ASoC: pcm512x: Scrub my work address from the driver
[sfrench/cifs-2.6.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "namespaces.h"
7 #include "sort.h"
8 #include "evlist.h"
9 #include "evsel.h"
10 #include "annotate.h"
11 #include "srcline.h"
12 #include "thread.h"
13 #include "ui/progress.h"
14 #include <errno.h>
15 #include <math.h>
16 #include <sys/param.h>
17
18 static bool hists__filter_entry_by_dso(struct hists *hists,
19                                        struct hist_entry *he);
20 static bool hists__filter_entry_by_thread(struct hists *hists,
21                                           struct hist_entry *he);
22 static bool hists__filter_entry_by_symbol(struct hists *hists,
23                                           struct hist_entry *he);
24 static bool hists__filter_entry_by_socket(struct hists *hists,
25                                           struct hist_entry *he);
26
27 u16 hists__col_len(struct hists *hists, enum hist_column col)
28 {
29         return hists->col_len[col];
30 }
31
32 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34         hists->col_len[col] = len;
35 }
36
37 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
38 {
39         if (len > hists__col_len(hists, col)) {
40                 hists__set_col_len(hists, col, len);
41                 return true;
42         }
43         return false;
44 }
45
46 void hists__reset_col_len(struct hists *hists)
47 {
48         enum hist_column col;
49
50         for (col = 0; col < HISTC_NR_COLS; ++col)
51                 hists__set_col_len(hists, col, 0);
52 }
53
54 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
55 {
56         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
57
58         if (hists__col_len(hists, dso) < unresolved_col_width &&
59             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
60             !symbol_conf.dso_list)
61                 hists__set_col_len(hists, dso, unresolved_col_width);
62 }
63
64 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
65 {
66         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
67         int symlen;
68         u16 len;
69
70         /*
71          * +4 accounts for '[x] ' priv level info
72          * +2 accounts for 0x prefix on raw addresses
73          * +3 accounts for ' y ' symtab origin info
74          */
75         if (h->ms.sym) {
76                 symlen = h->ms.sym->namelen + 4;
77                 if (verbose > 0)
78                         symlen += BITS_PER_LONG / 4 + 2 + 3;
79                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
80         } else {
81                 symlen = unresolved_col_width + 4 + 2;
82                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
84         }
85
86         len = thread__comm_len(h->thread);
87         if (hists__new_col_len(hists, HISTC_COMM, len))
88                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
89
90         if (h->ms.map) {
91                 len = dso__name_len(h->ms.map->dso);
92                 hists__new_col_len(hists, HISTC_DSO, len);
93         }
94
95         if (h->parent)
96                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
97
98         if (h->branch_info) {
99                 if (h->branch_info->from.sym) {
100                         symlen = (int)h->branch_info->from.sym->namelen + 4;
101                         if (verbose > 0)
102                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
103                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104
105                         symlen = dso__name_len(h->branch_info->from.map->dso);
106                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
107                 } else {
108                         symlen = unresolved_col_width + 4 + 2;
109                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
110                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
111                 }
112
113                 if (h->branch_info->to.sym) {
114                         symlen = (int)h->branch_info->to.sym->namelen + 4;
115                         if (verbose > 0)
116                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
117                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118
119                         symlen = dso__name_len(h->branch_info->to.map->dso);
120                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
121                 } else {
122                         symlen = unresolved_col_width + 4 + 2;
123                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
124                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
125                 }
126
127                 if (h->branch_info->srcline_from)
128                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
129                                         strlen(h->branch_info->srcline_from));
130                 if (h->branch_info->srcline_to)
131                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
132                                         strlen(h->branch_info->srcline_to));
133         }
134
135         if (h->mem_info) {
136                 if (h->mem_info->daddr.sym) {
137                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
138                                + unresolved_col_width + 2;
139                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140                                            symlen);
141                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142                                            symlen + 1);
143                 } else {
144                         symlen = unresolved_col_width + 4 + 2;
145                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
146                                            symlen);
147                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
148                                            symlen);
149                 }
150
151                 if (h->mem_info->iaddr.sym) {
152                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
153                                + unresolved_col_width + 2;
154                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
155                                            symlen);
156                 } else {
157                         symlen = unresolved_col_width + 4 + 2;
158                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
159                                            symlen);
160                 }
161
162                 if (h->mem_info->daddr.map) {
163                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
164                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
165                                            symlen);
166                 } else {
167                         symlen = unresolved_col_width + 4 + 2;
168                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169                 }
170
171                 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
172                                    unresolved_col_width + 4 + 2);
173
174         } else {
175                 symlen = unresolved_col_width + 4 + 2;
176                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
177                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
178                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
179         }
180
181         hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
182         hists__new_col_len(hists, HISTC_CPU, 3);
183         hists__new_col_len(hists, HISTC_SOCKET, 6);
184         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
185         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
186         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
187         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
188         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
189         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
190
191         if (h->srcline) {
192                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
193                 hists__new_col_len(hists, HISTC_SRCLINE, len);
194         }
195
196         if (h->srcfile)
197                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
198
199         if (h->transaction)
200                 hists__new_col_len(hists, HISTC_TRANSACTION,
201                                    hist_entry__transaction_len());
202
203         if (h->trace_output)
204                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
205 }
206
207 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
208 {
209         struct rb_node *next = rb_first(&hists->entries);
210         struct hist_entry *n;
211         int row = 0;
212
213         hists__reset_col_len(hists);
214
215         while (next && row++ < max_rows) {
216                 n = rb_entry(next, struct hist_entry, rb_node);
217                 if (!n->filtered)
218                         hists__calc_col_len(hists, n);
219                 next = rb_next(&n->rb_node);
220         }
221 }
222
223 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
224                                         unsigned int cpumode, u64 period)
225 {
226         switch (cpumode) {
227         case PERF_RECORD_MISC_KERNEL:
228                 he_stat->period_sys += period;
229                 break;
230         case PERF_RECORD_MISC_USER:
231                 he_stat->period_us += period;
232                 break;
233         case PERF_RECORD_MISC_GUEST_KERNEL:
234                 he_stat->period_guest_sys += period;
235                 break;
236         case PERF_RECORD_MISC_GUEST_USER:
237                 he_stat->period_guest_us += period;
238                 break;
239         default:
240                 break;
241         }
242 }
243
244 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
245                                 u64 weight)
246 {
247
248         he_stat->period         += period;
249         he_stat->weight         += weight;
250         he_stat->nr_events      += 1;
251 }
252
253 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
254 {
255         dest->period            += src->period;
256         dest->period_sys        += src->period_sys;
257         dest->period_us         += src->period_us;
258         dest->period_guest_sys  += src->period_guest_sys;
259         dest->period_guest_us   += src->period_guest_us;
260         dest->nr_events         += src->nr_events;
261         dest->weight            += src->weight;
262 }
263
264 static void he_stat__decay(struct he_stat *he_stat)
265 {
266         he_stat->period = (he_stat->period * 7) / 8;
267         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
268         /* XXX need decay for weight too? */
269 }
270
271 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
272
273 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
274 {
275         u64 prev_period = he->stat.period;
276         u64 diff;
277
278         if (prev_period == 0)
279                 return true;
280
281         he_stat__decay(&he->stat);
282         if (symbol_conf.cumulate_callchain)
283                 he_stat__decay(he->stat_acc);
284         decay_callchain(he->callchain);
285
286         diff = prev_period - he->stat.period;
287
288         if (!he->depth) {
289                 hists->stats.total_period -= diff;
290                 if (!he->filtered)
291                         hists->stats.total_non_filtered_period -= diff;
292         }
293
294         if (!he->leaf) {
295                 struct hist_entry *child;
296                 struct rb_node *node = rb_first(&he->hroot_out);
297                 while (node) {
298                         child = rb_entry(node, struct hist_entry, rb_node);
299                         node = rb_next(node);
300
301                         if (hists__decay_entry(hists, child))
302                                 hists__delete_entry(hists, child);
303                 }
304         }
305
306         return he->stat.period == 0;
307 }
308
309 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
310 {
311         struct rb_root *root_in;
312         struct rb_root *root_out;
313
314         if (he->parent_he) {
315                 root_in  = &he->parent_he->hroot_in;
316                 root_out = &he->parent_he->hroot_out;
317         } else {
318                 if (hists__has(hists, need_collapse))
319                         root_in = &hists->entries_collapsed;
320                 else
321                         root_in = hists->entries_in;
322                 root_out = &hists->entries;
323         }
324
325         rb_erase(&he->rb_node_in, root_in);
326         rb_erase(&he->rb_node, root_out);
327
328         --hists->nr_entries;
329         if (!he->filtered)
330                 --hists->nr_non_filtered_entries;
331
332         hist_entry__delete(he);
333 }
334
335 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
336 {
337         struct rb_node *next = rb_first(&hists->entries);
338         struct hist_entry *n;
339
340         while (next) {
341                 n = rb_entry(next, struct hist_entry, rb_node);
342                 next = rb_next(&n->rb_node);
343                 if (((zap_user && n->level == '.') ||
344                      (zap_kernel && n->level != '.') ||
345                      hists__decay_entry(hists, n))) {
346                         hists__delete_entry(hists, n);
347                 }
348         }
349 }
350
351 void hists__delete_entries(struct hists *hists)
352 {
353         struct rb_node *next = rb_first(&hists->entries);
354         struct hist_entry *n;
355
356         while (next) {
357                 n = rb_entry(next, struct hist_entry, rb_node);
358                 next = rb_next(&n->rb_node);
359
360                 hists__delete_entry(hists, n);
361         }
362 }
363
364 /*
365  * histogram, sorted on item, collects periods
366  */
367
368 static int hist_entry__init(struct hist_entry *he,
369                             struct hist_entry *template,
370                             bool sample_self)
371 {
372         *he = *template;
373
374         if (symbol_conf.cumulate_callchain) {
375                 he->stat_acc = malloc(sizeof(he->stat));
376                 if (he->stat_acc == NULL)
377                         return -ENOMEM;
378                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
379                 if (!sample_self)
380                         memset(&he->stat, 0, sizeof(he->stat));
381         }
382
383         map__get(he->ms.map);
384
385         if (he->branch_info) {
386                 /*
387                  * This branch info is (a part of) allocated from
388                  * sample__resolve_bstack() and will be freed after
389                  * adding new entries.  So we need to save a copy.
390                  */
391                 he->branch_info = malloc(sizeof(*he->branch_info));
392                 if (he->branch_info == NULL) {
393                         map__zput(he->ms.map);
394                         free(he->stat_acc);
395                         return -ENOMEM;
396                 }
397
398                 memcpy(he->branch_info, template->branch_info,
399                        sizeof(*he->branch_info));
400
401                 map__get(he->branch_info->from.map);
402                 map__get(he->branch_info->to.map);
403         }
404
405         if (he->mem_info) {
406                 map__get(he->mem_info->iaddr.map);
407                 map__get(he->mem_info->daddr.map);
408         }
409
410         if (symbol_conf.use_callchain)
411                 callchain_init(he->callchain);
412
413         if (he->raw_data) {
414                 he->raw_data = memdup(he->raw_data, he->raw_size);
415
416                 if (he->raw_data == NULL) {
417                         map__put(he->ms.map);
418                         if (he->branch_info) {
419                                 map__put(he->branch_info->from.map);
420                                 map__put(he->branch_info->to.map);
421                                 free(he->branch_info);
422                         }
423                         if (he->mem_info) {
424                                 map__put(he->mem_info->iaddr.map);
425                                 map__put(he->mem_info->daddr.map);
426                         }
427                         free(he->stat_acc);
428                         return -ENOMEM;
429                 }
430         }
431         INIT_LIST_HEAD(&he->pairs.node);
432         thread__get(he->thread);
433         he->hroot_in  = RB_ROOT;
434         he->hroot_out = RB_ROOT;
435
436         if (!symbol_conf.report_hierarchy)
437                 he->leaf = true;
438
439         return 0;
440 }
441
442 static void *hist_entry__zalloc(size_t size)
443 {
444         return zalloc(size + sizeof(struct hist_entry));
445 }
446
447 static void hist_entry__free(void *ptr)
448 {
449         free(ptr);
450 }
451
452 static struct hist_entry_ops default_ops = {
453         .new    = hist_entry__zalloc,
454         .free   = hist_entry__free,
455 };
456
457 static struct hist_entry *hist_entry__new(struct hist_entry *template,
458                                           bool sample_self)
459 {
460         struct hist_entry_ops *ops = template->ops;
461         size_t callchain_size = 0;
462         struct hist_entry *he;
463         int err = 0;
464
465         if (!ops)
466                 ops = template->ops = &default_ops;
467
468         if (symbol_conf.use_callchain)
469                 callchain_size = sizeof(struct callchain_root);
470
471         he = ops->new(callchain_size);
472         if (he) {
473                 err = hist_entry__init(he, template, sample_self);
474                 if (err) {
475                         ops->free(he);
476                         he = NULL;
477                 }
478         }
479
480         return he;
481 }
482
483 static u8 symbol__parent_filter(const struct symbol *parent)
484 {
485         if (symbol_conf.exclude_other && parent == NULL)
486                 return 1 << HIST_FILTER__PARENT;
487         return 0;
488 }
489
490 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
491 {
492         if (!symbol_conf.use_callchain)
493                 return;
494
495         he->hists->callchain_period += period;
496         if (!he->filtered)
497                 he->hists->callchain_non_filtered_period += period;
498 }
499
500 static struct hist_entry *hists__findnew_entry(struct hists *hists,
501                                                struct hist_entry *entry,
502                                                struct addr_location *al,
503                                                bool sample_self)
504 {
505         struct rb_node **p;
506         struct rb_node *parent = NULL;
507         struct hist_entry *he;
508         int64_t cmp;
509         u64 period = entry->stat.period;
510         u64 weight = entry->stat.weight;
511
512         p = &hists->entries_in->rb_node;
513
514         while (*p != NULL) {
515                 parent = *p;
516                 he = rb_entry(parent, struct hist_entry, rb_node_in);
517
518                 /*
519                  * Make sure that it receives arguments in a same order as
520                  * hist_entry__collapse() so that we can use an appropriate
521                  * function when searching an entry regardless which sort
522                  * keys were used.
523                  */
524                 cmp = hist_entry__cmp(he, entry);
525
526                 if (!cmp) {
527                         if (sample_self) {
528                                 he_stat__add_period(&he->stat, period, weight);
529                                 hist_entry__add_callchain_period(he, period);
530                         }
531                         if (symbol_conf.cumulate_callchain)
532                                 he_stat__add_period(he->stat_acc, period, weight);
533
534                         /*
535                          * This mem info was allocated from sample__resolve_mem
536                          * and will not be used anymore.
537                          */
538                         zfree(&entry->mem_info);
539
540                         /* If the map of an existing hist_entry has
541                          * become out-of-date due to an exec() or
542                          * similar, update it.  Otherwise we will
543                          * mis-adjust symbol addresses when computing
544                          * the history counter to increment.
545                          */
546                         if (he->ms.map != entry->ms.map) {
547                                 map__put(he->ms.map);
548                                 he->ms.map = map__get(entry->ms.map);
549                         }
550                         goto out;
551                 }
552
553                 if (cmp < 0)
554                         p = &(*p)->rb_left;
555                 else
556                         p = &(*p)->rb_right;
557         }
558
559         he = hist_entry__new(entry, sample_self);
560         if (!he)
561                 return NULL;
562
563         if (sample_self)
564                 hist_entry__add_callchain_period(he, period);
565         hists->nr_entries++;
566
567         rb_link_node(&he->rb_node_in, parent, p);
568         rb_insert_color(&he->rb_node_in, hists->entries_in);
569 out:
570         if (sample_self)
571                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
572         if (symbol_conf.cumulate_callchain)
573                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
574         return he;
575 }
576
577 static struct hist_entry*
578 __hists__add_entry(struct hists *hists,
579                    struct addr_location *al,
580                    struct symbol *sym_parent,
581                    struct branch_info *bi,
582                    struct mem_info *mi,
583                    struct perf_sample *sample,
584                    bool sample_self,
585                    struct hist_entry_ops *ops)
586 {
587         struct namespaces *ns = thread__namespaces(al->thread);
588         struct hist_entry entry = {
589                 .thread = al->thread,
590                 .comm = thread__comm(al->thread),
591                 .cgroup_id = {
592                         .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
593                         .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
594                 },
595                 .ms = {
596                         .map    = al->map,
597                         .sym    = al->sym,
598                 },
599                 .socket  = al->socket,
600                 .cpu     = al->cpu,
601                 .cpumode = al->cpumode,
602                 .ip      = al->addr,
603                 .level   = al->level,
604                 .stat = {
605                         .nr_events = 1,
606                         .period = sample->period,
607                         .weight = sample->weight,
608                 },
609                 .parent = sym_parent,
610                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
611                 .hists  = hists,
612                 .branch_info = bi,
613                 .mem_info = mi,
614                 .transaction = sample->transaction,
615                 .raw_data = sample->raw_data,
616                 .raw_size = sample->raw_size,
617                 .ops = ops,
618         };
619
620         return hists__findnew_entry(hists, &entry, al, sample_self);
621 }
622
623 struct hist_entry *hists__add_entry(struct hists *hists,
624                                     struct addr_location *al,
625                                     struct symbol *sym_parent,
626                                     struct branch_info *bi,
627                                     struct mem_info *mi,
628                                     struct perf_sample *sample,
629                                     bool sample_self)
630 {
631         return __hists__add_entry(hists, al, sym_parent, bi, mi,
632                                   sample, sample_self, NULL);
633 }
634
635 struct hist_entry *hists__add_entry_ops(struct hists *hists,
636                                         struct hist_entry_ops *ops,
637                                         struct addr_location *al,
638                                         struct symbol *sym_parent,
639                                         struct branch_info *bi,
640                                         struct mem_info *mi,
641                                         struct perf_sample *sample,
642                                         bool sample_self)
643 {
644         return __hists__add_entry(hists, al, sym_parent, bi, mi,
645                                   sample, sample_self, ops);
646 }
647
648 static int
649 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
650                     struct addr_location *al __maybe_unused)
651 {
652         return 0;
653 }
654
655 static int
656 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
657                         struct addr_location *al __maybe_unused)
658 {
659         return 0;
660 }
661
662 static int
663 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
664 {
665         struct perf_sample *sample = iter->sample;
666         struct mem_info *mi;
667
668         mi = sample__resolve_mem(sample, al);
669         if (mi == NULL)
670                 return -ENOMEM;
671
672         iter->priv = mi;
673         return 0;
674 }
675
676 static int
677 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
678 {
679         u64 cost;
680         struct mem_info *mi = iter->priv;
681         struct hists *hists = evsel__hists(iter->evsel);
682         struct perf_sample *sample = iter->sample;
683         struct hist_entry *he;
684
685         if (mi == NULL)
686                 return -EINVAL;
687
688         cost = sample->weight;
689         if (!cost)
690                 cost = 1;
691
692         /*
693          * must pass period=weight in order to get the correct
694          * sorting from hists__collapse_resort() which is solely
695          * based on periods. We want sorting be done on nr_events * weight
696          * and this is indirectly achieved by passing period=weight here
697          * and the he_stat__add_period() function.
698          */
699         sample->period = cost;
700
701         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
702                               sample, true);
703         if (!he)
704                 return -ENOMEM;
705
706         iter->he = he;
707         return 0;
708 }
709
710 static int
711 iter_finish_mem_entry(struct hist_entry_iter *iter,
712                       struct addr_location *al __maybe_unused)
713 {
714         struct perf_evsel *evsel = iter->evsel;
715         struct hists *hists = evsel__hists(evsel);
716         struct hist_entry *he = iter->he;
717         int err = -EINVAL;
718
719         if (he == NULL)
720                 goto out;
721
722         hists__inc_nr_samples(hists, he->filtered);
723
724         err = hist_entry__append_callchain(he, iter->sample);
725
726 out:
727         /*
728          * We don't need to free iter->priv (mem_info) here since the mem info
729          * was either already freed in hists__findnew_entry() or passed to a
730          * new hist entry by hist_entry__new().
731          */
732         iter->priv = NULL;
733
734         iter->he = NULL;
735         return err;
736 }
737
738 static int
739 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
740 {
741         struct branch_info *bi;
742         struct perf_sample *sample = iter->sample;
743
744         bi = sample__resolve_bstack(sample, al);
745         if (!bi)
746                 return -ENOMEM;
747
748         iter->curr = 0;
749         iter->total = sample->branch_stack->nr;
750
751         iter->priv = bi;
752         return 0;
753 }
754
755 static int
756 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
757                              struct addr_location *al __maybe_unused)
758 {
759         return 0;
760 }
761
762 static int
763 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
764 {
765         struct branch_info *bi = iter->priv;
766         int i = iter->curr;
767
768         if (bi == NULL)
769                 return 0;
770
771         if (iter->curr >= iter->total)
772                 return 0;
773
774         al->map = bi[i].to.map;
775         al->sym = bi[i].to.sym;
776         al->addr = bi[i].to.addr;
777         return 1;
778 }
779
780 static int
781 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
782 {
783         struct branch_info *bi;
784         struct perf_evsel *evsel = iter->evsel;
785         struct hists *hists = evsel__hists(evsel);
786         struct perf_sample *sample = iter->sample;
787         struct hist_entry *he = NULL;
788         int i = iter->curr;
789         int err = 0;
790
791         bi = iter->priv;
792
793         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
794                 goto out;
795
796         /*
797          * The report shows the percentage of total branches captured
798          * and not events sampled. Thus we use a pseudo period of 1.
799          */
800         sample->period = 1;
801         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
802
803         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
804                               sample, true);
805         if (he == NULL)
806                 return -ENOMEM;
807
808         hists__inc_nr_samples(hists, he->filtered);
809
810 out:
811         iter->he = he;
812         iter->curr++;
813         return err;
814 }
815
816 static int
817 iter_finish_branch_entry(struct hist_entry_iter *iter,
818                          struct addr_location *al __maybe_unused)
819 {
820         zfree(&iter->priv);
821         iter->he = NULL;
822
823         return iter->curr >= iter->total ? 0 : -1;
824 }
825
826 static int
827 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
828                           struct addr_location *al __maybe_unused)
829 {
830         return 0;
831 }
832
833 static int
834 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
835 {
836         struct perf_evsel *evsel = iter->evsel;
837         struct perf_sample *sample = iter->sample;
838         struct hist_entry *he;
839
840         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
841                               sample, true);
842         if (he == NULL)
843                 return -ENOMEM;
844
845         iter->he = he;
846         return 0;
847 }
848
849 static int
850 iter_finish_normal_entry(struct hist_entry_iter *iter,
851                          struct addr_location *al __maybe_unused)
852 {
853         struct hist_entry *he = iter->he;
854         struct perf_evsel *evsel = iter->evsel;
855         struct perf_sample *sample = iter->sample;
856
857         if (he == NULL)
858                 return 0;
859
860         iter->he = NULL;
861
862         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
863
864         return hist_entry__append_callchain(he, sample);
865 }
866
867 static int
868 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
869                               struct addr_location *al __maybe_unused)
870 {
871         struct hist_entry **he_cache;
872
873         callchain_cursor_commit(&callchain_cursor);
874
875         /*
876          * This is for detecting cycles or recursions so that they're
877          * cumulated only one time to prevent entries more than 100%
878          * overhead.
879          */
880         he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
881         if (he_cache == NULL)
882                 return -ENOMEM;
883
884         iter->priv = he_cache;
885         iter->curr = 0;
886
887         return 0;
888 }
889
890 static int
891 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
892                                  struct addr_location *al)
893 {
894         struct perf_evsel *evsel = iter->evsel;
895         struct hists *hists = evsel__hists(evsel);
896         struct perf_sample *sample = iter->sample;
897         struct hist_entry **he_cache = iter->priv;
898         struct hist_entry *he;
899         int err = 0;
900
901         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
902                               sample, true);
903         if (he == NULL)
904                 return -ENOMEM;
905
906         iter->he = he;
907         he_cache[iter->curr++] = he;
908
909         hist_entry__append_callchain(he, sample);
910
911         /*
912          * We need to re-initialize the cursor since callchain_append()
913          * advanced the cursor to the end.
914          */
915         callchain_cursor_commit(&callchain_cursor);
916
917         hists__inc_nr_samples(hists, he->filtered);
918
919         return err;
920 }
921
922 static int
923 iter_next_cumulative_entry(struct hist_entry_iter *iter,
924                            struct addr_location *al)
925 {
926         struct callchain_cursor_node *node;
927
928         node = callchain_cursor_current(&callchain_cursor);
929         if (node == NULL)
930                 return 0;
931
932         return fill_callchain_info(al, node, iter->hide_unresolved);
933 }
934
935 static int
936 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
937                                struct addr_location *al)
938 {
939         struct perf_evsel *evsel = iter->evsel;
940         struct perf_sample *sample = iter->sample;
941         struct hist_entry **he_cache = iter->priv;
942         struct hist_entry *he;
943         struct hist_entry he_tmp = {
944                 .hists = evsel__hists(evsel),
945                 .cpu = al->cpu,
946                 .thread = al->thread,
947                 .comm = thread__comm(al->thread),
948                 .ip = al->addr,
949                 .ms = {
950                         .map = al->map,
951                         .sym = al->sym,
952                 },
953                 .parent = iter->parent,
954                 .raw_data = sample->raw_data,
955                 .raw_size = sample->raw_size,
956         };
957         int i;
958         struct callchain_cursor cursor;
959
960         callchain_cursor_snapshot(&cursor, &callchain_cursor);
961
962         callchain_cursor_advance(&callchain_cursor);
963
964         /*
965          * Check if there's duplicate entries in the callchain.
966          * It's possible that it has cycles or recursive calls.
967          */
968         for (i = 0; i < iter->curr; i++) {
969                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
970                         /* to avoid calling callback function */
971                         iter->he = NULL;
972                         return 0;
973                 }
974         }
975
976         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
977                               sample, false);
978         if (he == NULL)
979                 return -ENOMEM;
980
981         iter->he = he;
982         he_cache[iter->curr++] = he;
983
984         if (symbol_conf.use_callchain)
985                 callchain_append(he->callchain, &cursor, sample->period);
986         return 0;
987 }
988
989 static int
990 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
991                              struct addr_location *al __maybe_unused)
992 {
993         zfree(&iter->priv);
994         iter->he = NULL;
995
996         return 0;
997 }
998
999 const struct hist_iter_ops hist_iter_mem = {
1000         .prepare_entry          = iter_prepare_mem_entry,
1001         .add_single_entry       = iter_add_single_mem_entry,
1002         .next_entry             = iter_next_nop_entry,
1003         .add_next_entry         = iter_add_next_nop_entry,
1004         .finish_entry           = iter_finish_mem_entry,
1005 };
1006
1007 const struct hist_iter_ops hist_iter_branch = {
1008         .prepare_entry          = iter_prepare_branch_entry,
1009         .add_single_entry       = iter_add_single_branch_entry,
1010         .next_entry             = iter_next_branch_entry,
1011         .add_next_entry         = iter_add_next_branch_entry,
1012         .finish_entry           = iter_finish_branch_entry,
1013 };
1014
1015 const struct hist_iter_ops hist_iter_normal = {
1016         .prepare_entry          = iter_prepare_normal_entry,
1017         .add_single_entry       = iter_add_single_normal_entry,
1018         .next_entry             = iter_next_nop_entry,
1019         .add_next_entry         = iter_add_next_nop_entry,
1020         .finish_entry           = iter_finish_normal_entry,
1021 };
1022
1023 const struct hist_iter_ops hist_iter_cumulative = {
1024         .prepare_entry          = iter_prepare_cumulative_entry,
1025         .add_single_entry       = iter_add_single_cumulative_entry,
1026         .next_entry             = iter_next_cumulative_entry,
1027         .add_next_entry         = iter_add_next_cumulative_entry,
1028         .finish_entry           = iter_finish_cumulative_entry,
1029 };
1030
1031 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1032                          int max_stack_depth, void *arg)
1033 {
1034         int err, err2;
1035         struct map *alm = NULL;
1036
1037         if (al && al->map)
1038                 alm = map__get(al->map);
1039
1040         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1041                                         iter->evsel, al, max_stack_depth);
1042         if (err)
1043                 return err;
1044
1045         iter->max_stack = max_stack_depth;
1046
1047         err = iter->ops->prepare_entry(iter, al);
1048         if (err)
1049                 goto out;
1050
1051         err = iter->ops->add_single_entry(iter, al);
1052         if (err)
1053                 goto out;
1054
1055         if (iter->he && iter->add_entry_cb) {
1056                 err = iter->add_entry_cb(iter, al, true, arg);
1057                 if (err)
1058                         goto out;
1059         }
1060
1061         while (iter->ops->next_entry(iter, al)) {
1062                 err = iter->ops->add_next_entry(iter, al);
1063                 if (err)
1064                         break;
1065
1066                 if (iter->he && iter->add_entry_cb) {
1067                         err = iter->add_entry_cb(iter, al, false, arg);
1068                         if (err)
1069                                 goto out;
1070                 }
1071         }
1072
1073 out:
1074         err2 = iter->ops->finish_entry(iter, al);
1075         if (!err)
1076                 err = err2;
1077
1078         map__put(alm);
1079
1080         return err;
1081 }
1082
1083 int64_t
1084 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1085 {
1086         struct hists *hists = left->hists;
1087         struct perf_hpp_fmt *fmt;
1088         int64_t cmp = 0;
1089
1090         hists__for_each_sort_list(hists, fmt) {
1091                 if (perf_hpp__is_dynamic_entry(fmt) &&
1092                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1093                         continue;
1094
1095                 cmp = fmt->cmp(fmt, left, right);
1096                 if (cmp)
1097                         break;
1098         }
1099
1100         return cmp;
1101 }
1102
1103 int64_t
1104 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1105 {
1106         struct hists *hists = left->hists;
1107         struct perf_hpp_fmt *fmt;
1108         int64_t cmp = 0;
1109
1110         hists__for_each_sort_list(hists, fmt) {
1111                 if (perf_hpp__is_dynamic_entry(fmt) &&
1112                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1113                         continue;
1114
1115                 cmp = fmt->collapse(fmt, left, right);
1116                 if (cmp)
1117                         break;
1118         }
1119
1120         return cmp;
1121 }
1122
1123 void hist_entry__delete(struct hist_entry *he)
1124 {
1125         struct hist_entry_ops *ops = he->ops;
1126
1127         thread__zput(he->thread);
1128         map__zput(he->ms.map);
1129
1130         if (he->branch_info) {
1131                 map__zput(he->branch_info->from.map);
1132                 map__zput(he->branch_info->to.map);
1133                 free_srcline(he->branch_info->srcline_from);
1134                 free_srcline(he->branch_info->srcline_to);
1135                 zfree(&he->branch_info);
1136         }
1137
1138         if (he->mem_info) {
1139                 map__zput(he->mem_info->iaddr.map);
1140                 map__zput(he->mem_info->daddr.map);
1141                 zfree(&he->mem_info);
1142         }
1143
1144         if (he->inline_node) {
1145                 inline_node__delete(he->inline_node);
1146                 he->inline_node = NULL;
1147         }
1148
1149         zfree(&he->stat_acc);
1150         free_srcline(he->srcline);
1151         if (he->srcfile && he->srcfile[0])
1152                 free(he->srcfile);
1153         free_callchain(he->callchain);
1154         free(he->trace_output);
1155         free(he->raw_data);
1156         ops->free(he);
1157 }
1158
1159 /*
1160  * If this is not the last column, then we need to pad it according to the
1161  * pre-calculated max lenght for this column, otherwise don't bother adding
1162  * spaces because that would break viewing this with, for instance, 'less',
1163  * that would show tons of trailing spaces when a long C++ demangled method
1164  * names is sampled.
1165 */
1166 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1167                                    struct perf_hpp_fmt *fmt, int printed)
1168 {
1169         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1170                 const int width = fmt->width(fmt, hpp, he->hists);
1171                 if (printed < width) {
1172                         advance_hpp(hpp, printed);
1173                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1174                 }
1175         }
1176
1177         return printed;
1178 }
1179
1180 /*
1181  * collapse the histogram
1182  */
1183
1184 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1185 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1186                                        enum hist_filter type);
1187
1188 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1189
1190 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1191 {
1192         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1193 }
1194
1195 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1196                                                 enum hist_filter type,
1197                                                 fmt_chk_fn check)
1198 {
1199         struct perf_hpp_fmt *fmt;
1200         bool type_match = false;
1201         struct hist_entry *parent = he->parent_he;
1202
1203         switch (type) {
1204         case HIST_FILTER__THREAD:
1205                 if (symbol_conf.comm_list == NULL &&
1206                     symbol_conf.pid_list == NULL &&
1207                     symbol_conf.tid_list == NULL)
1208                         return;
1209                 break;
1210         case HIST_FILTER__DSO:
1211                 if (symbol_conf.dso_list == NULL)
1212                         return;
1213                 break;
1214         case HIST_FILTER__SYMBOL:
1215                 if (symbol_conf.sym_list == NULL)
1216                         return;
1217                 break;
1218         case HIST_FILTER__PARENT:
1219         case HIST_FILTER__GUEST:
1220         case HIST_FILTER__HOST:
1221         case HIST_FILTER__SOCKET:
1222         case HIST_FILTER__C2C:
1223         default:
1224                 return;
1225         }
1226
1227         /* if it's filtered by own fmt, it has to have filter bits */
1228         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1229                 if (check(fmt)) {
1230                         type_match = true;
1231                         break;
1232                 }
1233         }
1234
1235         if (type_match) {
1236                 /*
1237                  * If the filter is for current level entry, propagate
1238                  * filter marker to parents.  The marker bit was
1239                  * already set by default so it only needs to clear
1240                  * non-filtered entries.
1241                  */
1242                 if (!(he->filtered & (1 << type))) {
1243                         while (parent) {
1244                                 parent->filtered &= ~(1 << type);
1245                                 parent = parent->parent_he;
1246                         }
1247                 }
1248         } else {
1249                 /*
1250                  * If current entry doesn't have matching formats, set
1251                  * filter marker for upper level entries.  it will be
1252                  * cleared if its lower level entries is not filtered.
1253                  *
1254                  * For lower-level entries, it inherits parent's
1255                  * filter bit so that lower level entries of a
1256                  * non-filtered entry won't set the filter marker.
1257                  */
1258                 if (parent == NULL)
1259                         he->filtered |= (1 << type);
1260                 else
1261                         he->filtered |= (parent->filtered & (1 << type));
1262         }
1263 }
1264
1265 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1266 {
1267         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1268                                             check_thread_entry);
1269
1270         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1271                                             perf_hpp__is_dso_entry);
1272
1273         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1274                                             perf_hpp__is_sym_entry);
1275
1276         hists__apply_filters(he->hists, he);
1277 }
1278
1279 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1280                                                  struct rb_root *root,
1281                                                  struct hist_entry *he,
1282                                                  struct hist_entry *parent_he,
1283                                                  struct perf_hpp_list *hpp_list)
1284 {
1285         struct rb_node **p = &root->rb_node;
1286         struct rb_node *parent = NULL;
1287         struct hist_entry *iter, *new;
1288         struct perf_hpp_fmt *fmt;
1289         int64_t cmp;
1290
1291         while (*p != NULL) {
1292                 parent = *p;
1293                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1294
1295                 cmp = 0;
1296                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1297                         cmp = fmt->collapse(fmt, iter, he);
1298                         if (cmp)
1299                                 break;
1300                 }
1301
1302                 if (!cmp) {
1303                         he_stat__add_stat(&iter->stat, &he->stat);
1304                         return iter;
1305                 }
1306
1307                 if (cmp < 0)
1308                         p = &parent->rb_left;
1309                 else
1310                         p = &parent->rb_right;
1311         }
1312
1313         new = hist_entry__new(he, true);
1314         if (new == NULL)
1315                 return NULL;
1316
1317         hists->nr_entries++;
1318
1319         /* save related format list for output */
1320         new->hpp_list = hpp_list;
1321         new->parent_he = parent_he;
1322
1323         hist_entry__apply_hierarchy_filters(new);
1324
1325         /* some fields are now passed to 'new' */
1326         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1327                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1328                         he->trace_output = NULL;
1329                 else
1330                         new->trace_output = NULL;
1331
1332                 if (perf_hpp__is_srcline_entry(fmt))
1333                         he->srcline = NULL;
1334                 else
1335                         new->srcline = NULL;
1336
1337                 if (perf_hpp__is_srcfile_entry(fmt))
1338                         he->srcfile = NULL;
1339                 else
1340                         new->srcfile = NULL;
1341         }
1342
1343         rb_link_node(&new->rb_node_in, parent, p);
1344         rb_insert_color(&new->rb_node_in, root);
1345         return new;
1346 }
1347
1348 static int hists__hierarchy_insert_entry(struct hists *hists,
1349                                          struct rb_root *root,
1350                                          struct hist_entry *he)
1351 {
1352         struct perf_hpp_list_node *node;
1353         struct hist_entry *new_he = NULL;
1354         struct hist_entry *parent = NULL;
1355         int depth = 0;
1356         int ret = 0;
1357
1358         list_for_each_entry(node, &hists->hpp_formats, list) {
1359                 /* skip period (overhead) and elided columns */
1360                 if (node->level == 0 || node->skip)
1361                         continue;
1362
1363                 /* insert copy of 'he' for each fmt into the hierarchy */
1364                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1365                 if (new_he == NULL) {
1366                         ret = -1;
1367                         break;
1368                 }
1369
1370                 root = &new_he->hroot_in;
1371                 new_he->depth = depth++;
1372                 parent = new_he;
1373         }
1374
1375         if (new_he) {
1376                 new_he->leaf = true;
1377
1378                 if (symbol_conf.use_callchain) {
1379                         callchain_cursor_reset(&callchain_cursor);
1380                         if (callchain_merge(&callchain_cursor,
1381                                             new_he->callchain,
1382                                             he->callchain) < 0)
1383                                 ret = -1;
1384                 }
1385         }
1386
1387         /* 'he' is no longer used */
1388         hist_entry__delete(he);
1389
1390         /* return 0 (or -1) since it already applied filters */
1391         return ret;
1392 }
1393
1394 static int hists__collapse_insert_entry(struct hists *hists,
1395                                         struct rb_root *root,
1396                                         struct hist_entry *he)
1397 {
1398         struct rb_node **p = &root->rb_node;
1399         struct rb_node *parent = NULL;
1400         struct hist_entry *iter;
1401         int64_t cmp;
1402
1403         if (symbol_conf.report_hierarchy)
1404                 return hists__hierarchy_insert_entry(hists, root, he);
1405
1406         while (*p != NULL) {
1407                 parent = *p;
1408                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1409
1410                 cmp = hist_entry__collapse(iter, he);
1411
1412                 if (!cmp) {
1413                         int ret = 0;
1414
1415                         he_stat__add_stat(&iter->stat, &he->stat);
1416                         if (symbol_conf.cumulate_callchain)
1417                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1418
1419                         if (symbol_conf.use_callchain) {
1420                                 callchain_cursor_reset(&callchain_cursor);
1421                                 if (callchain_merge(&callchain_cursor,
1422                                                     iter->callchain,
1423                                                     he->callchain) < 0)
1424                                         ret = -1;
1425                         }
1426                         hist_entry__delete(he);
1427                         return ret;
1428                 }
1429
1430                 if (cmp < 0)
1431                         p = &(*p)->rb_left;
1432                 else
1433                         p = &(*p)->rb_right;
1434         }
1435         hists->nr_entries++;
1436
1437         rb_link_node(&he->rb_node_in, parent, p);
1438         rb_insert_color(&he->rb_node_in, root);
1439         return 1;
1440 }
1441
1442 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1443 {
1444         struct rb_root *root;
1445
1446         pthread_mutex_lock(&hists->lock);
1447
1448         root = hists->entries_in;
1449         if (++hists->entries_in > &hists->entries_in_array[1])
1450                 hists->entries_in = &hists->entries_in_array[0];
1451
1452         pthread_mutex_unlock(&hists->lock);
1453
1454         return root;
1455 }
1456
1457 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1458 {
1459         hists__filter_entry_by_dso(hists, he);
1460         hists__filter_entry_by_thread(hists, he);
1461         hists__filter_entry_by_symbol(hists, he);
1462         hists__filter_entry_by_socket(hists, he);
1463 }
1464
1465 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1466 {
1467         struct rb_root *root;
1468         struct rb_node *next;
1469         struct hist_entry *n;
1470         int ret;
1471
1472         if (!hists__has(hists, need_collapse))
1473                 return 0;
1474
1475         hists->nr_entries = 0;
1476
1477         root = hists__get_rotate_entries_in(hists);
1478
1479         next = rb_first(root);
1480
1481         while (next) {
1482                 if (session_done())
1483                         break;
1484                 n = rb_entry(next, struct hist_entry, rb_node_in);
1485                 next = rb_next(&n->rb_node_in);
1486
1487                 rb_erase(&n->rb_node_in, root);
1488                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1489                 if (ret < 0)
1490                         return -1;
1491
1492                 if (ret) {
1493                         /*
1494                          * If it wasn't combined with one of the entries already
1495                          * collapsed, we need to apply the filters that may have
1496                          * been set by, say, the hist_browser.
1497                          */
1498                         hists__apply_filters(hists, n);
1499                 }
1500                 if (prog)
1501                         ui_progress__update(prog, 1);
1502         }
1503         return 0;
1504 }
1505
1506 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1507 {
1508         struct hists *hists = a->hists;
1509         struct perf_hpp_fmt *fmt;
1510         int64_t cmp = 0;
1511
1512         hists__for_each_sort_list(hists, fmt) {
1513                 if (perf_hpp__should_skip(fmt, a->hists))
1514                         continue;
1515
1516                 cmp = fmt->sort(fmt, a, b);
1517                 if (cmp)
1518                         break;
1519         }
1520
1521         return cmp;
1522 }
1523
1524 static void hists__reset_filter_stats(struct hists *hists)
1525 {
1526         hists->nr_non_filtered_entries = 0;
1527         hists->stats.total_non_filtered_period = 0;
1528 }
1529
1530 void hists__reset_stats(struct hists *hists)
1531 {
1532         hists->nr_entries = 0;
1533         hists->stats.total_period = 0;
1534
1535         hists__reset_filter_stats(hists);
1536 }
1537
1538 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1539 {
1540         hists->nr_non_filtered_entries++;
1541         hists->stats.total_non_filtered_period += h->stat.period;
1542 }
1543
1544 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1545 {
1546         if (!h->filtered)
1547                 hists__inc_filter_stats(hists, h);
1548
1549         hists->nr_entries++;
1550         hists->stats.total_period += h->stat.period;
1551 }
1552
1553 static void hierarchy_recalc_total_periods(struct hists *hists)
1554 {
1555         struct rb_node *node;
1556         struct hist_entry *he;
1557
1558         node = rb_first(&hists->entries);
1559
1560         hists->stats.total_period = 0;
1561         hists->stats.total_non_filtered_period = 0;
1562
1563         /*
1564          * recalculate total period using top-level entries only
1565          * since lower level entries only see non-filtered entries
1566          * but upper level entries have sum of both entries.
1567          */
1568         while (node) {
1569                 he = rb_entry(node, struct hist_entry, rb_node);
1570                 node = rb_next(node);
1571
1572                 hists->stats.total_period += he->stat.period;
1573                 if (!he->filtered)
1574                         hists->stats.total_non_filtered_period += he->stat.period;
1575         }
1576 }
1577
1578 static void hierarchy_insert_output_entry(struct rb_root *root,
1579                                           struct hist_entry *he)
1580 {
1581         struct rb_node **p = &root->rb_node;
1582         struct rb_node *parent = NULL;
1583         struct hist_entry *iter;
1584         struct perf_hpp_fmt *fmt;
1585
1586         while (*p != NULL) {
1587                 parent = *p;
1588                 iter = rb_entry(parent, struct hist_entry, rb_node);
1589
1590                 if (hist_entry__sort(he, iter) > 0)
1591                         p = &parent->rb_left;
1592                 else
1593                         p = &parent->rb_right;
1594         }
1595
1596         rb_link_node(&he->rb_node, parent, p);
1597         rb_insert_color(&he->rb_node, root);
1598
1599         /* update column width of dynamic entry */
1600         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1601                 if (perf_hpp__is_dynamic_entry(fmt))
1602                         fmt->sort(fmt, he, NULL);
1603         }
1604 }
1605
1606 static void hists__hierarchy_output_resort(struct hists *hists,
1607                                            struct ui_progress *prog,
1608                                            struct rb_root *root_in,
1609                                            struct rb_root *root_out,
1610                                            u64 min_callchain_hits,
1611                                            bool use_callchain)
1612 {
1613         struct rb_node *node;
1614         struct hist_entry *he;
1615
1616         *root_out = RB_ROOT;
1617         node = rb_first(root_in);
1618
1619         while (node) {
1620                 he = rb_entry(node, struct hist_entry, rb_node_in);
1621                 node = rb_next(node);
1622
1623                 hierarchy_insert_output_entry(root_out, he);
1624
1625                 if (prog)
1626                         ui_progress__update(prog, 1);
1627
1628                 hists->nr_entries++;
1629                 if (!he->filtered) {
1630                         hists->nr_non_filtered_entries++;
1631                         hists__calc_col_len(hists, he);
1632                 }
1633
1634                 if (!he->leaf) {
1635                         hists__hierarchy_output_resort(hists, prog,
1636                                                        &he->hroot_in,
1637                                                        &he->hroot_out,
1638                                                        min_callchain_hits,
1639                                                        use_callchain);
1640                         continue;
1641                 }
1642
1643                 if (!use_callchain)
1644                         continue;
1645
1646                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1647                         u64 total = he->stat.period;
1648
1649                         if (symbol_conf.cumulate_callchain)
1650                                 total = he->stat_acc->period;
1651
1652                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1653                 }
1654
1655                 callchain_param.sort(&he->sorted_chain, he->callchain,
1656                                      min_callchain_hits, &callchain_param);
1657         }
1658 }
1659
1660 static void __hists__insert_output_entry(struct rb_root *entries,
1661                                          struct hist_entry *he,
1662                                          u64 min_callchain_hits,
1663                                          bool use_callchain)
1664 {
1665         struct rb_node **p = &entries->rb_node;
1666         struct rb_node *parent = NULL;
1667         struct hist_entry *iter;
1668         struct perf_hpp_fmt *fmt;
1669
1670         if (use_callchain) {
1671                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1672                         u64 total = he->stat.period;
1673
1674                         if (symbol_conf.cumulate_callchain)
1675                                 total = he->stat_acc->period;
1676
1677                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1678                 }
1679                 callchain_param.sort(&he->sorted_chain, he->callchain,
1680                                       min_callchain_hits, &callchain_param);
1681         }
1682
1683         while (*p != NULL) {
1684                 parent = *p;
1685                 iter = rb_entry(parent, struct hist_entry, rb_node);
1686
1687                 if (hist_entry__sort(he, iter) > 0)
1688                         p = &(*p)->rb_left;
1689                 else
1690                         p = &(*p)->rb_right;
1691         }
1692
1693         rb_link_node(&he->rb_node, parent, p);
1694         rb_insert_color(&he->rb_node, entries);
1695
1696         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1697                 if (perf_hpp__is_dynamic_entry(fmt) &&
1698                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1699                         fmt->sort(fmt, he, NULL);  /* update column width */
1700         }
1701 }
1702
1703 static void output_resort(struct hists *hists, struct ui_progress *prog,
1704                           bool use_callchain, hists__resort_cb_t cb)
1705 {
1706         struct rb_root *root;
1707         struct rb_node *next;
1708         struct hist_entry *n;
1709         u64 callchain_total;
1710         u64 min_callchain_hits;
1711
1712         callchain_total = hists->callchain_period;
1713         if (symbol_conf.filter_relative)
1714                 callchain_total = hists->callchain_non_filtered_period;
1715
1716         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1717
1718         hists__reset_stats(hists);
1719         hists__reset_col_len(hists);
1720
1721         if (symbol_conf.report_hierarchy) {
1722                 hists__hierarchy_output_resort(hists, prog,
1723                                                &hists->entries_collapsed,
1724                                                &hists->entries,
1725                                                min_callchain_hits,
1726                                                use_callchain);
1727                 hierarchy_recalc_total_periods(hists);
1728                 return;
1729         }
1730
1731         if (hists__has(hists, need_collapse))
1732                 root = &hists->entries_collapsed;
1733         else
1734                 root = hists->entries_in;
1735
1736         next = rb_first(root);
1737         hists->entries = RB_ROOT;
1738
1739         while (next) {
1740                 n = rb_entry(next, struct hist_entry, rb_node_in);
1741                 next = rb_next(&n->rb_node_in);
1742
1743                 if (cb && cb(n))
1744                         continue;
1745
1746                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1747                 hists__inc_stats(hists, n);
1748
1749                 if (!n->filtered)
1750                         hists__calc_col_len(hists, n);
1751
1752                 if (prog)
1753                         ui_progress__update(prog, 1);
1754         }
1755 }
1756
1757 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1758 {
1759         bool use_callchain;
1760
1761         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1762                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1763         else
1764                 use_callchain = symbol_conf.use_callchain;
1765
1766         use_callchain |= symbol_conf.show_branchflag_count;
1767
1768         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1769 }
1770
1771 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1772 {
1773         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1774 }
1775
1776 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1777                              hists__resort_cb_t cb)
1778 {
1779         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1780 }
1781
1782 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1783 {
1784         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1785                 return false;
1786
1787         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1788                 return true;
1789
1790         return false;
1791 }
1792
1793 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1794 {
1795         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1796
1797         while (can_goto_child(he, HMD_NORMAL)) {
1798                 node = rb_last(&he->hroot_out);
1799                 he = rb_entry(node, struct hist_entry, rb_node);
1800         }
1801         return node;
1802 }
1803
1804 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1805 {
1806         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1807
1808         if (can_goto_child(he, hmd))
1809                 node = rb_first(&he->hroot_out);
1810         else
1811                 node = rb_next(node);
1812
1813         while (node == NULL) {
1814                 he = he->parent_he;
1815                 if (he == NULL)
1816                         break;
1817
1818                 node = rb_next(&he->rb_node);
1819         }
1820         return node;
1821 }
1822
1823 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1824 {
1825         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1826
1827         node = rb_prev(node);
1828         if (node)
1829                 return rb_hierarchy_last(node);
1830
1831         he = he->parent_he;
1832         if (he == NULL)
1833                 return NULL;
1834
1835         return &he->rb_node;
1836 }
1837
1838 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1839 {
1840         struct rb_node *node;
1841         struct hist_entry *child;
1842         float percent;
1843
1844         if (he->leaf)
1845                 return false;
1846
1847         node = rb_first(&he->hroot_out);
1848         child = rb_entry(node, struct hist_entry, rb_node);
1849
1850         while (node && child->filtered) {
1851                 node = rb_next(node);
1852                 child = rb_entry(node, struct hist_entry, rb_node);
1853         }
1854
1855         if (node)
1856                 percent = hist_entry__get_percent_limit(child);
1857         else
1858                 percent = 0;
1859
1860         return node && percent >= limit;
1861 }
1862
1863 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1864                                        enum hist_filter filter)
1865 {
1866         h->filtered &= ~(1 << filter);
1867
1868         if (symbol_conf.report_hierarchy) {
1869                 struct hist_entry *parent = h->parent_he;
1870
1871                 while (parent) {
1872                         he_stat__add_stat(&parent->stat, &h->stat);
1873
1874                         parent->filtered &= ~(1 << filter);
1875
1876                         if (parent->filtered)
1877                                 goto next;
1878
1879                         /* force fold unfiltered entry for simplicity */
1880                         parent->unfolded = false;
1881                         parent->has_no_entry = false;
1882                         parent->row_offset = 0;
1883                         parent->nr_rows = 0;
1884 next:
1885                         parent = parent->parent_he;
1886                 }
1887         }
1888
1889         if (h->filtered)
1890                 return;
1891
1892         /* force fold unfiltered entry for simplicity */
1893         h->unfolded = false;
1894         h->has_no_entry = false;
1895         h->row_offset = 0;
1896         h->nr_rows = 0;
1897
1898         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1899
1900         hists__inc_filter_stats(hists, h);
1901         hists__calc_col_len(hists, h);
1902 }
1903
1904
1905 static bool hists__filter_entry_by_dso(struct hists *hists,
1906                                        struct hist_entry *he)
1907 {
1908         if (hists->dso_filter != NULL &&
1909             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1910                 he->filtered |= (1 << HIST_FILTER__DSO);
1911                 return true;
1912         }
1913
1914         return false;
1915 }
1916
1917 static bool hists__filter_entry_by_thread(struct hists *hists,
1918                                           struct hist_entry *he)
1919 {
1920         if (hists->thread_filter != NULL &&
1921             he->thread != hists->thread_filter) {
1922                 he->filtered |= (1 << HIST_FILTER__THREAD);
1923                 return true;
1924         }
1925
1926         return false;
1927 }
1928
1929 static bool hists__filter_entry_by_symbol(struct hists *hists,
1930                                           struct hist_entry *he)
1931 {
1932         if (hists->symbol_filter_str != NULL &&
1933             (!he->ms.sym || strstr(he->ms.sym->name,
1934                                    hists->symbol_filter_str) == NULL)) {
1935                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1936                 return true;
1937         }
1938
1939         return false;
1940 }
1941
1942 static bool hists__filter_entry_by_socket(struct hists *hists,
1943                                           struct hist_entry *he)
1944 {
1945         if ((hists->socket_filter > -1) &&
1946             (he->socket != hists->socket_filter)) {
1947                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1948                 return true;
1949         }
1950
1951         return false;
1952 }
1953
1954 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1955
1956 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1957 {
1958         struct rb_node *nd;
1959
1960         hists->stats.nr_non_filtered_samples = 0;
1961
1962         hists__reset_filter_stats(hists);
1963         hists__reset_col_len(hists);
1964
1965         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1966                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1967
1968                 if (filter(hists, h))
1969                         continue;
1970
1971                 hists__remove_entry_filter(hists, h, type);
1972         }
1973 }
1974
1975 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1976 {
1977         struct rb_node **p = &root->rb_node;
1978         struct rb_node *parent = NULL;
1979         struct hist_entry *iter;
1980         struct rb_root new_root = RB_ROOT;
1981         struct rb_node *nd;
1982
1983         while (*p != NULL) {
1984                 parent = *p;
1985                 iter = rb_entry(parent, struct hist_entry, rb_node);
1986
1987                 if (hist_entry__sort(he, iter) > 0)
1988                         p = &(*p)->rb_left;
1989                 else
1990                         p = &(*p)->rb_right;
1991         }
1992
1993         rb_link_node(&he->rb_node, parent, p);
1994         rb_insert_color(&he->rb_node, root);
1995
1996         if (he->leaf || he->filtered)
1997                 return;
1998
1999         nd = rb_first(&he->hroot_out);
2000         while (nd) {
2001                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2002
2003                 nd = rb_next(nd);
2004                 rb_erase(&h->rb_node, &he->hroot_out);
2005
2006                 resort_filtered_entry(&new_root, h);
2007         }
2008
2009         he->hroot_out = new_root;
2010 }
2011
2012 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2013 {
2014         struct rb_node *nd;
2015         struct rb_root new_root = RB_ROOT;
2016
2017         hists->stats.nr_non_filtered_samples = 0;
2018
2019         hists__reset_filter_stats(hists);
2020         hists__reset_col_len(hists);
2021
2022         nd = rb_first(&hists->entries);
2023         while (nd) {
2024                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2025                 int ret;
2026
2027                 ret = hist_entry__filter(h, type, arg);
2028
2029                 /*
2030                  * case 1. non-matching type
2031                  * zero out the period, set filter marker and move to child
2032                  */
2033                 if (ret < 0) {
2034                         memset(&h->stat, 0, sizeof(h->stat));
2035                         h->filtered |= (1 << type);
2036
2037                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2038                 }
2039                 /*
2040                  * case 2. matched type (filter out)
2041                  * set filter marker and move to next
2042                  */
2043                 else if (ret == 1) {
2044                         h->filtered |= (1 << type);
2045
2046                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2047                 }
2048                 /*
2049                  * case 3. ok (not filtered)
2050                  * add period to hists and parents, erase the filter marker
2051                  * and move to next sibling
2052                  */
2053                 else {
2054                         hists__remove_entry_filter(hists, h, type);
2055
2056                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2057                 }
2058         }
2059
2060         hierarchy_recalc_total_periods(hists);
2061
2062         /*
2063          * resort output after applying a new filter since filter in a lower
2064          * hierarchy can change periods in a upper hierarchy.
2065          */
2066         nd = rb_first(&hists->entries);
2067         while (nd) {
2068                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2069
2070                 nd = rb_next(nd);
2071                 rb_erase(&h->rb_node, &hists->entries);
2072
2073                 resort_filtered_entry(&new_root, h);
2074         }
2075
2076         hists->entries = new_root;
2077 }
2078
2079 void hists__filter_by_thread(struct hists *hists)
2080 {
2081         if (symbol_conf.report_hierarchy)
2082                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2083                                         hists->thread_filter);
2084         else
2085                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2086                                       hists__filter_entry_by_thread);
2087 }
2088
2089 void hists__filter_by_dso(struct hists *hists)
2090 {
2091         if (symbol_conf.report_hierarchy)
2092                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2093                                         hists->dso_filter);
2094         else
2095                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2096                                       hists__filter_entry_by_dso);
2097 }
2098
2099 void hists__filter_by_symbol(struct hists *hists)
2100 {
2101         if (symbol_conf.report_hierarchy)
2102                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2103                                         hists->symbol_filter_str);
2104         else
2105                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2106                                       hists__filter_entry_by_symbol);
2107 }
2108
2109 void hists__filter_by_socket(struct hists *hists)
2110 {
2111         if (symbol_conf.report_hierarchy)
2112                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2113                                         &hists->socket_filter);
2114         else
2115                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2116                                       hists__filter_entry_by_socket);
2117 }
2118
2119 void events_stats__inc(struct events_stats *stats, u32 type)
2120 {
2121         ++stats->nr_events[0];
2122         ++stats->nr_events[type];
2123 }
2124
2125 void hists__inc_nr_events(struct hists *hists, u32 type)
2126 {
2127         events_stats__inc(&hists->stats, type);
2128 }
2129
2130 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2131 {
2132         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2133         if (!filtered)
2134                 hists->stats.nr_non_filtered_samples++;
2135 }
2136
2137 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2138                                                  struct hist_entry *pair)
2139 {
2140         struct rb_root *root;
2141         struct rb_node **p;
2142         struct rb_node *parent = NULL;
2143         struct hist_entry *he;
2144         int64_t cmp;
2145
2146         if (hists__has(hists, need_collapse))
2147                 root = &hists->entries_collapsed;
2148         else
2149                 root = hists->entries_in;
2150
2151         p = &root->rb_node;
2152
2153         while (*p != NULL) {
2154                 parent = *p;
2155                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2156
2157                 cmp = hist_entry__collapse(he, pair);
2158
2159                 if (!cmp)
2160                         goto out;
2161
2162                 if (cmp < 0)
2163                         p = &(*p)->rb_left;
2164                 else
2165                         p = &(*p)->rb_right;
2166         }
2167
2168         he = hist_entry__new(pair, true);
2169         if (he) {
2170                 memset(&he->stat, 0, sizeof(he->stat));
2171                 he->hists = hists;
2172                 if (symbol_conf.cumulate_callchain)
2173                         memset(he->stat_acc, 0, sizeof(he->stat));
2174                 rb_link_node(&he->rb_node_in, parent, p);
2175                 rb_insert_color(&he->rb_node_in, root);
2176                 hists__inc_stats(hists, he);
2177                 he->dummy = true;
2178         }
2179 out:
2180         return he;
2181 }
2182
2183 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2184                                                     struct rb_root *root,
2185                                                     struct hist_entry *pair)
2186 {
2187         struct rb_node **p;
2188         struct rb_node *parent = NULL;
2189         struct hist_entry *he;
2190         struct perf_hpp_fmt *fmt;
2191
2192         p = &root->rb_node;
2193         while (*p != NULL) {
2194                 int64_t cmp = 0;
2195
2196                 parent = *p;
2197                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2198
2199                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2200                         cmp = fmt->collapse(fmt, he, pair);
2201                         if (cmp)
2202                                 break;
2203                 }
2204                 if (!cmp)
2205                         goto out;
2206
2207                 if (cmp < 0)
2208                         p = &parent->rb_left;
2209                 else
2210                         p = &parent->rb_right;
2211         }
2212
2213         he = hist_entry__new(pair, true);
2214         if (he) {
2215                 rb_link_node(&he->rb_node_in, parent, p);
2216                 rb_insert_color(&he->rb_node_in, root);
2217
2218                 he->dummy = true;
2219                 he->hists = hists;
2220                 memset(&he->stat, 0, sizeof(he->stat));
2221                 hists__inc_stats(hists, he);
2222         }
2223 out:
2224         return he;
2225 }
2226
2227 static struct hist_entry *hists__find_entry(struct hists *hists,
2228                                             struct hist_entry *he)
2229 {
2230         struct rb_node *n;
2231
2232         if (hists__has(hists, need_collapse))
2233                 n = hists->entries_collapsed.rb_node;
2234         else
2235                 n = hists->entries_in->rb_node;
2236
2237         while (n) {
2238                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2239                 int64_t cmp = hist_entry__collapse(iter, he);
2240
2241                 if (cmp < 0)
2242                         n = n->rb_left;
2243                 else if (cmp > 0)
2244                         n = n->rb_right;
2245                 else
2246                         return iter;
2247         }
2248
2249         return NULL;
2250 }
2251
2252 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2253                                                       struct hist_entry *he)
2254 {
2255         struct rb_node *n = root->rb_node;
2256
2257         while (n) {
2258                 struct hist_entry *iter;
2259                 struct perf_hpp_fmt *fmt;
2260                 int64_t cmp = 0;
2261
2262                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2263                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2264                         cmp = fmt->collapse(fmt, iter, he);
2265                         if (cmp)
2266                                 break;
2267                 }
2268
2269                 if (cmp < 0)
2270                         n = n->rb_left;
2271                 else if (cmp > 0)
2272                         n = n->rb_right;
2273                 else
2274                         return iter;
2275         }
2276
2277         return NULL;
2278 }
2279
2280 static void hists__match_hierarchy(struct rb_root *leader_root,
2281                                    struct rb_root *other_root)
2282 {
2283         struct rb_node *nd;
2284         struct hist_entry *pos, *pair;
2285
2286         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2287                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2288                 pair = hists__find_hierarchy_entry(other_root, pos);
2289
2290                 if (pair) {
2291                         hist_entry__add_pair(pair, pos);
2292                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2293                 }
2294         }
2295 }
2296
2297 /*
2298  * Look for pairs to link to the leader buckets (hist_entries):
2299  */
2300 void hists__match(struct hists *leader, struct hists *other)
2301 {
2302         struct rb_root *root;
2303         struct rb_node *nd;
2304         struct hist_entry *pos, *pair;
2305
2306         if (symbol_conf.report_hierarchy) {
2307                 /* hierarchy report always collapses entries */
2308                 return hists__match_hierarchy(&leader->entries_collapsed,
2309                                               &other->entries_collapsed);
2310         }
2311
2312         if (hists__has(leader, need_collapse))
2313                 root = &leader->entries_collapsed;
2314         else
2315                 root = leader->entries_in;
2316
2317         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2318                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2319                 pair = hists__find_entry(other, pos);
2320
2321                 if (pair)
2322                         hist_entry__add_pair(pair, pos);
2323         }
2324 }
2325
2326 static int hists__link_hierarchy(struct hists *leader_hists,
2327                                  struct hist_entry *parent,
2328                                  struct rb_root *leader_root,
2329                                  struct rb_root *other_root)
2330 {
2331         struct rb_node *nd;
2332         struct hist_entry *pos, *leader;
2333
2334         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2335                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2336
2337                 if (hist_entry__has_pairs(pos)) {
2338                         bool found = false;
2339
2340                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2341                                 if (leader->hists == leader_hists) {
2342                                         found = true;
2343                                         break;
2344                                 }
2345                         }
2346                         if (!found)
2347                                 return -1;
2348                 } else {
2349                         leader = add_dummy_hierarchy_entry(leader_hists,
2350                                                            leader_root, pos);
2351                         if (leader == NULL)
2352                                 return -1;
2353
2354                         /* do not point parent in the pos */
2355                         leader->parent_he = parent;
2356
2357                         hist_entry__add_pair(pos, leader);
2358                 }
2359
2360                 if (!pos->leaf) {
2361                         if (hists__link_hierarchy(leader_hists, leader,
2362                                                   &leader->hroot_in,
2363                                                   &pos->hroot_in) < 0)
2364                                 return -1;
2365                 }
2366         }
2367         return 0;
2368 }
2369
2370 /*
2371  * Look for entries in the other hists that are not present in the leader, if
2372  * we find them, just add a dummy entry on the leader hists, with period=0,
2373  * nr_events=0, to serve as the list header.
2374  */
2375 int hists__link(struct hists *leader, struct hists *other)
2376 {
2377         struct rb_root *root;
2378         struct rb_node *nd;
2379         struct hist_entry *pos, *pair;
2380
2381         if (symbol_conf.report_hierarchy) {
2382                 /* hierarchy report always collapses entries */
2383                 return hists__link_hierarchy(leader, NULL,
2384                                              &leader->entries_collapsed,
2385                                              &other->entries_collapsed);
2386         }
2387
2388         if (hists__has(other, need_collapse))
2389                 root = &other->entries_collapsed;
2390         else
2391                 root = other->entries_in;
2392
2393         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2394                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2395
2396                 if (!hist_entry__has_pairs(pos)) {
2397                         pair = hists__add_dummy_entry(leader, pos);
2398                         if (pair == NULL)
2399                                 return -1;
2400                         hist_entry__add_pair(pos, pair);
2401                 }
2402         }
2403
2404         return 0;
2405 }
2406
2407 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2408                           struct perf_sample *sample, bool nonany_branch_mode)
2409 {
2410         struct branch_info *bi;
2411
2412         /* If we have branch cycles always annotate them. */
2413         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2414                 int i;
2415
2416                 bi = sample__resolve_bstack(sample, al);
2417                 if (bi) {
2418                         struct addr_map_symbol *prev = NULL;
2419
2420                         /*
2421                          * Ignore errors, still want to process the
2422                          * other entries.
2423                          *
2424                          * For non standard branch modes always
2425                          * force no IPC (prev == NULL)
2426                          *
2427                          * Note that perf stores branches reversed from
2428                          * program order!
2429                          */
2430                         for (i = bs->nr - 1; i >= 0; i--) {
2431                                 addr_map_symbol__account_cycles(&bi[i].from,
2432                                         nonany_branch_mode ? NULL : prev,
2433                                         bi[i].flags.cycles);
2434                                 prev = &bi[i].to;
2435                         }
2436                         free(bi);
2437                 }
2438         }
2439 }
2440
2441 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2442 {
2443         struct perf_evsel *pos;
2444         size_t ret = 0;
2445
2446         evlist__for_each_entry(evlist, pos) {
2447                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2448                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2449         }
2450
2451         return ret;
2452 }
2453
2454
2455 u64 hists__total_period(struct hists *hists)
2456 {
2457         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2458                 hists->stats.total_period;
2459 }
2460
2461 int parse_filter_percentage(const struct option *opt __maybe_unused,
2462                             const char *arg, int unset __maybe_unused)
2463 {
2464         if (!strcmp(arg, "relative"))
2465                 symbol_conf.filter_relative = true;
2466         else if (!strcmp(arg, "absolute"))
2467                 symbol_conf.filter_relative = false;
2468         else {
2469                 pr_debug("Invalid percentage: %s\n", arg);
2470                 return -1;
2471         }
2472
2473         return 0;
2474 }
2475
2476 int perf_hist_config(const char *var, const char *value)
2477 {
2478         if (!strcmp(var, "hist.percentage"))
2479                 return parse_filter_percentage(NULL, value, 0);
2480
2481         return 0;
2482 }
2483
2484 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2485 {
2486         memset(hists, 0, sizeof(*hists));
2487         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2488         hists->entries_in = &hists->entries_in_array[0];
2489         hists->entries_collapsed = RB_ROOT;
2490         hists->entries = RB_ROOT;
2491         pthread_mutex_init(&hists->lock, NULL);
2492         hists->socket_filter = -1;
2493         hists->hpp_list = hpp_list;
2494         INIT_LIST_HEAD(&hists->hpp_formats);
2495         return 0;
2496 }
2497
2498 static void hists__delete_remaining_entries(struct rb_root *root)
2499 {
2500         struct rb_node *node;
2501         struct hist_entry *he;
2502
2503         while (!RB_EMPTY_ROOT(root)) {
2504                 node = rb_first(root);
2505                 rb_erase(node, root);
2506
2507                 he = rb_entry(node, struct hist_entry, rb_node_in);
2508                 hist_entry__delete(he);
2509         }
2510 }
2511
2512 static void hists__delete_all_entries(struct hists *hists)
2513 {
2514         hists__delete_entries(hists);
2515         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2516         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2517         hists__delete_remaining_entries(&hists->entries_collapsed);
2518 }
2519
2520 static void hists_evsel__exit(struct perf_evsel *evsel)
2521 {
2522         struct hists *hists = evsel__hists(evsel);
2523         struct perf_hpp_fmt *fmt, *pos;
2524         struct perf_hpp_list_node *node, *tmp;
2525
2526         hists__delete_all_entries(hists);
2527
2528         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2529                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2530                         list_del(&fmt->list);
2531                         free(fmt);
2532                 }
2533                 list_del(&node->list);
2534                 free(node);
2535         }
2536 }
2537
2538 static int hists_evsel__init(struct perf_evsel *evsel)
2539 {
2540         struct hists *hists = evsel__hists(evsel);
2541
2542         __hists__init(hists, &perf_hpp_list);
2543         return 0;
2544 }
2545
2546 /*
2547  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2548  * stored in the rbtree...
2549  */
2550
2551 int hists__init(void)
2552 {
2553         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2554                                             hists_evsel__init,
2555                                             hists_evsel__exit);
2556         if (err)
2557                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2558
2559         return err;
2560 }
2561
2562 void perf_hpp_list__init(struct perf_hpp_list *list)
2563 {
2564         INIT_LIST_HEAD(&list->fields);
2565         INIT_LIST_HEAD(&list->sorts);
2566 }