kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / tools / testing / selftests / rseq / param_test.c
1 // SPDX-License-Identifier: LGPL-2.1
2 #define _GNU_SOURCE
3 #include <assert.h>
4 #include <pthread.h>
5 #include <sched.h>
6 #include <stdint.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <syscall.h>
11 #include <unistd.h>
12 #include <poll.h>
13 #include <sys/types.h>
14 #include <signal.h>
15 #include <errno.h>
16 #include <stddef.h>
17
18 static inline pid_t gettid(void)
19 {
20         return syscall(__NR_gettid);
21 }
22
23 #define NR_INJECT       9
24 static int loop_cnt[NR_INJECT + 1];
25
26 static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
27 static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
28 static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
29 static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
30 static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
31 static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
32
33 static int opt_modulo, verbose;
34
35 static int opt_yield, opt_signal, opt_sleep,
36                 opt_disable_rseq, opt_threads = 200,
37                 opt_disable_mod = 0, opt_test = 's', opt_mb = 0;
38
39 #ifndef RSEQ_SKIP_FASTPATH
40 static long long opt_reps = 5000;
41 #else
42 static long long opt_reps = 100;
43 #endif
44
45 static __thread __attribute__((tls_model("initial-exec")))
46 unsigned int signals_delivered;
47
48 #ifndef BENCHMARK
49
50 static __thread __attribute__((tls_model("initial-exec"), unused))
51 unsigned int yield_mod_cnt, nr_abort;
52
53 #define printf_verbose(fmt, ...)                        \
54         do {                                            \
55                 if (verbose)                            \
56                         printf(fmt, ## __VA_ARGS__);    \
57         } while (0)
58
59 #if defined(__x86_64__) || defined(__i386__)
60
61 #define INJECT_ASM_REG  "eax"
62
63 #define RSEQ_INJECT_CLOBBER \
64         , INJECT_ASM_REG
65
66 #ifdef __i386__
67
68 #define RSEQ_INJECT_ASM(n) \
69         "mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
70         "test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
71         "jz 333f\n\t" \
72         "222:\n\t" \
73         "dec %%" INJECT_ASM_REG "\n\t" \
74         "jnz 222b\n\t" \
75         "333:\n\t"
76
77 #elif defined(__x86_64__)
78
79 #define RSEQ_INJECT_ASM(n) \
80         "lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG "\n\t" \
81         "mov (%%" INJECT_ASM_REG "), %%" INJECT_ASM_REG "\n\t" \
82         "test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
83         "jz 333f\n\t" \
84         "222:\n\t" \
85         "dec %%" INJECT_ASM_REG "\n\t" \
86         "jnz 222b\n\t" \
87         "333:\n\t"
88
89 #else
90 #error "Unsupported architecture"
91 #endif
92
93 #elif defined(__ARMEL__)
94
95 #define RSEQ_INJECT_INPUT \
96         , [loop_cnt_1]"m"(loop_cnt[1]) \
97         , [loop_cnt_2]"m"(loop_cnt[2]) \
98         , [loop_cnt_3]"m"(loop_cnt[3]) \
99         , [loop_cnt_4]"m"(loop_cnt[4]) \
100         , [loop_cnt_5]"m"(loop_cnt[5]) \
101         , [loop_cnt_6]"m"(loop_cnt[6])
102
103 #define INJECT_ASM_REG  "r4"
104
105 #define RSEQ_INJECT_CLOBBER \
106         , INJECT_ASM_REG
107
108 #define RSEQ_INJECT_ASM(n) \
109         "ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
110         "cmp " INJECT_ASM_REG ", #0\n\t" \
111         "beq 333f\n\t" \
112         "222:\n\t" \
113         "subs " INJECT_ASM_REG ", #1\n\t" \
114         "bne 222b\n\t" \
115         "333:\n\t"
116
117 #elif __PPC__
118
119 #define RSEQ_INJECT_INPUT \
120         , [loop_cnt_1]"m"(loop_cnt[1]) \
121         , [loop_cnt_2]"m"(loop_cnt[2]) \
122         , [loop_cnt_3]"m"(loop_cnt[3]) \
123         , [loop_cnt_4]"m"(loop_cnt[4]) \
124         , [loop_cnt_5]"m"(loop_cnt[5]) \
125         , [loop_cnt_6]"m"(loop_cnt[6])
126
127 #define INJECT_ASM_REG  "r18"
128
129 #define RSEQ_INJECT_CLOBBER \
130         , INJECT_ASM_REG
131
132 #define RSEQ_INJECT_ASM(n) \
133         "lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
134         "cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
135         "beq 333f\n\t" \
136         "222:\n\t" \
137         "subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
138         "bne 222b\n\t" \
139         "333:\n\t"
140 #else
141 #error unsupported target
142 #endif
143
144 #define RSEQ_INJECT_FAILED \
145         nr_abort++;
146
147 #define RSEQ_INJECT_C(n) \
148 { \
149         int loc_i, loc_nr_loops = loop_cnt[n]; \
150         \
151         for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
152                 rseq_barrier(); \
153         } \
154         if (loc_nr_loops == -1 && opt_modulo) { \
155                 if (yield_mod_cnt == opt_modulo - 1) { \
156                         if (opt_sleep > 0) \
157                                 poll(NULL, 0, opt_sleep); \
158                         if (opt_yield) \
159                                 sched_yield(); \
160                         if (opt_signal) \
161                                 raise(SIGUSR1); \
162                         yield_mod_cnt = 0; \
163                 } else { \
164                         yield_mod_cnt++; \
165                 } \
166         } \
167 }
168
169 #else
170
171 #define printf_verbose(fmt, ...)
172
173 #endif /* BENCHMARK */
174
175 #include "rseq.h"
176
177 struct percpu_lock_entry {
178         intptr_t v;
179 } __attribute__((aligned(128)));
180
181 struct percpu_lock {
182         struct percpu_lock_entry c[CPU_SETSIZE];
183 };
184
185 struct test_data_entry {
186         intptr_t count;
187 } __attribute__((aligned(128)));
188
189 struct spinlock_test_data {
190         struct percpu_lock lock;
191         struct test_data_entry c[CPU_SETSIZE];
192 };
193
194 struct spinlock_thread_test_data {
195         struct spinlock_test_data *data;
196         long long reps;
197         int reg;
198 };
199
200 struct inc_test_data {
201         struct test_data_entry c[CPU_SETSIZE];
202 };
203
204 struct inc_thread_test_data {
205         struct inc_test_data *data;
206         long long reps;
207         int reg;
208 };
209
210 struct percpu_list_node {
211         intptr_t data;
212         struct percpu_list_node *next;
213 };
214
215 struct percpu_list_entry {
216         struct percpu_list_node *head;
217 } __attribute__((aligned(128)));
218
219 struct percpu_list {
220         struct percpu_list_entry c[CPU_SETSIZE];
221 };
222
223 #define BUFFER_ITEM_PER_CPU     100
224
225 struct percpu_buffer_node {
226         intptr_t data;
227 };
228
229 struct percpu_buffer_entry {
230         intptr_t offset;
231         intptr_t buflen;
232         struct percpu_buffer_node **array;
233 } __attribute__((aligned(128)));
234
235 struct percpu_buffer {
236         struct percpu_buffer_entry c[CPU_SETSIZE];
237 };
238
239 #define MEMCPY_BUFFER_ITEM_PER_CPU      100
240
241 struct percpu_memcpy_buffer_node {
242         intptr_t data1;
243         uint64_t data2;
244 };
245
246 struct percpu_memcpy_buffer_entry {
247         intptr_t offset;
248         intptr_t buflen;
249         struct percpu_memcpy_buffer_node *array;
250 } __attribute__((aligned(128)));
251
252 struct percpu_memcpy_buffer {
253         struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
254 };
255
256 /* A simple percpu spinlock. Grabs lock on current cpu. */
257 static int rseq_this_cpu_lock(struct percpu_lock *lock)
258 {
259         int cpu;
260
261         for (;;) {
262                 int ret;
263
264                 cpu = rseq_cpu_start();
265                 ret = rseq_cmpeqv_storev(&lock->c[cpu].v,
266                                          0, 1, cpu);
267                 if (rseq_likely(!ret))
268                         break;
269                 /* Retry if comparison fails or rseq aborts. */
270         }
271         /*
272          * Acquire semantic when taking lock after control dependency.
273          * Matches rseq_smp_store_release().
274          */
275         rseq_smp_acquire__after_ctrl_dep();
276         return cpu;
277 }
278
279 static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
280 {
281         assert(lock->c[cpu].v == 1);
282         /*
283          * Release lock, with release semantic. Matches
284          * rseq_smp_acquire__after_ctrl_dep().
285          */
286         rseq_smp_store_release(&lock->c[cpu].v, 0);
287 }
288
289 void *test_percpu_spinlock_thread(void *arg)
290 {
291         struct spinlock_thread_test_data *thread_data = arg;
292         struct spinlock_test_data *data = thread_data->data;
293         long long i, reps;
294
295         if (!opt_disable_rseq && thread_data->reg &&
296             rseq_register_current_thread())
297                 abort();
298         reps = thread_data->reps;
299         for (i = 0; i < reps; i++) {
300                 int cpu = rseq_cpu_start();
301
302                 cpu = rseq_this_cpu_lock(&data->lock);
303                 data->c[cpu].count++;
304                 rseq_percpu_unlock(&data->lock, cpu);
305 #ifndef BENCHMARK
306                 if (i != 0 && !(i % (reps / 10)))
307                         printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
308 #endif
309         }
310         printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
311                        (int) gettid(), nr_abort, signals_delivered);
312         if (!opt_disable_rseq && thread_data->reg &&
313             rseq_unregister_current_thread())
314                 abort();
315         return NULL;
316 }
317
318 /*
319  * A simple test which implements a sharded counter using a per-cpu
320  * lock.  Obviously real applications might prefer to simply use a
321  * per-cpu increment; however, this is reasonable for a test and the
322  * lock can be extended to synchronize more complicated operations.
323  */
324 void test_percpu_spinlock(void)
325 {
326         const int num_threads = opt_threads;
327         int i, ret;
328         uint64_t sum;
329         pthread_t test_threads[num_threads];
330         struct spinlock_test_data data;
331         struct spinlock_thread_test_data thread_data[num_threads];
332
333         memset(&data, 0, sizeof(data));
334         for (i = 0; i < num_threads; i++) {
335                 thread_data[i].reps = opt_reps;
336                 if (opt_disable_mod <= 0 || (i % opt_disable_mod))
337                         thread_data[i].reg = 1;
338                 else
339                         thread_data[i].reg = 0;
340                 thread_data[i].data = &data;
341                 ret = pthread_create(&test_threads[i], NULL,
342                                      test_percpu_spinlock_thread,
343                                      &thread_data[i]);
344                 if (ret) {
345                         errno = ret;
346                         perror("pthread_create");
347                         abort();
348                 }
349         }
350
351         for (i = 0; i < num_threads; i++) {
352                 ret = pthread_join(test_threads[i], NULL);
353                 if (ret) {
354                         errno = ret;
355                         perror("pthread_join");
356                         abort();
357                 }
358         }
359
360         sum = 0;
361         for (i = 0; i < CPU_SETSIZE; i++)
362                 sum += data.c[i].count;
363
364         assert(sum == (uint64_t)opt_reps * num_threads);
365 }
366
367 void *test_percpu_inc_thread(void *arg)
368 {
369         struct inc_thread_test_data *thread_data = arg;
370         struct inc_test_data *data = thread_data->data;
371         long long i, reps;
372
373         if (!opt_disable_rseq && thread_data->reg &&
374             rseq_register_current_thread())
375                 abort();
376         reps = thread_data->reps;
377         for (i = 0; i < reps; i++) {
378                 int ret;
379
380                 do {
381                         int cpu;
382
383                         cpu = rseq_cpu_start();
384                         ret = rseq_addv(&data->c[cpu].count, 1, cpu);
385                 } while (rseq_unlikely(ret));
386 #ifndef BENCHMARK
387                 if (i != 0 && !(i % (reps / 10)))
388                         printf_verbose("tid %d: count %lld\n", (int) gettid(), i);
389 #endif
390         }
391         printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
392                        (int) gettid(), nr_abort, signals_delivered);
393         if (!opt_disable_rseq && thread_data->reg &&
394             rseq_unregister_current_thread())
395                 abort();
396         return NULL;
397 }
398
399 void test_percpu_inc(void)
400 {
401         const int num_threads = opt_threads;
402         int i, ret;
403         uint64_t sum;
404         pthread_t test_threads[num_threads];
405         struct inc_test_data data;
406         struct inc_thread_test_data thread_data[num_threads];
407
408         memset(&data, 0, sizeof(data));
409         for (i = 0; i < num_threads; i++) {
410                 thread_data[i].reps = opt_reps;
411                 if (opt_disable_mod <= 0 || (i % opt_disable_mod))
412                         thread_data[i].reg = 1;
413                 else
414                         thread_data[i].reg = 0;
415                 thread_data[i].data = &data;
416                 ret = pthread_create(&test_threads[i], NULL,
417                                      test_percpu_inc_thread,
418                                      &thread_data[i]);
419                 if (ret) {
420                         errno = ret;
421                         perror("pthread_create");
422                         abort();
423                 }
424         }
425
426         for (i = 0; i < num_threads; i++) {
427                 ret = pthread_join(test_threads[i], NULL);
428                 if (ret) {
429                         errno = ret;
430                         perror("pthread_join");
431                         abort();
432                 }
433         }
434
435         sum = 0;
436         for (i = 0; i < CPU_SETSIZE; i++)
437                 sum += data.c[i].count;
438
439         assert(sum == (uint64_t)opt_reps * num_threads);
440 }
441
442 void this_cpu_list_push(struct percpu_list *list,
443                         struct percpu_list_node *node,
444                         int *_cpu)
445 {
446         int cpu;
447
448         for (;;) {
449                 intptr_t *targetptr, newval, expect;
450                 int ret;
451
452                 cpu = rseq_cpu_start();
453                 /* Load list->c[cpu].head with single-copy atomicity. */
454                 expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
455                 newval = (intptr_t)node;
456                 targetptr = (intptr_t *)&list->c[cpu].head;
457                 node->next = (struct percpu_list_node *)expect;
458                 ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu);
459                 if (rseq_likely(!ret))
460                         break;
461                 /* Retry if comparison fails or rseq aborts. */
462         }
463         if (_cpu)
464                 *_cpu = cpu;
465 }
466
467 /*
468  * Unlike a traditional lock-less linked list; the availability of a
469  * rseq primitive allows us to implement pop without concerns over
470  * ABA-type races.
471  */
472 struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
473                                            int *_cpu)
474 {
475         struct percpu_list_node *node = NULL;
476         int cpu;
477
478         for (;;) {
479                 struct percpu_list_node *head;
480                 intptr_t *targetptr, expectnot, *load;
481                 off_t offset;
482                 int ret;
483
484                 cpu = rseq_cpu_start();
485                 targetptr = (intptr_t *)&list->c[cpu].head;
486                 expectnot = (intptr_t)NULL;
487                 offset = offsetof(struct percpu_list_node, next);
488                 load = (intptr_t *)&head;
489                 ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot,
490                                                    offset, load, cpu);
491                 if (rseq_likely(!ret)) {
492                         node = head;
493                         break;
494                 }
495                 if (ret > 0)
496                         break;
497                 /* Retry if rseq aborts. */
498         }
499         if (_cpu)
500                 *_cpu = cpu;
501         return node;
502 }
503
504 /*
505  * __percpu_list_pop is not safe against concurrent accesses. Should
506  * only be used on lists that are not concurrently modified.
507  */
508 struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
509 {
510         struct percpu_list_node *node;
511
512         node = list->c[cpu].head;
513         if (!node)
514                 return NULL;
515         list->c[cpu].head = node->next;
516         return node;
517 }
518
519 void *test_percpu_list_thread(void *arg)
520 {
521         long long i, reps;
522         struct percpu_list *list = (struct percpu_list *)arg;
523
524         if (!opt_disable_rseq && rseq_register_current_thread())
525                 abort();
526
527         reps = opt_reps;
528         for (i = 0; i < reps; i++) {
529                 struct percpu_list_node *node;
530
531                 node = this_cpu_list_pop(list, NULL);
532                 if (opt_yield)
533                         sched_yield();  /* encourage shuffling */
534                 if (node)
535                         this_cpu_list_push(list, node, NULL);
536         }
537
538         printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
539                        (int) gettid(), nr_abort, signals_delivered);
540         if (!opt_disable_rseq && rseq_unregister_current_thread())
541                 abort();
542
543         return NULL;
544 }
545
546 /* Simultaneous modification to a per-cpu linked list from many threads.  */
547 void test_percpu_list(void)
548 {
549         const int num_threads = opt_threads;
550         int i, j, ret;
551         uint64_t sum = 0, expected_sum = 0;
552         struct percpu_list list;
553         pthread_t test_threads[num_threads];
554         cpu_set_t allowed_cpus;
555
556         memset(&list, 0, sizeof(list));
557
558         /* Generate list entries for every usable cpu. */
559         sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
560         for (i = 0; i < CPU_SETSIZE; i++) {
561                 if (!CPU_ISSET(i, &allowed_cpus))
562                         continue;
563                 for (j = 1; j <= 100; j++) {
564                         struct percpu_list_node *node;
565
566                         expected_sum += j;
567
568                         node = malloc(sizeof(*node));
569                         assert(node);
570                         node->data = j;
571                         node->next = list.c[i].head;
572                         list.c[i].head = node;
573                 }
574         }
575
576         for (i = 0; i < num_threads; i++) {
577                 ret = pthread_create(&test_threads[i], NULL,
578                                      test_percpu_list_thread, &list);
579                 if (ret) {
580                         errno = ret;
581                         perror("pthread_create");
582                         abort();
583                 }
584         }
585
586         for (i = 0; i < num_threads; i++) {
587                 ret = pthread_join(test_threads[i], NULL);
588                 if (ret) {
589                         errno = ret;
590                         perror("pthread_join");
591                         abort();
592                 }
593         }
594
595         for (i = 0; i < CPU_SETSIZE; i++) {
596                 struct percpu_list_node *node;
597
598                 if (!CPU_ISSET(i, &allowed_cpus))
599                         continue;
600
601                 while ((node = __percpu_list_pop(&list, i))) {
602                         sum += node->data;
603                         free(node);
604                 }
605         }
606
607         /*
608          * All entries should now be accounted for (unless some external
609          * actor is interfering with our allowed affinity while this
610          * test is running).
611          */
612         assert(sum == expected_sum);
613 }
614
615 bool this_cpu_buffer_push(struct percpu_buffer *buffer,
616                           struct percpu_buffer_node *node,
617                           int *_cpu)
618 {
619         bool result = false;
620         int cpu;
621
622         for (;;) {
623                 intptr_t *targetptr_spec, newval_spec;
624                 intptr_t *targetptr_final, newval_final;
625                 intptr_t offset;
626                 int ret;
627
628                 cpu = rseq_cpu_start();
629                 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
630                 if (offset == buffer->c[cpu].buflen)
631                         break;
632                 newval_spec = (intptr_t)node;
633                 targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
634                 newval_final = offset + 1;
635                 targetptr_final = &buffer->c[cpu].offset;
636                 if (opt_mb)
637                         ret = rseq_cmpeqv_trystorev_storev_release(
638                                 targetptr_final, offset, targetptr_spec,
639                                 newval_spec, newval_final, cpu);
640                 else
641                         ret = rseq_cmpeqv_trystorev_storev(targetptr_final,
642                                 offset, targetptr_spec, newval_spec,
643                                 newval_final, cpu);
644                 if (rseq_likely(!ret)) {
645                         result = true;
646                         break;
647                 }
648                 /* Retry if comparison fails or rseq aborts. */
649         }
650         if (_cpu)
651                 *_cpu = cpu;
652         return result;
653 }
654
655 struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
656                                                int *_cpu)
657 {
658         struct percpu_buffer_node *head;
659         int cpu;
660
661         for (;;) {
662                 intptr_t *targetptr, newval;
663                 intptr_t offset;
664                 int ret;
665
666                 cpu = rseq_cpu_start();
667                 /* Load offset with single-copy atomicity. */
668                 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
669                 if (offset == 0) {
670                         head = NULL;
671                         break;
672                 }
673                 head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
674                 newval = offset - 1;
675                 targetptr = (intptr_t *)&buffer->c[cpu].offset;
676                 ret = rseq_cmpeqv_cmpeqv_storev(targetptr, offset,
677                         (intptr_t *)&buffer->c[cpu].array[offset - 1],
678                         (intptr_t)head, newval, cpu);
679                 if (rseq_likely(!ret))
680                         break;
681                 /* Retry if comparison fails or rseq aborts. */
682         }
683         if (_cpu)
684                 *_cpu = cpu;
685         return head;
686 }
687
688 /*
689  * __percpu_buffer_pop is not safe against concurrent accesses. Should
690  * only be used on buffers that are not concurrently modified.
691  */
692 struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
693                                                int cpu)
694 {
695         struct percpu_buffer_node *head;
696         intptr_t offset;
697
698         offset = buffer->c[cpu].offset;
699         if (offset == 0)
700                 return NULL;
701         head = buffer->c[cpu].array[offset - 1];
702         buffer->c[cpu].offset = offset - 1;
703         return head;
704 }
705
706 void *test_percpu_buffer_thread(void *arg)
707 {
708         long long i, reps;
709         struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
710
711         if (!opt_disable_rseq && rseq_register_current_thread())
712                 abort();
713
714         reps = opt_reps;
715         for (i = 0; i < reps; i++) {
716                 struct percpu_buffer_node *node;
717
718                 node = this_cpu_buffer_pop(buffer, NULL);
719                 if (opt_yield)
720                         sched_yield();  /* encourage shuffling */
721                 if (node) {
722                         if (!this_cpu_buffer_push(buffer, node, NULL)) {
723                                 /* Should increase buffer size. */
724                                 abort();
725                         }
726                 }
727         }
728
729         printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
730                        (int) gettid(), nr_abort, signals_delivered);
731         if (!opt_disable_rseq && rseq_unregister_current_thread())
732                 abort();
733
734         return NULL;
735 }
736
737 /* Simultaneous modification to a per-cpu buffer from many threads.  */
738 void test_percpu_buffer(void)
739 {
740         const int num_threads = opt_threads;
741         int i, j, ret;
742         uint64_t sum = 0, expected_sum = 0;
743         struct percpu_buffer buffer;
744         pthread_t test_threads[num_threads];
745         cpu_set_t allowed_cpus;
746
747         memset(&buffer, 0, sizeof(buffer));
748
749         /* Generate list entries for every usable cpu. */
750         sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
751         for (i = 0; i < CPU_SETSIZE; i++) {
752                 if (!CPU_ISSET(i, &allowed_cpus))
753                         continue;
754                 /* Worse-case is every item in same CPU. */
755                 buffer.c[i].array =
756                         malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
757                                BUFFER_ITEM_PER_CPU);
758                 assert(buffer.c[i].array);
759                 buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
760                 for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
761                         struct percpu_buffer_node *node;
762
763                         expected_sum += j;
764
765                         /*
766                          * We could theoretically put the word-sized
767                          * "data" directly in the buffer. However, we
768                          * want to model objects that would not fit
769                          * within a single word, so allocate an object
770                          * for each node.
771                          */
772                         node = malloc(sizeof(*node));
773                         assert(node);
774                         node->data = j;
775                         buffer.c[i].array[j - 1] = node;
776                         buffer.c[i].offset++;
777                 }
778         }
779
780         for (i = 0; i < num_threads; i++) {
781                 ret = pthread_create(&test_threads[i], NULL,
782                                      test_percpu_buffer_thread, &buffer);
783                 if (ret) {
784                         errno = ret;
785                         perror("pthread_create");
786                         abort();
787                 }
788         }
789
790         for (i = 0; i < num_threads; i++) {
791                 ret = pthread_join(test_threads[i], NULL);
792                 if (ret) {
793                         errno = ret;
794                         perror("pthread_join");
795                         abort();
796                 }
797         }
798
799         for (i = 0; i < CPU_SETSIZE; i++) {
800                 struct percpu_buffer_node *node;
801
802                 if (!CPU_ISSET(i, &allowed_cpus))
803                         continue;
804
805                 while ((node = __percpu_buffer_pop(&buffer, i))) {
806                         sum += node->data;
807                         free(node);
808                 }
809                 free(buffer.c[i].array);
810         }
811
812         /*
813          * All entries should now be accounted for (unless some external
814          * actor is interfering with our allowed affinity while this
815          * test is running).
816          */
817         assert(sum == expected_sum);
818 }
819
820 bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
821                                  struct percpu_memcpy_buffer_node item,
822                                  int *_cpu)
823 {
824         bool result = false;
825         int cpu;
826
827         for (;;) {
828                 intptr_t *targetptr_final, newval_final, offset;
829                 char *destptr, *srcptr;
830                 size_t copylen;
831                 int ret;
832
833                 cpu = rseq_cpu_start();
834                 /* Load offset with single-copy atomicity. */
835                 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
836                 if (offset == buffer->c[cpu].buflen)
837                         break;
838                 destptr = (char *)&buffer->c[cpu].array[offset];
839                 srcptr = (char *)&item;
840                 /* copylen must be <= 4kB. */
841                 copylen = sizeof(item);
842                 newval_final = offset + 1;
843                 targetptr_final = &buffer->c[cpu].offset;
844                 if (opt_mb)
845                         ret = rseq_cmpeqv_trymemcpy_storev_release(
846                                 targetptr_final, offset,
847                                 destptr, srcptr, copylen,
848                                 newval_final, cpu);
849                 else
850                         ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
851                                 offset, destptr, srcptr, copylen,
852                                 newval_final, cpu);
853                 if (rseq_likely(!ret)) {
854                         result = true;
855                         break;
856                 }
857                 /* Retry if comparison fails or rseq aborts. */
858         }
859         if (_cpu)
860                 *_cpu = cpu;
861         return result;
862 }
863
864 bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
865                                 struct percpu_memcpy_buffer_node *item,
866                                 int *_cpu)
867 {
868         bool result = false;
869         int cpu;
870
871         for (;;) {
872                 intptr_t *targetptr_final, newval_final, offset;
873                 char *destptr, *srcptr;
874                 size_t copylen;
875                 int ret;
876
877                 cpu = rseq_cpu_start();
878                 /* Load offset with single-copy atomicity. */
879                 offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
880                 if (offset == 0)
881                         break;
882                 destptr = (char *)item;
883                 srcptr = (char *)&buffer->c[cpu].array[offset - 1];
884                 /* copylen must be <= 4kB. */
885                 copylen = sizeof(*item);
886                 newval_final = offset - 1;
887                 targetptr_final = &buffer->c[cpu].offset;
888                 ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
889                         offset, destptr, srcptr, copylen,
890                         newval_final, cpu);
891                 if (rseq_likely(!ret)) {
892                         result = true;
893                         break;
894                 }
895                 /* Retry if comparison fails or rseq aborts. */
896         }
897         if (_cpu)
898                 *_cpu = cpu;
899         return result;
900 }
901
902 /*
903  * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
904  * only be used on buffers that are not concurrently modified.
905  */
906 bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
907                                 struct percpu_memcpy_buffer_node *item,
908                                 int cpu)
909 {
910         intptr_t offset;
911
912         offset = buffer->c[cpu].offset;
913         if (offset == 0)
914                 return false;
915         memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
916         buffer->c[cpu].offset = offset - 1;
917         return true;
918 }
919
920 void *test_percpu_memcpy_buffer_thread(void *arg)
921 {
922         long long i, reps;
923         struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
924
925         if (!opt_disable_rseq && rseq_register_current_thread())
926                 abort();
927
928         reps = opt_reps;
929         for (i = 0; i < reps; i++) {
930                 struct percpu_memcpy_buffer_node item;
931                 bool result;
932
933                 result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
934                 if (opt_yield)
935                         sched_yield();  /* encourage shuffling */
936                 if (result) {
937                         if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
938                                 /* Should increase buffer size. */
939                                 abort();
940                         }
941                 }
942         }
943
944         printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
945                        (int) gettid(), nr_abort, signals_delivered);
946         if (!opt_disable_rseq && rseq_unregister_current_thread())
947                 abort();
948
949         return NULL;
950 }
951
952 /* Simultaneous modification to a per-cpu buffer from many threads.  */
953 void test_percpu_memcpy_buffer(void)
954 {
955         const int num_threads = opt_threads;
956         int i, j, ret;
957         uint64_t sum = 0, expected_sum = 0;
958         struct percpu_memcpy_buffer buffer;
959         pthread_t test_threads[num_threads];
960         cpu_set_t allowed_cpus;
961
962         memset(&buffer, 0, sizeof(buffer));
963
964         /* Generate list entries for every usable cpu. */
965         sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
966         for (i = 0; i < CPU_SETSIZE; i++) {
967                 if (!CPU_ISSET(i, &allowed_cpus))
968                         continue;
969                 /* Worse-case is every item in same CPU. */
970                 buffer.c[i].array =
971                         malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
972                                MEMCPY_BUFFER_ITEM_PER_CPU);
973                 assert(buffer.c[i].array);
974                 buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
975                 for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
976                         expected_sum += 2 * j + 1;
977
978                         /*
979                          * We could theoretically put the word-sized
980                          * "data" directly in the buffer. However, we
981                          * want to model objects that would not fit
982                          * within a single word, so allocate an object
983                          * for each node.
984                          */
985                         buffer.c[i].array[j - 1].data1 = j;
986                         buffer.c[i].array[j - 1].data2 = j + 1;
987                         buffer.c[i].offset++;
988                 }
989         }
990
991         for (i = 0; i < num_threads; i++) {
992                 ret = pthread_create(&test_threads[i], NULL,
993                                      test_percpu_memcpy_buffer_thread,
994                                      &buffer);
995                 if (ret) {
996                         errno = ret;
997                         perror("pthread_create");
998                         abort();
999                 }
1000         }
1001
1002         for (i = 0; i < num_threads; i++) {
1003                 ret = pthread_join(test_threads[i], NULL);
1004                 if (ret) {
1005                         errno = ret;
1006                         perror("pthread_join");
1007                         abort();
1008                 }
1009         }
1010
1011         for (i = 0; i < CPU_SETSIZE; i++) {
1012                 struct percpu_memcpy_buffer_node item;
1013
1014                 if (!CPU_ISSET(i, &allowed_cpus))
1015                         continue;
1016
1017                 while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
1018                         sum += item.data1;
1019                         sum += item.data2;
1020                 }
1021                 free(buffer.c[i].array);
1022         }
1023
1024         /*
1025          * All entries should now be accounted for (unless some external
1026          * actor is interfering with our allowed affinity while this
1027          * test is running).
1028          */
1029         assert(sum == expected_sum);
1030 }
1031
1032 static void test_signal_interrupt_handler(int signo)
1033 {
1034         signals_delivered++;
1035 }
1036
1037 static int set_signal_handler(void)
1038 {
1039         int ret = 0;
1040         struct sigaction sa;
1041         sigset_t sigset;
1042
1043         ret = sigemptyset(&sigset);
1044         if (ret < 0) {
1045                 perror("sigemptyset");
1046                 return ret;
1047         }
1048
1049         sa.sa_handler = test_signal_interrupt_handler;
1050         sa.sa_mask = sigset;
1051         sa.sa_flags = 0;
1052         ret = sigaction(SIGUSR1, &sa, NULL);
1053         if (ret < 0) {
1054                 perror("sigaction");
1055                 return ret;
1056         }
1057
1058         printf_verbose("Signal handler set for SIGUSR1\n");
1059
1060         return ret;
1061 }
1062
1063 static void show_usage(int argc, char **argv)
1064 {
1065         printf("Usage : %s <OPTIONS>\n",
1066                 argv[0]);
1067         printf("OPTIONS:\n");
1068         printf("        [-1 loops] Number of loops for delay injection 1\n");
1069         printf("        [-2 loops] Number of loops for delay injection 2\n");
1070         printf("        [-3 loops] Number of loops for delay injection 3\n");
1071         printf("        [-4 loops] Number of loops for delay injection 4\n");
1072         printf("        [-5 loops] Number of loops for delay injection 5\n");
1073         printf("        [-6 loops] Number of loops for delay injection 6\n");
1074         printf("        [-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
1075         printf("        [-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
1076         printf("        [-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
1077         printf("        [-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
1078         printf("        [-y] Yield\n");
1079         printf("        [-k] Kill thread with signal\n");
1080         printf("        [-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
1081         printf("        [-t N] Number of threads (default 200)\n");
1082         printf("        [-r N] Number of repetitions per thread (default 5000)\n");
1083         printf("        [-d] Disable rseq system call (no initialization)\n");
1084         printf("        [-D M] Disable rseq for each M threads\n");
1085         printf("        [-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement\n");
1086         printf("        [-M] Push into buffer and memcpy buffer with memory barriers.\n");
1087         printf("        [-v] Verbose output.\n");
1088         printf("        [-h] Show this help.\n");
1089         printf("\n");
1090 }
1091
1092 int main(int argc, char **argv)
1093 {
1094         int i;
1095
1096         for (i = 1; i < argc; i++) {
1097                 if (argv[i][0] != '-')
1098                         continue;
1099                 switch (argv[i][1]) {
1100                 case '1':
1101                 case '2':
1102                 case '3':
1103                 case '4':
1104                 case '5':
1105                 case '6':
1106                 case '7':
1107                 case '8':
1108                 case '9':
1109                         if (argc < i + 2) {
1110                                 show_usage(argc, argv);
1111                                 goto error;
1112                         }
1113                         loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
1114                         i++;
1115                         break;
1116                 case 'm':
1117                         if (argc < i + 2) {
1118                                 show_usage(argc, argv);
1119                                 goto error;
1120                         }
1121                         opt_modulo = atol(argv[i + 1]);
1122                         if (opt_modulo < 0) {
1123                                 show_usage(argc, argv);
1124                                 goto error;
1125                         }
1126                         i++;
1127                         break;
1128                 case 's':
1129                         if (argc < i + 2) {
1130                                 show_usage(argc, argv);
1131                                 goto error;
1132                         }
1133                         opt_sleep = atol(argv[i + 1]);
1134                         if (opt_sleep < 0) {
1135                                 show_usage(argc, argv);
1136                                 goto error;
1137                         }
1138                         i++;
1139                         break;
1140                 case 'y':
1141                         opt_yield = 1;
1142                         break;
1143                 case 'k':
1144                         opt_signal = 1;
1145                         break;
1146                 case 'd':
1147                         opt_disable_rseq = 1;
1148                         break;
1149                 case 'D':
1150                         if (argc < i + 2) {
1151                                 show_usage(argc, argv);
1152                                 goto error;
1153                         }
1154                         opt_disable_mod = atol(argv[i + 1]);
1155                         if (opt_disable_mod < 0) {
1156                                 show_usage(argc, argv);
1157                                 goto error;
1158                         }
1159                         i++;
1160                         break;
1161                 case 't':
1162                         if (argc < i + 2) {
1163                                 show_usage(argc, argv);
1164                                 goto error;
1165                         }
1166                         opt_threads = atol(argv[i + 1]);
1167                         if (opt_threads < 0) {
1168                                 show_usage(argc, argv);
1169                                 goto error;
1170                         }
1171                         i++;
1172                         break;
1173                 case 'r':
1174                         if (argc < i + 2) {
1175                                 show_usage(argc, argv);
1176                                 goto error;
1177                         }
1178                         opt_reps = atoll(argv[i + 1]);
1179                         if (opt_reps < 0) {
1180                                 show_usage(argc, argv);
1181                                 goto error;
1182                         }
1183                         i++;
1184                         break;
1185                 case 'h':
1186                         show_usage(argc, argv);
1187                         goto end;
1188                 case 'T':
1189                         if (argc < i + 2) {
1190                                 show_usage(argc, argv);
1191                                 goto error;
1192                         }
1193                         opt_test = *argv[i + 1];
1194                         switch (opt_test) {
1195                         case 's':
1196                         case 'l':
1197                         case 'i':
1198                         case 'b':
1199                         case 'm':
1200                                 break;
1201                         default:
1202                                 show_usage(argc, argv);
1203                                 goto error;
1204                         }
1205                         i++;
1206                         break;
1207                 case 'v':
1208                         verbose = 1;
1209                         break;
1210                 case 'M':
1211                         opt_mb = 1;
1212                         break;
1213                 default:
1214                         show_usage(argc, argv);
1215                         goto error;
1216                 }
1217         }
1218
1219         loop_cnt_1 = loop_cnt[1];
1220         loop_cnt_2 = loop_cnt[2];
1221         loop_cnt_3 = loop_cnt[3];
1222         loop_cnt_4 = loop_cnt[4];
1223         loop_cnt_5 = loop_cnt[5];
1224         loop_cnt_6 = loop_cnt[6];
1225
1226         if (set_signal_handler())
1227                 goto error;
1228
1229         if (!opt_disable_rseq && rseq_register_current_thread())
1230                 goto error;
1231         switch (opt_test) {
1232         case 's':
1233                 printf_verbose("spinlock\n");
1234                 test_percpu_spinlock();
1235                 break;
1236         case 'l':
1237                 printf_verbose("linked list\n");
1238                 test_percpu_list();
1239                 break;
1240         case 'b':
1241                 printf_verbose("buffer\n");
1242                 test_percpu_buffer();
1243                 break;
1244         case 'm':
1245                 printf_verbose("memcpy buffer\n");
1246                 test_percpu_memcpy_buffer();
1247                 break;
1248         case 'i':
1249                 printf_verbose("counter increment\n");
1250                 test_percpu_inc();
1251                 break;
1252         }
1253         if (!opt_disable_rseq && rseq_unregister_current_thread())
1254                 abort();
1255 end:
1256         return 0;
1257
1258 error:
1259         return -1;
1260 }