eda7b624eab8c46250789267a2118c50affab453
[sfrench/cifs-2.6.git] / virt / kvm / arm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56
57 static bool vgic_present;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66
67 int kvm_arch_hardware_setup(void)
68 {
69         return 0;
70 }
71
72 int kvm_arch_check_processor_compat(void)
73 {
74         return 0;
75 }
76
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78                             struct kvm_enable_cap *cap)
79 {
80         int r;
81
82         if (cap->flags)
83                 return -EINVAL;
84
85         switch (cap->cap) {
86         case KVM_CAP_ARM_NISV_TO_USER:
87                 r = 0;
88                 kvm->arch.return_nisv_io_abort_to_user = true;
89                 break;
90         default:
91                 r = -EINVAL;
92                 break;
93         }
94
95         return r;
96 }
97
98 /**
99  * kvm_arch_init_vm - initializes a VM data structure
100  * @kvm:        pointer to the KVM struct
101  */
102 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
103 {
104         int ret, cpu;
105
106         ret = kvm_arm_setup_stage2(kvm, type);
107         if (ret)
108                 return ret;
109
110         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
111         if (!kvm->arch.last_vcpu_ran)
112                 return -ENOMEM;
113
114         for_each_possible_cpu(cpu)
115                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
116
117         ret = kvm_alloc_stage2_pgd(kvm);
118         if (ret)
119                 goto out_fail_alloc;
120
121         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
122         if (ret)
123                 goto out_free_stage2_pgd;
124
125         kvm_vgic_early_init(kvm);
126
127         /* Mark the initial VMID generation invalid */
128         kvm->arch.vmid.vmid_gen = 0;
129
130         /* The maximum number of VCPUs is limited by the host's GIC model */
131         kvm->arch.max_vcpus = vgic_present ?
132                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
133
134         return ret;
135 out_free_stage2_pgd:
136         kvm_free_stage2_pgd(kvm);
137 out_fail_alloc:
138         free_percpu(kvm->arch.last_vcpu_ran);
139         kvm->arch.last_vcpu_ran = NULL;
140         return ret;
141 }
142
143 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
144 {
145         return 0;
146 }
147
148 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
149 {
150         return VM_FAULT_SIGBUS;
151 }
152
153
154 /**
155  * kvm_arch_destroy_vm - destroy the VM data structure
156  * @kvm:        pointer to the KVM struct
157  */
158 void kvm_arch_destroy_vm(struct kvm *kvm)
159 {
160         int i;
161
162         kvm_vgic_destroy(kvm);
163
164         free_percpu(kvm->arch.last_vcpu_ran);
165         kvm->arch.last_vcpu_ran = NULL;
166
167         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
168                 if (kvm->vcpus[i]) {
169                         kvm_vcpu_destroy(kvm->vcpus[i]);
170                         kvm->vcpus[i] = NULL;
171                 }
172         }
173         atomic_set(&kvm->online_vcpus, 0);
174 }
175
176 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
177 {
178         int r;
179         switch (ext) {
180         case KVM_CAP_IRQCHIP:
181                 r = vgic_present;
182                 break;
183         case KVM_CAP_IOEVENTFD:
184         case KVM_CAP_DEVICE_CTRL:
185         case KVM_CAP_USER_MEMORY:
186         case KVM_CAP_SYNC_MMU:
187         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
188         case KVM_CAP_ONE_REG:
189         case KVM_CAP_ARM_PSCI:
190         case KVM_CAP_ARM_PSCI_0_2:
191         case KVM_CAP_READONLY_MEM:
192         case KVM_CAP_MP_STATE:
193         case KVM_CAP_IMMEDIATE_EXIT:
194         case KVM_CAP_VCPU_EVENTS:
195         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
196         case KVM_CAP_ARM_NISV_TO_USER:
197         case KVM_CAP_ARM_INJECT_EXT_DABT:
198                 r = 1;
199                 break;
200         case KVM_CAP_ARM_SET_DEVICE_ADDR:
201                 r = 1;
202                 break;
203         case KVM_CAP_NR_VCPUS:
204                 r = num_online_cpus();
205                 break;
206         case KVM_CAP_MAX_VCPUS:
207                 r = KVM_MAX_VCPUS;
208                 break;
209         case KVM_CAP_MAX_VCPU_ID:
210                 r = KVM_MAX_VCPU_ID;
211                 break;
212         case KVM_CAP_MSI_DEVID:
213                 if (!kvm)
214                         r = -EINVAL;
215                 else
216                         r = kvm->arch.vgic.msis_require_devid;
217                 break;
218         case KVM_CAP_ARM_USER_IRQ:
219                 /*
220                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
221                  * (bump this number if adding more devices)
222                  */
223                 r = 1;
224                 break;
225         default:
226                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227                 break;
228         }
229         return r;
230 }
231
232 long kvm_arch_dev_ioctl(struct file *filp,
233                         unsigned int ioctl, unsigned long arg)
234 {
235         return -EINVAL;
236 }
237
238 struct kvm *kvm_arch_alloc_vm(void)
239 {
240         if (!has_vhe())
241                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
242
243         return vzalloc(sizeof(struct kvm));
244 }
245
246 void kvm_arch_free_vm(struct kvm *kvm)
247 {
248         if (!has_vhe())
249                 kfree(kvm);
250         else
251                 vfree(kvm);
252 }
253
254 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
255 {
256         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
257                 return -EBUSY;
258
259         if (id >= kvm->arch.max_vcpus)
260                 return -EINVAL;
261
262         return 0;
263 }
264
265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266 {
267         int err;
268
269         /* Force users to call KVM_ARM_VCPU_INIT */
270         vcpu->arch.target = -1;
271         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
272
273         /* Set up the timer */
274         kvm_timer_vcpu_init(vcpu);
275
276         kvm_pmu_vcpu_init(vcpu);
277
278         kvm_arm_reset_debug_ptr(vcpu);
279
280         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
281
282         err = kvm_vgic_vcpu_init(vcpu);
283         if (err)
284                 return err;
285
286         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 }
288
289 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 {
291 }
292
293 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
294 {
295         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
296                 static_branch_dec(&userspace_irqchip_in_use);
297
298         kvm_mmu_free_memory_caches(vcpu);
299         kvm_timer_vcpu_terminate(vcpu);
300         kvm_pmu_vcpu_destroy(vcpu);
301
302         kvm_arm_vcpu_destroy(vcpu);
303 }
304
305 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
306 {
307         return kvm_timer_is_pending(vcpu);
308 }
309
310 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
311 {
312         /*
313          * If we're about to block (most likely because we've just hit a
314          * WFI), we need to sync back the state of the GIC CPU interface
315          * so that we have the latest PMR and group enables. This ensures
316          * that kvm_arch_vcpu_runnable has up-to-date data to decide
317          * whether we have pending interrupts.
318          *
319          * For the same reason, we want to tell GICv4 that we need
320          * doorbells to be signalled, should an interrupt become pending.
321          */
322         preempt_disable();
323         kvm_vgic_vmcr_sync(vcpu);
324         vgic_v4_put(vcpu, true);
325         preempt_enable();
326 }
327
328 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
329 {
330         preempt_disable();
331         vgic_v4_load(vcpu);
332         preempt_enable();
333 }
334
335 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
336 {
337         int *last_ran;
338         kvm_host_data_t *cpu_data;
339
340         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
341         cpu_data = this_cpu_ptr(&kvm_host_data);
342
343         /*
344          * We might get preempted before the vCPU actually runs, but
345          * over-invalidation doesn't affect correctness.
346          */
347         if (*last_ran != vcpu->vcpu_id) {
348                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
349                 *last_ran = vcpu->vcpu_id;
350         }
351
352         vcpu->cpu = cpu;
353         vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
354
355         kvm_vgic_load(vcpu);
356         kvm_timer_vcpu_load(vcpu);
357         kvm_vcpu_load_sysregs(vcpu);
358         kvm_arch_vcpu_load_fp(vcpu);
359         kvm_vcpu_pmu_restore_guest(vcpu);
360         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
361                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
362
363         if (single_task_running())
364                 vcpu_clear_wfx_traps(vcpu);
365         else
366                 vcpu_set_wfx_traps(vcpu);
367
368         vcpu_ptrauth_setup_lazy(vcpu);
369 }
370
371 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
372 {
373         kvm_arch_vcpu_put_fp(vcpu);
374         kvm_vcpu_put_sysregs(vcpu);
375         kvm_timer_vcpu_put(vcpu);
376         kvm_vgic_put(vcpu);
377         kvm_vcpu_pmu_restore_host(vcpu);
378
379         vcpu->cpu = -1;
380 }
381
382 static void vcpu_power_off(struct kvm_vcpu *vcpu)
383 {
384         vcpu->arch.power_off = true;
385         kvm_make_request(KVM_REQ_SLEEP, vcpu);
386         kvm_vcpu_kick(vcpu);
387 }
388
389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
390                                     struct kvm_mp_state *mp_state)
391 {
392         if (vcpu->arch.power_off)
393                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
394         else
395                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
396
397         return 0;
398 }
399
400 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
401                                     struct kvm_mp_state *mp_state)
402 {
403         int ret = 0;
404
405         switch (mp_state->mp_state) {
406         case KVM_MP_STATE_RUNNABLE:
407                 vcpu->arch.power_off = false;
408                 break;
409         case KVM_MP_STATE_STOPPED:
410                 vcpu_power_off(vcpu);
411                 break;
412         default:
413                 ret = -EINVAL;
414         }
415
416         return ret;
417 }
418
419 /**
420  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421  * @v:          The VCPU pointer
422  *
423  * If the guest CPU is not waiting for interrupts or an interrupt line is
424  * asserted, the CPU is by definition runnable.
425  */
426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427 {
428         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
429         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430                 && !v->arch.power_off && !v->arch.pause);
431 }
432
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435         return vcpu_mode_priv(vcpu);
436 }
437
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442
443 void force_vm_exit(const cpumask_t *mask)
444 {
445         preempt_disable();
446         smp_call_function_many(mask, exit_vm_noop, NULL, true);
447         preempt_enable();
448 }
449
450 /**
451  * need_new_vmid_gen - check that the VMID is still valid
452  * @vmid: The VMID to check
453  *
454  * return true if there is a new generation of VMIDs being used
455  *
456  * The hardware supports a limited set of values with the value zero reserved
457  * for the host, so we check if an assigned value belongs to a previous
458  * generation, which which requires us to assign a new value. If we're the
459  * first to use a VMID for the new generation, we must flush necessary caches
460  * and TLBs on all CPUs.
461  */
462 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
463 {
464         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
465         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
466         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
467 }
468
469 /**
470  * update_vmid - Update the vmid with a valid VMID for the current generation
471  * @kvm: The guest that struct vmid belongs to
472  * @vmid: The stage-2 VMID information struct
473  */
474 static void update_vmid(struct kvm_vmid *vmid)
475 {
476         if (!need_new_vmid_gen(vmid))
477                 return;
478
479         spin_lock(&kvm_vmid_lock);
480
481         /*
482          * We need to re-check the vmid_gen here to ensure that if another vcpu
483          * already allocated a valid vmid for this vm, then this vcpu should
484          * use the same vmid.
485          */
486         if (!need_new_vmid_gen(vmid)) {
487                 spin_unlock(&kvm_vmid_lock);
488                 return;
489         }
490
491         /* First user of a new VMID generation? */
492         if (unlikely(kvm_next_vmid == 0)) {
493                 atomic64_inc(&kvm_vmid_gen);
494                 kvm_next_vmid = 1;
495
496                 /*
497                  * On SMP we know no other CPUs can use this CPU's or each
498                  * other's VMID after force_vm_exit returns since the
499                  * kvm_vmid_lock blocks them from reentry to the guest.
500                  */
501                 force_vm_exit(cpu_all_mask);
502                 /*
503                  * Now broadcast TLB + ICACHE invalidation over the inner
504                  * shareable domain to make sure all data structures are
505                  * clean.
506                  */
507                 kvm_call_hyp(__kvm_flush_vm_context);
508         }
509
510         vmid->vmid = kvm_next_vmid;
511         kvm_next_vmid++;
512         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
513
514         smp_wmb();
515         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
516
517         spin_unlock(&kvm_vmid_lock);
518 }
519
520 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
521 {
522         struct kvm *kvm = vcpu->kvm;
523         int ret = 0;
524
525         if (likely(vcpu->arch.has_run_once))
526                 return 0;
527
528         if (!kvm_arm_vcpu_is_finalized(vcpu))
529                 return -EPERM;
530
531         vcpu->arch.has_run_once = true;
532
533         if (likely(irqchip_in_kernel(kvm))) {
534                 /*
535                  * Map the VGIC hardware resources before running a vcpu the
536                  * first time on this VM.
537                  */
538                 if (unlikely(!vgic_ready(kvm))) {
539                         ret = kvm_vgic_map_resources(kvm);
540                         if (ret)
541                                 return ret;
542                 }
543         } else {
544                 /*
545                  * Tell the rest of the code that there are userspace irqchip
546                  * VMs in the wild.
547                  */
548                 static_branch_inc(&userspace_irqchip_in_use);
549         }
550
551         ret = kvm_timer_enable(vcpu);
552         if (ret)
553                 return ret;
554
555         ret = kvm_arm_pmu_v3_enable(vcpu);
556
557         return ret;
558 }
559
560 bool kvm_arch_intc_initialized(struct kvm *kvm)
561 {
562         return vgic_initialized(kvm);
563 }
564
565 void kvm_arm_halt_guest(struct kvm *kvm)
566 {
567         int i;
568         struct kvm_vcpu *vcpu;
569
570         kvm_for_each_vcpu(i, vcpu, kvm)
571                 vcpu->arch.pause = true;
572         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 }
574
575 void kvm_arm_resume_guest(struct kvm *kvm)
576 {
577         int i;
578         struct kvm_vcpu *vcpu;
579
580         kvm_for_each_vcpu(i, vcpu, kvm) {
581                 vcpu->arch.pause = false;
582                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
583         }
584 }
585
586 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587 {
588         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
589
590         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
591                                        (!vcpu->arch.pause)));
592
593         if (vcpu->arch.power_off || vcpu->arch.pause) {
594                 /* Awaken to handle a signal, request we sleep again later. */
595                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
596         }
597
598         /*
599          * Make sure we will observe a potential reset request if we've
600          * observed a change to the power state. Pairs with the smp_wmb() in
601          * kvm_psci_vcpu_on().
602          */
603         smp_rmb();
604 }
605
606 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
607 {
608         return vcpu->arch.target >= 0;
609 }
610
611 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
612 {
613         if (kvm_request_pending(vcpu)) {
614                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
615                         vcpu_req_sleep(vcpu);
616
617                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
618                         kvm_reset_vcpu(vcpu);
619
620                 /*
621                  * Clear IRQ_PENDING requests that were made to guarantee
622                  * that a VCPU sees new virtual interrupts.
623                  */
624                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
625
626                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
627                         kvm_update_stolen_time(vcpu);
628         }
629 }
630
631 /**
632  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
633  * @vcpu:       The VCPU pointer
634  * @run:        The kvm_run structure pointer used for userspace state exchange
635  *
636  * This function is called through the VCPU_RUN ioctl called from user space. It
637  * will execute VM code in a loop until the time slice for the process is used
638  * or some emulation is needed from user space in which case the function will
639  * return with return value 0 and with the kvm_run structure filled in with the
640  * required data for the requested emulation.
641  */
642 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
643 {
644         int ret;
645
646         if (unlikely(!kvm_vcpu_initialized(vcpu)))
647                 return -ENOEXEC;
648
649         ret = kvm_vcpu_first_run_init(vcpu);
650         if (ret)
651                 return ret;
652
653         if (run->exit_reason == KVM_EXIT_MMIO) {
654                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
655                 if (ret)
656                         return ret;
657         }
658
659         if (run->immediate_exit)
660                 return -EINTR;
661
662         vcpu_load(vcpu);
663
664         kvm_sigset_activate(vcpu);
665
666         ret = 1;
667         run->exit_reason = KVM_EXIT_UNKNOWN;
668         while (ret > 0) {
669                 /*
670                  * Check conditions before entering the guest
671                  */
672                 cond_resched();
673
674                 update_vmid(&vcpu->kvm->arch.vmid);
675
676                 check_vcpu_requests(vcpu);
677
678                 /*
679                  * Preparing the interrupts to be injected also
680                  * involves poking the GIC, which must be done in a
681                  * non-preemptible context.
682                  */
683                 preempt_disable();
684
685                 kvm_pmu_flush_hwstate(vcpu);
686
687                 local_irq_disable();
688
689                 kvm_vgic_flush_hwstate(vcpu);
690
691                 /*
692                  * Exit if we have a signal pending so that we can deliver the
693                  * signal to user space.
694                  */
695                 if (signal_pending(current)) {
696                         ret = -EINTR;
697                         run->exit_reason = KVM_EXIT_INTR;
698                 }
699
700                 /*
701                  * If we're using a userspace irqchip, then check if we need
702                  * to tell a userspace irqchip about timer or PMU level
703                  * changes and if so, exit to userspace (the actual level
704                  * state gets updated in kvm_timer_update_run and
705                  * kvm_pmu_update_run below).
706                  */
707                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
708                         if (kvm_timer_should_notify_user(vcpu) ||
709                             kvm_pmu_should_notify_user(vcpu)) {
710                                 ret = -EINTR;
711                                 run->exit_reason = KVM_EXIT_INTR;
712                         }
713                 }
714
715                 /*
716                  * Ensure we set mode to IN_GUEST_MODE after we disable
717                  * interrupts and before the final VCPU requests check.
718                  * See the comment in kvm_vcpu_exiting_guest_mode() and
719                  * Documentation/virt/kvm/vcpu-requests.rst
720                  */
721                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
722
723                 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
724                     kvm_request_pending(vcpu)) {
725                         vcpu->mode = OUTSIDE_GUEST_MODE;
726                         isb(); /* Ensure work in x_flush_hwstate is committed */
727                         kvm_pmu_sync_hwstate(vcpu);
728                         if (static_branch_unlikely(&userspace_irqchip_in_use))
729                                 kvm_timer_sync_hwstate(vcpu);
730                         kvm_vgic_sync_hwstate(vcpu);
731                         local_irq_enable();
732                         preempt_enable();
733                         continue;
734                 }
735
736                 kvm_arm_setup_debug(vcpu);
737
738                 /**************************************************************
739                  * Enter the guest
740                  */
741                 trace_kvm_entry(*vcpu_pc(vcpu));
742                 guest_enter_irqoff();
743
744                 if (has_vhe()) {
745                         ret = kvm_vcpu_run_vhe(vcpu);
746                 } else {
747                         ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
748                 }
749
750                 vcpu->mode = OUTSIDE_GUEST_MODE;
751                 vcpu->stat.exits++;
752                 /*
753                  * Back from guest
754                  *************************************************************/
755
756                 kvm_arm_clear_debug(vcpu);
757
758                 /*
759                  * We must sync the PMU state before the vgic state so
760                  * that the vgic can properly sample the updated state of the
761                  * interrupt line.
762                  */
763                 kvm_pmu_sync_hwstate(vcpu);
764
765                 /*
766                  * Sync the vgic state before syncing the timer state because
767                  * the timer code needs to know if the virtual timer
768                  * interrupts are active.
769                  */
770                 kvm_vgic_sync_hwstate(vcpu);
771
772                 /*
773                  * Sync the timer hardware state before enabling interrupts as
774                  * we don't want vtimer interrupts to race with syncing the
775                  * timer virtual interrupt state.
776                  */
777                 if (static_branch_unlikely(&userspace_irqchip_in_use))
778                         kvm_timer_sync_hwstate(vcpu);
779
780                 kvm_arch_vcpu_ctxsync_fp(vcpu);
781
782                 /*
783                  * We may have taken a host interrupt in HYP mode (ie
784                  * while executing the guest). This interrupt is still
785                  * pending, as we haven't serviced it yet!
786                  *
787                  * We're now back in SVC mode, with interrupts
788                  * disabled.  Enabling the interrupts now will have
789                  * the effect of taking the interrupt again, in SVC
790                  * mode this time.
791                  */
792                 local_irq_enable();
793
794                 /*
795                  * We do local_irq_enable() before calling guest_exit() so
796                  * that if a timer interrupt hits while running the guest we
797                  * account that tick as being spent in the guest.  We enable
798                  * preemption after calling guest_exit() so that if we get
799                  * preempted we make sure ticks after that is not counted as
800                  * guest time.
801                  */
802                 guest_exit();
803                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
804
805                 /* Exit types that need handling before we can be preempted */
806                 handle_exit_early(vcpu, run, ret);
807
808                 preempt_enable();
809
810                 ret = handle_exit(vcpu, run, ret);
811         }
812
813         /* Tell userspace about in-kernel device output levels */
814         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
815                 kvm_timer_update_run(vcpu);
816                 kvm_pmu_update_run(vcpu);
817         }
818
819         kvm_sigset_deactivate(vcpu);
820
821         vcpu_put(vcpu);
822         return ret;
823 }
824
825 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
826 {
827         int bit_index;
828         bool set;
829         unsigned long *hcr;
830
831         if (number == KVM_ARM_IRQ_CPU_IRQ)
832                 bit_index = __ffs(HCR_VI);
833         else /* KVM_ARM_IRQ_CPU_FIQ */
834                 bit_index = __ffs(HCR_VF);
835
836         hcr = vcpu_hcr(vcpu);
837         if (level)
838                 set = test_and_set_bit(bit_index, hcr);
839         else
840                 set = test_and_clear_bit(bit_index, hcr);
841
842         /*
843          * If we didn't change anything, no need to wake up or kick other CPUs
844          */
845         if (set == level)
846                 return 0;
847
848         /*
849          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
850          * trigger a world-switch round on the running physical CPU to set the
851          * virtual IRQ/FIQ fields in the HCR appropriately.
852          */
853         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
854         kvm_vcpu_kick(vcpu);
855
856         return 0;
857 }
858
859 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
860                           bool line_status)
861 {
862         u32 irq = irq_level->irq;
863         unsigned int irq_type, vcpu_idx, irq_num;
864         int nrcpus = atomic_read(&kvm->online_vcpus);
865         struct kvm_vcpu *vcpu = NULL;
866         bool level = irq_level->level;
867
868         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
869         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
870         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
871         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
872
873         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
874
875         switch (irq_type) {
876         case KVM_ARM_IRQ_TYPE_CPU:
877                 if (irqchip_in_kernel(kvm))
878                         return -ENXIO;
879
880                 if (vcpu_idx >= nrcpus)
881                         return -EINVAL;
882
883                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
884                 if (!vcpu)
885                         return -EINVAL;
886
887                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
888                         return -EINVAL;
889
890                 return vcpu_interrupt_line(vcpu, irq_num, level);
891         case KVM_ARM_IRQ_TYPE_PPI:
892                 if (!irqchip_in_kernel(kvm))
893                         return -ENXIO;
894
895                 if (vcpu_idx >= nrcpus)
896                         return -EINVAL;
897
898                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
899                 if (!vcpu)
900                         return -EINVAL;
901
902                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
903                         return -EINVAL;
904
905                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
906         case KVM_ARM_IRQ_TYPE_SPI:
907                 if (!irqchip_in_kernel(kvm))
908                         return -ENXIO;
909
910                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
911                         return -EINVAL;
912
913                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
914         }
915
916         return -EINVAL;
917 }
918
919 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
920                                const struct kvm_vcpu_init *init)
921 {
922         unsigned int i, ret;
923         int phys_target = kvm_target_cpu();
924
925         if (init->target != phys_target)
926                 return -EINVAL;
927
928         /*
929          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
930          * use the same target.
931          */
932         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
933                 return -EINVAL;
934
935         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
936         for (i = 0; i < sizeof(init->features) * 8; i++) {
937                 bool set = (init->features[i / 32] & (1 << (i % 32)));
938
939                 if (set && i >= KVM_VCPU_MAX_FEATURES)
940                         return -ENOENT;
941
942                 /*
943                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
944                  * use the same feature set.
945                  */
946                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
947                     test_bit(i, vcpu->arch.features) != set)
948                         return -EINVAL;
949
950                 if (set)
951                         set_bit(i, vcpu->arch.features);
952         }
953
954         vcpu->arch.target = phys_target;
955
956         /* Now we know what it is, we can reset it. */
957         ret = kvm_reset_vcpu(vcpu);
958         if (ret) {
959                 vcpu->arch.target = -1;
960                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
961         }
962
963         return ret;
964 }
965
966 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
967                                          struct kvm_vcpu_init *init)
968 {
969         int ret;
970
971         ret = kvm_vcpu_set_target(vcpu, init);
972         if (ret)
973                 return ret;
974
975         /*
976          * Ensure a rebooted VM will fault in RAM pages and detect if the
977          * guest MMU is turned off and flush the caches as needed.
978          */
979         if (vcpu->arch.has_run_once)
980                 stage2_unmap_vm(vcpu->kvm);
981
982         vcpu_reset_hcr(vcpu);
983
984         /*
985          * Handle the "start in power-off" case.
986          */
987         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
988                 vcpu_power_off(vcpu);
989         else
990                 vcpu->arch.power_off = false;
991
992         return 0;
993 }
994
995 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
996                                  struct kvm_device_attr *attr)
997 {
998         int ret = -ENXIO;
999
1000         switch (attr->group) {
1001         default:
1002                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1003                 break;
1004         }
1005
1006         return ret;
1007 }
1008
1009 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1010                                  struct kvm_device_attr *attr)
1011 {
1012         int ret = -ENXIO;
1013
1014         switch (attr->group) {
1015         default:
1016                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1017                 break;
1018         }
1019
1020         return ret;
1021 }
1022
1023 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1024                                  struct kvm_device_attr *attr)
1025 {
1026         int ret = -ENXIO;
1027
1028         switch (attr->group) {
1029         default:
1030                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1031                 break;
1032         }
1033
1034         return ret;
1035 }
1036
1037 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1038                                    struct kvm_vcpu_events *events)
1039 {
1040         memset(events, 0, sizeof(*events));
1041
1042         return __kvm_arm_vcpu_get_events(vcpu, events);
1043 }
1044
1045 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1046                                    struct kvm_vcpu_events *events)
1047 {
1048         int i;
1049
1050         /* check whether the reserved field is zero */
1051         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1052                 if (events->reserved[i])
1053                         return -EINVAL;
1054
1055         /* check whether the pad field is zero */
1056         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1057                 if (events->exception.pad[i])
1058                         return -EINVAL;
1059
1060         return __kvm_arm_vcpu_set_events(vcpu, events);
1061 }
1062
1063 long kvm_arch_vcpu_ioctl(struct file *filp,
1064                          unsigned int ioctl, unsigned long arg)
1065 {
1066         struct kvm_vcpu *vcpu = filp->private_data;
1067         void __user *argp = (void __user *)arg;
1068         struct kvm_device_attr attr;
1069         long r;
1070
1071         switch (ioctl) {
1072         case KVM_ARM_VCPU_INIT: {
1073                 struct kvm_vcpu_init init;
1074
1075                 r = -EFAULT;
1076                 if (copy_from_user(&init, argp, sizeof(init)))
1077                         break;
1078
1079                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1080                 break;
1081         }
1082         case KVM_SET_ONE_REG:
1083         case KVM_GET_ONE_REG: {
1084                 struct kvm_one_reg reg;
1085
1086                 r = -ENOEXEC;
1087                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1088                         break;
1089
1090                 r = -EFAULT;
1091                 if (copy_from_user(&reg, argp, sizeof(reg)))
1092                         break;
1093
1094                 if (ioctl == KVM_SET_ONE_REG)
1095                         r = kvm_arm_set_reg(vcpu, &reg);
1096                 else
1097                         r = kvm_arm_get_reg(vcpu, &reg);
1098                 break;
1099         }
1100         case KVM_GET_REG_LIST: {
1101                 struct kvm_reg_list __user *user_list = argp;
1102                 struct kvm_reg_list reg_list;
1103                 unsigned n;
1104
1105                 r = -ENOEXEC;
1106                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1107                         break;
1108
1109                 r = -EPERM;
1110                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1111                         break;
1112
1113                 r = -EFAULT;
1114                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1115                         break;
1116                 n = reg_list.n;
1117                 reg_list.n = kvm_arm_num_regs(vcpu);
1118                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1119                         break;
1120                 r = -E2BIG;
1121                 if (n < reg_list.n)
1122                         break;
1123                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1124                 break;
1125         }
1126         case KVM_SET_DEVICE_ATTR: {
1127                 r = -EFAULT;
1128                 if (copy_from_user(&attr, argp, sizeof(attr)))
1129                         break;
1130                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1131                 break;
1132         }
1133         case KVM_GET_DEVICE_ATTR: {
1134                 r = -EFAULT;
1135                 if (copy_from_user(&attr, argp, sizeof(attr)))
1136                         break;
1137                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1138                 break;
1139         }
1140         case KVM_HAS_DEVICE_ATTR: {
1141                 r = -EFAULT;
1142                 if (copy_from_user(&attr, argp, sizeof(attr)))
1143                         break;
1144                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1145                 break;
1146         }
1147         case KVM_GET_VCPU_EVENTS: {
1148                 struct kvm_vcpu_events events;
1149
1150                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1151                         return -EINVAL;
1152
1153                 if (copy_to_user(argp, &events, sizeof(events)))
1154                         return -EFAULT;
1155
1156                 return 0;
1157         }
1158         case KVM_SET_VCPU_EVENTS: {
1159                 struct kvm_vcpu_events events;
1160
1161                 if (copy_from_user(&events, argp, sizeof(events)))
1162                         return -EFAULT;
1163
1164                 return kvm_arm_vcpu_set_events(vcpu, &events);
1165         }
1166         case KVM_ARM_VCPU_FINALIZE: {
1167                 int what;
1168
1169                 if (!kvm_vcpu_initialized(vcpu))
1170                         return -ENOEXEC;
1171
1172                 if (get_user(what, (const int __user *)argp))
1173                         return -EFAULT;
1174
1175                 return kvm_arm_vcpu_finalize(vcpu, what);
1176         }
1177         default:
1178                 r = -EINVAL;
1179         }
1180
1181         return r;
1182 }
1183
1184 /**
1185  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1186  * @kvm: kvm instance
1187  * @log: slot id and address to which we copy the log
1188  *
1189  * Steps 1-4 below provide general overview of dirty page logging. See
1190  * kvm_get_dirty_log_protect() function description for additional details.
1191  *
1192  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1193  * always flush the TLB (step 4) even if previous step failed  and the dirty
1194  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1195  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1196  * writes will be marked dirty for next log read.
1197  *
1198  *   1. Take a snapshot of the bit and clear it if needed.
1199  *   2. Write protect the corresponding page.
1200  *   3. Copy the snapshot to the userspace.
1201  *   4. Flush TLB's if needed.
1202  */
1203 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1204 {
1205         bool flush = false;
1206         int r;
1207
1208         mutex_lock(&kvm->slots_lock);
1209
1210         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1211
1212         if (flush)
1213                 kvm_flush_remote_tlbs(kvm);
1214
1215         mutex_unlock(&kvm->slots_lock);
1216         return r;
1217 }
1218
1219 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1220 {
1221         bool flush = false;
1222         int r;
1223
1224         mutex_lock(&kvm->slots_lock);
1225
1226         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1227
1228         if (flush)
1229                 kvm_flush_remote_tlbs(kvm);
1230
1231         mutex_unlock(&kvm->slots_lock);
1232         return r;
1233 }
1234
1235 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1236                                         struct kvm_arm_device_addr *dev_addr)
1237 {
1238         unsigned long dev_id, type;
1239
1240         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1241                 KVM_ARM_DEVICE_ID_SHIFT;
1242         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1243                 KVM_ARM_DEVICE_TYPE_SHIFT;
1244
1245         switch (dev_id) {
1246         case KVM_ARM_DEVICE_VGIC_V2:
1247                 if (!vgic_present)
1248                         return -ENXIO;
1249                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1250         default:
1251                 return -ENODEV;
1252         }
1253 }
1254
1255 long kvm_arch_vm_ioctl(struct file *filp,
1256                        unsigned int ioctl, unsigned long arg)
1257 {
1258         struct kvm *kvm = filp->private_data;
1259         void __user *argp = (void __user *)arg;
1260
1261         switch (ioctl) {
1262         case KVM_CREATE_IRQCHIP: {
1263                 int ret;
1264                 if (!vgic_present)
1265                         return -ENXIO;
1266                 mutex_lock(&kvm->lock);
1267                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1268                 mutex_unlock(&kvm->lock);
1269                 return ret;
1270         }
1271         case KVM_ARM_SET_DEVICE_ADDR: {
1272                 struct kvm_arm_device_addr dev_addr;
1273
1274                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1275                         return -EFAULT;
1276                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1277         }
1278         case KVM_ARM_PREFERRED_TARGET: {
1279                 int err;
1280                 struct kvm_vcpu_init init;
1281
1282                 err = kvm_vcpu_preferred_target(&init);
1283                 if (err)
1284                         return err;
1285
1286                 if (copy_to_user(argp, &init, sizeof(init)))
1287                         return -EFAULT;
1288
1289                 return 0;
1290         }
1291         default:
1292                 return -EINVAL;
1293         }
1294 }
1295
1296 static void cpu_init_hyp_mode(void)
1297 {
1298         phys_addr_t pgd_ptr;
1299         unsigned long hyp_stack_ptr;
1300         unsigned long stack_page;
1301         unsigned long vector_ptr;
1302
1303         /* Switch from the HYP stub to our own HYP init vector */
1304         __hyp_set_vectors(kvm_get_idmap_vector());
1305
1306         pgd_ptr = kvm_mmu_get_httbr();
1307         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1308         hyp_stack_ptr = stack_page + PAGE_SIZE;
1309         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1310
1311         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1312         __cpu_init_stage2();
1313 }
1314
1315 static void cpu_hyp_reset(void)
1316 {
1317         if (!is_kernel_in_hyp_mode())
1318                 __hyp_reset_vectors();
1319 }
1320
1321 static void cpu_hyp_reinit(void)
1322 {
1323         kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1324
1325         cpu_hyp_reset();
1326
1327         if (is_kernel_in_hyp_mode())
1328                 kvm_timer_init_vhe();
1329         else
1330                 cpu_init_hyp_mode();
1331
1332         kvm_arm_init_debug();
1333
1334         if (vgic_present)
1335                 kvm_vgic_init_cpu_hardware();
1336 }
1337
1338 static void _kvm_arch_hardware_enable(void *discard)
1339 {
1340         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1341                 cpu_hyp_reinit();
1342                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1343         }
1344 }
1345
1346 int kvm_arch_hardware_enable(void)
1347 {
1348         _kvm_arch_hardware_enable(NULL);
1349         return 0;
1350 }
1351
1352 static void _kvm_arch_hardware_disable(void *discard)
1353 {
1354         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1355                 cpu_hyp_reset();
1356                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1357         }
1358 }
1359
1360 void kvm_arch_hardware_disable(void)
1361 {
1362         _kvm_arch_hardware_disable(NULL);
1363 }
1364
1365 #ifdef CONFIG_CPU_PM
1366 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1367                                     unsigned long cmd,
1368                                     void *v)
1369 {
1370         /*
1371          * kvm_arm_hardware_enabled is left with its old value over
1372          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1373          * re-enable hyp.
1374          */
1375         switch (cmd) {
1376         case CPU_PM_ENTER:
1377                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1378                         /*
1379                          * don't update kvm_arm_hardware_enabled here
1380                          * so that the hardware will be re-enabled
1381                          * when we resume. See below.
1382                          */
1383                         cpu_hyp_reset();
1384
1385                 return NOTIFY_OK;
1386         case CPU_PM_ENTER_FAILED:
1387         case CPU_PM_EXIT:
1388                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1389                         /* The hardware was enabled before suspend. */
1390                         cpu_hyp_reinit();
1391
1392                 return NOTIFY_OK;
1393
1394         default:
1395                 return NOTIFY_DONE;
1396         }
1397 }
1398
1399 static struct notifier_block hyp_init_cpu_pm_nb = {
1400         .notifier_call = hyp_init_cpu_pm_notifier,
1401 };
1402
1403 static void __init hyp_cpu_pm_init(void)
1404 {
1405         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1406 }
1407 static void __init hyp_cpu_pm_exit(void)
1408 {
1409         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1410 }
1411 #else
1412 static inline void hyp_cpu_pm_init(void)
1413 {
1414 }
1415 static inline void hyp_cpu_pm_exit(void)
1416 {
1417 }
1418 #endif
1419
1420 static int init_common_resources(void)
1421 {
1422         kvm_set_ipa_limit();
1423
1424         return 0;
1425 }
1426
1427 static int init_subsystems(void)
1428 {
1429         int err = 0;
1430
1431         /*
1432          * Enable hardware so that subsystem initialisation can access EL2.
1433          */
1434         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1435
1436         /*
1437          * Register CPU lower-power notifier
1438          */
1439         hyp_cpu_pm_init();
1440
1441         /*
1442          * Init HYP view of VGIC
1443          */
1444         err = kvm_vgic_hyp_init();
1445         switch (err) {
1446         case 0:
1447                 vgic_present = true;
1448                 break;
1449         case -ENODEV:
1450         case -ENXIO:
1451                 vgic_present = false;
1452                 err = 0;
1453                 break;
1454         default:
1455                 goto out;
1456         }
1457
1458         /*
1459          * Init HYP architected timer support
1460          */
1461         err = kvm_timer_hyp_init(vgic_present);
1462         if (err)
1463                 goto out;
1464
1465         kvm_perf_init();
1466         kvm_coproc_table_init();
1467
1468 out:
1469         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1470
1471         return err;
1472 }
1473
1474 static void teardown_hyp_mode(void)
1475 {
1476         int cpu;
1477
1478         free_hyp_pgds();
1479         for_each_possible_cpu(cpu)
1480                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1481 }
1482
1483 /**
1484  * Inits Hyp-mode on all online CPUs
1485  */
1486 static int init_hyp_mode(void)
1487 {
1488         int cpu;
1489         int err = 0;
1490
1491         /*
1492          * Allocate Hyp PGD and setup Hyp identity mapping
1493          */
1494         err = kvm_mmu_init();
1495         if (err)
1496                 goto out_err;
1497
1498         /*
1499          * Allocate stack pages for Hypervisor-mode
1500          */
1501         for_each_possible_cpu(cpu) {
1502                 unsigned long stack_page;
1503
1504                 stack_page = __get_free_page(GFP_KERNEL);
1505                 if (!stack_page) {
1506                         err = -ENOMEM;
1507                         goto out_err;
1508                 }
1509
1510                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1511         }
1512
1513         /*
1514          * Map the Hyp-code called directly from the host
1515          */
1516         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1517                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1518         if (err) {
1519                 kvm_err("Cannot map world-switch code\n");
1520                 goto out_err;
1521         }
1522
1523         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1524                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1525         if (err) {
1526                 kvm_err("Cannot map rodata section\n");
1527                 goto out_err;
1528         }
1529
1530         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1531                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1532         if (err) {
1533                 kvm_err("Cannot map bss section\n");
1534                 goto out_err;
1535         }
1536
1537         err = kvm_map_vectors();
1538         if (err) {
1539                 kvm_err("Cannot map vectors\n");
1540                 goto out_err;
1541         }
1542
1543         /*
1544          * Map the Hyp stack pages
1545          */
1546         for_each_possible_cpu(cpu) {
1547                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1548                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1549                                           PAGE_HYP);
1550
1551                 if (err) {
1552                         kvm_err("Cannot map hyp stack\n");
1553                         goto out_err;
1554                 }
1555         }
1556
1557         for_each_possible_cpu(cpu) {
1558                 kvm_host_data_t *cpu_data;
1559
1560                 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1561                 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1562
1563                 if (err) {
1564                         kvm_err("Cannot map host CPU state: %d\n", err);
1565                         goto out_err;
1566                 }
1567         }
1568
1569         err = hyp_map_aux_data();
1570         if (err)
1571                 kvm_err("Cannot map host auxiliary data: %d\n", err);
1572
1573         return 0;
1574
1575 out_err:
1576         teardown_hyp_mode();
1577         kvm_err("error initializing Hyp mode: %d\n", err);
1578         return err;
1579 }
1580
1581 static void check_kvm_target_cpu(void *ret)
1582 {
1583         *(int *)ret = kvm_target_cpu();
1584 }
1585
1586 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1587 {
1588         struct kvm_vcpu *vcpu;
1589         int i;
1590
1591         mpidr &= MPIDR_HWID_BITMASK;
1592         kvm_for_each_vcpu(i, vcpu, kvm) {
1593                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1594                         return vcpu;
1595         }
1596         return NULL;
1597 }
1598
1599 bool kvm_arch_has_irq_bypass(void)
1600 {
1601         return true;
1602 }
1603
1604 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1605                                       struct irq_bypass_producer *prod)
1606 {
1607         struct kvm_kernel_irqfd *irqfd =
1608                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1609
1610         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1611                                           &irqfd->irq_entry);
1612 }
1613 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1614                                       struct irq_bypass_producer *prod)
1615 {
1616         struct kvm_kernel_irqfd *irqfd =
1617                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1618
1619         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1620                                      &irqfd->irq_entry);
1621 }
1622
1623 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1624 {
1625         struct kvm_kernel_irqfd *irqfd =
1626                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1627
1628         kvm_arm_halt_guest(irqfd->kvm);
1629 }
1630
1631 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1632 {
1633         struct kvm_kernel_irqfd *irqfd =
1634                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1635
1636         kvm_arm_resume_guest(irqfd->kvm);
1637 }
1638
1639 /**
1640  * Initialize Hyp-mode and memory mappings on all CPUs.
1641  */
1642 int kvm_arch_init(void *opaque)
1643 {
1644         int err;
1645         int ret, cpu;
1646         bool in_hyp_mode;
1647
1648         if (!is_hyp_mode_available()) {
1649                 kvm_info("HYP mode not available\n");
1650                 return -ENODEV;
1651         }
1652
1653         in_hyp_mode = is_kernel_in_hyp_mode();
1654
1655         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1656                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1657                 return -ENODEV;
1658         }
1659
1660         for_each_online_cpu(cpu) {
1661                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1662                 if (ret < 0) {
1663                         kvm_err("Error, CPU %d not supported!\n", cpu);
1664                         return -ENODEV;
1665                 }
1666         }
1667
1668         err = init_common_resources();
1669         if (err)
1670                 return err;
1671
1672         err = kvm_arm_init_sve();
1673         if (err)
1674                 return err;
1675
1676         if (!in_hyp_mode) {
1677                 err = init_hyp_mode();
1678                 if (err)
1679                         goto out_err;
1680         }
1681
1682         err = init_subsystems();
1683         if (err)
1684                 goto out_hyp;
1685
1686         if (in_hyp_mode)
1687                 kvm_info("VHE mode initialized successfully\n");
1688         else
1689                 kvm_info("Hyp mode initialized successfully\n");
1690
1691         return 0;
1692
1693 out_hyp:
1694         hyp_cpu_pm_exit();
1695         if (!in_hyp_mode)
1696                 teardown_hyp_mode();
1697 out_err:
1698         return err;
1699 }
1700
1701 /* NOP: Compiling as a module not supported */
1702 void kvm_arch_exit(void)
1703 {
1704         kvm_perf_teardown();
1705 }
1706
1707 static int arm_init(void)
1708 {
1709         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1710         return rc;
1711 }
1712
1713 module_init(arm_init);