Merge tag 'asoc-fix-v4.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broon...
[sfrench/cifs-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62         struct snd_pcm_runtime *runtime = substream->runtime;
63         snd_pcm_uframes_t frames, ofs, transfer;
64         int err;
65
66         if (runtime->silence_size < runtime->boundary) {
67                 snd_pcm_sframes_t noise_dist, n;
68                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69                 if (runtime->silence_start != appl_ptr) {
70                         n = appl_ptr - runtime->silence_start;
71                         if (n < 0)
72                                 n += runtime->boundary;
73                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74                                 runtime->silence_filled -= n;
75                         else
76                                 runtime->silence_filled = 0;
77                         runtime->silence_start = appl_ptr;
78                 }
79                 if (runtime->silence_filled >= runtime->buffer_size)
80                         return;
81                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83                         return;
84                 frames = runtime->silence_threshold - noise_dist;
85                 if (frames > runtime->silence_size)
86                         frames = runtime->silence_size;
87         } else {
88                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
89                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90                         if (avail > runtime->buffer_size)
91                                 avail = runtime->buffer_size;
92                         runtime->silence_filled = avail > 0 ? avail : 0;
93                         runtime->silence_start = (runtime->status->hw_ptr +
94                                                   runtime->silence_filled) %
95                                                  runtime->boundary;
96                 } else {
97                         ofs = runtime->status->hw_ptr;
98                         frames = new_hw_ptr - ofs;
99                         if ((snd_pcm_sframes_t)frames < 0)
100                                 frames += runtime->boundary;
101                         runtime->silence_filled -= frames;
102                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103                                 runtime->silence_filled = 0;
104                                 runtime->silence_start = new_hw_ptr;
105                         } else {
106                                 runtime->silence_start = ofs;
107                         }
108                 }
109                 frames = runtime->buffer_size - runtime->silence_filled;
110         }
111         if (snd_BUG_ON(frames > runtime->buffer_size))
112                 return;
113         if (frames == 0)
114                 return;
115         ofs = runtime->silence_start % runtime->buffer_size;
116         while (frames > 0) {
117                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118                 err = fill_silence_frames(substream, ofs, transfer);
119                 snd_BUG_ON(err < 0);
120                 runtime->silence_filled += transfer;
121                 frames -= transfer;
122                 ofs = 0;
123         }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128                            char *name, size_t len)
129 {
130         snprintf(name, len, "pcmC%dD%d%c:%d",
131                  substream->pcm->card->number,
132                  substream->pcm->device,
133                  substream->stream ? 'c' : 'p',
134                  substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146                         ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)     0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do {                      \
152                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
153                         dump_stack();                           \
154         } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158         struct snd_pcm_runtime *runtime = substream->runtime;
159
160         trace_xrun(substream);
161         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165                 char name[16];
166                 snd_pcm_debug_name(substream, name, sizeof(name));
167                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168                 dump_stack_on_xrun(substream);
169         }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
174         do {                                                            \
175                 trace_hw_ptr_error(substream, reason);  \
176                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
177                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178                                            (in_interrupt) ? 'Q' : 'P', ##args); \
179                         dump_stack_on_xrun(substream);                  \
180                 }                                                       \
181         } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190                          struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201                 if (avail >= runtime->buffer_size) {
202                         snd_pcm_drain_done(substream);
203                         return -EPIPE;
204                 }
205         } else {
206                 if (avail >= runtime->stop_threshold) {
207                         xrun(substream);
208                         return -EPIPE;
209                 }
210         }
211         if (runtime->twake) {
212                 if (avail >= runtime->twake)
213                         wake_up(&runtime->tsleep);
214         } else if (avail >= runtime->control->avail_min)
215                 wake_up(&runtime->sleep);
216         return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220                                 struct timespec *curr_tstamp,
221                                 struct timespec *audio_tstamp)
222 {
223         struct snd_pcm_runtime *runtime = substream->runtime;
224         u64 audio_frames, audio_nsecs;
225         struct timespec driver_tstamp;
226
227         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228                 return;
229
230         if (!(substream->ops->get_time_info) ||
231                 (runtime->audio_tstamp_report.actual_type ==
232                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234                 /*
235                  * provide audio timestamp derived from pointer position
236                  * add delay only if requested
237                  */
238
239                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241                 if (runtime->audio_tstamp_config.report_delay) {
242                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243                                 audio_frames -=  runtime->delay;
244                         else
245                                 audio_frames +=  runtime->delay;
246                 }
247                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248                                 runtime->rate);
249                 *audio_tstamp = ns_to_timespec(audio_nsecs);
250         }
251         runtime->status->audio_tstamp = *audio_tstamp;
252         runtime->status->tstamp = *curr_tstamp;
253
254         /*
255          * re-take a driver timestamp to let apps detect if the reference tstamp
256          * read by low-level hardware was provided with a delay
257          */
258         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
259         runtime->driver_tstamp = driver_tstamp;
260 }
261
262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
263                                   unsigned int in_interrupt)
264 {
265         struct snd_pcm_runtime *runtime = substream->runtime;
266         snd_pcm_uframes_t pos;
267         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
268         snd_pcm_sframes_t hdelta, delta;
269         unsigned long jdelta;
270         unsigned long curr_jiffies;
271         struct timespec curr_tstamp;
272         struct timespec audio_tstamp;
273         int crossed_boundary = 0;
274
275         old_hw_ptr = runtime->status->hw_ptr;
276
277         /*
278          * group pointer, time and jiffies reads to allow for more
279          * accurate correlations/corrections.
280          * The values are stored at the end of this routine after
281          * corrections for hw_ptr position
282          */
283         pos = substream->ops->pointer(substream);
284         curr_jiffies = jiffies;
285         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
286                 if ((substream->ops->get_time_info) &&
287                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
288                         substream->ops->get_time_info(substream, &curr_tstamp,
289                                                 &audio_tstamp,
290                                                 &runtime->audio_tstamp_config,
291                                                 &runtime->audio_tstamp_report);
292
293                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
295                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296                 } else
297                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298         }
299
300         if (pos == SNDRV_PCM_POS_XRUN) {
301                 xrun(substream);
302                 return -EPIPE;
303         }
304         if (pos >= runtime->buffer_size) {
305                 if (printk_ratelimit()) {
306                         char name[16];
307                         snd_pcm_debug_name(substream, name, sizeof(name));
308                         pcm_err(substream->pcm,
309                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310                                 name, pos, runtime->buffer_size,
311                                 runtime->period_size);
312                 }
313                 pos = 0;
314         }
315         pos -= pos % runtime->min_align;
316         trace_hwptr(substream, pos, in_interrupt);
317         hw_base = runtime->hw_ptr_base;
318         new_hw_ptr = hw_base + pos;
319         if (in_interrupt) {
320                 /* we know that one period was processed */
321                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
322                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
323                 if (delta > new_hw_ptr) {
324                         /* check for double acknowledged interrupts */
325                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
326                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
327                                 hw_base += runtime->buffer_size;
328                                 if (hw_base >= runtime->boundary) {
329                                         hw_base = 0;
330                                         crossed_boundary++;
331                                 }
332                                 new_hw_ptr = hw_base + pos;
333                                 goto __delta;
334                         }
335                 }
336         }
337         /* new_hw_ptr might be lower than old_hw_ptr in case when */
338         /* pointer crosses the end of the ring buffer */
339         if (new_hw_ptr < old_hw_ptr) {
340                 hw_base += runtime->buffer_size;
341                 if (hw_base >= runtime->boundary) {
342                         hw_base = 0;
343                         crossed_boundary++;
344                 }
345                 new_hw_ptr = hw_base + pos;
346         }
347       __delta:
348         delta = new_hw_ptr - old_hw_ptr;
349         if (delta < 0)
350                 delta += runtime->boundary;
351
352         if (runtime->no_period_wakeup) {
353                 snd_pcm_sframes_t xrun_threshold;
354                 /*
355                  * Without regular period interrupts, we have to check
356                  * the elapsed time to detect xruns.
357                  */
358                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
359                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
360                         goto no_delta_check;
361                 hdelta = jdelta - delta * HZ / runtime->rate;
362                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
363                 while (hdelta > xrun_threshold) {
364                         delta += runtime->buffer_size;
365                         hw_base += runtime->buffer_size;
366                         if (hw_base >= runtime->boundary) {
367                                 hw_base = 0;
368                                 crossed_boundary++;
369                         }
370                         new_hw_ptr = hw_base + pos;
371                         hdelta -= runtime->hw_ptr_buffer_jiffies;
372                 }
373                 goto no_delta_check;
374         }
375
376         /* something must be really wrong */
377         if (delta >= runtime->buffer_size + runtime->period_size) {
378                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
379                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380                              substream->stream, (long)pos,
381                              (long)new_hw_ptr, (long)old_hw_ptr);
382                 return 0;
383         }
384
385         /* Do jiffies check only in xrun_debug mode */
386         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
387                 goto no_jiffies_check;
388
389         /* Skip the jiffies check for hardwares with BATCH flag.
390          * Such hardware usually just increases the position at each IRQ,
391          * thus it can't give any strange position.
392          */
393         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
394                 goto no_jiffies_check;
395         hdelta = delta;
396         if (hdelta < runtime->delay)
397                 goto no_jiffies_check;
398         hdelta -= runtime->delay;
399         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
400         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
401                 delta = jdelta /
402                         (((runtime->period_size * HZ) / runtime->rate)
403                                                                 + HZ/100);
404                 /* move new_hw_ptr according jiffies not pos variable */
405                 new_hw_ptr = old_hw_ptr;
406                 hw_base = delta;
407                 /* use loop to avoid checks for delta overflows */
408                 /* the delta value is small or zero in most cases */
409                 while (delta > 0) {
410                         new_hw_ptr += runtime->period_size;
411                         if (new_hw_ptr >= runtime->boundary) {
412                                 new_hw_ptr -= runtime->boundary;
413                                 crossed_boundary--;
414                         }
415                         delta--;
416                 }
417                 /* align hw_base to buffer_size */
418                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
419                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420                              (long)pos, (long)hdelta,
421                              (long)runtime->period_size, jdelta,
422                              ((hdelta * HZ) / runtime->rate), hw_base,
423                              (unsigned long)old_hw_ptr,
424                              (unsigned long)new_hw_ptr);
425                 /* reset values to proper state */
426                 delta = 0;
427                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428         }
429  no_jiffies_check:
430         if (delta > runtime->period_size + runtime->period_size / 2) {
431                 hw_ptr_error(substream, in_interrupt,
432                              "Lost interrupts?",
433                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434                              substream->stream, (long)delta,
435                              (long)new_hw_ptr,
436                              (long)old_hw_ptr);
437         }
438
439  no_delta_check:
440         if (runtime->status->hw_ptr == new_hw_ptr) {
441                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
442                 return 0;
443         }
444
445         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
446             runtime->silence_size > 0)
447                 snd_pcm_playback_silence(substream, new_hw_ptr);
448
449         if (in_interrupt) {
450                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
451                 if (delta < 0)
452                         delta += runtime->boundary;
453                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
454                 runtime->hw_ptr_interrupt += delta;
455                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
456                         runtime->hw_ptr_interrupt -= runtime->boundary;
457         }
458         runtime->hw_ptr_base = hw_base;
459         runtime->status->hw_ptr = new_hw_ptr;
460         runtime->hw_ptr_jiffies = curr_jiffies;
461         if (crossed_boundary) {
462                 snd_BUG_ON(crossed_boundary != 1);
463                 runtime->hw_ptr_wrap += runtime->boundary;
464         }
465
466         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
467
468         return snd_pcm_update_state(substream, runtime);
469 }
470
471 /* CAUTION: call it with irq disabled */
472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
473 {
474         return snd_pcm_update_hw_ptr0(substream, 0);
475 }
476
477 /**
478  * snd_pcm_set_ops - set the PCM operators
479  * @pcm: the pcm instance
480  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
481  * @ops: the operator table
482  *
483  * Sets the given PCM operators to the pcm instance.
484  */
485 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
486                      const struct snd_pcm_ops *ops)
487 {
488         struct snd_pcm_str *stream = &pcm->streams[direction];
489         struct snd_pcm_substream *substream;
490         
491         for (substream = stream->substream; substream != NULL; substream = substream->next)
492                 substream->ops = ops;
493 }
494 EXPORT_SYMBOL(snd_pcm_set_ops);
495
496 /**
497  * snd_pcm_sync - set the PCM sync id
498  * @substream: the pcm substream
499  *
500  * Sets the PCM sync identifier for the card.
501  */
502 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
503 {
504         struct snd_pcm_runtime *runtime = substream->runtime;
505         
506         runtime->sync.id32[0] = substream->pcm->card->number;
507         runtime->sync.id32[1] = -1;
508         runtime->sync.id32[2] = -1;
509         runtime->sync.id32[3] = -1;
510 }
511 EXPORT_SYMBOL(snd_pcm_set_sync);
512
513 /*
514  *  Standard ioctl routine
515  */
516
517 static inline unsigned int div32(unsigned int a, unsigned int b, 
518                                  unsigned int *r)
519 {
520         if (b == 0) {
521                 *r = 0;
522                 return UINT_MAX;
523         }
524         *r = a % b;
525         return a / b;
526 }
527
528 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 {
530         if (b == 0)
531                 return UINT_MAX;
532         return a / b;
533 }
534
535 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 {
537         unsigned int r;
538         unsigned int q;
539         if (b == 0)
540                 return UINT_MAX;
541         q = div32(a, b, &r);
542         if (r)
543                 ++q;
544         return q;
545 }
546
547 static inline unsigned int mul(unsigned int a, unsigned int b)
548 {
549         if (a == 0)
550                 return 0;
551         if (div_down(UINT_MAX, a) < b)
552                 return UINT_MAX;
553         return a * b;
554 }
555
556 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
557                                     unsigned int c, unsigned int *r)
558 {
559         u_int64_t n = (u_int64_t) a * b;
560         if (c == 0) {
561                 snd_BUG_ON(!n);
562                 *r = 0;
563                 return UINT_MAX;
564         }
565         n = div_u64_rem(n, c, r);
566         if (n >= UINT_MAX) {
567                 *r = 0;
568                 return UINT_MAX;
569         }
570         return n;
571 }
572
573 /**
574  * snd_interval_refine - refine the interval value of configurator
575  * @i: the interval value to refine
576  * @v: the interval value to refer to
577  *
578  * Refines the interval value with the reference value.
579  * The interval is changed to the range satisfying both intervals.
580  * The interval status (min, max, integer, etc.) are evaluated.
581  *
582  * Return: Positive if the value is changed, zero if it's not changed, or a
583  * negative error code.
584  */
585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
586 {
587         int changed = 0;
588         if (snd_BUG_ON(snd_interval_empty(i)))
589                 return -EINVAL;
590         if (i->min < v->min) {
591                 i->min = v->min;
592                 i->openmin = v->openmin;
593                 changed = 1;
594         } else if (i->min == v->min && !i->openmin && v->openmin) {
595                 i->openmin = 1;
596                 changed = 1;
597         }
598         if (i->max > v->max) {
599                 i->max = v->max;
600                 i->openmax = v->openmax;
601                 changed = 1;
602         } else if (i->max == v->max && !i->openmax && v->openmax) {
603                 i->openmax = 1;
604                 changed = 1;
605         }
606         if (!i->integer && v->integer) {
607                 i->integer = 1;
608                 changed = 1;
609         }
610         if (i->integer) {
611                 if (i->openmin) {
612                         i->min++;
613                         i->openmin = 0;
614                 }
615                 if (i->openmax) {
616                         i->max--;
617                         i->openmax = 0;
618                 }
619         } else if (!i->openmin && !i->openmax && i->min == i->max)
620                 i->integer = 1;
621         if (snd_interval_checkempty(i)) {
622                 snd_interval_none(i);
623                 return -EINVAL;
624         }
625         return changed;
626 }
627 EXPORT_SYMBOL(snd_interval_refine);
628
629 static int snd_interval_refine_first(struct snd_interval *i)
630 {
631         if (snd_BUG_ON(snd_interval_empty(i)))
632                 return -EINVAL;
633         if (snd_interval_single(i))
634                 return 0;
635         i->max = i->min;
636         i->openmax = i->openmin;
637         if (i->openmax)
638                 i->max++;
639         return 1;
640 }
641
642 static int snd_interval_refine_last(struct snd_interval *i)
643 {
644         if (snd_BUG_ON(snd_interval_empty(i)))
645                 return -EINVAL;
646         if (snd_interval_single(i))
647                 return 0;
648         i->min = i->max;
649         i->openmin = i->openmax;
650         if (i->openmin)
651                 i->min--;
652         return 1;
653 }
654
655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
656 {
657         if (a->empty || b->empty) {
658                 snd_interval_none(c);
659                 return;
660         }
661         c->empty = 0;
662         c->min = mul(a->min, b->min);
663         c->openmin = (a->openmin || b->openmin);
664         c->max = mul(a->max,  b->max);
665         c->openmax = (a->openmax || b->openmax);
666         c->integer = (a->integer && b->integer);
667 }
668
669 /**
670  * snd_interval_div - refine the interval value with division
671  * @a: dividend
672  * @b: divisor
673  * @c: quotient
674  *
675  * c = a / b
676  *
677  * Returns non-zero if the value is changed, zero if not changed.
678  */
679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
680 {
681         unsigned int r;
682         if (a->empty || b->empty) {
683                 snd_interval_none(c);
684                 return;
685         }
686         c->empty = 0;
687         c->min = div32(a->min, b->max, &r);
688         c->openmin = (r || a->openmin || b->openmax);
689         if (b->min > 0) {
690                 c->max = div32(a->max, b->min, &r);
691                 if (r) {
692                         c->max++;
693                         c->openmax = 1;
694                 } else
695                         c->openmax = (a->openmax || b->openmin);
696         } else {
697                 c->max = UINT_MAX;
698                 c->openmax = 0;
699         }
700         c->integer = 0;
701 }
702
703 /**
704  * snd_interval_muldivk - refine the interval value
705  * @a: dividend 1
706  * @b: dividend 2
707  * @k: divisor (as integer)
708  * @c: result
709   *
710  * c = a * b / k
711  *
712  * Returns non-zero if the value is changed, zero if not changed.
713  */
714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
715                       unsigned int k, struct snd_interval *c)
716 {
717         unsigned int r;
718         if (a->empty || b->empty) {
719                 snd_interval_none(c);
720                 return;
721         }
722         c->empty = 0;
723         c->min = muldiv32(a->min, b->min, k, &r);
724         c->openmin = (r || a->openmin || b->openmin);
725         c->max = muldiv32(a->max, b->max, k, &r);
726         if (r) {
727                 c->max++;
728                 c->openmax = 1;
729         } else
730                 c->openmax = (a->openmax || b->openmax);
731         c->integer = 0;
732 }
733
734 /**
735  * snd_interval_mulkdiv - refine the interval value
736  * @a: dividend 1
737  * @k: dividend 2 (as integer)
738  * @b: divisor
739  * @c: result
740  *
741  * c = a * k / b
742  *
743  * Returns non-zero if the value is changed, zero if not changed.
744  */
745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
746                       const struct snd_interval *b, struct snd_interval *c)
747 {
748         unsigned int r;
749         if (a->empty || b->empty) {
750                 snd_interval_none(c);
751                 return;
752         }
753         c->empty = 0;
754         c->min = muldiv32(a->min, k, b->max, &r);
755         c->openmin = (r || a->openmin || b->openmax);
756         if (b->min > 0) {
757                 c->max = muldiv32(a->max, k, b->min, &r);
758                 if (r) {
759                         c->max++;
760                         c->openmax = 1;
761                 } else
762                         c->openmax = (a->openmax || b->openmin);
763         } else {
764                 c->max = UINT_MAX;
765                 c->openmax = 0;
766         }
767         c->integer = 0;
768 }
769
770 /* ---- */
771
772
773 /**
774  * snd_interval_ratnum - refine the interval value
775  * @i: interval to refine
776  * @rats_count: number of ratnum_t 
777  * @rats: ratnum_t array
778  * @nump: pointer to store the resultant numerator
779  * @denp: pointer to store the resultant denominator
780  *
781  * Return: Positive if the value is changed, zero if it's not changed, or a
782  * negative error code.
783  */
784 int snd_interval_ratnum(struct snd_interval *i,
785                         unsigned int rats_count, const struct snd_ratnum *rats,
786                         unsigned int *nump, unsigned int *denp)
787 {
788         unsigned int best_num, best_den;
789         int best_diff;
790         unsigned int k;
791         struct snd_interval t;
792         int err;
793         unsigned int result_num, result_den;
794         int result_diff;
795
796         best_num = best_den = best_diff = 0;
797         for (k = 0; k < rats_count; ++k) {
798                 unsigned int num = rats[k].num;
799                 unsigned int den;
800                 unsigned int q = i->min;
801                 int diff;
802                 if (q == 0)
803                         q = 1;
804                 den = div_up(num, q);
805                 if (den < rats[k].den_min)
806                         continue;
807                 if (den > rats[k].den_max)
808                         den = rats[k].den_max;
809                 else {
810                         unsigned int r;
811                         r = (den - rats[k].den_min) % rats[k].den_step;
812                         if (r != 0)
813                                 den -= r;
814                 }
815                 diff = num - q * den;
816                 if (diff < 0)
817                         diff = -diff;
818                 if (best_num == 0 ||
819                     diff * best_den < best_diff * den) {
820                         best_diff = diff;
821                         best_den = den;
822                         best_num = num;
823                 }
824         }
825         if (best_den == 0) {
826                 i->empty = 1;
827                 return -EINVAL;
828         }
829         t.min = div_down(best_num, best_den);
830         t.openmin = !!(best_num % best_den);
831         
832         result_num = best_num;
833         result_diff = best_diff;
834         result_den = best_den;
835         best_num = best_den = best_diff = 0;
836         for (k = 0; k < rats_count; ++k) {
837                 unsigned int num = rats[k].num;
838                 unsigned int den;
839                 unsigned int q = i->max;
840                 int diff;
841                 if (q == 0) {
842                         i->empty = 1;
843                         return -EINVAL;
844                 }
845                 den = div_down(num, q);
846                 if (den > rats[k].den_max)
847                         continue;
848                 if (den < rats[k].den_min)
849                         den = rats[k].den_min;
850                 else {
851                         unsigned int r;
852                         r = (den - rats[k].den_min) % rats[k].den_step;
853                         if (r != 0)
854                                 den += rats[k].den_step - r;
855                 }
856                 diff = q * den - num;
857                 if (diff < 0)
858                         diff = -diff;
859                 if (best_num == 0 ||
860                     diff * best_den < best_diff * den) {
861                         best_diff = diff;
862                         best_den = den;
863                         best_num = num;
864                 }
865         }
866         if (best_den == 0) {
867                 i->empty = 1;
868                 return -EINVAL;
869         }
870         t.max = div_up(best_num, best_den);
871         t.openmax = !!(best_num % best_den);
872         t.integer = 0;
873         err = snd_interval_refine(i, &t);
874         if (err < 0)
875                 return err;
876
877         if (snd_interval_single(i)) {
878                 if (best_diff * result_den < result_diff * best_den) {
879                         result_num = best_num;
880                         result_den = best_den;
881                 }
882                 if (nump)
883                         *nump = result_num;
884                 if (denp)
885                         *denp = result_den;
886         }
887         return err;
888 }
889 EXPORT_SYMBOL(snd_interval_ratnum);
890
891 /**
892  * snd_interval_ratden - refine the interval value
893  * @i: interval to refine
894  * @rats_count: number of struct ratden
895  * @rats: struct ratden array
896  * @nump: pointer to store the resultant numerator
897  * @denp: pointer to store the resultant denominator
898  *
899  * Return: Positive if the value is changed, zero if it's not changed, or a
900  * negative error code.
901  */
902 static int snd_interval_ratden(struct snd_interval *i,
903                                unsigned int rats_count,
904                                const struct snd_ratden *rats,
905                                unsigned int *nump, unsigned int *denp)
906 {
907         unsigned int best_num, best_diff, best_den;
908         unsigned int k;
909         struct snd_interval t;
910         int err;
911
912         best_num = best_den = best_diff = 0;
913         for (k = 0; k < rats_count; ++k) {
914                 unsigned int num;
915                 unsigned int den = rats[k].den;
916                 unsigned int q = i->min;
917                 int diff;
918                 num = mul(q, den);
919                 if (num > rats[k].num_max)
920                         continue;
921                 if (num < rats[k].num_min)
922                         num = rats[k].num_max;
923                 else {
924                         unsigned int r;
925                         r = (num - rats[k].num_min) % rats[k].num_step;
926                         if (r != 0)
927                                 num += rats[k].num_step - r;
928                 }
929                 diff = num - q * den;
930                 if (best_num == 0 ||
931                     diff * best_den < best_diff * den) {
932                         best_diff = diff;
933                         best_den = den;
934                         best_num = num;
935                 }
936         }
937         if (best_den == 0) {
938                 i->empty = 1;
939                 return -EINVAL;
940         }
941         t.min = div_down(best_num, best_den);
942         t.openmin = !!(best_num % best_den);
943         
944         best_num = best_den = best_diff = 0;
945         for (k = 0; k < rats_count; ++k) {
946                 unsigned int num;
947                 unsigned int den = rats[k].den;
948                 unsigned int q = i->max;
949                 int diff;
950                 num = mul(q, den);
951                 if (num < rats[k].num_min)
952                         continue;
953                 if (num > rats[k].num_max)
954                         num = rats[k].num_max;
955                 else {
956                         unsigned int r;
957                         r = (num - rats[k].num_min) % rats[k].num_step;
958                         if (r != 0)
959                                 num -= r;
960                 }
961                 diff = q * den - num;
962                 if (best_num == 0 ||
963                     diff * best_den < best_diff * den) {
964                         best_diff = diff;
965                         best_den = den;
966                         best_num = num;
967                 }
968         }
969         if (best_den == 0) {
970                 i->empty = 1;
971                 return -EINVAL;
972         }
973         t.max = div_up(best_num, best_den);
974         t.openmax = !!(best_num % best_den);
975         t.integer = 0;
976         err = snd_interval_refine(i, &t);
977         if (err < 0)
978                 return err;
979
980         if (snd_interval_single(i)) {
981                 if (nump)
982                         *nump = best_num;
983                 if (denp)
984                         *denp = best_den;
985         }
986         return err;
987 }
988
989 /**
990  * snd_interval_list - refine the interval value from the list
991  * @i: the interval value to refine
992  * @count: the number of elements in the list
993  * @list: the value list
994  * @mask: the bit-mask to evaluate
995  *
996  * Refines the interval value from the list.
997  * When mask is non-zero, only the elements corresponding to bit 1 are
998  * evaluated.
999  *
1000  * Return: Positive if the value is changed, zero if it's not changed, or a
1001  * negative error code.
1002  */
1003 int snd_interval_list(struct snd_interval *i, unsigned int count,
1004                       const unsigned int *list, unsigned int mask)
1005 {
1006         unsigned int k;
1007         struct snd_interval list_range;
1008
1009         if (!count) {
1010                 i->empty = 1;
1011                 return -EINVAL;
1012         }
1013         snd_interval_any(&list_range);
1014         list_range.min = UINT_MAX;
1015         list_range.max = 0;
1016         for (k = 0; k < count; k++) {
1017                 if (mask && !(mask & (1 << k)))
1018                         continue;
1019                 if (!snd_interval_test(i, list[k]))
1020                         continue;
1021                 list_range.min = min(list_range.min, list[k]);
1022                 list_range.max = max(list_range.max, list[k]);
1023         }
1024         return snd_interval_refine(i, &list_range);
1025 }
1026 EXPORT_SYMBOL(snd_interval_list);
1027
1028 /**
1029  * snd_interval_ranges - refine the interval value from the list of ranges
1030  * @i: the interval value to refine
1031  * @count: the number of elements in the list of ranges
1032  * @ranges: the ranges list
1033  * @mask: the bit-mask to evaluate
1034  *
1035  * Refines the interval value from the list of ranges.
1036  * When mask is non-zero, only the elements corresponding to bit 1 are
1037  * evaluated.
1038  *
1039  * Return: Positive if the value is changed, zero if it's not changed, or a
1040  * negative error code.
1041  */
1042 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1043                         const struct snd_interval *ranges, unsigned int mask)
1044 {
1045         unsigned int k;
1046         struct snd_interval range_union;
1047         struct snd_interval range;
1048
1049         if (!count) {
1050                 snd_interval_none(i);
1051                 return -EINVAL;
1052         }
1053         snd_interval_any(&range_union);
1054         range_union.min = UINT_MAX;
1055         range_union.max = 0;
1056         for (k = 0; k < count; k++) {
1057                 if (mask && !(mask & (1 << k)))
1058                         continue;
1059                 snd_interval_copy(&range, &ranges[k]);
1060                 if (snd_interval_refine(&range, i) < 0)
1061                         continue;
1062                 if (snd_interval_empty(&range))
1063                         continue;
1064
1065                 if (range.min < range_union.min) {
1066                         range_union.min = range.min;
1067                         range_union.openmin = 1;
1068                 }
1069                 if (range.min == range_union.min && !range.openmin)
1070                         range_union.openmin = 0;
1071                 if (range.max > range_union.max) {
1072                         range_union.max = range.max;
1073                         range_union.openmax = 1;
1074                 }
1075                 if (range.max == range_union.max && !range.openmax)
1076                         range_union.openmax = 0;
1077         }
1078         return snd_interval_refine(i, &range_union);
1079 }
1080 EXPORT_SYMBOL(snd_interval_ranges);
1081
1082 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1083 {
1084         unsigned int n;
1085         int changed = 0;
1086         n = i->min % step;
1087         if (n != 0 || i->openmin) {
1088                 i->min += step - n;
1089                 i->openmin = 0;
1090                 changed = 1;
1091         }
1092         n = i->max % step;
1093         if (n != 0 || i->openmax) {
1094                 i->max -= n;
1095                 i->openmax = 0;
1096                 changed = 1;
1097         }
1098         if (snd_interval_checkempty(i)) {
1099                 i->empty = 1;
1100                 return -EINVAL;
1101         }
1102         return changed;
1103 }
1104
1105 /* Info constraints helpers */
1106
1107 /**
1108  * snd_pcm_hw_rule_add - add the hw-constraint rule
1109  * @runtime: the pcm runtime instance
1110  * @cond: condition bits
1111  * @var: the variable to evaluate
1112  * @func: the evaluation function
1113  * @private: the private data pointer passed to function
1114  * @dep: the dependent variables
1115  *
1116  * Return: Zero if successful, or a negative error code on failure.
1117  */
1118 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1119                         int var,
1120                         snd_pcm_hw_rule_func_t func, void *private,
1121                         int dep, ...)
1122 {
1123         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1124         struct snd_pcm_hw_rule *c;
1125         unsigned int k;
1126         va_list args;
1127         va_start(args, dep);
1128         if (constrs->rules_num >= constrs->rules_all) {
1129                 struct snd_pcm_hw_rule *new;
1130                 unsigned int new_rules = constrs->rules_all + 16;
1131                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1132                 if (!new) {
1133                         va_end(args);
1134                         return -ENOMEM;
1135                 }
1136                 if (constrs->rules) {
1137                         memcpy(new, constrs->rules,
1138                                constrs->rules_num * sizeof(*c));
1139                         kfree(constrs->rules);
1140                 }
1141                 constrs->rules = new;
1142                 constrs->rules_all = new_rules;
1143         }
1144         c = &constrs->rules[constrs->rules_num];
1145         c->cond = cond;
1146         c->func = func;
1147         c->var = var;
1148         c->private = private;
1149         k = 0;
1150         while (1) {
1151                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1152                         va_end(args);
1153                         return -EINVAL;
1154                 }
1155                 c->deps[k++] = dep;
1156                 if (dep < 0)
1157                         break;
1158                 dep = va_arg(args, int);
1159         }
1160         constrs->rules_num++;
1161         va_end(args);
1162         return 0;
1163 }
1164 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1165
1166 /**
1167  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1168  * @runtime: PCM runtime instance
1169  * @var: hw_params variable to apply the mask
1170  * @mask: the bitmap mask
1171  *
1172  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1173  *
1174  * Return: Zero if successful, or a negative error code on failure.
1175  */
1176 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1177                                u_int32_t mask)
1178 {
1179         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1180         struct snd_mask *maskp = constrs_mask(constrs, var);
1181         *maskp->bits &= mask;
1182         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1183         if (*maskp->bits == 0)
1184                 return -EINVAL;
1185         return 0;
1186 }
1187
1188 /**
1189  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1190  * @runtime: PCM runtime instance
1191  * @var: hw_params variable to apply the mask
1192  * @mask: the 64bit bitmap mask
1193  *
1194  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1195  *
1196  * Return: Zero if successful, or a negative error code on failure.
1197  */
1198 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199                                  u_int64_t mask)
1200 {
1201         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202         struct snd_mask *maskp = constrs_mask(constrs, var);
1203         maskp->bits[0] &= (u_int32_t)mask;
1204         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1205         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1206         if (! maskp->bits[0] && ! maskp->bits[1])
1207                 return -EINVAL;
1208         return 0;
1209 }
1210 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1211
1212 /**
1213  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1214  * @runtime: PCM runtime instance
1215  * @var: hw_params variable to apply the integer constraint
1216  *
1217  * Apply the constraint of integer to an interval parameter.
1218  *
1219  * Return: Positive if the value is changed, zero if it's not changed, or a
1220  * negative error code.
1221  */
1222 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1223 {
1224         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225         return snd_interval_setinteger(constrs_interval(constrs, var));
1226 }
1227 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1228
1229 /**
1230  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1231  * @runtime: PCM runtime instance
1232  * @var: hw_params variable to apply the range
1233  * @min: the minimal value
1234  * @max: the maximal value
1235  * 
1236  * Apply the min/max range constraint to an interval parameter.
1237  *
1238  * Return: Positive if the value is changed, zero if it's not changed, or a
1239  * negative error code.
1240  */
1241 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1242                                  unsigned int min, unsigned int max)
1243 {
1244         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1245         struct snd_interval t;
1246         t.min = min;
1247         t.max = max;
1248         t.openmin = t.openmax = 0;
1249         t.integer = 0;
1250         return snd_interval_refine(constrs_interval(constrs, var), &t);
1251 }
1252 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1253
1254 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1255                                 struct snd_pcm_hw_rule *rule)
1256 {
1257         struct snd_pcm_hw_constraint_list *list = rule->private;
1258         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1259 }               
1260
1261
1262 /**
1263  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1264  * @runtime: PCM runtime instance
1265  * @cond: condition bits
1266  * @var: hw_params variable to apply the list constraint
1267  * @l: list
1268  * 
1269  * Apply the list of constraints to an interval parameter.
1270  *
1271  * Return: Zero if successful, or a negative error code on failure.
1272  */
1273 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1274                                unsigned int cond,
1275                                snd_pcm_hw_param_t var,
1276                                const struct snd_pcm_hw_constraint_list *l)
1277 {
1278         return snd_pcm_hw_rule_add(runtime, cond, var,
1279                                    snd_pcm_hw_rule_list, (void *)l,
1280                                    var, -1);
1281 }
1282 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1283
1284 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1285                                   struct snd_pcm_hw_rule *rule)
1286 {
1287         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1288         return snd_interval_ranges(hw_param_interval(params, rule->var),
1289                                    r->count, r->ranges, r->mask);
1290 }
1291
1292
1293 /**
1294  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1295  * @runtime: PCM runtime instance
1296  * @cond: condition bits
1297  * @var: hw_params variable to apply the list of range constraints
1298  * @r: ranges
1299  *
1300  * Apply the list of range constraints to an interval parameter.
1301  *
1302  * Return: Zero if successful, or a negative error code on failure.
1303  */
1304 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1305                                  unsigned int cond,
1306                                  snd_pcm_hw_param_t var,
1307                                  const struct snd_pcm_hw_constraint_ranges *r)
1308 {
1309         return snd_pcm_hw_rule_add(runtime, cond, var,
1310                                    snd_pcm_hw_rule_ranges, (void *)r,
1311                                    var, -1);
1312 }
1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1314
1315 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1316                                    struct snd_pcm_hw_rule *rule)
1317 {
1318         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1319         unsigned int num = 0, den = 0;
1320         int err;
1321         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1322                                   r->nrats, r->rats, &num, &den);
1323         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1324                 params->rate_num = num;
1325                 params->rate_den = den;
1326         }
1327         return err;
1328 }
1329
1330 /**
1331  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1332  * @runtime: PCM runtime instance
1333  * @cond: condition bits
1334  * @var: hw_params variable to apply the ratnums constraint
1335  * @r: struct snd_ratnums constriants
1336  *
1337  * Return: Zero if successful, or a negative error code on failure.
1338  */
1339 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1340                                   unsigned int cond,
1341                                   snd_pcm_hw_param_t var,
1342                                   const struct snd_pcm_hw_constraint_ratnums *r)
1343 {
1344         return snd_pcm_hw_rule_add(runtime, cond, var,
1345                                    snd_pcm_hw_rule_ratnums, (void *)r,
1346                                    var, -1);
1347 }
1348 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1349
1350 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1351                                    struct snd_pcm_hw_rule *rule)
1352 {
1353         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1354         unsigned int num = 0, den = 0;
1355         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1356                                   r->nrats, r->rats, &num, &den);
1357         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1358                 params->rate_num = num;
1359                 params->rate_den = den;
1360         }
1361         return err;
1362 }
1363
1364 /**
1365  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1366  * @runtime: PCM runtime instance
1367  * @cond: condition bits
1368  * @var: hw_params variable to apply the ratdens constraint
1369  * @r: struct snd_ratdens constriants
1370  *
1371  * Return: Zero if successful, or a negative error code on failure.
1372  */
1373 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1374                                   unsigned int cond,
1375                                   snd_pcm_hw_param_t var,
1376                                   const struct snd_pcm_hw_constraint_ratdens *r)
1377 {
1378         return snd_pcm_hw_rule_add(runtime, cond, var,
1379                                    snd_pcm_hw_rule_ratdens, (void *)r,
1380                                    var, -1);
1381 }
1382 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1383
1384 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1385                                   struct snd_pcm_hw_rule *rule)
1386 {
1387         unsigned int l = (unsigned long) rule->private;
1388         int width = l & 0xffff;
1389         unsigned int msbits = l >> 16;
1390         const struct snd_interval *i =
1391                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1392
1393         if (!snd_interval_single(i))
1394                 return 0;
1395
1396         if ((snd_interval_value(i) == width) ||
1397             (width == 0 && snd_interval_value(i) > msbits))
1398                 params->msbits = min_not_zero(params->msbits, msbits);
1399
1400         return 0;
1401 }
1402
1403 /**
1404  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405  * @runtime: PCM runtime instance
1406  * @cond: condition bits
1407  * @width: sample bits width
1408  * @msbits: msbits width
1409  *
1410  * This constraint will set the number of most significant bits (msbits) if a
1411  * sample format with the specified width has been select. If width is set to 0
1412  * the msbits will be set for any sample format with a width larger than the
1413  * specified msbits.
1414  *
1415  * Return: Zero if successful, or a negative error code on failure.
1416  */
1417 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1418                                  unsigned int cond,
1419                                  unsigned int width,
1420                                  unsigned int msbits)
1421 {
1422         unsigned long l = (msbits << 16) | width;
1423         return snd_pcm_hw_rule_add(runtime, cond, -1,
1424                                     snd_pcm_hw_rule_msbits,
1425                                     (void*) l,
1426                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1427 }
1428 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1429
1430 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1431                                 struct snd_pcm_hw_rule *rule)
1432 {
1433         unsigned long step = (unsigned long) rule->private;
1434         return snd_interval_step(hw_param_interval(params, rule->var), step);
1435 }
1436
1437 /**
1438  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1439  * @runtime: PCM runtime instance
1440  * @cond: condition bits
1441  * @var: hw_params variable to apply the step constraint
1442  * @step: step size
1443  *
1444  * Return: Zero if successful, or a negative error code on failure.
1445  */
1446 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1447                                unsigned int cond,
1448                                snd_pcm_hw_param_t var,
1449                                unsigned long step)
1450 {
1451         return snd_pcm_hw_rule_add(runtime, cond, var, 
1452                                    snd_pcm_hw_rule_step, (void *) step,
1453                                    var, -1);
1454 }
1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1456
1457 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1458 {
1459         static unsigned int pow2_sizes[] = {
1460                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1461                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1462                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1463                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1464         };
1465         return snd_interval_list(hw_param_interval(params, rule->var),
1466                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1467 }               
1468
1469 /**
1470  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1471  * @runtime: PCM runtime instance
1472  * @cond: condition bits
1473  * @var: hw_params variable to apply the power-of-2 constraint
1474  *
1475  * Return: Zero if successful, or a negative error code on failure.
1476  */
1477 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1478                                unsigned int cond,
1479                                snd_pcm_hw_param_t var)
1480 {
1481         return snd_pcm_hw_rule_add(runtime, cond, var, 
1482                                    snd_pcm_hw_rule_pow2, NULL,
1483                                    var, -1);
1484 }
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1486
1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1488                                            struct snd_pcm_hw_rule *rule)
1489 {
1490         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1491         struct snd_interval *rate;
1492
1493         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1494         return snd_interval_list(rate, 1, &base_rate, 0);
1495 }
1496
1497 /**
1498  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1499  * @runtime: PCM runtime instance
1500  * @base_rate: the rate at which the hardware does not resample
1501  *
1502  * Return: Zero if successful, or a negative error code on failure.
1503  */
1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1505                                unsigned int base_rate)
1506 {
1507         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1508                                    SNDRV_PCM_HW_PARAM_RATE,
1509                                    snd_pcm_hw_rule_noresample_func,
1510                                    (void *)(uintptr_t)base_rate,
1511                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1512 }
1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1514
1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1516                                   snd_pcm_hw_param_t var)
1517 {
1518         if (hw_is_mask(var)) {
1519                 snd_mask_any(hw_param_mask(params, var));
1520                 params->cmask |= 1 << var;
1521                 params->rmask |= 1 << var;
1522                 return;
1523         }
1524         if (hw_is_interval(var)) {
1525                 snd_interval_any(hw_param_interval(params, var));
1526                 params->cmask |= 1 << var;
1527                 params->rmask |= 1 << var;
1528                 return;
1529         }
1530         snd_BUG();
1531 }
1532
1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1534 {
1535         unsigned int k;
1536         memset(params, 0, sizeof(*params));
1537         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1538                 _snd_pcm_hw_param_any(params, k);
1539         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1540                 _snd_pcm_hw_param_any(params, k);
1541         params->info = ~0U;
1542 }
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544
1545 /**
1546  * snd_pcm_hw_param_value - return @params field @var value
1547  * @params: the hw_params instance
1548  * @var: parameter to retrieve
1549  * @dir: pointer to the direction (-1,0,1) or %NULL
1550  *
1551  * Return: The value for field @var if it's fixed in configuration space
1552  * defined by @params. -%EINVAL otherwise.
1553  */
1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555                            snd_pcm_hw_param_t var, int *dir)
1556 {
1557         if (hw_is_mask(var)) {
1558                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1559                 if (!snd_mask_single(mask))
1560                         return -EINVAL;
1561                 if (dir)
1562                         *dir = 0;
1563                 return snd_mask_value(mask);
1564         }
1565         if (hw_is_interval(var)) {
1566                 const struct snd_interval *i = hw_param_interval_c(params, var);
1567                 if (!snd_interval_single(i))
1568                         return -EINVAL;
1569                 if (dir)
1570                         *dir = i->openmin;
1571                 return snd_interval_value(i);
1572         }
1573         return -EINVAL;
1574 }
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578                                 snd_pcm_hw_param_t var)
1579 {
1580         if (hw_is_mask(var)) {
1581                 snd_mask_none(hw_param_mask(params, var));
1582                 params->cmask |= 1 << var;
1583                 params->rmask |= 1 << var;
1584         } else if (hw_is_interval(var)) {
1585                 snd_interval_none(hw_param_interval(params, var));
1586                 params->cmask |= 1 << var;
1587                 params->rmask |= 1 << var;
1588         } else {
1589                 snd_BUG();
1590         }
1591 }
1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1593
1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1595                                    snd_pcm_hw_param_t var)
1596 {
1597         int changed;
1598         if (hw_is_mask(var))
1599                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1600         else if (hw_is_interval(var))
1601                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1602         else
1603                 return -EINVAL;
1604         if (changed) {
1605                 params->cmask |= 1 << var;
1606                 params->rmask |= 1 << var;
1607         }
1608         return changed;
1609 }
1610
1611
1612 /**
1613  * snd_pcm_hw_param_first - refine config space and return minimum value
1614  * @pcm: PCM instance
1615  * @params: the hw_params instance
1616  * @var: parameter to retrieve
1617  * @dir: pointer to the direction (-1,0,1) or %NULL
1618  *
1619  * Inside configuration space defined by @params remove from @var all
1620  * values > minimum. Reduce configuration space accordingly.
1621  *
1622  * Return: The minimum, or a negative error code on failure.
1623  */
1624 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1625                            struct snd_pcm_hw_params *params, 
1626                            snd_pcm_hw_param_t var, int *dir)
1627 {
1628         int changed = _snd_pcm_hw_param_first(params, var);
1629         if (changed < 0)
1630                 return changed;
1631         if (params->rmask) {
1632                 int err = snd_pcm_hw_refine(pcm, params);
1633                 if (snd_BUG_ON(err < 0))
1634                         return err;
1635         }
1636         return snd_pcm_hw_param_value(params, var, dir);
1637 }
1638 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1639
1640 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1641                                   snd_pcm_hw_param_t var)
1642 {
1643         int changed;
1644         if (hw_is_mask(var))
1645                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1646         else if (hw_is_interval(var))
1647                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1648         else
1649                 return -EINVAL;
1650         if (changed) {
1651                 params->cmask |= 1 << var;
1652                 params->rmask |= 1 << var;
1653         }
1654         return changed;
1655 }
1656
1657
1658 /**
1659  * snd_pcm_hw_param_last - refine config space and return maximum value
1660  * @pcm: PCM instance
1661  * @params: the hw_params instance
1662  * @var: parameter to retrieve
1663  * @dir: pointer to the direction (-1,0,1) or %NULL
1664  *
1665  * Inside configuration space defined by @params remove from @var all
1666  * values < maximum. Reduce configuration space accordingly.
1667  *
1668  * Return: The maximum, or a negative error code on failure.
1669  */
1670 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1671                           struct snd_pcm_hw_params *params,
1672                           snd_pcm_hw_param_t var, int *dir)
1673 {
1674         int changed = _snd_pcm_hw_param_last(params, var);
1675         if (changed < 0)
1676                 return changed;
1677         if (params->rmask) {
1678                 int err = snd_pcm_hw_refine(pcm, params);
1679                 if (snd_BUG_ON(err < 0))
1680                         return err;
1681         }
1682         return snd_pcm_hw_param_value(params, var, dir);
1683 }
1684 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1685
1686 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1687                                    void *arg)
1688 {
1689         struct snd_pcm_runtime *runtime = substream->runtime;
1690         unsigned long flags;
1691         snd_pcm_stream_lock_irqsave(substream, flags);
1692         if (snd_pcm_running(substream) &&
1693             snd_pcm_update_hw_ptr(substream) >= 0)
1694                 runtime->status->hw_ptr %= runtime->buffer_size;
1695         else {
1696                 runtime->status->hw_ptr = 0;
1697                 runtime->hw_ptr_wrap = 0;
1698         }
1699         snd_pcm_stream_unlock_irqrestore(substream, flags);
1700         return 0;
1701 }
1702
1703 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1704                                           void *arg)
1705 {
1706         struct snd_pcm_channel_info *info = arg;
1707         struct snd_pcm_runtime *runtime = substream->runtime;
1708         int width;
1709         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1710                 info->offset = -1;
1711                 return 0;
1712         }
1713         width = snd_pcm_format_physical_width(runtime->format);
1714         if (width < 0)
1715                 return width;
1716         info->offset = 0;
1717         switch (runtime->access) {
1718         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1719         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1720                 info->first = info->channel * width;
1721                 info->step = runtime->channels * width;
1722                 break;
1723         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1724         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1725         {
1726                 size_t size = runtime->dma_bytes / runtime->channels;
1727                 info->first = info->channel * size * 8;
1728                 info->step = width;
1729                 break;
1730         }
1731         default:
1732                 snd_BUG();
1733                 break;
1734         }
1735         return 0;
1736 }
1737
1738 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1739                                        void *arg)
1740 {
1741         struct snd_pcm_hw_params *params = arg;
1742         snd_pcm_format_t format;
1743         int channels;
1744         ssize_t frame_size;
1745
1746         params->fifo_size = substream->runtime->hw.fifo_size;
1747         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1748                 format = params_format(params);
1749                 channels = params_channels(params);
1750                 frame_size = snd_pcm_format_size(format, channels);
1751                 if (frame_size > 0)
1752                         params->fifo_size /= (unsigned)frame_size;
1753         }
1754         return 0;
1755 }
1756
1757 /**
1758  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1759  * @substream: the pcm substream instance
1760  * @cmd: ioctl command
1761  * @arg: ioctl argument
1762  *
1763  * Processes the generic ioctl commands for PCM.
1764  * Can be passed as the ioctl callback for PCM ops.
1765  *
1766  * Return: Zero if successful, or a negative error code on failure.
1767  */
1768 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1769                       unsigned int cmd, void *arg)
1770 {
1771         switch (cmd) {
1772         case SNDRV_PCM_IOCTL1_RESET:
1773                 return snd_pcm_lib_ioctl_reset(substream, arg);
1774         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1775                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1776         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1777                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1778         }
1779         return -ENXIO;
1780 }
1781 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1782
1783 /**
1784  * snd_pcm_period_elapsed - update the pcm status for the next period
1785  * @substream: the pcm substream instance
1786  *
1787  * This function is called from the interrupt handler when the
1788  * PCM has processed the period size.  It will update the current
1789  * pointer, wake up sleepers, etc.
1790  *
1791  * Even if more than one periods have elapsed since the last call, you
1792  * have to call this only once.
1793  */
1794 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1795 {
1796         struct snd_pcm_runtime *runtime;
1797         unsigned long flags;
1798
1799         if (PCM_RUNTIME_CHECK(substream))
1800                 return;
1801         runtime = substream->runtime;
1802
1803         snd_pcm_stream_lock_irqsave(substream, flags);
1804         if (!snd_pcm_running(substream) ||
1805             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1806                 goto _end;
1807
1808 #ifdef CONFIG_SND_PCM_TIMER
1809         if (substream->timer_running)
1810                 snd_timer_interrupt(substream->timer, 1);
1811 #endif
1812  _end:
1813         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1814         snd_pcm_stream_unlock_irqrestore(substream, flags);
1815 }
1816 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1817
1818 /*
1819  * Wait until avail_min data becomes available
1820  * Returns a negative error code if any error occurs during operation.
1821  * The available space is stored on availp.  When err = 0 and avail = 0
1822  * on the capture stream, it indicates the stream is in DRAINING state.
1823  */
1824 static int wait_for_avail(struct snd_pcm_substream *substream,
1825                               snd_pcm_uframes_t *availp)
1826 {
1827         struct snd_pcm_runtime *runtime = substream->runtime;
1828         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1829         wait_queue_entry_t wait;
1830         int err = 0;
1831         snd_pcm_uframes_t avail = 0;
1832         long wait_time, tout;
1833
1834         init_waitqueue_entry(&wait, current);
1835         set_current_state(TASK_INTERRUPTIBLE);
1836         add_wait_queue(&runtime->tsleep, &wait);
1837
1838         if (runtime->no_period_wakeup)
1839                 wait_time = MAX_SCHEDULE_TIMEOUT;
1840         else {
1841                 wait_time = 10;
1842                 if (runtime->rate) {
1843                         long t = runtime->period_size * 2 / runtime->rate;
1844                         wait_time = max(t, wait_time);
1845                 }
1846                 wait_time = msecs_to_jiffies(wait_time * 1000);
1847         }
1848
1849         for (;;) {
1850                 if (signal_pending(current)) {
1851                         err = -ERESTARTSYS;
1852                         break;
1853                 }
1854
1855                 /*
1856                  * We need to check if space became available already
1857                  * (and thus the wakeup happened already) first to close
1858                  * the race of space already having become available.
1859                  * This check must happen after been added to the waitqueue
1860                  * and having current state be INTERRUPTIBLE.
1861                  */
1862                 if (is_playback)
1863                         avail = snd_pcm_playback_avail(runtime);
1864                 else
1865                         avail = snd_pcm_capture_avail(runtime);
1866                 if (avail >= runtime->twake)
1867                         break;
1868                 snd_pcm_stream_unlock_irq(substream);
1869
1870                 tout = schedule_timeout(wait_time);
1871
1872                 snd_pcm_stream_lock_irq(substream);
1873                 set_current_state(TASK_INTERRUPTIBLE);
1874                 switch (runtime->status->state) {
1875                 case SNDRV_PCM_STATE_SUSPENDED:
1876                         err = -ESTRPIPE;
1877                         goto _endloop;
1878                 case SNDRV_PCM_STATE_XRUN:
1879                         err = -EPIPE;
1880                         goto _endloop;
1881                 case SNDRV_PCM_STATE_DRAINING:
1882                         if (is_playback)
1883                                 err = -EPIPE;
1884                         else 
1885                                 avail = 0; /* indicate draining */
1886                         goto _endloop;
1887                 case SNDRV_PCM_STATE_OPEN:
1888                 case SNDRV_PCM_STATE_SETUP:
1889                 case SNDRV_PCM_STATE_DISCONNECTED:
1890                         err = -EBADFD;
1891                         goto _endloop;
1892                 case SNDRV_PCM_STATE_PAUSED:
1893                         continue;
1894                 }
1895                 if (!tout) {
1896                         pcm_dbg(substream->pcm,
1897                                 "%s write error (DMA or IRQ trouble?)\n",
1898                                 is_playback ? "playback" : "capture");
1899                         err = -EIO;
1900                         break;
1901                 }
1902         }
1903  _endloop:
1904         set_current_state(TASK_RUNNING);
1905         remove_wait_queue(&runtime->tsleep, &wait);
1906         *availp = avail;
1907         return err;
1908 }
1909         
1910 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1911                               int channel, unsigned long hwoff,
1912                               void *buf, unsigned long bytes);
1913
1914 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1915                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1916
1917 /* calculate the target DMA-buffer position to be written/read */
1918 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1919                            int channel, unsigned long hwoff)
1920 {
1921         return runtime->dma_area + hwoff +
1922                 channel * (runtime->dma_bytes / runtime->channels);
1923 }
1924
1925 /* default copy_user ops for write; used for both interleaved and non- modes */
1926 static int default_write_copy(struct snd_pcm_substream *substream,
1927                               int channel, unsigned long hwoff,
1928                               void *buf, unsigned long bytes)
1929 {
1930         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1931                            (void __user *)buf, bytes))
1932                 return -EFAULT;
1933         return 0;
1934 }
1935
1936 /* default copy_kernel ops for write */
1937 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1938                                      int channel, unsigned long hwoff,
1939                                      void *buf, unsigned long bytes)
1940 {
1941         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1942         return 0;
1943 }
1944
1945 /* fill silence instead of copy data; called as a transfer helper
1946  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1947  * a NULL buffer is passed
1948  */
1949 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1950                         unsigned long hwoff, void *buf, unsigned long bytes)
1951 {
1952         struct snd_pcm_runtime *runtime = substream->runtime;
1953
1954         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1955                 return 0;
1956         if (substream->ops->fill_silence)
1957                 return substream->ops->fill_silence(substream, channel,
1958                                                     hwoff, bytes);
1959
1960         snd_pcm_format_set_silence(runtime->format,
1961                                    get_dma_ptr(runtime, channel, hwoff),
1962                                    bytes_to_samples(runtime, bytes));
1963         return 0;
1964 }
1965
1966 /* default copy_user ops for read; used for both interleaved and non- modes */
1967 static int default_read_copy(struct snd_pcm_substream *substream,
1968                              int channel, unsigned long hwoff,
1969                              void *buf, unsigned long bytes)
1970 {
1971         if (copy_to_user((void __user *)buf,
1972                          get_dma_ptr(substream->runtime, channel, hwoff),
1973                          bytes))
1974                 return -EFAULT;
1975         return 0;
1976 }
1977
1978 /* default copy_kernel ops for read */
1979 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1980                                     int channel, unsigned long hwoff,
1981                                     void *buf, unsigned long bytes)
1982 {
1983         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1984         return 0;
1985 }
1986
1987 /* call transfer function with the converted pointers and sizes;
1988  * for interleaved mode, it's one shot for all samples
1989  */
1990 static int interleaved_copy(struct snd_pcm_substream *substream,
1991                             snd_pcm_uframes_t hwoff, void *data,
1992                             snd_pcm_uframes_t off,
1993                             snd_pcm_uframes_t frames,
1994                             pcm_transfer_f transfer)
1995 {
1996         struct snd_pcm_runtime *runtime = substream->runtime;
1997
1998         /* convert to bytes */
1999         hwoff = frames_to_bytes(runtime, hwoff);
2000         off = frames_to_bytes(runtime, off);
2001         frames = frames_to_bytes(runtime, frames);
2002         return transfer(substream, 0, hwoff, data + off, frames);
2003 }
2004
2005 /* call transfer function with the converted pointers and sizes for each
2006  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2007  */
2008 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2009                                snd_pcm_uframes_t hwoff, void *data,
2010                                snd_pcm_uframes_t off,
2011                                snd_pcm_uframes_t frames,
2012                                pcm_transfer_f transfer)
2013 {
2014         struct snd_pcm_runtime *runtime = substream->runtime;
2015         int channels = runtime->channels;
2016         void **bufs = data;
2017         int c, err;
2018
2019         /* convert to bytes; note that it's not frames_to_bytes() here.
2020          * in non-interleaved mode, we copy for each channel, thus
2021          * each copy is n_samples bytes x channels = whole frames.
2022          */
2023         off = samples_to_bytes(runtime, off);
2024         frames = samples_to_bytes(runtime, frames);
2025         hwoff = samples_to_bytes(runtime, hwoff);
2026         for (c = 0; c < channels; ++c, ++bufs) {
2027                 if (!data || !*bufs)
2028                         err = fill_silence(substream, c, hwoff, NULL, frames);
2029                 else
2030                         err = transfer(substream, c, hwoff, *bufs + off,
2031                                        frames);
2032                 if (err < 0)
2033                         return err;
2034         }
2035         return 0;
2036 }
2037
2038 /* fill silence on the given buffer position;
2039  * called from snd_pcm_playback_silence()
2040  */
2041 static int fill_silence_frames(struct snd_pcm_substream *substream,
2042                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2043 {
2044         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2045             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2046                 return interleaved_copy(substream, off, NULL, 0, frames,
2047                                         fill_silence);
2048         else
2049                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2050                                            fill_silence);
2051 }
2052
2053 /* sanity-check for read/write methods */
2054 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2055 {
2056         struct snd_pcm_runtime *runtime;
2057         if (PCM_RUNTIME_CHECK(substream))
2058                 return -ENXIO;
2059         runtime = substream->runtime;
2060         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2061                 return -EINVAL;
2062         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2063                 return -EBADFD;
2064         return 0;
2065 }
2066
2067 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2068 {
2069         switch (runtime->status->state) {
2070         case SNDRV_PCM_STATE_PREPARED:
2071         case SNDRV_PCM_STATE_RUNNING:
2072         case SNDRV_PCM_STATE_PAUSED:
2073                 return 0;
2074         case SNDRV_PCM_STATE_XRUN:
2075                 return -EPIPE;
2076         case SNDRV_PCM_STATE_SUSPENDED:
2077                 return -ESTRPIPE;
2078         default:
2079                 return -EBADFD;
2080         }
2081 }
2082
2083 /* update to the given appl_ptr and call ack callback if needed;
2084  * when an error is returned, take back to the original value
2085  */
2086 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2087                            snd_pcm_uframes_t appl_ptr)
2088 {
2089         struct snd_pcm_runtime *runtime = substream->runtime;
2090         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2091         int ret;
2092
2093         if (old_appl_ptr == appl_ptr)
2094                 return 0;
2095
2096         runtime->control->appl_ptr = appl_ptr;
2097         if (substream->ops->ack) {
2098                 ret = substream->ops->ack(substream);
2099                 if (ret < 0) {
2100                         runtime->control->appl_ptr = old_appl_ptr;
2101                         return ret;
2102                 }
2103         }
2104
2105         trace_applptr(substream, old_appl_ptr, appl_ptr);
2106
2107         return 0;
2108 }
2109
2110 /* the common loop for read/write data */
2111 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2112                                      void *data, bool interleaved,
2113                                      snd_pcm_uframes_t size, bool in_kernel)
2114 {
2115         struct snd_pcm_runtime *runtime = substream->runtime;
2116         snd_pcm_uframes_t xfer = 0;
2117         snd_pcm_uframes_t offset = 0;
2118         snd_pcm_uframes_t avail;
2119         pcm_copy_f writer;
2120         pcm_transfer_f transfer;
2121         bool nonblock;
2122         bool is_playback;
2123         int err;
2124
2125         err = pcm_sanity_check(substream);
2126         if (err < 0)
2127                 return err;
2128
2129         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2130         if (interleaved) {
2131                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2132                     runtime->channels > 1)
2133                         return -EINVAL;
2134                 writer = interleaved_copy;
2135         } else {
2136                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2137                         return -EINVAL;
2138                 writer = noninterleaved_copy;
2139         }
2140
2141         if (!data) {
2142                 if (is_playback)
2143                         transfer = fill_silence;
2144                 else
2145                         return -EINVAL;
2146         } else if (in_kernel) {
2147                 if (substream->ops->copy_kernel)
2148                         transfer = substream->ops->copy_kernel;
2149                 else
2150                         transfer = is_playback ?
2151                                 default_write_copy_kernel : default_read_copy_kernel;
2152         } else {
2153                 if (substream->ops->copy_user)
2154                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2155                 else
2156                         transfer = is_playback ?
2157                                 default_write_copy : default_read_copy;
2158         }
2159
2160         if (size == 0)
2161                 return 0;
2162
2163         nonblock = !!(substream->f_flags & O_NONBLOCK);
2164
2165         snd_pcm_stream_lock_irq(substream);
2166         err = pcm_accessible_state(runtime);
2167         if (err < 0)
2168                 goto _end_unlock;
2169
2170         if (!is_playback &&
2171             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2172             size >= runtime->start_threshold) {
2173                 err = snd_pcm_start(substream);
2174                 if (err < 0)
2175                         goto _end_unlock;
2176         }
2177
2178         runtime->twake = runtime->control->avail_min ? : 1;
2179         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2180                 snd_pcm_update_hw_ptr(substream);
2181         if (is_playback)
2182                 avail = snd_pcm_playback_avail(runtime);
2183         else
2184                 avail = snd_pcm_capture_avail(runtime);
2185         while (size > 0) {
2186                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2187                 snd_pcm_uframes_t cont;
2188                 if (!avail) {
2189                         if (!is_playback &&
2190                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2191                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2192                                 goto _end_unlock;
2193                         }
2194                         if (nonblock) {
2195                                 err = -EAGAIN;
2196                                 goto _end_unlock;
2197                         }
2198                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2199                                         runtime->control->avail_min ? : 1);
2200                         err = wait_for_avail(substream, &avail);
2201                         if (err < 0)
2202                                 goto _end_unlock;
2203                         if (!avail)
2204                                 continue; /* draining */
2205                 }
2206                 frames = size > avail ? avail : size;
2207                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2208                 appl_ofs = appl_ptr % runtime->buffer_size;
2209                 cont = runtime->buffer_size - appl_ofs;
2210                 if (frames > cont)
2211                         frames = cont;
2212                 if (snd_BUG_ON(!frames)) {
2213                         runtime->twake = 0;
2214                         snd_pcm_stream_unlock_irq(substream);
2215                         return -EINVAL;
2216                 }
2217                 snd_pcm_stream_unlock_irq(substream);
2218                 err = writer(substream, appl_ofs, data, offset, frames,
2219                              transfer);
2220                 snd_pcm_stream_lock_irq(substream);
2221                 if (err < 0)
2222                         goto _end_unlock;
2223                 err = pcm_accessible_state(runtime);
2224                 if (err < 0)
2225                         goto _end_unlock;
2226                 appl_ptr += frames;
2227                 if (appl_ptr >= runtime->boundary)
2228                         appl_ptr -= runtime->boundary;
2229                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2230                 if (err < 0)
2231                         goto _end_unlock;
2232
2233                 offset += frames;
2234                 size -= frames;
2235                 xfer += frames;
2236                 avail -= frames;
2237                 if (is_playback &&
2238                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2239                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2240                         err = snd_pcm_start(substream);
2241                         if (err < 0)
2242                                 goto _end_unlock;
2243                 }
2244         }
2245  _end_unlock:
2246         runtime->twake = 0;
2247         if (xfer > 0 && err >= 0)
2248                 snd_pcm_update_state(substream, runtime);
2249         snd_pcm_stream_unlock_irq(substream);
2250         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2251 }
2252 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2253
2254 /*
2255  * standard channel mapping helpers
2256  */
2257
2258 /* default channel maps for multi-channel playbacks, up to 8 channels */
2259 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2260         { .channels = 1,
2261           .map = { SNDRV_CHMAP_MONO } },
2262         { .channels = 2,
2263           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2264         { .channels = 4,
2265           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2266                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2267         { .channels = 6,
2268           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2271         { .channels = 8,
2272           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2273                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2274                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2275                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2276         { }
2277 };
2278 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2279
2280 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2281 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2282         { .channels = 1,
2283           .map = { SNDRV_CHMAP_MONO } },
2284         { .channels = 2,
2285           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2286         { .channels = 4,
2287           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2288                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289         { .channels = 6,
2290           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2293         { .channels = 8,
2294           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2295                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2296                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2297                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2298         { }
2299 };
2300 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2301
2302 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2303 {
2304         if (ch > info->max_channels)
2305                 return false;
2306         return !info->channel_mask || (info->channel_mask & (1U << ch));
2307 }
2308
2309 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2310                               struct snd_ctl_elem_info *uinfo)
2311 {
2312         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2313
2314         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2315         uinfo->count = 0;
2316         uinfo->count = info->max_channels;
2317         uinfo->value.integer.min = 0;
2318         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2319         return 0;
2320 }
2321
2322 /* get callback for channel map ctl element
2323  * stores the channel position firstly matching with the current channels
2324  */
2325 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2326                              struct snd_ctl_elem_value *ucontrol)
2327 {
2328         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2329         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2330         struct snd_pcm_substream *substream;
2331         const struct snd_pcm_chmap_elem *map;
2332
2333         if (!info->chmap)
2334                 return -EINVAL;
2335         substream = snd_pcm_chmap_substream(info, idx);
2336         if (!substream)
2337                 return -ENODEV;
2338         memset(ucontrol->value.integer.value, 0,
2339                sizeof(ucontrol->value.integer.value));
2340         if (!substream->runtime)
2341                 return 0; /* no channels set */
2342         for (map = info->chmap; map->channels; map++) {
2343                 int i;
2344                 if (map->channels == substream->runtime->channels &&
2345                     valid_chmap_channels(info, map->channels)) {
2346                         for (i = 0; i < map->channels; i++)
2347                                 ucontrol->value.integer.value[i] = map->map[i];
2348                         return 0;
2349                 }
2350         }
2351         return -EINVAL;
2352 }
2353
2354 /* tlv callback for channel map ctl element
2355  * expands the pre-defined channel maps in a form of TLV
2356  */
2357 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2358                              unsigned int size, unsigned int __user *tlv)
2359 {
2360         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2361         const struct snd_pcm_chmap_elem *map;
2362         unsigned int __user *dst;
2363         int c, count = 0;
2364
2365         if (!info->chmap)
2366                 return -EINVAL;
2367         if (size < 8)
2368                 return -ENOMEM;
2369         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2370                 return -EFAULT;
2371         size -= 8;
2372         dst = tlv + 2;
2373         for (map = info->chmap; map->channels; map++) {
2374                 int chs_bytes = map->channels * 4;
2375                 if (!valid_chmap_channels(info, map->channels))
2376                         continue;
2377                 if (size < 8)
2378                         return -ENOMEM;
2379                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2380                     put_user(chs_bytes, dst + 1))
2381                         return -EFAULT;
2382                 dst += 2;
2383                 size -= 8;
2384                 count += 8;
2385                 if (size < chs_bytes)
2386                         return -ENOMEM;
2387                 size -= chs_bytes;
2388                 count += chs_bytes;
2389                 for (c = 0; c < map->channels; c++) {
2390                         if (put_user(map->map[c], dst))
2391                                 return -EFAULT;
2392                         dst++;
2393                 }
2394         }
2395         if (put_user(count, tlv + 1))
2396                 return -EFAULT;
2397         return 0;
2398 }
2399
2400 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2401 {
2402         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2403         info->pcm->streams[info->stream].chmap_kctl = NULL;
2404         kfree(info);
2405 }
2406
2407 /**
2408  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2409  * @pcm: the assigned PCM instance
2410  * @stream: stream direction
2411  * @chmap: channel map elements (for query)
2412  * @max_channels: the max number of channels for the stream
2413  * @private_value: the value passed to each kcontrol's private_value field
2414  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2415  *
2416  * Create channel-mapping control elements assigned to the given PCM stream(s).
2417  * Return: Zero if successful, or a negative error value.
2418  */
2419 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2420                            const struct snd_pcm_chmap_elem *chmap,
2421                            int max_channels,
2422                            unsigned long private_value,
2423                            struct snd_pcm_chmap **info_ret)
2424 {
2425         struct snd_pcm_chmap *info;
2426         struct snd_kcontrol_new knew = {
2427                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2428                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2429                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2430                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2431                 .info = pcm_chmap_ctl_info,
2432                 .get = pcm_chmap_ctl_get,
2433                 .tlv.c = pcm_chmap_ctl_tlv,
2434         };
2435         int err;
2436
2437         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2438                 return -EBUSY;
2439         info = kzalloc(sizeof(*info), GFP_KERNEL);
2440         if (!info)
2441                 return -ENOMEM;
2442         info->pcm = pcm;
2443         info->stream = stream;
2444         info->chmap = chmap;
2445         info->max_channels = max_channels;
2446         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2447                 knew.name = "Playback Channel Map";
2448         else
2449                 knew.name = "Capture Channel Map";
2450         knew.device = pcm->device;
2451         knew.count = pcm->streams[stream].substream_count;
2452         knew.private_value = private_value;
2453         info->kctl = snd_ctl_new1(&knew, info);
2454         if (!info->kctl) {
2455                 kfree(info);
2456                 return -ENOMEM;
2457         }
2458         info->kctl->private_free = pcm_chmap_ctl_private_free;
2459         err = snd_ctl_add(pcm->card, info->kctl);
2460         if (err < 0)
2461                 return err;
2462         pcm->streams[stream].chmap_kctl = info->kctl;
2463         if (info_ret)
2464                 *info_ret = info;
2465         return 0;
2466 }
2467 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);