Merge branch 'devel-stable' into for-next
[sfrench/cifs-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
86  *      further processing is required, i.e., not need to update last_request
87  *      etc. This should be used for user hints that do not provide an alpha2
88  *      but some other type of regulatory hint, i.e., indoor operation.
89  */
90 enum reg_request_treatment {
91         REG_REQ_OK,
92         REG_REQ_IGNORE,
93         REG_REQ_INTERSECT,
94         REG_REQ_ALREADY_SET,
95         REG_REQ_USER_HINT_HANDLED,
96 };
97
98 static struct regulatory_request core_request_world = {
99         .initiator = NL80211_REGDOM_SET_BY_CORE,
100         .alpha2[0] = '0',
101         .alpha2[1] = '0',
102         .intersect = false,
103         .processed = true,
104         .country_ie_env = ENVIRON_ANY,
105 };
106
107 /*
108  * Receipt of information from last regulatory request,
109  * protected by RTNL (and can be accessed with RCU protection)
110  */
111 static struct regulatory_request __rcu *last_request =
112         (void __force __rcu *)&core_request_world;
113
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116
117 /*
118  * Central wireless core regulatory domains, we only need two,
119  * the current one and a world regulatory domain in case we have no
120  * information to give us an alpha2.
121  * (protected by RTNL, can be read under RCU)
122  */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125 /*
126  * Number of devices that registered to the core
127  * that support cellular base station regulatory hints
128  * (protected by RTNL)
129  */
130 static int reg_num_devs_support_basehint;
131
132 /*
133  * State variable indicating if the platform on which the devices
134  * are attached is operating in an indoor environment. The state variable
135  * is relevant for all registered devices.
136  * (protected by RTNL)
137  */
138 static bool reg_is_indoor;
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147         return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152         switch (dfs_region) {
153         case NL80211_DFS_UNSET:
154                 return "unset";
155         case NL80211_DFS_FCC:
156                 return "FCC";
157         case NL80211_DFS_ETSI:
158                 return "ETSI";
159         case NL80211_DFS_JP:
160                 return "JP";
161         }
162         return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167         const struct ieee80211_regdomain *regd = NULL;
168         const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170         regd = get_cfg80211_regdom();
171         if (!wiphy)
172                 goto out;
173
174         wiphy_regd = get_wiphy_regdom(wiphy);
175         if (!wiphy_regd)
176                 goto out;
177
178         if (wiphy_regd->dfs_region == regd->dfs_region)
179                 goto out;
180
181         REG_DBG_PRINT("%s: device specific dfs_region "
182                       "(%s) disagrees with cfg80211's "
183                       "central dfs_region (%s)\n",
184                       dev_name(&wiphy->dev),
185                       reg_dfs_region_str(wiphy_regd->dfs_region),
186                       reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231         .n_reg_rules = 8,
232         .alpha2 =  "00",
233         .reg_rules = {
234                 /* IEEE 802.11b/g, channels 1..11 */
235                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236                 /* IEEE 802.11b/g, channels 12..13. */
237                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238                         NL80211_RRF_NO_IR),
239                 /* IEEE 802.11 channel 14 - Only JP enables
240                  * this and for 802.11b only */
241                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_NO_OFDM),
244                 /* IEEE 802.11a, channel 36..48 */
245                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR),
247
248                 /* IEEE 802.11a, channel 52..64 - DFS required */
249                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250                         NL80211_RRF_NO_IR |
251                         NL80211_RRF_DFS),
252
253                 /* IEEE 802.11a, channel 100..144 - DFS required */
254                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255                         NL80211_RRF_NO_IR |
256                         NL80211_RRF_DFS),
257
258                 /* IEEE 802.11a, channel 149..165 */
259                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR),
261
262                 /* IEEE 802.11ad (60gHz), channels 1..3 */
263                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264         }
265 };
266
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269         &world_regdom;
270
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279         if (request != get_last_request())
280                 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285         struct regulatory_request *lr = get_last_request();
286
287         if (lr != &core_request_world && lr)
288                 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293         struct regulatory_request *lr;
294
295         lr = get_last_request();
296         if (lr == request)
297                 return;
298
299         reg_free_last_request();
300         rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304                              const struct ieee80211_regdomain *new_regdom)
305 {
306         const struct ieee80211_regdomain *r;
307
308         ASSERT_RTNL();
309
310         r = get_cfg80211_regdom();
311
312         /* avoid freeing static information or freeing something twice */
313         if (r == cfg80211_world_regdom)
314                 r = NULL;
315         if (cfg80211_world_regdom == &world_regdom)
316                 cfg80211_world_regdom = NULL;
317         if (r == &world_regdom)
318                 r = NULL;
319
320         rcu_free_regdom(r);
321         rcu_free_regdom(cfg80211_world_regdom);
322
323         cfg80211_world_regdom = &world_regdom;
324         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326         if (!full_reset)
327                 return;
328
329         reg_update_last_request(&core_request_world);
330 }
331
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338         struct regulatory_request *lr;
339
340         lr = get_last_request();
341
342         WARN_ON(!lr);
343
344         reset_regdomains(false, rd);
345
346         cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain was built by driver
369          * but a specific alpha2 cannot be determined
370          */
371         return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         /*
379          * Special case where regulatory domain is the
380          * result of an intersection between two regulatory domain
381          * structures
382          */
383         return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388         if (!alpha2)
389                 return false;
390         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395         if (!alpha2_x || !alpha2_y)
396                 return false;
397         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404         if (!r)
405                 return true;
406         return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417                 return false;
418
419         /* This would indicate a mistake on the design */
420         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421                  "Unexpected user alpha2: %c%c\n",
422                  user_alpha2[0], user_alpha2[1]))
423                 return false;
424
425         return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431         struct ieee80211_regdomain *regd;
432         int size_of_regd;
433         unsigned int i;
434
435         size_of_regd =
436                 sizeof(struct ieee80211_regdomain) +
437                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439         regd = kzalloc(size_of_regd, GFP_KERNEL);
440         if (!regd)
441                 return ERR_PTR(-ENOMEM);
442
443         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445         for (i = 0; i < src_regd->n_reg_rules; i++)
446                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447                        sizeof(struct ieee80211_reg_rule));
448
449         return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454         char alpha2[2];
455         struct list_head list;
456 };
457
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461 static void reg_regdb_search(struct work_struct *work)
462 {
463         struct reg_regdb_search_request *request;
464         const struct ieee80211_regdomain *curdom, *regdom = NULL;
465         int i;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_search_mutex);
470         while (!list_empty(&reg_regdb_search_list)) {
471                 request = list_first_entry(&reg_regdb_search_list,
472                                            struct reg_regdb_search_request,
473                                            list);
474                 list_del(&request->list);
475
476                 for (i = 0; i < reg_regdb_size; i++) {
477                         curdom = reg_regdb[i];
478
479                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480                                 regdom = reg_copy_regd(curdom);
481                                 break;
482                         }
483                 }
484
485                 kfree(request);
486         }
487         mutex_unlock(&reg_regdb_search_mutex);
488
489         if (!IS_ERR_OR_NULL(regdom))
490                 set_regdom(regdom);
491
492         rtnl_unlock();
493 }
494
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497 static void reg_regdb_query(const char *alpha2)
498 {
499         struct reg_regdb_search_request *request;
500
501         if (!alpha2)
502                 return;
503
504         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505         if (!request)
506                 return;
507
508         memcpy(request->alpha2, alpha2, 2);
509
510         mutex_lock(&reg_regdb_search_mutex);
511         list_add_tail(&request->list, &reg_regdb_search_list);
512         mutex_unlock(&reg_regdb_search_mutex);
513
514         schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534         char country[12];
535         char *env[] = { country, NULL };
536
537         snprintf(country, sizeof(country), "COUNTRY=%c%c",
538                  alpha2[0], alpha2[1]);
539
540         if (!is_world_regdom((char *) alpha2))
541                 pr_info("Calling CRDA for country: %c%c\n",
542                         alpha2[0], alpha2[1]);
543         else
544                 pr_info("Calling CRDA to update world regulatory domain\n");
545
546         /* query internal regulatory database (if it exists) */
547         reg_regdb_query(alpha2);
548
549         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555         if (call_crda(request->alpha2))
556                 return REG_REQ_IGNORE;
557         return REG_REQ_OK;
558 }
559
560 bool reg_is_valid_request(const char *alpha2)
561 {
562         struct regulatory_request *lr = get_last_request();
563
564         if (!lr || lr->processed)
565                 return false;
566
567         return alpha2_equal(lr->alpha2, alpha2);
568 }
569
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572         struct regulatory_request *lr = get_last_request();
573
574         /*
575          * Follow the driver's regulatory domain, if present, unless a country
576          * IE has been processed or a user wants to help complaince further
577          */
578         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580             wiphy->regd)
581                 return get_wiphy_regdom(wiphy);
582
583         return get_cfg80211_regdom();
584 }
585
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588                                  const struct ieee80211_reg_rule *rule)
589 {
590         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591         const struct ieee80211_freq_range *freq_range_tmp;
592         const struct ieee80211_reg_rule *tmp;
593         u32 start_freq, end_freq, idx, no;
594
595         for (idx = 0; idx < rd->n_reg_rules; idx++)
596                 if (rule == &rd->reg_rules[idx])
597                         break;
598
599         if (idx == rd->n_reg_rules)
600                 return 0;
601
602         /* get start_freq */
603         no = idx;
604
605         while (no) {
606                 tmp = &rd->reg_rules[--no];
607                 freq_range_tmp = &tmp->freq_range;
608
609                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610                         break;
611
612                 freq_range = freq_range_tmp;
613         }
614
615         start_freq = freq_range->start_freq_khz;
616
617         /* get end_freq */
618         freq_range = &rule->freq_range;
619         no = idx;
620
621         while (no < rd->n_reg_rules - 1) {
622                 tmp = &rd->reg_rules[++no];
623                 freq_range_tmp = &tmp->freq_range;
624
625                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626                         break;
627
628                 freq_range = freq_range_tmp;
629         }
630
631         end_freq = freq_range->end_freq_khz;
632
633         return end_freq - start_freq;
634 }
635
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637                                    const struct ieee80211_reg_rule *rule)
638 {
639         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641         if (rule->flags & NL80211_RRF_NO_160MHZ)
642                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643         if (rule->flags & NL80211_RRF_NO_80MHZ)
644                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646         /*
647          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648          * are not allowed.
649          */
650         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651             rule->flags & NL80211_RRF_NO_HT40PLUS)
652                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654         return bw;
655 }
656
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661         u32 freq_diff;
662
663         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664                 return false;
665
666         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667                 return false;
668
669         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672             freq_range->max_bandwidth_khz > freq_diff)
673                 return false;
674
675         return true;
676 }
677
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680         const struct ieee80211_reg_rule *reg_rule = NULL;
681         unsigned int i;
682
683         if (!rd->n_reg_rules)
684                 return false;
685
686         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687                 return false;
688
689         for (i = 0; i < rd->n_reg_rules; i++) {
690                 reg_rule = &rd->reg_rules[i];
691                 if (!is_valid_reg_rule(reg_rule))
692                         return false;
693         }
694
695         return true;
696 }
697
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699                             u32 center_freq_khz, u32 bw_khz)
700 {
701         u32 start_freq_khz, end_freq_khz;
702
703         start_freq_khz = center_freq_khz - (bw_khz/2);
704         end_freq_khz = center_freq_khz + (bw_khz/2);
705
706         if (start_freq_khz >= freq_range->start_freq_khz &&
707             end_freq_khz <= freq_range->end_freq_khz)
708                 return true;
709
710         return false;
711 }
712
713 /**
714  * freq_in_rule_band - tells us if a frequency is in a frequency band
715  * @freq_range: frequency rule we want to query
716  * @freq_khz: frequency we are inquiring about
717  *
718  * This lets us know if a specific frequency rule is or is not relevant to
719  * a specific frequency's band. Bands are device specific and artificial
720  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721  * however it is safe for now to assume that a frequency rule should not be
722  * part of a frequency's band if the start freq or end freq are off by more
723  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724  * 60 GHz band.
725  * This resolution can be lowered and should be considered as we add
726  * regulatory rule support for other "bands".
727  **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729                               u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ  1000000
732         /*
733          * From 802.11ad: directional multi-gigabit (DMG):
734          * Pertaining to operation in a frequency band containing a channel
735          * with the Channel starting frequency above 45 GHz.
736          */
737         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740                 return true;
741         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742                 return true;
743         return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746
747 /*
748  * Later on we can perhaps use the more restrictive DFS
749  * region but we don't have information for that yet so
750  * for now simply disallow conflicts.
751  */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754                          const enum nl80211_dfs_regions dfs_region2)
755 {
756         if (dfs_region1 != dfs_region2)
757                 return NL80211_DFS_UNSET;
758         return dfs_region1;
759 }
760
761 /*
762  * Helper for regdom_intersect(), this does the real
763  * mathematical intersection fun
764  */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766                                const struct ieee80211_regdomain *rd2,
767                                const struct ieee80211_reg_rule *rule1,
768                                const struct ieee80211_reg_rule *rule2,
769                                struct ieee80211_reg_rule *intersected_rule)
770 {
771         const struct ieee80211_freq_range *freq_range1, *freq_range2;
772         struct ieee80211_freq_range *freq_range;
773         const struct ieee80211_power_rule *power_rule1, *power_rule2;
774         struct ieee80211_power_rule *power_rule;
775         u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777         freq_range1 = &rule1->freq_range;
778         freq_range2 = &rule2->freq_range;
779         freq_range = &intersected_rule->freq_range;
780
781         power_rule1 = &rule1->power_rule;
782         power_rule2 = &rule2->power_rule;
783         power_rule = &intersected_rule->power_rule;
784
785         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786                                          freq_range2->start_freq_khz);
787         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788                                        freq_range2->end_freq_khz);
789
790         max_bandwidth1 = freq_range1->max_bandwidth_khz;
791         max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793         if (rule1->flags & NL80211_RRF_AUTO_BW)
794                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795         if (rule2->flags & NL80211_RRF_AUTO_BW)
796                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800         intersected_rule->flags = rule1->flags | rule2->flags;
801
802         /*
803          * In case NL80211_RRF_AUTO_BW requested for both rules
804          * set AUTO_BW in intersected rule also. Next we will
805          * calculate BW correctly in handle_channel function.
806          * In other case remove AUTO_BW flag while we calculate
807          * maximum bandwidth correctly and auto calculation is
808          * not required.
809          */
810         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811             (rule2->flags & NL80211_RRF_AUTO_BW))
812                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813         else
814                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817         if (freq_range->max_bandwidth_khz > freq_diff)
818                 freq_range->max_bandwidth_khz = freq_diff;
819
820         power_rule->max_eirp = min(power_rule1->max_eirp,
821                 power_rule2->max_eirp);
822         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823                 power_rule2->max_antenna_gain);
824
825         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826                                            rule2->dfs_cac_ms);
827
828         if (!is_valid_reg_rule(intersected_rule))
829                 return -EINVAL;
830
831         return 0;
832 }
833
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836                           struct ieee80211_reg_rule *r2)
837 {
838         /* for simplicity, currently consider only same flags */
839         if (r1->flags != r2->flags)
840                 return false;
841
842         /* verify r1 is more restrictive */
843         if ((r1->power_rule.max_antenna_gain >
844              r2->power_rule.max_antenna_gain) ||
845             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846                 return false;
847
848         /* make sure r2's range is contained within r1 */
849         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851                 return false;
852
853         /* and finally verify that r1.max_bw >= r2.max_bw */
854         if (r1->freq_range.max_bandwidth_khz <
855             r2->freq_range.max_bandwidth_khz)
856                 return false;
857
858         return true;
859 }
860
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865         struct ieee80211_reg_rule *tmp_rule;
866         int i;
867
868         for (i = 0; i < *n_rules; i++) {
869                 tmp_rule = &reg_rules[i];
870                 /* rule is already contained - do nothing */
871                 if (rule_contains(tmp_rule, rule))
872                         return;
873
874                 /* extend rule if possible */
875                 if (rule_contains(rule, tmp_rule)) {
876                         memcpy(tmp_rule, rule, sizeof(*rule));
877                         return;
878                 }
879         }
880
881         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882         (*n_rules)++;
883 }
884
885 /**
886  * regdom_intersect - do the intersection between two regulatory domains
887  * @rd1: first regulatory domain
888  * @rd2: second regulatory domain
889  *
890  * Use this function to get the intersection between two regulatory domains.
891  * Once completed we will mark the alpha2 for the rd as intersected, "98",
892  * as no one single alpha2 can represent this regulatory domain.
893  *
894  * Returns a pointer to the regulatory domain structure which will hold the
895  * resulting intersection of rules between rd1 and rd2. We will
896  * kzalloc() this structure for you.
897  */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900                  const struct ieee80211_regdomain *rd2)
901 {
902         int r, size_of_regd;
903         unsigned int x, y;
904         unsigned int num_rules = 0;
905         const struct ieee80211_reg_rule *rule1, *rule2;
906         struct ieee80211_reg_rule intersected_rule;
907         struct ieee80211_regdomain *rd;
908
909         if (!rd1 || !rd2)
910                 return NULL;
911
912         /*
913          * First we get a count of the rules we'll need, then we actually
914          * build them. This is to so we can malloc() and free() a
915          * regdomain once. The reason we use reg_rules_intersect() here
916          * is it will return -EINVAL if the rule computed makes no sense.
917          * All rules that do check out OK are valid.
918          */
919
920         for (x = 0; x < rd1->n_reg_rules; x++) {
921                 rule1 = &rd1->reg_rules[x];
922                 for (y = 0; y < rd2->n_reg_rules; y++) {
923                         rule2 = &rd2->reg_rules[y];
924                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925                                                  &intersected_rule))
926                                 num_rules++;
927                 }
928         }
929
930         if (!num_rules)
931                 return NULL;
932
933         size_of_regd = sizeof(struct ieee80211_regdomain) +
934                        num_rules * sizeof(struct ieee80211_reg_rule);
935
936         rd = kzalloc(size_of_regd, GFP_KERNEL);
937         if (!rd)
938                 return NULL;
939
940         for (x = 0; x < rd1->n_reg_rules; x++) {
941                 rule1 = &rd1->reg_rules[x];
942                 for (y = 0; y < rd2->n_reg_rules; y++) {
943                         rule2 = &rd2->reg_rules[y];
944                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945                                                 &intersected_rule);
946                         /*
947                          * No need to memset here the intersected rule here as
948                          * we're not using the stack anymore
949                          */
950                         if (r)
951                                 continue;
952
953                         add_rule(&intersected_rule, rd->reg_rules,
954                                  &rd->n_reg_rules);
955                 }
956         }
957
958         rd->alpha2[0] = '9';
959         rd->alpha2[1] = '8';
960         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961                                                   rd2->dfs_region);
962
963         return rd;
964 }
965
966 /*
967  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968  * want to just have the channel structure use these
969  */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972         u32 channel_flags = 0;
973         if (rd_flags & NL80211_RRF_NO_IR_ALL)
974                 channel_flags |= IEEE80211_CHAN_NO_IR;
975         if (rd_flags & NL80211_RRF_DFS)
976                 channel_flags |= IEEE80211_CHAN_RADAR;
977         if (rd_flags & NL80211_RRF_NO_OFDM)
978                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981         if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982                 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987         if (rd_flags & NL80211_RRF_NO_80MHZ)
988                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989         if (rd_flags & NL80211_RRF_NO_160MHZ)
990                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991         return channel_flags;
992 }
993
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996                    const struct ieee80211_regdomain *regd)
997 {
998         int i;
999         bool band_rule_found = false;
1000         bool bw_fits = false;
1001
1002         if (!regd)
1003                 return ERR_PTR(-EINVAL);
1004
1005         for (i = 0; i < regd->n_reg_rules; i++) {
1006                 const struct ieee80211_reg_rule *rr;
1007                 const struct ieee80211_freq_range *fr = NULL;
1008
1009                 rr = &regd->reg_rules[i];
1010                 fr = &rr->freq_range;
1011
1012                 /*
1013                  * We only need to know if one frequency rule was
1014                  * was in center_freq's band, that's enough, so lets
1015                  * not overwrite it once found
1016                  */
1017                 if (!band_rule_found)
1018                         band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022                 if (band_rule_found && bw_fits)
1023                         return rr;
1024         }
1025
1026         if (!band_rule_found)
1027                 return ERR_PTR(-ERANGE);
1028
1029         return ERR_PTR(-EINVAL);
1030 }
1031
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033                                                u32 center_freq)
1034 {
1035         const struct ieee80211_regdomain *regd;
1036
1037         regd = reg_get_regdomain(wiphy);
1038
1039         return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045         switch (initiator) {
1046         case NL80211_REGDOM_SET_BY_CORE:
1047                 return "core";
1048         case NL80211_REGDOM_SET_BY_USER:
1049                 return "user";
1050         case NL80211_REGDOM_SET_BY_DRIVER:
1051                 return "driver";
1052         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053                 return "country IE";
1054         default:
1055                 WARN_ON(1);
1056                 return "bug";
1057         }
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063                                     struct ieee80211_channel *chan,
1064                                     const struct ieee80211_reg_rule *reg_rule)
1065 {
1066         const struct ieee80211_power_rule *power_rule;
1067         const struct ieee80211_freq_range *freq_range;
1068         char max_antenna_gain[32], bw[32];
1069
1070         power_rule = &reg_rule->power_rule;
1071         freq_range = &reg_rule->freq_range;
1072
1073         if (!power_rule->max_antenna_gain)
1074                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075         else
1076                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077                          power_rule->max_antenna_gain);
1078
1079         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081                          freq_range->max_bandwidth_khz,
1082                          reg_get_max_bandwidth(regd, reg_rule));
1083         else
1084                 snprintf(bw, sizeof(bw), "%d KHz",
1085                          freq_range->max_bandwidth_khz);
1086
1087         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088                       chan->center_freq);
1089
1090         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1092                       bw, max_antenna_gain,
1093                       power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097                                     struct ieee80211_channel *chan,
1098                                     const struct ieee80211_reg_rule *reg_rule)
1099 {
1100         return;
1101 }
1102 #endif
1103
1104 /*
1105  * Note that right now we assume the desired channel bandwidth
1106  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107  * per channel, the primary and the extension channel).
1108  */
1109 static void handle_channel(struct wiphy *wiphy,
1110                            enum nl80211_reg_initiator initiator,
1111                            struct ieee80211_channel *chan)
1112 {
1113         u32 flags, bw_flags = 0;
1114         const struct ieee80211_reg_rule *reg_rule = NULL;
1115         const struct ieee80211_power_rule *power_rule = NULL;
1116         const struct ieee80211_freq_range *freq_range = NULL;
1117         struct wiphy *request_wiphy = NULL;
1118         struct regulatory_request *lr = get_last_request();
1119         const struct ieee80211_regdomain *regd;
1120         u32 max_bandwidth_khz;
1121
1122         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124         flags = chan->orig_flags;
1125
1126         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127         if (IS_ERR(reg_rule)) {
1128                 /*
1129                  * We will disable all channels that do not match our
1130                  * received regulatory rule unless the hint is coming
1131                  * from a Country IE and the Country IE had no information
1132                  * about a band. The IEEE 802.11 spec allows for an AP
1133                  * to send only a subset of the regulatory rules allowed,
1134                  * so an AP in the US that only supports 2.4 GHz may only send
1135                  * a country IE with information for the 2.4 GHz band
1136                  * while 5 GHz is still supported.
1137                  */
1138                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139                     PTR_ERR(reg_rule) == -ERANGE)
1140                         return;
1141
1142                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143                     request_wiphy && request_wiphy == wiphy &&
1144                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146                                       chan->center_freq);
1147                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148                         chan->flags = chan->orig_flags;
1149                 } else {
1150                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1151                                       chan->center_freq);
1152                         chan->flags |= IEEE80211_CHAN_DISABLED;
1153                 }
1154                 return;
1155         }
1156
1157         regd = reg_get_regdomain(wiphy);
1158         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160         power_rule = &reg_rule->power_rule;
1161         freq_range = &reg_rule->freq_range;
1162
1163         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164         /* Check if auto calculation requested */
1165         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169                 bw_flags = IEEE80211_CHAN_NO_HT40;
1170         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176             request_wiphy && request_wiphy == wiphy &&
1177             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178                 /*
1179                  * This guarantees the driver's requested regulatory domain
1180                  * will always be used as a base for further regulatory
1181                  * settings
1182                  */
1183                 chan->flags = chan->orig_flags =
1184                         map_regdom_flags(reg_rule->flags) | bw_flags;
1185                 chan->max_antenna_gain = chan->orig_mag =
1186                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188                         (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192                         if (reg_rule->dfs_cac_ms)
1193                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194                 }
1195
1196                 return;
1197         }
1198
1199         chan->dfs_state = NL80211_DFS_USABLE;
1200         chan->dfs_state_entered = jiffies;
1201
1202         chan->beacon_found = false;
1203         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204         chan->max_antenna_gain =
1205                 min_t(int, chan->orig_mag,
1206                       MBI_TO_DBI(power_rule->max_antenna_gain));
1207         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209         if (chan->flags & IEEE80211_CHAN_RADAR) {
1210                 if (reg_rule->dfs_cac_ms)
1211                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212                 else
1213                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214         }
1215
1216         if (chan->orig_mpwr) {
1217                 /*
1218                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219                  * will always follow the passed country IE power settings.
1220                  */
1221                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223                         chan->max_power = chan->max_reg_power;
1224                 else
1225                         chan->max_power = min(chan->orig_mpwr,
1226                                               chan->max_reg_power);
1227         } else
1228                 chan->max_power = chan->max_reg_power;
1229 }
1230
1231 static void handle_band(struct wiphy *wiphy,
1232                         enum nl80211_reg_initiator initiator,
1233                         struct ieee80211_supported_band *sband)
1234 {
1235         unsigned int i;
1236
1237         if (!sband)
1238                 return;
1239
1240         for (i = 0; i < sband->n_channels; i++)
1241                 handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247                 return false;
1248         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254                 return false;
1255         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257
1258 bool reg_last_request_cell_base(void)
1259 {
1260         return reg_request_cell_base(get_last_request());
1261 }
1262
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268         struct regulatory_request *lr = get_last_request();
1269
1270         if (!reg_num_devs_support_basehint)
1271                 return REG_REQ_IGNORE;
1272
1273         if (reg_request_cell_base(lr) &&
1274             !regdom_changes(pending_request->alpha2))
1275                 return REG_REQ_ALREADY_SET;
1276
1277         return REG_REQ_OK;
1278 }
1279
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288         return REG_REQ_IGNORE;
1289 }
1290
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293         return true;
1294 }
1295 #endif
1296
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301                 return true;
1302         return false;
1303 }
1304
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306                               enum nl80211_reg_initiator initiator)
1307 {
1308         struct regulatory_request *lr = get_last_request();
1309
1310         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1311                 return true;
1312
1313         if (!lr) {
1314                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1315                               "since last_request is not set\n",
1316                               reg_initiator_name(initiator));
1317                 return true;
1318         }
1319
1320         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1321             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1322                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1323                               "since the driver uses its own custom "
1324                               "regulatory domain\n",
1325                               reg_initiator_name(initiator));
1326                 return true;
1327         }
1328
1329         /*
1330          * wiphy->regd will be set once the device has its own
1331          * desired regulatory domain set
1332          */
1333         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1334             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1335             !is_world_regdom(lr->alpha2)) {
1336                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1337                               "since the driver requires its own regulatory "
1338                               "domain to be set first\n",
1339                               reg_initiator_name(initiator));
1340                 return true;
1341         }
1342
1343         if (reg_request_cell_base(lr))
1344                 return reg_dev_ignore_cell_hint(wiphy);
1345
1346         return false;
1347 }
1348
1349 static bool reg_is_world_roaming(struct wiphy *wiphy)
1350 {
1351         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1352         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1353         struct regulatory_request *lr = get_last_request();
1354
1355         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1356                 return true;
1357
1358         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1359             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1360                 return true;
1361
1362         return false;
1363 }
1364
1365 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1366                               struct reg_beacon *reg_beacon)
1367 {
1368         struct ieee80211_supported_band *sband;
1369         struct ieee80211_channel *chan;
1370         bool channel_changed = false;
1371         struct ieee80211_channel chan_before;
1372
1373         sband = wiphy->bands[reg_beacon->chan.band];
1374         chan = &sband->channels[chan_idx];
1375
1376         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1377                 return;
1378
1379         if (chan->beacon_found)
1380                 return;
1381
1382         chan->beacon_found = true;
1383
1384         if (!reg_is_world_roaming(wiphy))
1385                 return;
1386
1387         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1388                 return;
1389
1390         chan_before.center_freq = chan->center_freq;
1391         chan_before.flags = chan->flags;
1392
1393         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1394                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1395                 channel_changed = true;
1396         }
1397
1398         if (channel_changed)
1399                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1400 }
1401
1402 /*
1403  * Called when a scan on a wiphy finds a beacon on
1404  * new channel
1405  */
1406 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1407                                     struct reg_beacon *reg_beacon)
1408 {
1409         unsigned int i;
1410         struct ieee80211_supported_band *sband;
1411
1412         if (!wiphy->bands[reg_beacon->chan.band])
1413                 return;
1414
1415         sband = wiphy->bands[reg_beacon->chan.band];
1416
1417         for (i = 0; i < sband->n_channels; i++)
1418                 handle_reg_beacon(wiphy, i, reg_beacon);
1419 }
1420
1421 /*
1422  * Called upon reg changes or a new wiphy is added
1423  */
1424 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1425 {
1426         unsigned int i;
1427         struct ieee80211_supported_band *sband;
1428         struct reg_beacon *reg_beacon;
1429
1430         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1431                 if (!wiphy->bands[reg_beacon->chan.band])
1432                         continue;
1433                 sband = wiphy->bands[reg_beacon->chan.band];
1434                 for (i = 0; i < sband->n_channels; i++)
1435                         handle_reg_beacon(wiphy, i, reg_beacon);
1436         }
1437 }
1438
1439 /* Reap the advantages of previously found beacons */
1440 static void reg_process_beacons(struct wiphy *wiphy)
1441 {
1442         /*
1443          * Means we are just firing up cfg80211, so no beacons would
1444          * have been processed yet.
1445          */
1446         if (!last_request)
1447                 return;
1448         wiphy_update_beacon_reg(wiphy);
1449 }
1450
1451 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1452 {
1453         if (!chan)
1454                 return false;
1455         if (chan->flags & IEEE80211_CHAN_DISABLED)
1456                 return false;
1457         /* This would happen when regulatory rules disallow HT40 completely */
1458         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1459                 return false;
1460         return true;
1461 }
1462
1463 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1464                                          struct ieee80211_channel *channel)
1465 {
1466         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1467         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1468         unsigned int i;
1469
1470         if (!is_ht40_allowed(channel)) {
1471                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1472                 return;
1473         }
1474
1475         /*
1476          * We need to ensure the extension channels exist to
1477          * be able to use HT40- or HT40+, this finds them (or not)
1478          */
1479         for (i = 0; i < sband->n_channels; i++) {
1480                 struct ieee80211_channel *c = &sband->channels[i];
1481
1482                 if (c->center_freq == (channel->center_freq - 20))
1483                         channel_before = c;
1484                 if (c->center_freq == (channel->center_freq + 20))
1485                         channel_after = c;
1486         }
1487
1488         /*
1489          * Please note that this assumes target bandwidth is 20 MHz,
1490          * if that ever changes we also need to change the below logic
1491          * to include that as well.
1492          */
1493         if (!is_ht40_allowed(channel_before))
1494                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1495         else
1496                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1497
1498         if (!is_ht40_allowed(channel_after))
1499                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1500         else
1501                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1502 }
1503
1504 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1505                                       struct ieee80211_supported_band *sband)
1506 {
1507         unsigned int i;
1508
1509         if (!sband)
1510                 return;
1511
1512         for (i = 0; i < sband->n_channels; i++)
1513                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1514 }
1515
1516 static void reg_process_ht_flags(struct wiphy *wiphy)
1517 {
1518         enum ieee80211_band band;
1519
1520         if (!wiphy)
1521                 return;
1522
1523         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1524                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1525 }
1526
1527 static void reg_call_notifier(struct wiphy *wiphy,
1528                               struct regulatory_request *request)
1529 {
1530         if (wiphy->reg_notifier)
1531                 wiphy->reg_notifier(wiphy, request);
1532 }
1533
1534 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1535 {
1536         struct cfg80211_chan_def chandef;
1537         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1538         enum nl80211_iftype iftype;
1539
1540         wdev_lock(wdev);
1541         iftype = wdev->iftype;
1542
1543         /* make sure the interface is active */
1544         if (!wdev->netdev || !netif_running(wdev->netdev))
1545                 goto wdev_inactive_unlock;
1546
1547         switch (iftype) {
1548         case NL80211_IFTYPE_AP:
1549         case NL80211_IFTYPE_P2P_GO:
1550                 if (!wdev->beacon_interval)
1551                         goto wdev_inactive_unlock;
1552                 chandef = wdev->chandef;
1553                 break;
1554         case NL80211_IFTYPE_ADHOC:
1555                 if (!wdev->ssid_len)
1556                         goto wdev_inactive_unlock;
1557                 chandef = wdev->chandef;
1558                 break;
1559         case NL80211_IFTYPE_STATION:
1560         case NL80211_IFTYPE_P2P_CLIENT:
1561                 if (!wdev->current_bss ||
1562                     !wdev->current_bss->pub.channel)
1563                         goto wdev_inactive_unlock;
1564
1565                 if (!rdev->ops->get_channel ||
1566                     rdev_get_channel(rdev, wdev, &chandef))
1567                         cfg80211_chandef_create(&chandef,
1568                                                 wdev->current_bss->pub.channel,
1569                                                 NL80211_CHAN_NO_HT);
1570                 break;
1571         case NL80211_IFTYPE_MONITOR:
1572         case NL80211_IFTYPE_AP_VLAN:
1573         case NL80211_IFTYPE_P2P_DEVICE:
1574                 /* no enforcement required */
1575                 break;
1576         default:
1577                 /* others not implemented for now */
1578                 WARN_ON(1);
1579                 break;
1580         }
1581
1582         wdev_unlock(wdev);
1583
1584         switch (iftype) {
1585         case NL80211_IFTYPE_AP:
1586         case NL80211_IFTYPE_P2P_GO:
1587         case NL80211_IFTYPE_ADHOC:
1588                 return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1589         case NL80211_IFTYPE_STATION:
1590         case NL80211_IFTYPE_P2P_CLIENT:
1591                 return cfg80211_chandef_usable(wiphy, &chandef,
1592                                                IEEE80211_CHAN_DISABLED);
1593         default:
1594                 break;
1595         }
1596
1597         return true;
1598
1599 wdev_inactive_unlock:
1600         wdev_unlock(wdev);
1601         return true;
1602 }
1603
1604 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1605 {
1606         struct wireless_dev *wdev;
1607         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1608
1609         ASSERT_RTNL();
1610
1611         list_for_each_entry(wdev, &rdev->wdev_list, list)
1612                 if (!reg_wdev_chan_valid(wiphy, wdev))
1613                         cfg80211_leave(rdev, wdev);
1614 }
1615
1616 static void reg_check_chans_work(struct work_struct *work)
1617 {
1618         struct cfg80211_registered_device *rdev;
1619
1620         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1621         rtnl_lock();
1622
1623         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1624                 if (!(rdev->wiphy.regulatory_flags &
1625                       REGULATORY_IGNORE_STALE_KICKOFF))
1626                         reg_leave_invalid_chans(&rdev->wiphy);
1627
1628         rtnl_unlock();
1629 }
1630
1631 static void reg_check_channels(void)
1632 {
1633         /*
1634          * Give usermode a chance to do something nicer (move to another
1635          * channel, orderly disconnection), before forcing a disconnection.
1636          */
1637         mod_delayed_work(system_power_efficient_wq,
1638                          &reg_check_chans,
1639                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1640 }
1641
1642 static void wiphy_update_regulatory(struct wiphy *wiphy,
1643                                     enum nl80211_reg_initiator initiator)
1644 {
1645         enum ieee80211_band band;
1646         struct regulatory_request *lr = get_last_request();
1647
1648         if (ignore_reg_update(wiphy, initiator)) {
1649                 /*
1650                  * Regulatory updates set by CORE are ignored for custom
1651                  * regulatory cards. Let us notify the changes to the driver,
1652                  * as some drivers used this to restore its orig_* reg domain.
1653                  */
1654                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1655                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1656                         reg_call_notifier(wiphy, lr);
1657                 return;
1658         }
1659
1660         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1661
1662         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1663                 handle_band(wiphy, initiator, wiphy->bands[band]);
1664
1665         reg_process_beacons(wiphy);
1666         reg_process_ht_flags(wiphy);
1667         reg_call_notifier(wiphy, lr);
1668 }
1669
1670 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1671 {
1672         struct cfg80211_registered_device *rdev;
1673         struct wiphy *wiphy;
1674
1675         ASSERT_RTNL();
1676
1677         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1678                 wiphy = &rdev->wiphy;
1679                 wiphy_update_regulatory(wiphy, initiator);
1680         }
1681
1682         reg_check_channels();
1683 }
1684
1685 static void handle_channel_custom(struct wiphy *wiphy,
1686                                   struct ieee80211_channel *chan,
1687                                   const struct ieee80211_regdomain *regd)
1688 {
1689         u32 bw_flags = 0;
1690         const struct ieee80211_reg_rule *reg_rule = NULL;
1691         const struct ieee80211_power_rule *power_rule = NULL;
1692         const struct ieee80211_freq_range *freq_range = NULL;
1693         u32 max_bandwidth_khz;
1694
1695         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1696                                       regd);
1697
1698         if (IS_ERR(reg_rule)) {
1699                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1700                               chan->center_freq);
1701                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1702                         chan->flags |= IEEE80211_CHAN_DISABLED;
1703                 } else {
1704                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1705                         chan->flags = chan->orig_flags;
1706                 }
1707                 return;
1708         }
1709
1710         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1711
1712         power_rule = &reg_rule->power_rule;
1713         freq_range = &reg_rule->freq_range;
1714
1715         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1716         /* Check if auto calculation requested */
1717         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1718                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1719
1720         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1721                 bw_flags = IEEE80211_CHAN_NO_HT40;
1722         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1723                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1724         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1725                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1726
1727         chan->dfs_state_entered = jiffies;
1728         chan->dfs_state = NL80211_DFS_USABLE;
1729
1730         chan->beacon_found = false;
1731
1732         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1733                 chan->flags = chan->orig_flags | bw_flags |
1734                               map_regdom_flags(reg_rule->flags);
1735         else
1736                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1737
1738         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1739         chan->max_reg_power = chan->max_power =
1740                 (int) MBM_TO_DBM(power_rule->max_eirp);
1741
1742         if (chan->flags & IEEE80211_CHAN_RADAR) {
1743                 if (reg_rule->dfs_cac_ms)
1744                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1745                 else
1746                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1747         }
1748
1749         chan->max_power = chan->max_reg_power;
1750 }
1751
1752 static void handle_band_custom(struct wiphy *wiphy,
1753                                struct ieee80211_supported_band *sband,
1754                                const struct ieee80211_regdomain *regd)
1755 {
1756         unsigned int i;
1757
1758         if (!sband)
1759                 return;
1760
1761         for (i = 0; i < sband->n_channels; i++)
1762                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1763 }
1764
1765 /* Used by drivers prior to wiphy registration */
1766 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1767                                    const struct ieee80211_regdomain *regd)
1768 {
1769         enum ieee80211_band band;
1770         unsigned int bands_set = 0;
1771
1772         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1773              "wiphy should have REGULATORY_CUSTOM_REG\n");
1774         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1775
1776         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1777                 if (!wiphy->bands[band])
1778                         continue;
1779                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1780                 bands_set++;
1781         }
1782
1783         /*
1784          * no point in calling this if it won't have any effect
1785          * on your device's supported bands.
1786          */
1787         WARN_ON(!bands_set);
1788 }
1789 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1790
1791 static void reg_set_request_processed(void)
1792 {
1793         bool need_more_processing = false;
1794         struct regulatory_request *lr = get_last_request();
1795
1796         lr->processed = true;
1797
1798         spin_lock(&reg_requests_lock);
1799         if (!list_empty(&reg_requests_list))
1800                 need_more_processing = true;
1801         spin_unlock(&reg_requests_lock);
1802
1803         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1804                 cancel_delayed_work(&reg_timeout);
1805
1806         if (need_more_processing)
1807                 schedule_work(&reg_work);
1808 }
1809
1810 /**
1811  * reg_process_hint_core - process core regulatory requests
1812  * @pending_request: a pending core regulatory request
1813  *
1814  * The wireless subsystem can use this function to process
1815  * a regulatory request issued by the regulatory core.
1816  *
1817  * Returns one of the different reg request treatment values.
1818  */
1819 static enum reg_request_treatment
1820 reg_process_hint_core(struct regulatory_request *core_request)
1821 {
1822
1823         core_request->intersect = false;
1824         core_request->processed = false;
1825
1826         reg_update_last_request(core_request);
1827
1828         return reg_call_crda(core_request);
1829 }
1830
1831 static enum reg_request_treatment
1832 __reg_process_hint_user(struct regulatory_request *user_request)
1833 {
1834         struct regulatory_request *lr = get_last_request();
1835
1836         if (reg_request_indoor(user_request)) {
1837                 reg_is_indoor = true;
1838                 return REG_REQ_USER_HINT_HANDLED;
1839         }
1840
1841         if (reg_request_cell_base(user_request))
1842                 return reg_ignore_cell_hint(user_request);
1843
1844         if (reg_request_cell_base(lr))
1845                 return REG_REQ_IGNORE;
1846
1847         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1848                 return REG_REQ_INTERSECT;
1849         /*
1850          * If the user knows better the user should set the regdom
1851          * to their country before the IE is picked up
1852          */
1853         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1854             lr->intersect)
1855                 return REG_REQ_IGNORE;
1856         /*
1857          * Process user requests only after previous user/driver/core
1858          * requests have been processed
1859          */
1860         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1861              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1862              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1863             regdom_changes(lr->alpha2))
1864                 return REG_REQ_IGNORE;
1865
1866         if (!regdom_changes(user_request->alpha2))
1867                 return REG_REQ_ALREADY_SET;
1868
1869         return REG_REQ_OK;
1870 }
1871
1872 /**
1873  * reg_process_hint_user - process user regulatory requests
1874  * @user_request: a pending user regulatory request
1875  *
1876  * The wireless subsystem can use this function to process
1877  * a regulatory request initiated by userspace.
1878  *
1879  * Returns one of the different reg request treatment values.
1880  */
1881 static enum reg_request_treatment
1882 reg_process_hint_user(struct regulatory_request *user_request)
1883 {
1884         enum reg_request_treatment treatment;
1885
1886         treatment = __reg_process_hint_user(user_request);
1887         if (treatment == REG_REQ_IGNORE ||
1888             treatment == REG_REQ_ALREADY_SET ||
1889             treatment == REG_REQ_USER_HINT_HANDLED) {
1890                 reg_free_request(user_request);
1891                 return treatment;
1892         }
1893
1894         user_request->intersect = treatment == REG_REQ_INTERSECT;
1895         user_request->processed = false;
1896
1897         reg_update_last_request(user_request);
1898
1899         user_alpha2[0] = user_request->alpha2[0];
1900         user_alpha2[1] = user_request->alpha2[1];
1901
1902         return reg_call_crda(user_request);
1903 }
1904
1905 static enum reg_request_treatment
1906 __reg_process_hint_driver(struct regulatory_request *driver_request)
1907 {
1908         struct regulatory_request *lr = get_last_request();
1909
1910         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1911                 if (regdom_changes(driver_request->alpha2))
1912                         return REG_REQ_OK;
1913                 return REG_REQ_ALREADY_SET;
1914         }
1915
1916         /*
1917          * This would happen if you unplug and plug your card
1918          * back in or if you add a new device for which the previously
1919          * loaded card also agrees on the regulatory domain.
1920          */
1921         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1922             !regdom_changes(driver_request->alpha2))
1923                 return REG_REQ_ALREADY_SET;
1924
1925         return REG_REQ_INTERSECT;
1926 }
1927
1928 /**
1929  * reg_process_hint_driver - process driver regulatory requests
1930  * @driver_request: a pending driver regulatory request
1931  *
1932  * The wireless subsystem can use this function to process
1933  * a regulatory request issued by an 802.11 driver.
1934  *
1935  * Returns one of the different reg request treatment values.
1936  */
1937 static enum reg_request_treatment
1938 reg_process_hint_driver(struct wiphy *wiphy,
1939                         struct regulatory_request *driver_request)
1940 {
1941         const struct ieee80211_regdomain *regd, *tmp;
1942         enum reg_request_treatment treatment;
1943
1944         treatment = __reg_process_hint_driver(driver_request);
1945
1946         switch (treatment) {
1947         case REG_REQ_OK:
1948                 break;
1949         case REG_REQ_IGNORE:
1950         case REG_REQ_USER_HINT_HANDLED:
1951                 reg_free_request(driver_request);
1952                 return treatment;
1953         case REG_REQ_INTERSECT:
1954                 /* fall through */
1955         case REG_REQ_ALREADY_SET:
1956                 regd = reg_copy_regd(get_cfg80211_regdom());
1957                 if (IS_ERR(regd)) {
1958                         reg_free_request(driver_request);
1959                         return REG_REQ_IGNORE;
1960                 }
1961
1962                 tmp = get_wiphy_regdom(wiphy);
1963                 rcu_assign_pointer(wiphy->regd, regd);
1964                 rcu_free_regdom(tmp);
1965         }
1966
1967
1968         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1969         driver_request->processed = false;
1970
1971         reg_update_last_request(driver_request);
1972
1973         /*
1974          * Since CRDA will not be called in this case as we already
1975          * have applied the requested regulatory domain before we just
1976          * inform userspace we have processed the request
1977          */
1978         if (treatment == REG_REQ_ALREADY_SET) {
1979                 nl80211_send_reg_change_event(driver_request);
1980                 reg_set_request_processed();
1981                 return treatment;
1982         }
1983
1984         return reg_call_crda(driver_request);
1985 }
1986
1987 static enum reg_request_treatment
1988 __reg_process_hint_country_ie(struct wiphy *wiphy,
1989                               struct regulatory_request *country_ie_request)
1990 {
1991         struct wiphy *last_wiphy = NULL;
1992         struct regulatory_request *lr = get_last_request();
1993
1994         if (reg_request_cell_base(lr)) {
1995                 /* Trust a Cell base station over the AP's country IE */
1996                 if (regdom_changes(country_ie_request->alpha2))
1997                         return REG_REQ_IGNORE;
1998                 return REG_REQ_ALREADY_SET;
1999         } else {
2000                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2001                         return REG_REQ_IGNORE;
2002         }
2003
2004         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2005                 return -EINVAL;
2006
2007         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2008                 return REG_REQ_OK;
2009
2010         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2011
2012         if (last_wiphy != wiphy) {
2013                 /*
2014                  * Two cards with two APs claiming different
2015                  * Country IE alpha2s. We could
2016                  * intersect them, but that seems unlikely
2017                  * to be correct. Reject second one for now.
2018                  */
2019                 if (regdom_changes(country_ie_request->alpha2))
2020                         return REG_REQ_IGNORE;
2021                 return REG_REQ_ALREADY_SET;
2022         }
2023
2024         if (regdom_changes(country_ie_request->alpha2))
2025                 return REG_REQ_OK;
2026         return REG_REQ_ALREADY_SET;
2027 }
2028
2029 /**
2030  * reg_process_hint_country_ie - process regulatory requests from country IEs
2031  * @country_ie_request: a regulatory request from a country IE
2032  *
2033  * The wireless subsystem can use this function to process
2034  * a regulatory request issued by a country Information Element.
2035  *
2036  * Returns one of the different reg request treatment values.
2037  */
2038 static enum reg_request_treatment
2039 reg_process_hint_country_ie(struct wiphy *wiphy,
2040                             struct regulatory_request *country_ie_request)
2041 {
2042         enum reg_request_treatment treatment;
2043
2044         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2045
2046         switch (treatment) {
2047         case REG_REQ_OK:
2048                 break;
2049         case REG_REQ_IGNORE:
2050         case REG_REQ_USER_HINT_HANDLED:
2051                 /* fall through */
2052         case REG_REQ_ALREADY_SET:
2053                 reg_free_request(country_ie_request);
2054                 return treatment;
2055         case REG_REQ_INTERSECT:
2056                 reg_free_request(country_ie_request);
2057                 /*
2058                  * This doesn't happen yet, not sure we
2059                  * ever want to support it for this case.
2060                  */
2061                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2062                 return REG_REQ_IGNORE;
2063         }
2064
2065         country_ie_request->intersect = false;
2066         country_ie_request->processed = false;
2067
2068         reg_update_last_request(country_ie_request);
2069
2070         return reg_call_crda(country_ie_request);
2071 }
2072
2073 /* This processes *all* regulatory hints */
2074 static void reg_process_hint(struct regulatory_request *reg_request)
2075 {
2076         struct wiphy *wiphy = NULL;
2077         enum reg_request_treatment treatment;
2078
2079         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2080                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2081
2082         switch (reg_request->initiator) {
2083         case NL80211_REGDOM_SET_BY_CORE:
2084                 reg_process_hint_core(reg_request);
2085                 return;
2086         case NL80211_REGDOM_SET_BY_USER:
2087                 treatment = reg_process_hint_user(reg_request);
2088                 if (treatment == REG_REQ_IGNORE ||
2089                     treatment == REG_REQ_ALREADY_SET ||
2090                     treatment == REG_REQ_USER_HINT_HANDLED)
2091                         return;
2092                 queue_delayed_work(system_power_efficient_wq,
2093                                    &reg_timeout, msecs_to_jiffies(3142));
2094                 return;
2095         case NL80211_REGDOM_SET_BY_DRIVER:
2096                 if (!wiphy)
2097                         goto out_free;
2098                 treatment = reg_process_hint_driver(wiphy, reg_request);
2099                 break;
2100         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2101                 if (!wiphy)
2102                         goto out_free;
2103                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2104                 break;
2105         default:
2106                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2107                 goto out_free;
2108         }
2109
2110         /* This is required so that the orig_* parameters are saved */
2111         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2112             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2113                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2114                 reg_check_channels();
2115         }
2116
2117         return;
2118
2119 out_free:
2120         reg_free_request(reg_request);
2121 }
2122
2123 static bool reg_only_self_managed_wiphys(void)
2124 {
2125         struct cfg80211_registered_device *rdev;
2126         struct wiphy *wiphy;
2127         bool self_managed_found = false;
2128
2129         ASSERT_RTNL();
2130
2131         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2132                 wiphy = &rdev->wiphy;
2133                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2134                         self_managed_found = true;
2135                 else
2136                         return false;
2137         }
2138
2139         /* make sure at least one self-managed wiphy exists */
2140         return self_managed_found;
2141 }
2142
2143 /*
2144  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2145  * Regulatory hints come on a first come first serve basis and we
2146  * must process each one atomically.
2147  */
2148 static void reg_process_pending_hints(void)
2149 {
2150         struct regulatory_request *reg_request, *lr;
2151
2152         lr = get_last_request();
2153
2154         /* When last_request->processed becomes true this will be rescheduled */
2155         if (lr && !lr->processed) {
2156                 reg_process_hint(lr);
2157                 return;
2158         }
2159
2160         spin_lock(&reg_requests_lock);
2161
2162         if (list_empty(&reg_requests_list)) {
2163                 spin_unlock(&reg_requests_lock);
2164                 return;
2165         }
2166
2167         reg_request = list_first_entry(&reg_requests_list,
2168                                        struct regulatory_request,
2169                                        list);
2170         list_del_init(&reg_request->list);
2171
2172         spin_unlock(&reg_requests_lock);
2173
2174         if (reg_only_self_managed_wiphys()) {
2175                 reg_free_request(reg_request);
2176                 return;
2177         }
2178
2179         reg_process_hint(reg_request);
2180 }
2181
2182 /* Processes beacon hints -- this has nothing to do with country IEs */
2183 static void reg_process_pending_beacon_hints(void)
2184 {
2185         struct cfg80211_registered_device *rdev;
2186         struct reg_beacon *pending_beacon, *tmp;
2187
2188         /* This goes through the _pending_ beacon list */
2189         spin_lock_bh(&reg_pending_beacons_lock);
2190
2191         list_for_each_entry_safe(pending_beacon, tmp,
2192                                  &reg_pending_beacons, list) {
2193                 list_del_init(&pending_beacon->list);
2194
2195                 /* Applies the beacon hint to current wiphys */
2196                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2197                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2198
2199                 /* Remembers the beacon hint for new wiphys or reg changes */
2200                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2201         }
2202
2203         spin_unlock_bh(&reg_pending_beacons_lock);
2204 }
2205
2206 static void reg_process_self_managed_hints(void)
2207 {
2208         struct cfg80211_registered_device *rdev;
2209         struct wiphy *wiphy;
2210         const struct ieee80211_regdomain *tmp;
2211         const struct ieee80211_regdomain *regd;
2212         enum ieee80211_band band;
2213         struct regulatory_request request = {};
2214
2215         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2216                 wiphy = &rdev->wiphy;
2217
2218                 spin_lock(&reg_requests_lock);
2219                 regd = rdev->requested_regd;
2220                 rdev->requested_regd = NULL;
2221                 spin_unlock(&reg_requests_lock);
2222
2223                 if (regd == NULL)
2224                         continue;
2225
2226                 tmp = get_wiphy_regdom(wiphy);
2227                 rcu_assign_pointer(wiphy->regd, regd);
2228                 rcu_free_regdom(tmp);
2229
2230                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2231                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2232
2233                 reg_process_ht_flags(wiphy);
2234
2235                 request.wiphy_idx = get_wiphy_idx(wiphy);
2236                 request.alpha2[0] = regd->alpha2[0];
2237                 request.alpha2[1] = regd->alpha2[1];
2238                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2239
2240                 nl80211_send_wiphy_reg_change_event(&request);
2241         }
2242
2243         reg_check_channels();
2244 }
2245
2246 static void reg_todo(struct work_struct *work)
2247 {
2248         rtnl_lock();
2249         reg_process_pending_hints();
2250         reg_process_pending_beacon_hints();
2251         reg_process_self_managed_hints();
2252         rtnl_unlock();
2253 }
2254
2255 static void queue_regulatory_request(struct regulatory_request *request)
2256 {
2257         request->alpha2[0] = toupper(request->alpha2[0]);
2258         request->alpha2[1] = toupper(request->alpha2[1]);
2259
2260         spin_lock(&reg_requests_lock);
2261         list_add_tail(&request->list, &reg_requests_list);
2262         spin_unlock(&reg_requests_lock);
2263
2264         schedule_work(&reg_work);
2265 }
2266
2267 /*
2268  * Core regulatory hint -- happens during cfg80211_init()
2269  * and when we restore regulatory settings.
2270  */
2271 static int regulatory_hint_core(const char *alpha2)
2272 {
2273         struct regulatory_request *request;
2274
2275         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2276         if (!request)
2277                 return -ENOMEM;
2278
2279         request->alpha2[0] = alpha2[0];
2280         request->alpha2[1] = alpha2[1];
2281         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2282
2283         queue_regulatory_request(request);
2284
2285         return 0;
2286 }
2287
2288 /* User hints */
2289 int regulatory_hint_user(const char *alpha2,
2290                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2291 {
2292         struct regulatory_request *request;
2293
2294         if (WARN_ON(!alpha2))
2295                 return -EINVAL;
2296
2297         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2298         if (!request)
2299                 return -ENOMEM;
2300
2301         request->wiphy_idx = WIPHY_IDX_INVALID;
2302         request->alpha2[0] = alpha2[0];
2303         request->alpha2[1] = alpha2[1];
2304         request->initiator = NL80211_REGDOM_SET_BY_USER;
2305         request->user_reg_hint_type = user_reg_hint_type;
2306
2307         queue_regulatory_request(request);
2308
2309         return 0;
2310 }
2311
2312 int regulatory_hint_indoor_user(void)
2313 {
2314         struct regulatory_request *request;
2315
2316         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317         if (!request)
2318                 return -ENOMEM;
2319
2320         request->wiphy_idx = WIPHY_IDX_INVALID;
2321         request->initiator = NL80211_REGDOM_SET_BY_USER;
2322         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2323         queue_regulatory_request(request);
2324
2325         return 0;
2326 }
2327
2328 /* Driver hints */
2329 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2330 {
2331         struct regulatory_request *request;
2332
2333         if (WARN_ON(!alpha2 || !wiphy))
2334                 return -EINVAL;
2335
2336         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2337
2338         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2339         if (!request)
2340                 return -ENOMEM;
2341
2342         request->wiphy_idx = get_wiphy_idx(wiphy);
2343
2344         request->alpha2[0] = alpha2[0];
2345         request->alpha2[1] = alpha2[1];
2346         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2347
2348         queue_regulatory_request(request);
2349
2350         return 0;
2351 }
2352 EXPORT_SYMBOL(regulatory_hint);
2353
2354 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2355                                 const u8 *country_ie, u8 country_ie_len)
2356 {
2357         char alpha2[2];
2358         enum environment_cap env = ENVIRON_ANY;
2359         struct regulatory_request *request = NULL, *lr;
2360
2361         /* IE len must be evenly divisible by 2 */
2362         if (country_ie_len & 0x01)
2363                 return;
2364
2365         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2366                 return;
2367
2368         request = kzalloc(sizeof(*request), GFP_KERNEL);
2369         if (!request)
2370                 return;
2371
2372         alpha2[0] = country_ie[0];
2373         alpha2[1] = country_ie[1];
2374
2375         if (country_ie[2] == 'I')
2376                 env = ENVIRON_INDOOR;
2377         else if (country_ie[2] == 'O')
2378                 env = ENVIRON_OUTDOOR;
2379
2380         rcu_read_lock();
2381         lr = get_last_request();
2382
2383         if (unlikely(!lr))
2384                 goto out;
2385
2386         /*
2387          * We will run this only upon a successful connection on cfg80211.
2388          * We leave conflict resolution to the workqueue, where can hold
2389          * the RTNL.
2390          */
2391         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2392             lr->wiphy_idx != WIPHY_IDX_INVALID)
2393                 goto out;
2394
2395         request->wiphy_idx = get_wiphy_idx(wiphy);
2396         request->alpha2[0] = alpha2[0];
2397         request->alpha2[1] = alpha2[1];
2398         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2399         request->country_ie_env = env;
2400
2401         queue_regulatory_request(request);
2402         request = NULL;
2403 out:
2404         kfree(request);
2405         rcu_read_unlock();
2406 }
2407
2408 static void restore_alpha2(char *alpha2, bool reset_user)
2409 {
2410         /* indicates there is no alpha2 to consider for restoration */
2411         alpha2[0] = '9';
2412         alpha2[1] = '7';
2413
2414         /* The user setting has precedence over the module parameter */
2415         if (is_user_regdom_saved()) {
2416                 /* Unless we're asked to ignore it and reset it */
2417                 if (reset_user) {
2418                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2419                         user_alpha2[0] = '9';
2420                         user_alpha2[1] = '7';
2421
2422                         /*
2423                          * If we're ignoring user settings, we still need to
2424                          * check the module parameter to ensure we put things
2425                          * back as they were for a full restore.
2426                          */
2427                         if (!is_world_regdom(ieee80211_regdom)) {
2428                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2429                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2430                                 alpha2[0] = ieee80211_regdom[0];
2431                                 alpha2[1] = ieee80211_regdom[1];
2432                         }
2433                 } else {
2434                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2435                                       user_alpha2[0], user_alpha2[1]);
2436                         alpha2[0] = user_alpha2[0];
2437                         alpha2[1] = user_alpha2[1];
2438                 }
2439         } else if (!is_world_regdom(ieee80211_regdom)) {
2440                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2441                               ieee80211_regdom[0], ieee80211_regdom[1]);
2442                 alpha2[0] = ieee80211_regdom[0];
2443                 alpha2[1] = ieee80211_regdom[1];
2444         } else
2445                 REG_DBG_PRINT("Restoring regulatory settings\n");
2446 }
2447
2448 static void restore_custom_reg_settings(struct wiphy *wiphy)
2449 {
2450         struct ieee80211_supported_band *sband;
2451         enum ieee80211_band band;
2452         struct ieee80211_channel *chan;
2453         int i;
2454
2455         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2456                 sband = wiphy->bands[band];
2457                 if (!sband)
2458                         continue;
2459                 for (i = 0; i < sband->n_channels; i++) {
2460                         chan = &sband->channels[i];
2461                         chan->flags = chan->orig_flags;
2462                         chan->max_antenna_gain = chan->orig_mag;
2463                         chan->max_power = chan->orig_mpwr;
2464                         chan->beacon_found = false;
2465                 }
2466         }
2467 }
2468
2469 /*
2470  * Restoring regulatory settings involves ingoring any
2471  * possibly stale country IE information and user regulatory
2472  * settings if so desired, this includes any beacon hints
2473  * learned as we could have traveled outside to another country
2474  * after disconnection. To restore regulatory settings we do
2475  * exactly what we did at bootup:
2476  *
2477  *   - send a core regulatory hint
2478  *   - send a user regulatory hint if applicable
2479  *
2480  * Device drivers that send a regulatory hint for a specific country
2481  * keep their own regulatory domain on wiphy->regd so that does does
2482  * not need to be remembered.
2483  */
2484 static void restore_regulatory_settings(bool reset_user)
2485 {
2486         char alpha2[2];
2487         char world_alpha2[2];
2488         struct reg_beacon *reg_beacon, *btmp;
2489         struct regulatory_request *reg_request, *tmp;
2490         LIST_HEAD(tmp_reg_req_list);
2491         struct cfg80211_registered_device *rdev;
2492
2493         ASSERT_RTNL();
2494
2495         reg_is_indoor = false;
2496
2497         reset_regdomains(true, &world_regdom);
2498         restore_alpha2(alpha2, reset_user);
2499
2500         /*
2501          * If there's any pending requests we simply
2502          * stash them to a temporary pending queue and
2503          * add then after we've restored regulatory
2504          * settings.
2505          */
2506         spin_lock(&reg_requests_lock);
2507         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2508                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2509                         continue;
2510                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2511         }
2512         spin_unlock(&reg_requests_lock);
2513
2514         /* Clear beacon hints */
2515         spin_lock_bh(&reg_pending_beacons_lock);
2516         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2517                 list_del(&reg_beacon->list);
2518                 kfree(reg_beacon);
2519         }
2520         spin_unlock_bh(&reg_pending_beacons_lock);
2521
2522         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2523                 list_del(&reg_beacon->list);
2524                 kfree(reg_beacon);
2525         }
2526
2527         /* First restore to the basic regulatory settings */
2528         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2529         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2530
2531         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2532                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2533                         continue;
2534                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2535                         restore_custom_reg_settings(&rdev->wiphy);
2536         }
2537
2538         regulatory_hint_core(world_alpha2);
2539
2540         /*
2541          * This restores the ieee80211_regdom module parameter
2542          * preference or the last user requested regulatory
2543          * settings, user regulatory settings takes precedence.
2544          */
2545         if (is_an_alpha2(alpha2))
2546                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2547
2548         spin_lock(&reg_requests_lock);
2549         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2550         spin_unlock(&reg_requests_lock);
2551
2552         REG_DBG_PRINT("Kicking the queue\n");
2553
2554         schedule_work(&reg_work);
2555 }
2556
2557 void regulatory_hint_disconnect(void)
2558 {
2559         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2560         restore_regulatory_settings(false);
2561 }
2562
2563 static bool freq_is_chan_12_13_14(u16 freq)
2564 {
2565         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2566             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2567             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2568                 return true;
2569         return false;
2570 }
2571
2572 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2573 {
2574         struct reg_beacon *pending_beacon;
2575
2576         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2577                 if (beacon_chan->center_freq ==
2578                     pending_beacon->chan.center_freq)
2579                         return true;
2580         return false;
2581 }
2582
2583 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2584                                  struct ieee80211_channel *beacon_chan,
2585                                  gfp_t gfp)
2586 {
2587         struct reg_beacon *reg_beacon;
2588         bool processing;
2589
2590         if (beacon_chan->beacon_found ||
2591             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2592             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2593              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2594                 return 0;
2595
2596         spin_lock_bh(&reg_pending_beacons_lock);
2597         processing = pending_reg_beacon(beacon_chan);
2598         spin_unlock_bh(&reg_pending_beacons_lock);
2599
2600         if (processing)
2601                 return 0;
2602
2603         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2604         if (!reg_beacon)
2605                 return -ENOMEM;
2606
2607         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2608                       beacon_chan->center_freq,
2609                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2610                       wiphy_name(wiphy));
2611
2612         memcpy(&reg_beacon->chan, beacon_chan,
2613                sizeof(struct ieee80211_channel));
2614
2615         /*
2616          * Since we can be called from BH or and non-BH context
2617          * we must use spin_lock_bh()
2618          */
2619         spin_lock_bh(&reg_pending_beacons_lock);
2620         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2621         spin_unlock_bh(&reg_pending_beacons_lock);
2622
2623         schedule_work(&reg_work);
2624
2625         return 0;
2626 }
2627
2628 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2629 {
2630         unsigned int i;
2631         const struct ieee80211_reg_rule *reg_rule = NULL;
2632         const struct ieee80211_freq_range *freq_range = NULL;
2633         const struct ieee80211_power_rule *power_rule = NULL;
2634         char bw[32], cac_time[32];
2635
2636         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2637
2638         for (i = 0; i < rd->n_reg_rules; i++) {
2639                 reg_rule = &rd->reg_rules[i];
2640                 freq_range = &reg_rule->freq_range;
2641                 power_rule = &reg_rule->power_rule;
2642
2643                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2644                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2645                                  freq_range->max_bandwidth_khz,
2646                                  reg_get_max_bandwidth(rd, reg_rule));
2647                 else
2648                         snprintf(bw, sizeof(bw), "%d KHz",
2649                                  freq_range->max_bandwidth_khz);
2650
2651                 if (reg_rule->flags & NL80211_RRF_DFS)
2652                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2653                                   reg_rule->dfs_cac_ms/1000);
2654                 else
2655                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2656
2657
2658                 /*
2659                  * There may not be documentation for max antenna gain
2660                  * in certain regions
2661                  */
2662                 if (power_rule->max_antenna_gain)
2663                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2664                                 freq_range->start_freq_khz,
2665                                 freq_range->end_freq_khz,
2666                                 bw,
2667                                 power_rule->max_antenna_gain,
2668                                 power_rule->max_eirp,
2669                                 cac_time);
2670                 else
2671                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2672                                 freq_range->start_freq_khz,
2673                                 freq_range->end_freq_khz,
2674                                 bw,
2675                                 power_rule->max_eirp,
2676                                 cac_time);
2677         }
2678 }
2679
2680 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2681 {
2682         switch (dfs_region) {
2683         case NL80211_DFS_UNSET:
2684         case NL80211_DFS_FCC:
2685         case NL80211_DFS_ETSI:
2686         case NL80211_DFS_JP:
2687                 return true;
2688         default:
2689                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2690                               dfs_region);
2691                 return false;
2692         }
2693 }
2694
2695 static void print_regdomain(const struct ieee80211_regdomain *rd)
2696 {
2697         struct regulatory_request *lr = get_last_request();
2698
2699         if (is_intersected_alpha2(rd->alpha2)) {
2700                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2701                         struct cfg80211_registered_device *rdev;
2702                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2703                         if (rdev) {
2704                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2705                                         rdev->country_ie_alpha2[0],
2706                                         rdev->country_ie_alpha2[1]);
2707                         } else
2708                                 pr_info("Current regulatory domain intersected:\n");
2709                 } else
2710                         pr_info("Current regulatory domain intersected:\n");
2711         } else if (is_world_regdom(rd->alpha2)) {
2712                 pr_info("World regulatory domain updated:\n");
2713         } else {
2714                 if (is_unknown_alpha2(rd->alpha2))
2715                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2716                 else {
2717                         if (reg_request_cell_base(lr))
2718                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2719                                         rd->alpha2[0], rd->alpha2[1]);
2720                         else
2721                                 pr_info("Regulatory domain changed to country: %c%c\n",
2722                                         rd->alpha2[0], rd->alpha2[1]);
2723                 }
2724         }
2725
2726         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2727         print_rd_rules(rd);
2728 }
2729
2730 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2731 {
2732         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2733         print_rd_rules(rd);
2734 }
2735
2736 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2737 {
2738         if (!is_world_regdom(rd->alpha2))
2739                 return -EINVAL;
2740         update_world_regdomain(rd);
2741         return 0;
2742 }
2743
2744 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2745                            struct regulatory_request *user_request)
2746 {
2747         const struct ieee80211_regdomain *intersected_rd = NULL;
2748
2749         if (!regdom_changes(rd->alpha2))
2750                 return -EALREADY;
2751
2752         if (!is_valid_rd(rd)) {
2753                 pr_err("Invalid regulatory domain detected:\n");
2754                 print_regdomain_info(rd);
2755                 return -EINVAL;
2756         }
2757
2758         if (!user_request->intersect) {
2759                 reset_regdomains(false, rd);
2760                 return 0;
2761         }
2762
2763         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2764         if (!intersected_rd)
2765                 return -EINVAL;
2766
2767         kfree(rd);
2768         rd = NULL;
2769         reset_regdomains(false, intersected_rd);
2770
2771         return 0;
2772 }
2773
2774 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2775                              struct regulatory_request *driver_request)
2776 {
2777         const struct ieee80211_regdomain *regd;
2778         const struct ieee80211_regdomain *intersected_rd = NULL;
2779         const struct ieee80211_regdomain *tmp;
2780         struct wiphy *request_wiphy;
2781
2782         if (is_world_regdom(rd->alpha2))
2783                 return -EINVAL;
2784
2785         if (!regdom_changes(rd->alpha2))
2786                 return -EALREADY;
2787
2788         if (!is_valid_rd(rd)) {
2789                 pr_err("Invalid regulatory domain detected:\n");
2790                 print_regdomain_info(rd);
2791                 return -EINVAL;
2792         }
2793
2794         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2795         if (!request_wiphy) {
2796                 queue_delayed_work(system_power_efficient_wq,
2797                                    &reg_timeout, 0);
2798                 return -ENODEV;
2799         }
2800
2801         if (!driver_request->intersect) {
2802                 if (request_wiphy->regd)
2803                         return -EALREADY;
2804
2805                 regd = reg_copy_regd(rd);
2806                 if (IS_ERR(regd))
2807                         return PTR_ERR(regd);
2808
2809                 rcu_assign_pointer(request_wiphy->regd, regd);
2810                 reset_regdomains(false, rd);
2811                 return 0;
2812         }
2813
2814         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2815         if (!intersected_rd)
2816                 return -EINVAL;
2817
2818         /*
2819          * We can trash what CRDA provided now.
2820          * However if a driver requested this specific regulatory
2821          * domain we keep it for its private use
2822          */
2823         tmp = get_wiphy_regdom(request_wiphy);
2824         rcu_assign_pointer(request_wiphy->regd, rd);
2825         rcu_free_regdom(tmp);
2826
2827         rd = NULL;
2828
2829         reset_regdomains(false, intersected_rd);
2830
2831         return 0;
2832 }
2833
2834 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2835                                  struct regulatory_request *country_ie_request)
2836 {
2837         struct wiphy *request_wiphy;
2838
2839         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2840             !is_unknown_alpha2(rd->alpha2))
2841                 return -EINVAL;
2842
2843         /*
2844          * Lets only bother proceeding on the same alpha2 if the current
2845          * rd is non static (it means CRDA was present and was used last)
2846          * and the pending request came in from a country IE
2847          */
2848
2849         if (!is_valid_rd(rd)) {
2850                 pr_err("Invalid regulatory domain detected:\n");
2851                 print_regdomain_info(rd);
2852                 return -EINVAL;
2853         }
2854
2855         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2856         if (!request_wiphy) {
2857                 queue_delayed_work(system_power_efficient_wq,
2858                                    &reg_timeout, 0);
2859                 return -ENODEV;
2860         }
2861
2862         if (country_ie_request->intersect)
2863                 return -EINVAL;
2864
2865         reset_regdomains(false, rd);
2866         return 0;
2867 }
2868
2869 /*
2870  * Use this call to set the current regulatory domain. Conflicts with
2871  * multiple drivers can be ironed out later. Caller must've already
2872  * kmalloc'd the rd structure.
2873  */
2874 int set_regdom(const struct ieee80211_regdomain *rd)
2875 {
2876         struct regulatory_request *lr;
2877         bool user_reset = false;
2878         int r;
2879
2880         if (!reg_is_valid_request(rd->alpha2)) {
2881                 kfree(rd);
2882                 return -EINVAL;
2883         }
2884
2885         lr = get_last_request();
2886
2887         /* Note that this doesn't update the wiphys, this is done below */
2888         switch (lr->initiator) {
2889         case NL80211_REGDOM_SET_BY_CORE:
2890                 r = reg_set_rd_core(rd);
2891                 break;
2892         case NL80211_REGDOM_SET_BY_USER:
2893                 r = reg_set_rd_user(rd, lr);
2894                 user_reset = true;
2895                 break;
2896         case NL80211_REGDOM_SET_BY_DRIVER:
2897                 r = reg_set_rd_driver(rd, lr);
2898                 break;
2899         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2900                 r = reg_set_rd_country_ie(rd, lr);
2901                 break;
2902         default:
2903                 WARN(1, "invalid initiator %d\n", lr->initiator);
2904                 return -EINVAL;
2905         }
2906
2907         if (r) {
2908                 switch (r) {
2909                 case -EALREADY:
2910                         reg_set_request_processed();
2911                         break;
2912                 default:
2913                         /* Back to world regulatory in case of errors */
2914                         restore_regulatory_settings(user_reset);
2915                 }
2916
2917                 kfree(rd);
2918                 return r;
2919         }
2920
2921         /* This would make this whole thing pointless */
2922         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2923                 return -EINVAL;
2924
2925         /* update all wiphys now with the new established regulatory domain */
2926         update_all_wiphy_regulatory(lr->initiator);
2927
2928         print_regdomain(get_cfg80211_regdom());
2929
2930         nl80211_send_reg_change_event(lr);
2931
2932         reg_set_request_processed();
2933
2934         return 0;
2935 }
2936
2937 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2938                                        struct ieee80211_regdomain *rd)
2939 {
2940         const struct ieee80211_regdomain *regd;
2941         const struct ieee80211_regdomain *prev_regd;
2942         struct cfg80211_registered_device *rdev;
2943
2944         if (WARN_ON(!wiphy || !rd))
2945                 return -EINVAL;
2946
2947         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2948                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2949                 return -EPERM;
2950
2951         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2952                 print_regdomain_info(rd);
2953                 return -EINVAL;
2954         }
2955
2956         regd = reg_copy_regd(rd);
2957         if (IS_ERR(regd))
2958                 return PTR_ERR(regd);
2959
2960         rdev = wiphy_to_rdev(wiphy);
2961
2962         spin_lock(&reg_requests_lock);
2963         prev_regd = rdev->requested_regd;
2964         rdev->requested_regd = regd;
2965         spin_unlock(&reg_requests_lock);
2966
2967         kfree(prev_regd);
2968         return 0;
2969 }
2970
2971 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
2972                               struct ieee80211_regdomain *rd)
2973 {
2974         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
2975
2976         if (ret)
2977                 return ret;
2978
2979         schedule_work(&reg_work);
2980         return 0;
2981 }
2982 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
2983
2984 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
2985                                         struct ieee80211_regdomain *rd)
2986 {
2987         int ret;
2988
2989         ASSERT_RTNL();
2990
2991         ret = __regulatory_set_wiphy_regd(wiphy, rd);
2992         if (ret)
2993                 return ret;
2994
2995         /* process the request immediately */
2996         reg_process_self_managed_hints();
2997         return 0;
2998 }
2999 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3000
3001 void wiphy_regulatory_register(struct wiphy *wiphy)
3002 {
3003         struct regulatory_request *lr;
3004
3005         /* self-managed devices ignore external hints */
3006         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3007                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3008                                            REGULATORY_COUNTRY_IE_IGNORE;
3009
3010         if (!reg_dev_ignore_cell_hint(wiphy))
3011                 reg_num_devs_support_basehint++;
3012
3013         lr = get_last_request();
3014         wiphy_update_regulatory(wiphy, lr->initiator);
3015 }
3016
3017 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3018 {
3019         struct wiphy *request_wiphy = NULL;
3020         struct regulatory_request *lr;
3021
3022         lr = get_last_request();
3023
3024         if (!reg_dev_ignore_cell_hint(wiphy))
3025                 reg_num_devs_support_basehint--;
3026
3027         rcu_free_regdom(get_wiphy_regdom(wiphy));
3028         RCU_INIT_POINTER(wiphy->regd, NULL);
3029
3030         if (lr)
3031                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3032
3033         if (!request_wiphy || request_wiphy != wiphy)
3034                 return;
3035
3036         lr->wiphy_idx = WIPHY_IDX_INVALID;
3037         lr->country_ie_env = ENVIRON_ANY;
3038 }
3039
3040 static void reg_timeout_work(struct work_struct *work)
3041 {
3042         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3043         rtnl_lock();
3044         restore_regulatory_settings(true);
3045         rtnl_unlock();
3046 }
3047
3048 /*
3049  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3050  * UNII band definitions
3051  */
3052 int cfg80211_get_unii(int freq)
3053 {
3054         /* UNII-1 */
3055         if (freq >= 5150 && freq <= 5250)
3056                 return 0;
3057
3058         /* UNII-2A */
3059         if (freq > 5250 && freq <= 5350)
3060                 return 1;
3061
3062         /* UNII-2B */
3063         if (freq > 5350 && freq <= 5470)
3064                 return 2;
3065
3066         /* UNII-2C */
3067         if (freq > 5470 && freq <= 5725)
3068                 return 3;
3069
3070         /* UNII-3 */
3071         if (freq > 5725 && freq <= 5825)
3072                 return 4;
3073
3074         return -EINVAL;
3075 }
3076
3077 bool regulatory_indoor_allowed(void)
3078 {
3079         return reg_is_indoor;
3080 }
3081
3082 int __init regulatory_init(void)
3083 {
3084         int err = 0;
3085
3086         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3087         if (IS_ERR(reg_pdev))
3088                 return PTR_ERR(reg_pdev);
3089
3090         spin_lock_init(&reg_requests_lock);
3091         spin_lock_init(&reg_pending_beacons_lock);
3092
3093         reg_regdb_size_check();
3094
3095         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3096
3097         user_alpha2[0] = '9';
3098         user_alpha2[1] = '7';
3099
3100         /* We always try to get an update for the static regdomain */
3101         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3102         if (err) {
3103                 if (err == -ENOMEM)
3104                         return err;
3105                 /*
3106                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3107                  * memory which is handled and propagated appropriately above
3108                  * but it can also fail during a netlink_broadcast() or during
3109                  * early boot for call_usermodehelper(). For now treat these
3110                  * errors as non-fatal.
3111                  */
3112                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3113         }
3114
3115         /*
3116          * Finally, if the user set the module parameter treat it
3117          * as a user hint.
3118          */
3119         if (!is_world_regdom(ieee80211_regdom))
3120                 regulatory_hint_user(ieee80211_regdom,
3121                                      NL80211_USER_REG_HINT_USER);
3122
3123         return 0;
3124 }
3125
3126 void regulatory_exit(void)
3127 {
3128         struct regulatory_request *reg_request, *tmp;
3129         struct reg_beacon *reg_beacon, *btmp;
3130
3131         cancel_work_sync(&reg_work);
3132         cancel_delayed_work_sync(&reg_timeout);
3133         cancel_delayed_work_sync(&reg_check_chans);
3134
3135         /* Lock to suppress warnings */
3136         rtnl_lock();
3137         reset_regdomains(true, NULL);
3138         rtnl_unlock();
3139
3140         dev_set_uevent_suppress(&reg_pdev->dev, true);
3141
3142         platform_device_unregister(reg_pdev);
3143
3144         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3145                 list_del(&reg_beacon->list);
3146                 kfree(reg_beacon);
3147         }
3148
3149         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3150                 list_del(&reg_beacon->list);
3151                 kfree(reg_beacon);
3152         }
3153
3154         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3155                 list_del(&reg_request->list);
3156                 kfree(reg_request);
3157         }
3158 }