *slot,
1235                 gfn_t gfn_offset, unsigned long mask)
1236 {
1237         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1238         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1239         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1240
1241         stage2_wp_range(kvm, start, end);
1242 }
1243
1244 /*
1245  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1246  * dirty pages.
1247  *
1248  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1249  * enable dirty logging for them.
1250  */
1251 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1252                 struct kvm_memory_slot *slot,
1253                 gfn_t gfn_offset, unsigned long mask)
1254 {
1255         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1256 }
1257
1258 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1259                                       unsigned long size)
1260 {
1261         __coherent_cache_guest_page(vcpu, pfn, size);
1262 }
1263
1264 static void kvm_send_hwpoison_signal(unsigned long address,
1265                                      struct vm_area_struct *vma)
1266 {
1267         siginfo_t info;
1268
1269         info.si_signo   = SIGBUS;
1270         info.si_errno   = 0;
1271         info.si_code    = BUS_MCEERR_AR;
1272         info.si_addr    = (void __user *)address;
1273
1274         if (is_vm_hugetlb_page(vma))
1275                 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1276         else
1277                 info.si_addr_lsb = PAGE_SHIFT;
1278
1279         send_sig_info(SIGBUS, &info, current);
1280 }
1281
1282 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1283                           struct kvm_memory_slot *memslot, unsigned long hva,
1284                           unsigned long fault_status)
1285 {
1286         int ret;
1287         bool write_fault, writable, hugetlb = false, force_pte = false;
1288         unsigned long mmu_seq;
1289         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1290         struct kvm *kvm = vcpu->kvm;
1291         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1292         struct vm_area_struct *vma;
1293         kvm_pfn_t pfn;
1294         pgprot_t mem_type = PAGE_S2;
1295         bool logging_active = memslot_is_logging(memslot);
1296         unsigned long flags = 0;
1297
1298         write_fault = kvm_is_write_fault(vcpu);
1299         if (fault_status == FSC_PERM && !write_fault) {
1300                 kvm_err("Unexpected L2 read permission error\n");
1301                 return -EFAULT;
1302         }
1303
1304         /* Let's check if we will get back a huge page backed by hugetlbfs */
1305         down_read(&current->mm->mmap_sem);
1306         vma = find_vma_intersection(current->mm, hva, hva + 1);
1307         if (unlikely(!vma)) {
1308                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1309                 up_read(&current->mm->mmap_sem);
1310                 return -EFAULT;
1311         }
1312
1313         if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1314                 hugetlb = true;
1315                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1316         } else {
1317                 /*
1318                  * Pages belonging to memslots that don't have the same
1319                  * alignment for userspace and IPA cannot be mapped using
1320                  * block descriptors even if the pages belong to a THP for
1321                  * the process, because the stage-2 block descriptor will
1322                  * cover more than a single THP and we loose atomicity for
1323                  * unmapping, updates, and splits of the THP or other pages
1324                  * in the stage-2 block range.
1325                  */
1326                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1327                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1328                         force_pte = true;
1329         }
1330         up_read(&current->mm->mmap_sem);
1331
1332         /* We need minimum second+third level pages */
1333         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1334                                      KVM_NR_MEM_OBJS);
1335         if (ret)
1336                 return ret;
1337
1338         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1339         /*
1340          * Ensure the read of mmu_notifier_seq happens before we call
1341          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1342          * the page we just got a reference to gets unmapped before we have a
1343          * chance to grab the mmu_lock, which ensure that if the page gets
1344          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1345          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1346          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1347          */
1348         smp_rmb();
1349
1350         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1351         if (pfn == KVM_PFN_ERR_HWPOISON) {
1352                 kvm_send_hwpoison_signal(hva, vma);
1353                 return 0;
1354         }
1355         if (is_error_noslot_pfn(pfn))
1356                 return -EFAULT;
1357
1358         if (kvm_is_device_pfn(pfn)) {
1359                 mem_type = PAGE_S2_DEVICE;
1360                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1361         } else if (logging_active) {
1362                 /*
1363                  * Faults on pages in a memslot with logging enabled
1364                  * should not be mapped with huge pages (it introduces churn
1365                  * and performance degradation), so force a pte mapping.
1366                  */
1367                 force_pte = true;
1368                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1369
1370                 /*
1371                  * Only actually map the page as writable if this was a write
1372                  * fault.
1373                  */
1374                 if (!write_fault)
1375                         writable = false;
1376         }
1377
1378         spin_lock(&kvm->mmu_lock);
1379         if (mmu_notifier_retry(kvm, mmu_seq))
1380                 goto out_unlock;
1381
1382         if (!hugetlb && !force_pte)
1383                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1384
1385         if (hugetlb) {
1386                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1387                 new_pmd = pmd_mkhuge(new_pmd);
1388                 if (writable) {
1389                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1390                         kvm_set_pfn_dirty(pfn);
1391                 }
1392                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1393                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1394         } else {
1395                 pte_t new_pte = pfn_pte(pfn, mem_type);
1396
1397                 if (writable) {
1398                         new_pte = kvm_s2pte_mkwrite(new_pte);
1399                         kvm_set_pfn_dirty(pfn);
1400                         mark_page_dirty(kvm, gfn);
1401                 }
1402                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1403                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1404         }
1405
1406 out_unlock:
1407         spin_unlock(&kvm->mmu_lock);
1408         kvm_set_pfn_accessed(pfn);
1409         kvm_release_pfn_clean(pfn);
1410         return ret;
1411 }
1412
1413 /*
1414  * Resolve the access fault by making the page young again.
1415  * Note that because the faulting entry is guaranteed not to be
1416  * cached in the TLB, we don't need to invalidate anything.
1417  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1418  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1419  */
1420 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1421 {
1422         pmd_t *pmd;
1423         pte_t *pte;
1424         kvm_pfn_t pfn;
1425         bool pfn_valid = false;
1426
1427         trace_kvm_access_fault(fault_ipa);
1428
1429         spin_lock(&vcpu->kvm->mmu_lock);
1430
1431         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1432         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1433                 goto out;
1434
1435         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1436                 *pmd = pmd_mkyoung(*pmd);
1437                 pfn = pmd_pfn(*pmd);
1438                 pfn_valid = true;
1439                 goto out;
1440         }
1441
1442         pte = pte_offset_kernel(pmd, fault_ipa);
1443         if (pte_none(*pte))             /* Nothing there either */
1444                 goto out;
1445
1446         *pte = pte_mkyoung(*pte);       /* Just a page... */
1447         pfn = pte_pfn(*pte);
1448         pfn_valid = true;
1449 out:
1450         spin_unlock(&vcpu->kvm->mmu_lock);
1451         if (pfn_valid)
1452                 kvm_set_pfn_accessed(pfn);
1453 }
1454
1455 /**
1456  * kvm_handle_guest_abort - handles all 2nd stage aborts
1457  * @vcpu:       the VCPU pointer
1458  * @run:        the kvm_run structure
1459  *
1460  * Any abort that gets to the host is almost guaranteed to be caused by a
1461  * missing second stage translation table entry, which can mean that either the
1462  * guest simply needs more memory and we must allocate an appropriate page or it
1463  * can mean that the guest tried to access I/O memory, which is emulated by user
1464  * space. The distinction is based on the IPA causing the fault and whether this
1465  * memory region has been registered as standard RAM by user space.
1466  */
1467 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1468 {
1469         unsigned long fault_status;
1470         phys_addr_t fault_ipa;
1471         struct kvm_memory_slot *memslot;
1472         unsigned long hva;
1473         bool is_iabt, write_fault, writable;
1474         gfn_t gfn;
1475         int ret, idx;
1476
1477         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1478
1479         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1480         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1481
1482         /* Synchronous External Abort? */
1483         if (kvm_vcpu_dabt_isextabt(vcpu)) {
1484                 /*
1485                  * For RAS the host kernel may handle this abort.
1486                  * There is no need to pass the error into the guest.
1487                  */
1488                 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1489                         return 1;
1490
1491                 if (unlikely(!is_iabt)) {
1492                         kvm_inject_vabt(vcpu);
1493                         return 1;
1494                 }
1495         }
1496
1497         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1498                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1499
1500         /* Check the stage-2 fault is trans. fault or write fault */
1501         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1502             fault_status != FSC_ACCESS) {
1503                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1504                         kvm_vcpu_trap_get_class(vcpu),
1505                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1506                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1507                 return -EFAULT;
1508         }
1509
1510         idx = srcu_read_lock(&vcpu->kvm->srcu);
1511
1512         gfn = fault_ipa >> PAGE_SHIFT;
1513         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1514         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1515         write_fault = kvm_is_write_fault(vcpu);
1516         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1517                 if (is_iabt) {
1518                         /* Prefetch Abort on I/O address */
1519                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1520                         ret = 1;
1521                         goto out_unlock;
1522                 }
1523
1524                 /*
1525                  * Check for a cache maintenance operation. Since we
1526                  * ended-up here, we know it is outside of any memory
1527                  * slot. But we can't find out if that is for a device,
1528                  * or if the guest is just being stupid. The only thing
1529                  * we know for sure is that this range cannot be cached.
1530                  *
1531                  * So let's assume that the guest is just being
1532                  * cautious, and skip the instruction.
1533                  */
1534                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1535                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1536                         ret = 1;
1537                         goto out_unlock;
1538                 }
1539
1540                 /*
1541                  * The IPA is reported as [MAX:12], so we need to
1542                  * complement it with the bottom 12 bits from the
1543                  * faulting VA. This is always 12 bits, irrespective
1544                  * of the page size.
1545                  */
1546                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1547                 ret = io_mem_abort(vcpu, run, fault_ipa);
1548                 goto out_unlock;
1549         }
1550
1551         /* Userspace should not be able to register out-of-bounds IPAs */
1552         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1553
1554         if (fault_status == FSC_ACCESS) {
1555                 handle_access_fault(vcpu, fault_ipa);
1556                 ret = 1;
1557                 goto out_unlock;
1558         }
1559
1560         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1561         if (ret == 0)
1562                 ret = 1;
1563 out_unlock:
1564         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1565         return ret;
1566 }
1567
1568 static int handle_hva_to_gpa(struct kvm *kvm,
1569                              unsigned long start,
1570                              unsigned long end,
1571                              int (*handler)(struct kvm *kvm,
1572                                             gpa_t gpa, u64 size,
1573                                             void *data),
1574                              void *data)
1575 {
1576         struct kvm_memslots *slots;
1577         struct kvm_memory_slot *memslot;
1578         int ret = 0;
1579
1580         slots = kvm_memslots(kvm);
1581
1582         /* we only care about the pages that the guest sees */
1583         kvm_for_each_memslot(memslot, slots) {
1584                 unsigned long hva_start, hva_end;
1585                 gfn_t gpa;
1586
1587                 hva_start = max(start, memslot->userspace_addr);
1588                 hva_end = min(end, memslot->userspace_addr +
1589                                         (memslot->npages << PAGE_SHIFT));
1590                 if (hva_start >= hva_end)
1591                         continue;
1592
1593                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1594                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1595         }
1596
1597         return ret;
1598 }
1599
1600 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1601 {
1602         unmap_stage2_range(kvm, gpa, size);
1603         return 0;
1604 }
1605
1606 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1607 {
1608         unsigned long end = hva + PAGE_SIZE;
1609
1610         if (!kvm->arch.pgd)
1611                 return 0;
1612
1613         trace_kvm_unmap_hva(hva);
1614         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1615         return 0;
1616 }
1617
1618 int kvm_unmap_hva_range(struct kvm *kvm,
1619                         unsigned long start, unsigned long end)
1620 {
1621         if (!kvm->arch.pgd)
1622                 return 0;
1623
1624         trace_kvm_unmap_hva_range(start, end);
1625         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1626         return 0;
1627 }
1628
1629 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1630 {
1631         pte_t *pte = (pte_t *)data;
1632
1633         WARN_ON(size != PAGE_SIZE);
1634         /*
1635          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1636          * flag clear because MMU notifiers will have unmapped a huge PMD before
1637          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1638          * therefore stage2_set_pte() never needs to clear out a huge PMD
1639          * through this calling path.
1640          */
1641         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1642         return 0;
1643 }
1644
1645
1646 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1647 {
1648         unsigned long end = hva + PAGE_SIZE;
1649         pte_t stage2_pte;
1650
1651         if (!kvm->arch.pgd)
1652                 return;
1653
1654         trace_kvm_set_spte_hva(hva);
1655         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1656         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1657 }
1658
1659 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1660 {
1661         pmd_t *pmd;
1662         pte_t *pte;
1663
1664         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1665         pmd = stage2_get_pmd(kvm, NULL, gpa);
1666         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1667                 return 0;
1668
1669         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1670                 return stage2_pmdp_test_and_clear_young(pmd);
1671
1672         pte = pte_offset_kernel(pmd, gpa);
1673         if (pte_none(*pte))
1674                 return 0;
1675
1676         return stage2_ptep_test_and_clear_young(pte);
1677 }
1678
1679 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1680 {
1681         pmd_t *pmd;
1682         pte_t *pte;
1683
1684         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1685         pmd = stage2_get_pmd(kvm, NULL, gpa);
1686         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1687                 return 0;
1688
1689         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1690                 return pmd_young(*pmd);
1691
1692         pte = pte_offset_kernel(pmd, gpa);
1693         if (!pte_none(*pte))            /* Just a page... */
1694                 return pte_young(*pte);
1695
1696         return 0;
1697 }
1698
1699 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1700 {
1701         if (!kvm->arch.pgd)
1702                 return 0;
1703         trace_kvm_age_hva(start, end);
1704         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1705 }
1706
1707 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1708 {
1709         if (!kvm->arch.pgd)
1710                 return 0;
1711         trace_kvm_test_age_hva(hva);
1712         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1713 }
1714
1715 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1716 {
1717         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1718 }
1719
1720 phys_addr_t kvm_mmu_get_httbr(void)
1721 {
1722         if (__kvm_cpu_uses_extended_idmap())
1723                 return virt_to_phys(merged_hyp_pgd);
1724         else
1725                 return virt_to_phys(hyp_pgd);
1726 }
1727
1728 phys_addr_t kvm_get_idmap_vector(void)
1729 {
1730         return hyp_idmap_vector;
1731 }
1732
1733 static int kvm_map_idmap_text(pgd_t *pgd)
1734 {
1735         int err;
1736
1737         /* Create the idmap in the boot page tables */
1738         err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1739                                       hyp_idmap_start, hyp_idmap_end,
1740                                       __phys_to_pfn(hyp_idmap_start),
1741                                       PAGE_HYP_EXEC);
1742         if (err)
1743                 kvm_err("Failed to idmap %lx-%lx\n",
1744                         hyp_idmap_start, hyp_idmap_end);
1745
1746         return err;
1747 }
1748
1749 int kvm_mmu_init(void)
1750 {
1751         int err;
1752
1753         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1754         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1755         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1756
1757         /*
1758          * We rely on the linker script to ensure at build time that the HYP
1759          * init code does not cross a page boundary.
1760          */
1761         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1762
1763         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1764         kvm_info("HYP VA range: %lx:%lx\n",
1765                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1766
1767         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1768             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1769             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1770                 /*
1771                  * The idmap page is intersecting with the VA space,
1772                  * it is not safe to continue further.
1773                  */
1774                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1775                 err = -EINVAL;
1776                 goto out;
1777         }
1778
1779         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1780         if (!hyp_pgd) {
1781                 kvm_err("Hyp mode PGD not allocated\n");
1782                 err = -ENOMEM;
1783                 goto out;
1784         }
1785
1786         if (__kvm_cpu_uses_extended_idmap()) {
1787                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1788                                                          hyp_pgd_order);
1789                 if (!boot_hyp_pgd) {
1790                         kvm_err("Hyp boot PGD not allocated\n");
1791                         err = -ENOMEM;
1792                         goto out;
1793                 }
1794
1795                 err = kvm_map_idmap_text(boot_hyp_pgd);
1796                 if (err)
1797                         goto out;
1798
1799                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1800                 if (!merged_hyp_pgd) {
1801                         kvm_err("Failed to allocate extra HYP pgd\n");
1802                         goto out;
1803                 }
1804                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1805                                     hyp_idmap_start);
1806         } else {
1807                 err = kvm_map_idmap_text(hyp_pgd);
1808                 if (err)
1809                         goto out;
1810         }
1811
1812         return 0;
1813 out:
1814         free_hyp_pgds();
1815         return err;
1816 }
1817
1818 void kvm_arch_commit_memory_region(struct kvm *kvm,
1819                                    const struct kvm_userspace_memory_region *mem,
1820                                    const struct kvm_memory_slot *old,
1821                                    const struct kvm_memory_slot *new,
1822                                    enum kvm_mr_change change)
1823 {
1824         /*
1825          * At this point memslot has been committed and there is an
1826          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1827          * memory slot is write protected.
1828          */
1829         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1830                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1831 }
1832
1833 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1834                                    struct kvm_memory_slot *memslot,
1835                                    const struct kvm_userspace_memory_region *mem,
1836                                    enum kvm_mr_change change)
1837 {
1838         hva_t hva = mem->userspace_addr;
1839         hva_t reg_end = hva + mem->memory_size;
1840         bool writable = !(mem->flags & KVM_MEM_READONLY);
1841         int ret = 0;
1842
1843         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1844                         change != KVM_MR_FLAGS_ONLY)
1845                 return 0;
1846
1847         /*
1848          * Prevent userspace from creating a memory region outside of the IPA
1849          * space addressable by the KVM guest IPA space.
1850          */
1851         if (memslot->base_gfn + memslot->npages >=
1852             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1853                 return -EFAULT;
1854
1855         down_read(&current->mm->mmap_sem);
1856         /*
1857          * A memory region could potentially cover multiple VMAs, and any holes
1858          * between them, so iterate over all of them to find out if we can map
1859          * any of them right now.
1860          *
1861          *     +--------------------------------------------+
1862          * +---------------+----------------+   +----------------+
1863          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1864          * +---------------+----------------+   +----------------+
1865          *     |               memory region                |
1866          *     +--------------------------------------------+
1867          */
1868         do {
1869                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1870                 hva_t vm_start, vm_end;
1871
1872                 if (!vma || vma->vm_start >= reg_end)
1873                         break;
1874
1875                 /*
1876                  * Mapping a read-only VMA is only allowed if the
1877                  * memory region is configured as read-only.
1878                  */
1879                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1880                         ret = -EPERM;
1881                         break;
1882                 }
1883
1884                 /*
1885                  * Take the intersection of this VMA with the memory region
1886                  */
1887                 vm_start = max(hva, vma->vm_start);
1888                 vm_end = min(reg_end, vma->vm_end);
1889
1890                 if (vma->vm_flags & VM_PFNMAP) {
1891                         gpa_t gpa = mem->guest_phys_addr +
1892                                     (vm_start - mem->userspace_addr);
1893                         phys_addr_t pa;
1894
1895                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1896                         pa += vm_start - vma->vm_start;
1897
1898                         /* IO region dirty page logging not allowed */
1899                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1900                                 ret = -EINVAL;
1901                                 goto out;
1902                         }
1903
1904                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1905                                                     vm_end - vm_start,
1906                                                     writable);
1907                         if (ret)
1908                                 break;
1909                 }
1910                 hva = vm_end;
1911         } while (hva < reg_end);
1912
1913         if (change == KVM_MR_FLAGS_ONLY)
1914                 goto out;
1915
1916         spin_lock(&kvm->mmu_lock);
1917         if (ret)
1918                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1919         else
1920                 stage2_flush_memslot(kvm, memslot);
1921         spin_unlock(&kvm->mmu_lock);
1922 out:
1923         up_read(&current->mm->mmap_sem);
1924         return ret;
1925 }
1926
1927 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1928                            struct kvm_memory_slot *dont)
1929 {
1930 }
1931
1932 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1933                             unsigned long npages)
1934 {
1935         return 0;
1936 }
1937
1938 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1939 {
1940 }
1941
1942 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1943 {
1944         kvm_free_stage2_pgd(kvm);
1945 }
1946
1947 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1948                                    struct kvm_memory_slot *slot)
1949 {
1950         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1951         phys_addr_t size = slot->npages << PAGE_SHIFT;
1952
1953         spin_lock(&kvm->mmu_lock);
1954         unmap_stage2_range(kvm, gpa, size);
1955         spin_unlock(&kvm->mmu_lock);
1956 }
1957
1958 /*
1959  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1960  *
1961  * Main problems:
1962  * - S/W ops are local to a CPU (not broadcast)
1963  * - We have line migration behind our back (speculation)
1964  * - System caches don't support S/W at all (damn!)
1965  *
1966  * In the face of the above, the best we can do is to try and convert
1967  * S/W ops to VA ops. Because the guest is not allowed to infer the
1968  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1969  * which is a rather good thing for us.
1970  *
1971  * Also, it is only used when turning caches on/off ("The expected
1972  * usage of the cache maintenance instructions that operate by set/way
1973  * is associated with the cache maintenance instructions associated
1974  * with the powerdown and powerup of caches, if this is required by
1975  * the implementation.").
1976  *
1977  * We use the following policy:
1978  *
1979  * - If we trap a S/W operation, we enable VM trapping to detect
1980  *   caches being turned on/off, and do a full clean.
1981  *
1982  * - We flush the caches on both caches being turned on and off.
1983  *
1984  * - Once the caches are enabled, we stop trapping VM ops.
1985  */
1986 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1987 {
1988         unsigned long hcr = vcpu_get_hcr(vcpu);
1989
1990         /*
1991          * If this is the first time we do a S/W operation
1992          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1993          * VM trapping.
1994          *
1995          * Otherwise, rely on the VM trapping to wait for the MMU +
1996          * Caches to be turned off. At that point, we'll be able to
1997          * clean the caches again.
1998          */
1999         if (!(hcr & HCR_TVM)) {
2000                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2001                                         vcpu_has_cache_enabled(vcpu));
2002                 stage2_flush_vm(vcpu->kvm);
2003                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2004         }
2005 }
2006
2007 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2008 {
2009         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2010
2011         /*
2012          * If switching the MMU+caches on, need to invalidate the caches.
2013          * If switching it off, need to clean the caches.
2014          * Clean + invalidate does the trick always.
2015          */
2016         if (now_enabled != was_enabled)
2017                 stage2_flush_vm(vcpu->kvm);
2018
2019         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2020         if (now_enabled)
2021                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2022
2023         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2024 }