null_blk: fix zoned support for non-rq based operation
[sfrench/cifs-2.6.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  */
9 #include <linux/export.h>
10 #include <linux/bitops.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <net/cfg80211.h>
14 #include <net/ip.h>
15 #include <net/dsfield.h>
16 #include <linux/if_vlan.h>
17 #include <linux/mpls.h>
18 #include <linux/gcd.h>
19 #include "core.h"
20 #include "rdev-ops.h"
21
22
23 struct ieee80211_rate *
24 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
25                             u32 basic_rates, int bitrate)
26 {
27         struct ieee80211_rate *result = &sband->bitrates[0];
28         int i;
29
30         for (i = 0; i < sband->n_bitrates; i++) {
31                 if (!(basic_rates & BIT(i)))
32                         continue;
33                 if (sband->bitrates[i].bitrate > bitrate)
34                         continue;
35                 result = &sband->bitrates[i];
36         }
37
38         return result;
39 }
40 EXPORT_SYMBOL(ieee80211_get_response_rate);
41
42 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
43                               enum nl80211_bss_scan_width scan_width)
44 {
45         struct ieee80211_rate *bitrates;
46         u32 mandatory_rates = 0;
47         enum ieee80211_rate_flags mandatory_flag;
48         int i;
49
50         if (WARN_ON(!sband))
51                 return 1;
52
53         if (sband->band == NL80211_BAND_2GHZ) {
54                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
55                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
56                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
57                 else
58                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
59         } else {
60                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
61         }
62
63         bitrates = sband->bitrates;
64         for (i = 0; i < sband->n_bitrates; i++)
65                 if (bitrates[i].flags & mandatory_flag)
66                         mandatory_rates |= BIT(i);
67         return mandatory_rates;
68 }
69 EXPORT_SYMBOL(ieee80211_mandatory_rates);
70
71 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
72 {
73         /* see 802.11 17.3.8.3.2 and Annex J
74          * there are overlapping channel numbers in 5GHz and 2GHz bands */
75         if (chan <= 0)
76                 return 0; /* not supported */
77         switch (band) {
78         case NL80211_BAND_2GHZ:
79                 if (chan == 14)
80                         return 2484;
81                 else if (chan < 14)
82                         return 2407 + chan * 5;
83                 break;
84         case NL80211_BAND_5GHZ:
85                 if (chan >= 182 && chan <= 196)
86                         return 4000 + chan * 5;
87                 else
88                         return 5000 + chan * 5;
89                 break;
90         case NL80211_BAND_60GHZ:
91                 if (chan < 5)
92                         return 56160 + chan * 2160;
93                 break;
94         default:
95                 ;
96         }
97         return 0; /* not supported */
98 }
99 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
100
101 int ieee80211_frequency_to_channel(int freq)
102 {
103         /* see 802.11 17.3.8.3.2 and Annex J */
104         if (freq == 2484)
105                 return 14;
106         else if (freq < 2484)
107                 return (freq - 2407) / 5;
108         else if (freq >= 4910 && freq <= 4980)
109                 return (freq - 4000) / 5;
110         else if (freq <= 45000) /* DMG band lower limit */
111                 return (freq - 5000) / 5;
112         else if (freq >= 58320 && freq <= 64800)
113                 return (freq - 56160) / 2160;
114         else
115                 return 0;
116 }
117 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
118
119 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
120 {
121         enum nl80211_band band;
122         struct ieee80211_supported_band *sband;
123         int i;
124
125         for (band = 0; band < NUM_NL80211_BANDS; band++) {
126                 sband = wiphy->bands[band];
127
128                 if (!sband)
129                         continue;
130
131                 for (i = 0; i < sband->n_channels; i++) {
132                         if (sband->channels[i].center_freq == freq)
133                                 return &sband->channels[i];
134                 }
135         }
136
137         return NULL;
138 }
139 EXPORT_SYMBOL(ieee80211_get_channel);
140
141 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
142 {
143         int i, want;
144
145         switch (sband->band) {
146         case NL80211_BAND_5GHZ:
147                 want = 3;
148                 for (i = 0; i < sband->n_bitrates; i++) {
149                         if (sband->bitrates[i].bitrate == 60 ||
150                             sband->bitrates[i].bitrate == 120 ||
151                             sband->bitrates[i].bitrate == 240) {
152                                 sband->bitrates[i].flags |=
153                                         IEEE80211_RATE_MANDATORY_A;
154                                 want--;
155                         }
156                 }
157                 WARN_ON(want);
158                 break;
159         case NL80211_BAND_2GHZ:
160                 want = 7;
161                 for (i = 0; i < sband->n_bitrates; i++) {
162                         switch (sband->bitrates[i].bitrate) {
163                         case 10:
164                         case 20:
165                         case 55:
166                         case 110:
167                                 sband->bitrates[i].flags |=
168                                         IEEE80211_RATE_MANDATORY_B |
169                                         IEEE80211_RATE_MANDATORY_G;
170                                 want--;
171                                 break;
172                         case 60:
173                         case 120:
174                         case 240:
175                                 sband->bitrates[i].flags |=
176                                         IEEE80211_RATE_MANDATORY_G;
177                                 want--;
178                                 /* fall through */
179                         default:
180                                 sband->bitrates[i].flags |=
181                                         IEEE80211_RATE_ERP_G;
182                                 break;
183                         }
184                 }
185                 WARN_ON(want != 0 && want != 3);
186                 break;
187         case NL80211_BAND_60GHZ:
188                 /* check for mandatory HT MCS 1..4 */
189                 WARN_ON(!sband->ht_cap.ht_supported);
190                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191                 break;
192         case NUM_NL80211_BANDS:
193         default:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum nl80211_band band;
202
203         for (band = 0; band < NUM_NL80211_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx < 0 || key_idx > 5)
222                 return -EINVAL;
223
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 if (key_idx < 4)
253                         return -EINVAL;
254                 break;
255         case WLAN_CIPHER_SUITE_WEP40:
256         case WLAN_CIPHER_SUITE_WEP104:
257                 if (key_idx > 3)
258                         return -EINVAL;
259         default:
260                 break;
261         }
262
263         switch (params->cipher) {
264         case WLAN_CIPHER_SUITE_WEP40:
265                 if (params->key_len != WLAN_KEY_LEN_WEP40)
266                         return -EINVAL;
267                 break;
268         case WLAN_CIPHER_SUITE_TKIP:
269                 if (params->key_len != WLAN_KEY_LEN_TKIP)
270                         return -EINVAL;
271                 break;
272         case WLAN_CIPHER_SUITE_CCMP:
273                 if (params->key_len != WLAN_KEY_LEN_CCMP)
274                         return -EINVAL;
275                 break;
276         case WLAN_CIPHER_SUITE_CCMP_256:
277                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278                         return -EINVAL;
279                 break;
280         case WLAN_CIPHER_SUITE_GCMP:
281                 if (params->key_len != WLAN_KEY_LEN_GCMP)
282                         return -EINVAL;
283                 break;
284         case WLAN_CIPHER_SUITE_GCMP_256:
285                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286                         return -EINVAL;
287                 break;
288         case WLAN_CIPHER_SUITE_WEP104:
289                 if (params->key_len != WLAN_KEY_LEN_WEP104)
290                         return -EINVAL;
291                 break;
292         case WLAN_CIPHER_SUITE_AES_CMAC:
293                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294                         return -EINVAL;
295                 break;
296         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298                         return -EINVAL;
299                 break;
300         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302                         return -EINVAL;
303                 break;
304         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306                         return -EINVAL;
307                 break;
308         default:
309                 /*
310                  * We don't know anything about this algorithm,
311                  * allow using it -- but the driver must check
312                  * all parameters! We still check below whether
313                  * or not the driver supports this algorithm,
314                  * of course.
315                  */
316                 break;
317         }
318
319         if (params->seq) {
320                 switch (params->cipher) {
321                 case WLAN_CIPHER_SUITE_WEP40:
322                 case WLAN_CIPHER_SUITE_WEP104:
323                         /* These ciphers do not use key sequence */
324                         return -EINVAL;
325                 case WLAN_CIPHER_SUITE_TKIP:
326                 case WLAN_CIPHER_SUITE_CCMP:
327                 case WLAN_CIPHER_SUITE_CCMP_256:
328                 case WLAN_CIPHER_SUITE_GCMP:
329                 case WLAN_CIPHER_SUITE_GCMP_256:
330                 case WLAN_CIPHER_SUITE_AES_CMAC:
331                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334                         if (params->seq_len != 6)
335                                 return -EINVAL;
336                         break;
337                 }
338         }
339
340         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341                 return -EINVAL;
342
343         return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348         unsigned int hdrlen = 24;
349
350         if (ieee80211_is_data(fc)) {
351                 if (ieee80211_has_a4(fc))
352                         hdrlen = 30;
353                 if (ieee80211_is_data_qos(fc)) {
354                         hdrlen += IEEE80211_QOS_CTL_LEN;
355                         if (ieee80211_has_order(fc))
356                                 hdrlen += IEEE80211_HT_CTL_LEN;
357                 }
358                 goto out;
359         }
360
361         if (ieee80211_is_mgmt(fc)) {
362                 if (ieee80211_has_order(fc))
363                         hdrlen += IEEE80211_HT_CTL_LEN;
364                 goto out;
365         }
366
367         if (ieee80211_is_ctl(fc)) {
368                 /*
369                  * ACK and CTS are 10 bytes, all others 16. To see how
370                  * to get this condition consider
371                  *   subtype mask:   0b0000000011110000 (0x00F0)
372                  *   ACK subtype:    0b0000000011010000 (0x00D0)
373                  *   CTS subtype:    0b0000000011000000 (0x00C0)
374                  *   bits that matter:         ^^^      (0x00E0)
375                  *   value of those: 0b0000000011000000 (0x00C0)
376                  */
377                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378                         hdrlen = 10;
379                 else
380                         hdrlen = 16;
381         }
382 out:
383         return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389         const struct ieee80211_hdr *hdr =
390                         (const struct ieee80211_hdr *)skb->data;
391         unsigned int hdrlen;
392
393         if (unlikely(skb->len < 10))
394                 return 0;
395         hdrlen = ieee80211_hdrlen(hdr->frame_control);
396         if (unlikely(hdrlen > skb->len))
397                 return 0;
398         return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404         int ae = flags & MESH_FLAGS_AE;
405         /* 802.11-2012, 8.2.4.7.3 */
406         switch (ae) {
407         default:
408         case 0:
409                 return 6;
410         case MESH_FLAGS_AE_A4:
411                 return 12;
412         case MESH_FLAGS_AE_A5_A6:
413                 return 18;
414         }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424                                   const u8 *addr, enum nl80211_iftype iftype,
425                                   u8 data_offset)
426 {
427         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428         struct {
429                 u8 hdr[ETH_ALEN] __aligned(2);
430                 __be16 proto;
431         } payload;
432         struct ethhdr tmp;
433         u16 hdrlen;
434         u8 mesh_flags = 0;
435
436         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437                 return -1;
438
439         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
440         if (skb->len < hdrlen + 8)
441                 return -1;
442
443         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444          * header
445          * IEEE 802.11 address fields:
446          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447          *   0     0   DA    SA    BSSID n/a
448          *   0     1   DA    BSSID SA    n/a
449          *   1     0   BSSID SA    DA    n/a
450          *   1     1   RA    TA    DA    SA
451          */
452         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454
455         if (iftype == NL80211_IFTYPE_MESH_POINT)
456                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457
458         mesh_flags &= MESH_FLAGS_AE;
459
460         switch (hdr->frame_control &
461                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462         case cpu_to_le16(IEEE80211_FCTL_TODS):
463                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
464                              iftype != NL80211_IFTYPE_AP_VLAN &&
465                              iftype != NL80211_IFTYPE_P2P_GO))
466                         return -1;
467                 break;
468         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470                              iftype != NL80211_IFTYPE_MESH_POINT &&
471                              iftype != NL80211_IFTYPE_AP_VLAN &&
472                              iftype != NL80211_IFTYPE_STATION))
473                         return -1;
474                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
475                         if (mesh_flags == MESH_FLAGS_AE_A4)
476                                 return -1;
477                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478                                 skb_copy_bits(skb, hdrlen +
479                                         offsetof(struct ieee80211s_hdr, eaddr1),
480                                         tmp.h_dest, 2 * ETH_ALEN);
481                         }
482                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483                 }
484                 break;
485         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486                 if ((iftype != NL80211_IFTYPE_STATION &&
487                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
488                      iftype != NL80211_IFTYPE_MESH_POINT) ||
489                     (is_multicast_ether_addr(tmp.h_dest) &&
490                      ether_addr_equal(tmp.h_source, addr)))
491                         return -1;
492                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
493                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494                                 return -1;
495                         if (mesh_flags == MESH_FLAGS_AE_A4)
496                                 skb_copy_bits(skb, hdrlen +
497                                         offsetof(struct ieee80211s_hdr, eaddr1),
498                                         tmp.h_source, ETH_ALEN);
499                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500                 }
501                 break;
502         case cpu_to_le16(0):
503                 if (iftype != NL80211_IFTYPE_ADHOC &&
504                     iftype != NL80211_IFTYPE_STATION &&
505                     iftype != NL80211_IFTYPE_OCB)
506                                 return -1;
507                 break;
508         }
509
510         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511         tmp.h_proto = payload.proto;
512
513         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514                     tmp.h_proto != htons(ETH_P_AARP) &&
515                     tmp.h_proto != htons(ETH_P_IPX)) ||
516                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
518                  * replace EtherType */
519                 hdrlen += ETH_ALEN + 2;
520         else
521                 tmp.h_proto = htons(skb->len - hdrlen);
522
523         pskb_pull(skb, hdrlen);
524
525         if (!ehdr)
526                 ehdr = skb_push(skb, sizeof(struct ethhdr));
527         memcpy(ehdr, &tmp, sizeof(tmp));
528
529         return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532
533 static void
534 __frame_add_frag(struct sk_buff *skb, struct page *page,
535                  void *ptr, int len, int size)
536 {
537         struct skb_shared_info *sh = skb_shinfo(skb);
538         int page_offset;
539
540         page_ref_inc(page);
541         page_offset = ptr - page_address(page);
542         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
543 }
544
545 static void
546 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
547                             int offset, int len)
548 {
549         struct skb_shared_info *sh = skb_shinfo(skb);
550         const skb_frag_t *frag = &sh->frags[0];
551         struct page *frag_page;
552         void *frag_ptr;
553         int frag_len, frag_size;
554         int head_size = skb->len - skb->data_len;
555         int cur_len;
556
557         frag_page = virt_to_head_page(skb->head);
558         frag_ptr = skb->data;
559         frag_size = head_size;
560
561         while (offset >= frag_size) {
562                 offset -= frag_size;
563                 frag_page = skb_frag_page(frag);
564                 frag_ptr = skb_frag_address(frag);
565                 frag_size = skb_frag_size(frag);
566                 frag++;
567         }
568
569         frag_ptr += offset;
570         frag_len = frag_size - offset;
571
572         cur_len = min(len, frag_len);
573
574         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
575         len -= cur_len;
576
577         while (len > 0) {
578                 frag_len = skb_frag_size(frag);
579                 cur_len = min(len, frag_len);
580                 __frame_add_frag(frame, skb_frag_page(frag),
581                                  skb_frag_address(frag), cur_len, frag_len);
582                 len -= cur_len;
583                 frag++;
584         }
585 }
586
587 static struct sk_buff *
588 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
589                        int offset, int len, bool reuse_frag)
590 {
591         struct sk_buff *frame;
592         int cur_len = len;
593
594         if (skb->len - offset < len)
595                 return NULL;
596
597         /*
598          * When reusing framents, copy some data to the head to simplify
599          * ethernet header handling and speed up protocol header processing
600          * in the stack later.
601          */
602         if (reuse_frag)
603                 cur_len = min_t(int, len, 32);
604
605         /*
606          * Allocate and reserve two bytes more for payload
607          * alignment since sizeof(struct ethhdr) is 14.
608          */
609         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
610         if (!frame)
611                 return NULL;
612
613         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
614         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
615
616         len -= cur_len;
617         if (!len)
618                 return frame;
619
620         offset += cur_len;
621         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
622
623         return frame;
624 }
625
626 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
627                               const u8 *addr, enum nl80211_iftype iftype,
628                               const unsigned int extra_headroom,
629                               const u8 *check_da, const u8 *check_sa)
630 {
631         unsigned int hlen = ALIGN(extra_headroom, 4);
632         struct sk_buff *frame = NULL;
633         u16 ethertype;
634         u8 *payload;
635         int offset = 0, remaining;
636         struct ethhdr eth;
637         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
638         bool reuse_skb = false;
639         bool last = false;
640
641         while (!last) {
642                 unsigned int subframe_len;
643                 int len;
644                 u8 padding;
645
646                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
647                 len = ntohs(eth.h_proto);
648                 subframe_len = sizeof(struct ethhdr) + len;
649                 padding = (4 - subframe_len) & 0x3;
650
651                 /* the last MSDU has no padding */
652                 remaining = skb->len - offset;
653                 if (subframe_len > remaining)
654                         goto purge;
655
656                 offset += sizeof(struct ethhdr);
657                 last = remaining <= subframe_len + padding;
658
659                 /* FIXME: should we really accept multicast DA? */
660                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
661                      !ether_addr_equal(check_da, eth.h_dest)) ||
662                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
663                         offset += len + padding;
664                         continue;
665                 }
666
667                 /* reuse skb for the last subframe */
668                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
669                         skb_pull(skb, offset);
670                         frame = skb;
671                         reuse_skb = true;
672                 } else {
673                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
674                                                        reuse_frag);
675                         if (!frame)
676                                 goto purge;
677
678                         offset += len + padding;
679                 }
680
681                 skb_reset_network_header(frame);
682                 frame->dev = skb->dev;
683                 frame->priority = skb->priority;
684
685                 payload = frame->data;
686                 ethertype = (payload[6] << 8) | payload[7];
687                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
688                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
689                            ether_addr_equal(payload, bridge_tunnel_header))) {
690                         eth.h_proto = htons(ethertype);
691                         skb_pull(frame, ETH_ALEN + 2);
692                 }
693
694                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
695                 __skb_queue_tail(list, frame);
696         }
697
698         if (!reuse_skb)
699                 dev_kfree_skb(skb);
700
701         return;
702
703  purge:
704         __skb_queue_purge(list);
705         dev_kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
708
709 /* Given a data frame determine the 802.1p/1d tag to use. */
710 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
711                                     struct cfg80211_qos_map *qos_map)
712 {
713         unsigned int dscp;
714         unsigned char vlan_priority;
715
716         /* skb->priority values from 256->263 are magic values to
717          * directly indicate a specific 802.1d priority.  This is used
718          * to allow 802.1d priority to be passed directly in from VLAN
719          * tags, etc.
720          */
721         if (skb->priority >= 256 && skb->priority <= 263)
722                 return skb->priority - 256;
723
724         if (skb_vlan_tag_present(skb)) {
725                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
726                         >> VLAN_PRIO_SHIFT;
727                 if (vlan_priority > 0)
728                         return vlan_priority;
729         }
730
731         switch (skb->protocol) {
732         case htons(ETH_P_IP):
733                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
734                 break;
735         case htons(ETH_P_IPV6):
736                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
737                 break;
738         case htons(ETH_P_MPLS_UC):
739         case htons(ETH_P_MPLS_MC): {
740                 struct mpls_label mpls_tmp, *mpls;
741
742                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
743                                           sizeof(*mpls), &mpls_tmp);
744                 if (!mpls)
745                         return 0;
746
747                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
748                         >> MPLS_LS_TC_SHIFT;
749         }
750         case htons(ETH_P_80221):
751                 /* 802.21 is always network control traffic */
752                 return 7;
753         default:
754                 return 0;
755         }
756
757         if (qos_map) {
758                 unsigned int i, tmp_dscp = dscp >> 2;
759
760                 for (i = 0; i < qos_map->num_des; i++) {
761                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
762                                 return qos_map->dscp_exception[i].up;
763                 }
764
765                 for (i = 0; i < 8; i++) {
766                         if (tmp_dscp >= qos_map->up[i].low &&
767                             tmp_dscp <= qos_map->up[i].high)
768                                 return i;
769                 }
770         }
771
772         return dscp >> 5;
773 }
774 EXPORT_SYMBOL(cfg80211_classify8021d);
775
776 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
777 {
778         const struct cfg80211_bss_ies *ies;
779
780         ies = rcu_dereference(bss->ies);
781         if (!ies)
782                 return NULL;
783
784         return cfg80211_find_ie(ie, ies->data, ies->len);
785 }
786 EXPORT_SYMBOL(ieee80211_bss_get_ie);
787
788 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
789 {
790         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
791         struct net_device *dev = wdev->netdev;
792         int i;
793
794         if (!wdev->connect_keys)
795                 return;
796
797         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
798                 if (!wdev->connect_keys->params[i].cipher)
799                         continue;
800                 if (rdev_add_key(rdev, dev, i, false, NULL,
801                                  &wdev->connect_keys->params[i])) {
802                         netdev_err(dev, "failed to set key %d\n", i);
803                         continue;
804                 }
805                 if (wdev->connect_keys->def == i &&
806                     rdev_set_default_key(rdev, dev, i, true, true)) {
807                         netdev_err(dev, "failed to set defkey %d\n", i);
808                         continue;
809                 }
810         }
811
812         kzfree(wdev->connect_keys);
813         wdev->connect_keys = NULL;
814 }
815
816 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
817 {
818         struct cfg80211_event *ev;
819         unsigned long flags;
820
821         spin_lock_irqsave(&wdev->event_lock, flags);
822         while (!list_empty(&wdev->event_list)) {
823                 ev = list_first_entry(&wdev->event_list,
824                                       struct cfg80211_event, list);
825                 list_del(&ev->list);
826                 spin_unlock_irqrestore(&wdev->event_lock, flags);
827
828                 wdev_lock(wdev);
829                 switch (ev->type) {
830                 case EVENT_CONNECT_RESULT:
831                         __cfg80211_connect_result(
832                                 wdev->netdev,
833                                 &ev->cr,
834                                 ev->cr.status == WLAN_STATUS_SUCCESS);
835                         break;
836                 case EVENT_ROAMED:
837                         __cfg80211_roamed(wdev, &ev->rm);
838                         break;
839                 case EVENT_DISCONNECTED:
840                         __cfg80211_disconnected(wdev->netdev,
841                                                 ev->dc.ie, ev->dc.ie_len,
842                                                 ev->dc.reason,
843                                                 !ev->dc.locally_generated);
844                         break;
845                 case EVENT_IBSS_JOINED:
846                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
847                                                ev->ij.channel);
848                         break;
849                 case EVENT_STOPPED:
850                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
851                         break;
852                 case EVENT_PORT_AUTHORIZED:
853                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
854                         break;
855                 }
856                 wdev_unlock(wdev);
857
858                 kfree(ev);
859
860                 spin_lock_irqsave(&wdev->event_lock, flags);
861         }
862         spin_unlock_irqrestore(&wdev->event_lock, flags);
863 }
864
865 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
866 {
867         struct wireless_dev *wdev;
868
869         ASSERT_RTNL();
870
871         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
872                 cfg80211_process_wdev_events(wdev);
873 }
874
875 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
876                           struct net_device *dev, enum nl80211_iftype ntype,
877                           struct vif_params *params)
878 {
879         int err;
880         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
881
882         ASSERT_RTNL();
883
884         /* don't support changing VLANs, you just re-create them */
885         if (otype == NL80211_IFTYPE_AP_VLAN)
886                 return -EOPNOTSUPP;
887
888         /* cannot change into P2P device or NAN */
889         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
890             ntype == NL80211_IFTYPE_NAN)
891                 return -EOPNOTSUPP;
892
893         if (!rdev->ops->change_virtual_intf ||
894             !(rdev->wiphy.interface_modes & (1 << ntype)))
895                 return -EOPNOTSUPP;
896
897         /* if it's part of a bridge, reject changing type to station/ibss */
898         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
899             (ntype == NL80211_IFTYPE_ADHOC ||
900              ntype == NL80211_IFTYPE_STATION ||
901              ntype == NL80211_IFTYPE_P2P_CLIENT))
902                 return -EBUSY;
903
904         if (ntype != otype) {
905                 dev->ieee80211_ptr->use_4addr = false;
906                 dev->ieee80211_ptr->mesh_id_up_len = 0;
907                 wdev_lock(dev->ieee80211_ptr);
908                 rdev_set_qos_map(rdev, dev, NULL);
909                 wdev_unlock(dev->ieee80211_ptr);
910
911                 switch (otype) {
912                 case NL80211_IFTYPE_AP:
913                         cfg80211_stop_ap(rdev, dev, true);
914                         break;
915                 case NL80211_IFTYPE_ADHOC:
916                         cfg80211_leave_ibss(rdev, dev, false);
917                         break;
918                 case NL80211_IFTYPE_STATION:
919                 case NL80211_IFTYPE_P2P_CLIENT:
920                         wdev_lock(dev->ieee80211_ptr);
921                         cfg80211_disconnect(rdev, dev,
922                                             WLAN_REASON_DEAUTH_LEAVING, true);
923                         wdev_unlock(dev->ieee80211_ptr);
924                         break;
925                 case NL80211_IFTYPE_MESH_POINT:
926                         /* mesh should be handled? */
927                         break;
928                 default:
929                         break;
930                 }
931
932                 cfg80211_process_rdev_events(rdev);
933         }
934
935         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
936
937         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
938
939         if (!err && params && params->use_4addr != -1)
940                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
941
942         if (!err) {
943                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
944                 switch (ntype) {
945                 case NL80211_IFTYPE_STATION:
946                         if (dev->ieee80211_ptr->use_4addr)
947                                 break;
948                         /* fall through */
949                 case NL80211_IFTYPE_OCB:
950                 case NL80211_IFTYPE_P2P_CLIENT:
951                 case NL80211_IFTYPE_ADHOC:
952                         dev->priv_flags |= IFF_DONT_BRIDGE;
953                         break;
954                 case NL80211_IFTYPE_P2P_GO:
955                 case NL80211_IFTYPE_AP:
956                 case NL80211_IFTYPE_AP_VLAN:
957                 case NL80211_IFTYPE_WDS:
958                 case NL80211_IFTYPE_MESH_POINT:
959                         /* bridging OK */
960                         break;
961                 case NL80211_IFTYPE_MONITOR:
962                         /* monitor can't bridge anyway */
963                         break;
964                 case NL80211_IFTYPE_UNSPECIFIED:
965                 case NUM_NL80211_IFTYPES:
966                         /* not happening */
967                         break;
968                 case NL80211_IFTYPE_P2P_DEVICE:
969                 case NL80211_IFTYPE_NAN:
970                         WARN_ON(1);
971                         break;
972                 }
973         }
974
975         if (!err && ntype != otype && netif_running(dev)) {
976                 cfg80211_update_iface_num(rdev, ntype, 1);
977                 cfg80211_update_iface_num(rdev, otype, -1);
978         }
979
980         return err;
981 }
982
983 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
984 {
985         int modulation, streams, bitrate;
986
987         /* the formula below does only work for MCS values smaller than 32 */
988         if (WARN_ON_ONCE(rate->mcs >= 32))
989                 return 0;
990
991         modulation = rate->mcs & 7;
992         streams = (rate->mcs >> 3) + 1;
993
994         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
995
996         if (modulation < 4)
997                 bitrate *= (modulation + 1);
998         else if (modulation == 4)
999                 bitrate *= (modulation + 2);
1000         else
1001                 bitrate *= (modulation + 3);
1002
1003         bitrate *= streams;
1004
1005         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1006                 bitrate = (bitrate / 9) * 10;
1007
1008         /* do NOT round down here */
1009         return (bitrate + 50000) / 100000;
1010 }
1011
1012 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1013 {
1014         static const u32 __mcs2bitrate[] = {
1015                 /* control PHY */
1016                 [0] =   275,
1017                 /* SC PHY */
1018                 [1] =  3850,
1019                 [2] =  7700,
1020                 [3] =  9625,
1021                 [4] = 11550,
1022                 [5] = 12512, /* 1251.25 mbps */
1023                 [6] = 15400,
1024                 [7] = 19250,
1025                 [8] = 23100,
1026                 [9] = 25025,
1027                 [10] = 30800,
1028                 [11] = 38500,
1029                 [12] = 46200,
1030                 /* OFDM PHY */
1031                 [13] =  6930,
1032                 [14] =  8662, /* 866.25 mbps */
1033                 [15] = 13860,
1034                 [16] = 17325,
1035                 [17] = 20790,
1036                 [18] = 27720,
1037                 [19] = 34650,
1038                 [20] = 41580,
1039                 [21] = 45045,
1040                 [22] = 51975,
1041                 [23] = 62370,
1042                 [24] = 67568, /* 6756.75 mbps */
1043                 /* LP-SC PHY */
1044                 [25] =  6260,
1045                 [26] =  8340,
1046                 [27] = 11120,
1047                 [28] = 12510,
1048                 [29] = 16680,
1049                 [30] = 22240,
1050                 [31] = 25030,
1051         };
1052
1053         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1054                 return 0;
1055
1056         return __mcs2bitrate[rate->mcs];
1057 }
1058
1059 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1060 {
1061         static const u32 base[4][10] = {
1062                 {   6500000,
1063                    13000000,
1064                    19500000,
1065                    26000000,
1066                    39000000,
1067                    52000000,
1068                    58500000,
1069                    65000000,
1070                    78000000,
1071                 /* not in the spec, but some devices use this: */
1072                    86500000,
1073                 },
1074                 {  13500000,
1075                    27000000,
1076                    40500000,
1077                    54000000,
1078                    81000000,
1079                   108000000,
1080                   121500000,
1081                   135000000,
1082                   162000000,
1083                   180000000,
1084                 },
1085                 {  29300000,
1086                    58500000,
1087                    87800000,
1088                   117000000,
1089                   175500000,
1090                   234000000,
1091                   263300000,
1092                   292500000,
1093                   351000000,
1094                   390000000,
1095                 },
1096                 {  58500000,
1097                   117000000,
1098                   175500000,
1099                   234000000,
1100                   351000000,
1101                   468000000,
1102                   526500000,
1103                   585000000,
1104                   702000000,
1105                   780000000,
1106                 },
1107         };
1108         u32 bitrate;
1109         int idx;
1110
1111         if (rate->mcs > 9)
1112                 goto warn;
1113
1114         switch (rate->bw) {
1115         case RATE_INFO_BW_160:
1116                 idx = 3;
1117                 break;
1118         case RATE_INFO_BW_80:
1119                 idx = 2;
1120                 break;
1121         case RATE_INFO_BW_40:
1122                 idx = 1;
1123                 break;
1124         case RATE_INFO_BW_5:
1125         case RATE_INFO_BW_10:
1126         default:
1127                 goto warn;
1128         case RATE_INFO_BW_20:
1129                 idx = 0;
1130         }
1131
1132         bitrate = base[idx][rate->mcs];
1133         bitrate *= rate->nss;
1134
1135         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1136                 bitrate = (bitrate / 9) * 10;
1137
1138         /* do NOT round down here */
1139         return (bitrate + 50000) / 100000;
1140  warn:
1141         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1142                   rate->bw, rate->mcs, rate->nss);
1143         return 0;
1144 }
1145
1146 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1147 {
1148 #define SCALE 2048
1149         u16 mcs_divisors[12] = {
1150                 34133, /* 16.666666... */
1151                 17067, /*  8.333333... */
1152                 11378, /*  5.555555... */
1153                  8533, /*  4.166666... */
1154                  5689, /*  2.777777... */
1155                  4267, /*  2.083333... */
1156                  3923, /*  1.851851... */
1157                  3413, /*  1.666666... */
1158                  2844, /*  1.388888... */
1159                  2560, /*  1.250000... */
1160                  2276, /*  1.111111... */
1161                  2048, /*  1.000000... */
1162         };
1163         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1164         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1165         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1166         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1167         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1168         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1169         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1170         u64 tmp;
1171         u32 result;
1172
1173         if (WARN_ON_ONCE(rate->mcs > 11))
1174                 return 0;
1175
1176         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1177                 return 0;
1178         if (WARN_ON_ONCE(rate->he_ru_alloc >
1179                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1180                 return 0;
1181         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1182                 return 0;
1183
1184         if (rate->bw == RATE_INFO_BW_160)
1185                 result = rates_160M[rate->he_gi];
1186         else if (rate->bw == RATE_INFO_BW_80 ||
1187                  (rate->bw == RATE_INFO_BW_HE_RU &&
1188                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1189                 result = rates_969[rate->he_gi];
1190         else if (rate->bw == RATE_INFO_BW_40 ||
1191                  (rate->bw == RATE_INFO_BW_HE_RU &&
1192                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1193                 result = rates_484[rate->he_gi];
1194         else if (rate->bw == RATE_INFO_BW_20 ||
1195                  (rate->bw == RATE_INFO_BW_HE_RU &&
1196                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1197                 result = rates_242[rate->he_gi];
1198         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1199                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1200                 result = rates_106[rate->he_gi];
1201         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1202                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1203                 result = rates_52[rate->he_gi];
1204         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1205                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1206                 result = rates_26[rate->he_gi];
1207         else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1208                       rate->bw, rate->he_ru_alloc))
1209                 return 0;
1210
1211         /* now scale to the appropriate MCS */
1212         tmp = result;
1213         tmp *= SCALE;
1214         do_div(tmp, mcs_divisors[rate->mcs]);
1215         result = tmp;
1216
1217         /* and take NSS, DCM into account */
1218         result = (result * rate->nss) / 8;
1219         if (rate->he_dcm)
1220                 result /= 2;
1221
1222         return result;
1223 }
1224
1225 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1226 {
1227         if (rate->flags & RATE_INFO_FLAGS_MCS)
1228                 return cfg80211_calculate_bitrate_ht(rate);
1229         if (rate->flags & RATE_INFO_FLAGS_60G)
1230                 return cfg80211_calculate_bitrate_60g(rate);
1231         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1232                 return cfg80211_calculate_bitrate_vht(rate);
1233         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1234                 return cfg80211_calculate_bitrate_he(rate);
1235
1236         return rate->legacy;
1237 }
1238 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1239
1240 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1241                           enum ieee80211_p2p_attr_id attr,
1242                           u8 *buf, unsigned int bufsize)
1243 {
1244         u8 *out = buf;
1245         u16 attr_remaining = 0;
1246         bool desired_attr = false;
1247         u16 desired_len = 0;
1248
1249         while (len > 0) {
1250                 unsigned int iedatalen;
1251                 unsigned int copy;
1252                 const u8 *iedata;
1253
1254                 if (len < 2)
1255                         return -EILSEQ;
1256                 iedatalen = ies[1];
1257                 if (iedatalen + 2 > len)
1258                         return -EILSEQ;
1259
1260                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1261                         goto cont;
1262
1263                 if (iedatalen < 4)
1264                         goto cont;
1265
1266                 iedata = ies + 2;
1267
1268                 /* check WFA OUI, P2P subtype */
1269                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1270                     iedata[2] != 0x9a || iedata[3] != 0x09)
1271                         goto cont;
1272
1273                 iedatalen -= 4;
1274                 iedata += 4;
1275
1276                 /* check attribute continuation into this IE */
1277                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1278                 if (copy && desired_attr) {
1279                         desired_len += copy;
1280                         if (out) {
1281                                 memcpy(out, iedata, min(bufsize, copy));
1282                                 out += min(bufsize, copy);
1283                                 bufsize -= min(bufsize, copy);
1284                         }
1285
1286
1287                         if (copy == attr_remaining)
1288                                 return desired_len;
1289                 }
1290
1291                 attr_remaining -= copy;
1292                 if (attr_remaining)
1293                         goto cont;
1294
1295                 iedatalen -= copy;
1296                 iedata += copy;
1297
1298                 while (iedatalen > 0) {
1299                         u16 attr_len;
1300
1301                         /* P2P attribute ID & size must fit */
1302                         if (iedatalen < 3)
1303                                 return -EILSEQ;
1304                         desired_attr = iedata[0] == attr;
1305                         attr_len = get_unaligned_le16(iedata + 1);
1306                         iedatalen -= 3;
1307                         iedata += 3;
1308
1309                         copy = min_t(unsigned int, attr_len, iedatalen);
1310
1311                         if (desired_attr) {
1312                                 desired_len += copy;
1313                                 if (out) {
1314                                         memcpy(out, iedata, min(bufsize, copy));
1315                                         out += min(bufsize, copy);
1316                                         bufsize -= min(bufsize, copy);
1317                                 }
1318
1319                                 if (copy == attr_len)
1320                                         return desired_len;
1321                         }
1322
1323                         iedata += copy;
1324                         iedatalen -= copy;
1325                         attr_remaining = attr_len - copy;
1326                 }
1327
1328  cont:
1329                 len -= ies[1] + 2;
1330                 ies += ies[1] + 2;
1331         }
1332
1333         if (attr_remaining && desired_attr)
1334                 return -EILSEQ;
1335
1336         return -ENOENT;
1337 }
1338 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1339
1340 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1341 {
1342         int i;
1343
1344         /* Make sure array values are legal */
1345         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1346                 return false;
1347
1348         i = 0;
1349         while (i < n_ids) {
1350                 if (ids[i] == WLAN_EID_EXTENSION) {
1351                         if (id_ext && (ids[i + 1] == id))
1352                                 return true;
1353
1354                         i += 2;
1355                         continue;
1356                 }
1357
1358                 if (ids[i] == id && !id_ext)
1359                         return true;
1360
1361                 i++;
1362         }
1363         return false;
1364 }
1365
1366 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1367 {
1368         /* we assume a validly formed IEs buffer */
1369         u8 len = ies[pos + 1];
1370
1371         pos += 2 + len;
1372
1373         /* the IE itself must have 255 bytes for fragments to follow */
1374         if (len < 255)
1375                 return pos;
1376
1377         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1378                 len = ies[pos + 1];
1379                 pos += 2 + len;
1380         }
1381
1382         return pos;
1383 }
1384
1385 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1386                               const u8 *ids, int n_ids,
1387                               const u8 *after_ric, int n_after_ric,
1388                               size_t offset)
1389 {
1390         size_t pos = offset;
1391
1392         while (pos < ielen) {
1393                 u8 ext = 0;
1394
1395                 if (ies[pos] == WLAN_EID_EXTENSION)
1396                         ext = 2;
1397                 if ((pos + ext) >= ielen)
1398                         break;
1399
1400                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1401                                           ies[pos] == WLAN_EID_EXTENSION))
1402                         break;
1403
1404                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1405                         pos = skip_ie(ies, ielen, pos);
1406
1407                         while (pos < ielen) {
1408                                 if (ies[pos] == WLAN_EID_EXTENSION)
1409                                         ext = 2;
1410                                 else
1411                                         ext = 0;
1412
1413                                 if ((pos + ext) >= ielen)
1414                                         break;
1415
1416                                 if (!ieee80211_id_in_list(after_ric,
1417                                                           n_after_ric,
1418                                                           ies[pos + ext],
1419                                                           ext == 2))
1420                                         pos = skip_ie(ies, ielen, pos);
1421                         }
1422                 } else {
1423                         pos = skip_ie(ies, ielen, pos);
1424                 }
1425         }
1426
1427         return pos;
1428 }
1429 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1430
1431 bool ieee80211_operating_class_to_band(u8 operating_class,
1432                                        enum nl80211_band *band)
1433 {
1434         switch (operating_class) {
1435         case 112:
1436         case 115 ... 127:
1437         case 128 ... 130:
1438                 *band = NL80211_BAND_5GHZ;
1439                 return true;
1440         case 81:
1441         case 82:
1442         case 83:
1443         case 84:
1444                 *band = NL80211_BAND_2GHZ;
1445                 return true;
1446         case 180:
1447                 *band = NL80211_BAND_60GHZ;
1448                 return true;
1449         }
1450
1451         return false;
1452 }
1453 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1454
1455 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1456                                           u8 *op_class)
1457 {
1458         u8 vht_opclass;
1459         u16 freq = chandef->center_freq1;
1460
1461         if (freq >= 2412 && freq <= 2472) {
1462                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1463                         return false;
1464
1465                 /* 2.407 GHz, channels 1..13 */
1466                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1467                         if (freq > chandef->chan->center_freq)
1468                                 *op_class = 83; /* HT40+ */
1469                         else
1470                                 *op_class = 84; /* HT40- */
1471                 } else {
1472                         *op_class = 81;
1473                 }
1474
1475                 return true;
1476         }
1477
1478         if (freq == 2484) {
1479                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1480                         return false;
1481
1482                 *op_class = 82; /* channel 14 */
1483                 return true;
1484         }
1485
1486         switch (chandef->width) {
1487         case NL80211_CHAN_WIDTH_80:
1488                 vht_opclass = 128;
1489                 break;
1490         case NL80211_CHAN_WIDTH_160:
1491                 vht_opclass = 129;
1492                 break;
1493         case NL80211_CHAN_WIDTH_80P80:
1494                 vht_opclass = 130;
1495                 break;
1496         case NL80211_CHAN_WIDTH_10:
1497         case NL80211_CHAN_WIDTH_5:
1498                 return false; /* unsupported for now */
1499         default:
1500                 vht_opclass = 0;
1501                 break;
1502         }
1503
1504         /* 5 GHz, channels 36..48 */
1505         if (freq >= 5180 && freq <= 5240) {
1506                 if (vht_opclass) {
1507                         *op_class = vht_opclass;
1508                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1509                         if (freq > chandef->chan->center_freq)
1510                                 *op_class = 116;
1511                         else
1512                                 *op_class = 117;
1513                 } else {
1514                         *op_class = 115;
1515                 }
1516
1517                 return true;
1518         }
1519
1520         /* 5 GHz, channels 52..64 */
1521         if (freq >= 5260 && freq <= 5320) {
1522                 if (vht_opclass) {
1523                         *op_class = vht_opclass;
1524                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1525                         if (freq > chandef->chan->center_freq)
1526                                 *op_class = 119;
1527                         else
1528                                 *op_class = 120;
1529                 } else {
1530                         *op_class = 118;
1531                 }
1532
1533                 return true;
1534         }
1535
1536         /* 5 GHz, channels 100..144 */
1537         if (freq >= 5500 && freq <= 5720) {
1538                 if (vht_opclass) {
1539                         *op_class = vht_opclass;
1540                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1541                         if (freq > chandef->chan->center_freq)
1542                                 *op_class = 122;
1543                         else
1544                                 *op_class = 123;
1545                 } else {
1546                         *op_class = 121;
1547                 }
1548
1549                 return true;
1550         }
1551
1552         /* 5 GHz, channels 149..169 */
1553         if (freq >= 5745 && freq <= 5845) {
1554                 if (vht_opclass) {
1555                         *op_class = vht_opclass;
1556                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1557                         if (freq > chandef->chan->center_freq)
1558                                 *op_class = 126;
1559                         else
1560                                 *op_class = 127;
1561                 } else if (freq <= 5805) {
1562                         *op_class = 124;
1563                 } else {
1564                         *op_class = 125;
1565                 }
1566
1567                 return true;
1568         }
1569
1570         /* 56.16 GHz, channel 1..4 */
1571         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1572                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1573                         return false;
1574
1575                 *op_class = 180;
1576                 return true;
1577         }
1578
1579         /* not supported yet */
1580         return false;
1581 }
1582 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1583
1584 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1585                                        u32 *beacon_int_gcd,
1586                                        bool *beacon_int_different)
1587 {
1588         struct wireless_dev *wdev;
1589
1590         *beacon_int_gcd = 0;
1591         *beacon_int_different = false;
1592
1593         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1594                 if (!wdev->beacon_interval)
1595                         continue;
1596
1597                 if (!*beacon_int_gcd) {
1598                         *beacon_int_gcd = wdev->beacon_interval;
1599                         continue;
1600                 }
1601
1602                 if (wdev->beacon_interval == *beacon_int_gcd)
1603                         continue;
1604
1605                 *beacon_int_different = true;
1606                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1607         }
1608
1609         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1610                 if (*beacon_int_gcd)
1611                         *beacon_int_different = true;
1612                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1613         }
1614 }
1615
1616 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1617                                  enum nl80211_iftype iftype, u32 beacon_int)
1618 {
1619         /*
1620          * This is just a basic pre-condition check; if interface combinations
1621          * are possible the driver must already be checking those with a call
1622          * to cfg80211_check_combinations(), in which case we'll validate more
1623          * through the cfg80211_calculate_bi_data() call and code in
1624          * cfg80211_iter_combinations().
1625          */
1626
1627         if (beacon_int < 10 || beacon_int > 10000)
1628                 return -EINVAL;
1629
1630         return 0;
1631 }
1632
1633 int cfg80211_iter_combinations(struct wiphy *wiphy,
1634                                struct iface_combination_params *params,
1635                                void (*iter)(const struct ieee80211_iface_combination *c,
1636                                             void *data),
1637                                void *data)
1638 {
1639         const struct ieee80211_regdomain *regdom;
1640         enum nl80211_dfs_regions region = 0;
1641         int i, j, iftype;
1642         int num_interfaces = 0;
1643         u32 used_iftypes = 0;
1644         u32 beacon_int_gcd;
1645         bool beacon_int_different;
1646
1647         /*
1648          * This is a bit strange, since the iteration used to rely only on
1649          * the data given by the driver, but here it now relies on context,
1650          * in form of the currently operating interfaces.
1651          * This is OK for all current users, and saves us from having to
1652          * push the GCD calculations into all the drivers.
1653          * In the future, this should probably rely more on data that's in
1654          * cfg80211 already - the only thing not would appear to be any new
1655          * interfaces (while being brought up) and channel/radar data.
1656          */
1657         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1658                                    &beacon_int_gcd, &beacon_int_different);
1659
1660         if (params->radar_detect) {
1661                 rcu_read_lock();
1662                 regdom = rcu_dereference(cfg80211_regdomain);
1663                 if (regdom)
1664                         region = regdom->dfs_region;
1665                 rcu_read_unlock();
1666         }
1667
1668         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1669                 num_interfaces += params->iftype_num[iftype];
1670                 if (params->iftype_num[iftype] > 0 &&
1671                     !(wiphy->software_iftypes & BIT(iftype)))
1672                         used_iftypes |= BIT(iftype);
1673         }
1674
1675         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1676                 const struct ieee80211_iface_combination *c;
1677                 struct ieee80211_iface_limit *limits;
1678                 u32 all_iftypes = 0;
1679
1680                 c = &wiphy->iface_combinations[i];
1681
1682                 if (num_interfaces > c->max_interfaces)
1683                         continue;
1684                 if (params->num_different_channels > c->num_different_channels)
1685                         continue;
1686
1687                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1688                                  GFP_KERNEL);
1689                 if (!limits)
1690                         return -ENOMEM;
1691
1692                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1693                         if (wiphy->software_iftypes & BIT(iftype))
1694                                 continue;
1695                         for (j = 0; j < c->n_limits; j++) {
1696                                 all_iftypes |= limits[j].types;
1697                                 if (!(limits[j].types & BIT(iftype)))
1698                                         continue;
1699                                 if (limits[j].max < params->iftype_num[iftype])
1700                                         goto cont;
1701                                 limits[j].max -= params->iftype_num[iftype];
1702                         }
1703                 }
1704
1705                 if (params->radar_detect !=
1706                         (c->radar_detect_widths & params->radar_detect))
1707                         goto cont;
1708
1709                 if (params->radar_detect && c->radar_detect_regions &&
1710                     !(c->radar_detect_regions & BIT(region)))
1711                         goto cont;
1712
1713                 /* Finally check that all iftypes that we're currently
1714                  * using are actually part of this combination. If they
1715                  * aren't then we can't use this combination and have
1716                  * to continue to the next.
1717                  */
1718                 if ((all_iftypes & used_iftypes) != used_iftypes)
1719                         goto cont;
1720
1721                 if (beacon_int_gcd) {
1722                         if (c->beacon_int_min_gcd &&
1723                             beacon_int_gcd < c->beacon_int_min_gcd)
1724                                 goto cont;
1725                         if (!c->beacon_int_min_gcd && beacon_int_different)
1726                                 goto cont;
1727                 }
1728
1729                 /* This combination covered all interface types and
1730                  * supported the requested numbers, so we're good.
1731                  */
1732
1733                 (*iter)(c, data);
1734  cont:
1735                 kfree(limits);
1736         }
1737
1738         return 0;
1739 }
1740 EXPORT_SYMBOL(cfg80211_iter_combinations);
1741
1742 static void
1743 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1744                           void *data)
1745 {
1746         int *num = data;
1747         (*num)++;
1748 }
1749
1750 int cfg80211_check_combinations(struct wiphy *wiphy,
1751                                 struct iface_combination_params *params)
1752 {
1753         int err, num = 0;
1754
1755         err = cfg80211_iter_combinations(wiphy, params,
1756                                          cfg80211_iter_sum_ifcombs, &num);
1757         if (err)
1758                 return err;
1759         if (num == 0)
1760                 return -EBUSY;
1761
1762         return 0;
1763 }
1764 EXPORT_SYMBOL(cfg80211_check_combinations);
1765
1766 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1767                            const u8 *rates, unsigned int n_rates,
1768                            u32 *mask)
1769 {
1770         int i, j;
1771
1772         if (!sband)
1773                 return -EINVAL;
1774
1775         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1776                 return -EINVAL;
1777
1778         *mask = 0;
1779
1780         for (i = 0; i < n_rates; i++) {
1781                 int rate = (rates[i] & 0x7f) * 5;
1782                 bool found = false;
1783
1784                 for (j = 0; j < sband->n_bitrates; j++) {
1785                         if (sband->bitrates[j].bitrate == rate) {
1786                                 found = true;
1787                                 *mask |= BIT(j);
1788                                 break;
1789                         }
1790                 }
1791                 if (!found)
1792                         return -EINVAL;
1793         }
1794
1795         /*
1796          * mask must have at least one bit set here since we
1797          * didn't accept a 0-length rates array nor allowed
1798          * entries in the array that didn't exist
1799          */
1800
1801         return 0;
1802 }
1803
1804 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1805 {
1806         enum nl80211_band band;
1807         unsigned int n_channels = 0;
1808
1809         for (band = 0; band < NUM_NL80211_BANDS; band++)
1810                 if (wiphy->bands[band])
1811                         n_channels += wiphy->bands[band]->n_channels;
1812
1813         return n_channels;
1814 }
1815 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1816
1817 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1818                          struct station_info *sinfo)
1819 {
1820         struct cfg80211_registered_device *rdev;
1821         struct wireless_dev *wdev;
1822
1823         wdev = dev->ieee80211_ptr;
1824         if (!wdev)
1825                 return -EOPNOTSUPP;
1826
1827         rdev = wiphy_to_rdev(wdev->wiphy);
1828         if (!rdev->ops->get_station)
1829                 return -EOPNOTSUPP;
1830
1831         memset(sinfo, 0, sizeof(*sinfo));
1832
1833         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1834 }
1835 EXPORT_SYMBOL(cfg80211_get_station);
1836
1837 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1838 {
1839         int i;
1840
1841         if (!f)
1842                 return;
1843
1844         kfree(f->serv_spec_info);
1845         kfree(f->srf_bf);
1846         kfree(f->srf_macs);
1847         for (i = 0; i < f->num_rx_filters; i++)
1848                 kfree(f->rx_filters[i].filter);
1849
1850         for (i = 0; i < f->num_tx_filters; i++)
1851                 kfree(f->tx_filters[i].filter);
1852
1853         kfree(f->rx_filters);
1854         kfree(f->tx_filters);
1855         kfree(f);
1856 }
1857 EXPORT_SYMBOL(cfg80211_free_nan_func);
1858
1859 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1860                                 u32 center_freq_khz, u32 bw_khz)
1861 {
1862         u32 start_freq_khz, end_freq_khz;
1863
1864         start_freq_khz = center_freq_khz - (bw_khz / 2);
1865         end_freq_khz = center_freq_khz + (bw_khz / 2);
1866
1867         if (start_freq_khz >= freq_range->start_freq_khz &&
1868             end_freq_khz <= freq_range->end_freq_khz)
1869                 return true;
1870
1871         return false;
1872 }
1873
1874 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1875 {
1876         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1877                                 sizeof(*(sinfo->pertid)),
1878                                 gfp);
1879         if (!sinfo->pertid)
1880                 return -ENOMEM;
1881
1882         return 0;
1883 }
1884 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1885
1886 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1887 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1888 const unsigned char rfc1042_header[] __aligned(2) =
1889         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1890 EXPORT_SYMBOL(rfc1042_header);
1891
1892 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1893 const unsigned char bridge_tunnel_header[] __aligned(2) =
1894         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1895 EXPORT_SYMBOL(bridge_tunnel_header);