ata: pata_pdc2027x: Replace mdelay with msleep
[sfrench/cifs-2.6.git] / net / vmw_vsock / vmci_transport.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/net.h>
27 #include <linux/poll.h>
28 #include <linux/skbuff.h>
29 #include <linux/smp.h>
30 #include <linux/socket.h>
31 #include <linux/stddef.h>
32 #include <linux/unistd.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <net/sock.h>
36 #include <net/af_vsock.h>
37
38 #include "vmci_transport_notify.h"
39
40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
42 static void vmci_transport_peer_detach_cb(u32 sub_id,
43                                           const struct vmci_event_data *ed,
44                                           void *client_data);
45 static void vmci_transport_recv_pkt_work(struct work_struct *work);
46 static void vmci_transport_cleanup(struct work_struct *work);
47 static int vmci_transport_recv_listen(struct sock *sk,
48                                       struct vmci_transport_packet *pkt);
49 static int vmci_transport_recv_connecting_server(
50                                         struct sock *sk,
51                                         struct sock *pending,
52                                         struct vmci_transport_packet *pkt);
53 static int vmci_transport_recv_connecting_client(
54                                         struct sock *sk,
55                                         struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client_negotiate(
57                                         struct sock *sk,
58                                         struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_invalid(
60                                         struct sock *sk,
61                                         struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connected(struct sock *sk,
63                                          struct vmci_transport_packet *pkt);
64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
65 static u16 vmci_transport_new_proto_supported_versions(void);
66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
67                                                   bool old_pkt_proto);
68
69 struct vmci_transport_recv_pkt_info {
70         struct work_struct work;
71         struct sock *sk;
72         struct vmci_transport_packet pkt;
73 };
74
75 static LIST_HEAD(vmci_transport_cleanup_list);
76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
78
79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
80                                                            VMCI_INVALID_ID };
81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
82
83 static int PROTOCOL_OVERRIDE = -1;
84
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
88
89 /* The default peer timeout indicates how long we will wait for a peer response
90  * to a control message.
91  */
92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
93
94 /* Helper function to convert from a VMCI error code to a VSock error code. */
95
96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
97 {
98         switch (vmci_error) {
99         case VMCI_ERROR_NO_MEM:
100                 return -ENOMEM;
101         case VMCI_ERROR_DUPLICATE_ENTRY:
102         case VMCI_ERROR_ALREADY_EXISTS:
103                 return -EADDRINUSE;
104         case VMCI_ERROR_NO_ACCESS:
105                 return -EPERM;
106         case VMCI_ERROR_NO_RESOURCES:
107                 return -ENOBUFS;
108         case VMCI_ERROR_INVALID_RESOURCE:
109                 return -EHOSTUNREACH;
110         case VMCI_ERROR_INVALID_ARGS:
111         default:
112                 break;
113         }
114         return -EINVAL;
115 }
116
117 static u32 vmci_transport_peer_rid(u32 peer_cid)
118 {
119         if (VMADDR_CID_HYPERVISOR == peer_cid)
120                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
121
122         return VMCI_TRANSPORT_PACKET_RID;
123 }
124
125 static inline void
126 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
127                            struct sockaddr_vm *src,
128                            struct sockaddr_vm *dst,
129                            u8 type,
130                            u64 size,
131                            u64 mode,
132                            struct vmci_transport_waiting_info *wait,
133                            u16 proto,
134                            struct vmci_handle handle)
135 {
136         /* We register the stream control handler as an any cid handle so we
137          * must always send from a source address of VMADDR_CID_ANY
138          */
139         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
140                                        VMCI_TRANSPORT_PACKET_RID);
141         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
142                                        vmci_transport_peer_rid(dst->svm_cid));
143         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
144         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
145         pkt->type = type;
146         pkt->src_port = src->svm_port;
147         pkt->dst_port = dst->svm_port;
148         memset(&pkt->proto, 0, sizeof(pkt->proto));
149         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
150
151         switch (pkt->type) {
152         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
153                 pkt->u.size = 0;
154                 break;
155
156         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
157         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
158                 pkt->u.size = size;
159                 break;
160
161         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
162         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
163                 pkt->u.handle = handle;
164                 break;
165
166         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
167         case VMCI_TRANSPORT_PACKET_TYPE_READ:
168         case VMCI_TRANSPORT_PACKET_TYPE_RST:
169                 pkt->u.size = 0;
170                 break;
171
172         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
173                 pkt->u.mode = mode;
174                 break;
175
176         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
177         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
178                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
179                 break;
180
181         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
182         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
183                 pkt->u.size = size;
184                 pkt->proto = proto;
185                 break;
186         }
187 }
188
189 static inline void
190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
191                                     struct sockaddr_vm *local,
192                                     struct sockaddr_vm *remote)
193 {
194         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
195         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
196 }
197
198 static int
199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
200                                   struct sockaddr_vm *src,
201                                   struct sockaddr_vm *dst,
202                                   enum vmci_transport_packet_type type,
203                                   u64 size,
204                                   u64 mode,
205                                   struct vmci_transport_waiting_info *wait,
206                                   u16 proto,
207                                   struct vmci_handle handle,
208                                   bool convert_error)
209 {
210         int err;
211
212         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
213                                    proto, handle);
214         err = vmci_datagram_send(&pkt->dg);
215         if (convert_error && (err < 0))
216                 return vmci_transport_error_to_vsock_error(err);
217
218         return err;
219 }
220
221 static int
222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
223                                       enum vmci_transport_packet_type type,
224                                       u64 size,
225                                       u64 mode,
226                                       struct vmci_transport_waiting_info *wait,
227                                       struct vmci_handle handle)
228 {
229         struct vmci_transport_packet reply;
230         struct sockaddr_vm src, dst;
231
232         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
233                 return 0;
234         } else {
235                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
236                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
237                                                          type,
238                                                          size, mode, wait,
239                                                          VSOCK_PROTO_INVALID,
240                                                          handle, true);
241         }
242 }
243
244 static int
245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
246                                    struct sockaddr_vm *dst,
247                                    enum vmci_transport_packet_type type,
248                                    u64 size,
249                                    u64 mode,
250                                    struct vmci_transport_waiting_info *wait,
251                                    struct vmci_handle handle)
252 {
253         /* Note that it is safe to use a single packet across all CPUs since
254          * two tasklets of the same type are guaranteed to not ever run
255          * simultaneously. If that ever changes, or VMCI stops using tasklets,
256          * we can use per-cpu packets.
257          */
258         static struct vmci_transport_packet pkt;
259
260         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
261                                                  size, mode, wait,
262                                                  VSOCK_PROTO_INVALID, handle,
263                                                  false);
264 }
265
266 static int
267 vmci_transport_send_control_pkt(struct sock *sk,
268                                 enum vmci_transport_packet_type type,
269                                 u64 size,
270                                 u64 mode,
271                                 struct vmci_transport_waiting_info *wait,
272                                 u16 proto,
273                                 struct vmci_handle handle)
274 {
275         struct vmci_transport_packet *pkt;
276         struct vsock_sock *vsk;
277         int err;
278
279         vsk = vsock_sk(sk);
280
281         if (!vsock_addr_bound(&vsk->local_addr))
282                 return -EINVAL;
283
284         if (!vsock_addr_bound(&vsk->remote_addr))
285                 return -EINVAL;
286
287         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
288         if (!pkt)
289                 return -ENOMEM;
290
291         err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
292                                                 &vsk->remote_addr, type, size,
293                                                 mode, wait, proto, handle,
294                                                 true);
295         kfree(pkt);
296
297         return err;
298 }
299
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301                                         struct sockaddr_vm *src,
302                                         struct vmci_transport_packet *pkt)
303 {
304         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305                 return 0;
306         return vmci_transport_send_control_pkt_bh(
307                                         dst, src,
308                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309                                         0, NULL, VMCI_INVALID_HANDLE);
310 }
311
312 static int vmci_transport_send_reset(struct sock *sk,
313                                      struct vmci_transport_packet *pkt)
314 {
315         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
316                 return 0;
317         return vmci_transport_send_control_pkt(sk,
318                                         VMCI_TRANSPORT_PACKET_TYPE_RST,
319                                         0, 0, NULL, VSOCK_PROTO_INVALID,
320                                         VMCI_INVALID_HANDLE);
321 }
322
323 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
324 {
325         return vmci_transport_send_control_pkt(
326                                         sk,
327                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
328                                         size, 0, NULL,
329                                         VSOCK_PROTO_INVALID,
330                                         VMCI_INVALID_HANDLE);
331 }
332
333 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
334                                           u16 version)
335 {
336         return vmci_transport_send_control_pkt(
337                                         sk,
338                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
339                                         size, 0, NULL, version,
340                                         VMCI_INVALID_HANDLE);
341 }
342
343 static int vmci_transport_send_qp_offer(struct sock *sk,
344                                         struct vmci_handle handle)
345 {
346         return vmci_transport_send_control_pkt(
347                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
348                                         0, NULL,
349                                         VSOCK_PROTO_INVALID, handle);
350 }
351
352 static int vmci_transport_send_attach(struct sock *sk,
353                                       struct vmci_handle handle)
354 {
355         return vmci_transport_send_control_pkt(
356                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
357                                         0, 0, NULL, VSOCK_PROTO_INVALID,
358                                         handle);
359 }
360
361 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
362 {
363         return vmci_transport_reply_control_pkt_fast(
364                                                 pkt,
365                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
366                                                 0, 0, NULL,
367                                                 VMCI_INVALID_HANDLE);
368 }
369
370 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
371                                           struct sockaddr_vm *src)
372 {
373         return vmci_transport_send_control_pkt_bh(
374                                         dst, src,
375                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
376                                         0, 0, NULL, VMCI_INVALID_HANDLE);
377 }
378
379 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
380                                  struct sockaddr_vm *src)
381 {
382         return vmci_transport_send_control_pkt_bh(
383                                         dst, src,
384                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
385                                         0, NULL, VMCI_INVALID_HANDLE);
386 }
387
388 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
389                                 struct sockaddr_vm *src)
390 {
391         return vmci_transport_send_control_pkt_bh(
392                                         dst, src,
393                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
394                                         0, NULL, VMCI_INVALID_HANDLE);
395 }
396
397 int vmci_transport_send_wrote(struct sock *sk)
398 {
399         return vmci_transport_send_control_pkt(
400                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
401                                         0, NULL, VSOCK_PROTO_INVALID,
402                                         VMCI_INVALID_HANDLE);
403 }
404
405 int vmci_transport_send_read(struct sock *sk)
406 {
407         return vmci_transport_send_control_pkt(
408                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
409                                         0, NULL, VSOCK_PROTO_INVALID,
410                                         VMCI_INVALID_HANDLE);
411 }
412
413 int vmci_transport_send_waiting_write(struct sock *sk,
414                                       struct vmci_transport_waiting_info *wait)
415 {
416         return vmci_transport_send_control_pkt(
417                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
418                                 0, 0, wait, VSOCK_PROTO_INVALID,
419                                 VMCI_INVALID_HANDLE);
420 }
421
422 int vmci_transport_send_waiting_read(struct sock *sk,
423                                      struct vmci_transport_waiting_info *wait)
424 {
425         return vmci_transport_send_control_pkt(
426                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
427                                 0, 0, wait, VSOCK_PROTO_INVALID,
428                                 VMCI_INVALID_HANDLE);
429 }
430
431 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
432 {
433         return vmci_transport_send_control_pkt(
434                                         &vsk->sk,
435                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
436                                         0, mode, NULL,
437                                         VSOCK_PROTO_INVALID,
438                                         VMCI_INVALID_HANDLE);
439 }
440
441 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
442 {
443         return vmci_transport_send_control_pkt(sk,
444                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
445                                         size, 0, NULL,
446                                         VSOCK_PROTO_INVALID,
447                                         VMCI_INVALID_HANDLE);
448 }
449
450 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
451                                              u16 version)
452 {
453         return vmci_transport_send_control_pkt(
454                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
455                                         size, 0, NULL, version,
456                                         VMCI_INVALID_HANDLE);
457 }
458
459 static struct sock *vmci_transport_get_pending(
460                                         struct sock *listener,
461                                         struct vmci_transport_packet *pkt)
462 {
463         struct vsock_sock *vlistener;
464         struct vsock_sock *vpending;
465         struct sock *pending;
466         struct sockaddr_vm src;
467
468         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
469
470         vlistener = vsock_sk(listener);
471
472         list_for_each_entry(vpending, &vlistener->pending_links,
473                             pending_links) {
474                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
475                     pkt->dst_port == vpending->local_addr.svm_port) {
476                         pending = sk_vsock(vpending);
477                         sock_hold(pending);
478                         goto found;
479                 }
480         }
481
482         pending = NULL;
483 found:
484         return pending;
485
486 }
487
488 static void vmci_transport_release_pending(struct sock *pending)
489 {
490         sock_put(pending);
491 }
492
493 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
494  * trusted sockets 2) sockets from applications running as the same user as the
495  * VM (this is only true for the host side and only when using hosted products)
496  */
497
498 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
499 {
500         return vsock->trusted ||
501                vmci_is_context_owner(peer_cid, vsock->owner->uid);
502 }
503
504 /* We allow sending datagrams to and receiving datagrams from a restricted VM
505  * only if it is trusted as described in vmci_transport_is_trusted.
506  */
507
508 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
509 {
510         if (VMADDR_CID_HYPERVISOR == peer_cid)
511                 return true;
512
513         if (vsock->cached_peer != peer_cid) {
514                 vsock->cached_peer = peer_cid;
515                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
516                     (vmci_context_get_priv_flags(peer_cid) &
517                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
518                         vsock->cached_peer_allow_dgram = false;
519                 } else {
520                         vsock->cached_peer_allow_dgram = true;
521                 }
522         }
523
524         return vsock->cached_peer_allow_dgram;
525 }
526
527 static int
528 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
529                                 struct vmci_handle *handle,
530                                 u64 produce_size,
531                                 u64 consume_size,
532                                 u32 peer, u32 flags, bool trusted)
533 {
534         int err = 0;
535
536         if (trusted) {
537                 /* Try to allocate our queue pair as trusted. This will only
538                  * work if vsock is running in the host.
539                  */
540
541                 err = vmci_qpair_alloc(qpair, handle, produce_size,
542                                        consume_size,
543                                        peer, flags,
544                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
545                 if (err != VMCI_ERROR_NO_ACCESS)
546                         goto out;
547
548         }
549
550         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
551                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
552 out:
553         if (err < 0) {
554                 pr_err("Could not attach to queue pair with %d\n",
555                        err);
556                 err = vmci_transport_error_to_vsock_error(err);
557         }
558
559         return err;
560 }
561
562 static int
563 vmci_transport_datagram_create_hnd(u32 resource_id,
564                                    u32 flags,
565                                    vmci_datagram_recv_cb recv_cb,
566                                    void *client_data,
567                                    struct vmci_handle *out_handle)
568 {
569         int err = 0;
570
571         /* Try to allocate our datagram handler as trusted. This will only work
572          * if vsock is running in the host.
573          */
574
575         err = vmci_datagram_create_handle_priv(resource_id, flags,
576                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
577                                                recv_cb,
578                                                client_data, out_handle);
579
580         if (err == VMCI_ERROR_NO_ACCESS)
581                 err = vmci_datagram_create_handle(resource_id, flags,
582                                                   recv_cb, client_data,
583                                                   out_handle);
584
585         return err;
586 }
587
588 /* This is invoked as part of a tasklet that's scheduled when the VMCI
589  * interrupt fires.  This is run in bottom-half context and if it ever needs to
590  * sleep it should defer that work to a work queue.
591  */
592
593 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
594 {
595         struct sock *sk;
596         size_t size;
597         struct sk_buff *skb;
598         struct vsock_sock *vsk;
599
600         sk = (struct sock *)data;
601
602         /* This handler is privileged when this module is running on the host.
603          * We will get datagrams from all endpoints (even VMs that are in a
604          * restricted context). If we get one from a restricted context then
605          * the destination socket must be trusted.
606          *
607          * NOTE: We access the socket struct without holding the lock here.
608          * This is ok because the field we are interested is never modified
609          * outside of the create and destruct socket functions.
610          */
611         vsk = vsock_sk(sk);
612         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
613                 return VMCI_ERROR_NO_ACCESS;
614
615         size = VMCI_DG_SIZE(dg);
616
617         /* Attach the packet to the socket's receive queue as an sk_buff. */
618         skb = alloc_skb(size, GFP_ATOMIC);
619         if (!skb)
620                 return VMCI_ERROR_NO_MEM;
621
622         /* sk_receive_skb() will do a sock_put(), so hold here. */
623         sock_hold(sk);
624         skb_put(skb, size);
625         memcpy(skb->data, dg, size);
626         sk_receive_skb(sk, skb, 0);
627
628         return VMCI_SUCCESS;
629 }
630
631 static bool vmci_transport_stream_allow(u32 cid, u32 port)
632 {
633         static const u32 non_socket_contexts[] = {
634                 VMADDR_CID_RESERVED,
635         };
636         int i;
637
638         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
639
640         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
641                 if (cid == non_socket_contexts[i])
642                         return false;
643         }
644
645         return true;
646 }
647
648 /* This is invoked as part of a tasklet that's scheduled when the VMCI
649  * interrupt fires.  This is run in bottom-half context but it defers most of
650  * its work to the packet handling work queue.
651  */
652
653 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
654 {
655         struct sock *sk;
656         struct sockaddr_vm dst;
657         struct sockaddr_vm src;
658         struct vmci_transport_packet *pkt;
659         struct vsock_sock *vsk;
660         bool bh_process_pkt;
661         int err;
662
663         sk = NULL;
664         err = VMCI_SUCCESS;
665         bh_process_pkt = false;
666
667         /* Ignore incoming packets from contexts without sockets, or resources
668          * that aren't vsock implementations.
669          */
670
671         if (!vmci_transport_stream_allow(dg->src.context, -1)
672             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
673                 return VMCI_ERROR_NO_ACCESS;
674
675         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
676                 /* Drop datagrams that do not contain full VSock packets. */
677                 return VMCI_ERROR_INVALID_ARGS;
678
679         pkt = (struct vmci_transport_packet *)dg;
680
681         /* Find the socket that should handle this packet.  First we look for a
682          * connected socket and if there is none we look for a socket bound to
683          * the destintation address.
684          */
685         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
686         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
687
688         sk = vsock_find_connected_socket(&src, &dst);
689         if (!sk) {
690                 sk = vsock_find_bound_socket(&dst);
691                 if (!sk) {
692                         /* We could not find a socket for this specified
693                          * address.  If this packet is a RST, we just drop it.
694                          * If it is another packet, we send a RST.  Note that
695                          * we do not send a RST reply to RSTs so that we do not
696                          * continually send RSTs between two endpoints.
697                          *
698                          * Note that since this is a reply, dst is src and src
699                          * is dst.
700                          */
701                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
702                                 pr_err("unable to send reset\n");
703
704                         err = VMCI_ERROR_NOT_FOUND;
705                         goto out;
706                 }
707         }
708
709         /* If the received packet type is beyond all types known to this
710          * implementation, reply with an invalid message.  Hopefully this will
711          * help when implementing backwards compatibility in the future.
712          */
713         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
714                 vmci_transport_send_invalid_bh(&dst, &src);
715                 err = VMCI_ERROR_INVALID_ARGS;
716                 goto out;
717         }
718
719         /* This handler is privileged when this module is running on the host.
720          * We will get datagram connect requests from all endpoints (even VMs
721          * that are in a restricted context). If we get one from a restricted
722          * context then the destination socket must be trusted.
723          *
724          * NOTE: We access the socket struct without holding the lock here.
725          * This is ok because the field we are interested is never modified
726          * outside of the create and destruct socket functions.
727          */
728         vsk = vsock_sk(sk);
729         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
730                 err = VMCI_ERROR_NO_ACCESS;
731                 goto out;
732         }
733
734         /* We do most everything in a work queue, but let's fast path the
735          * notification of reads and writes to help data transfer performance.
736          * We can only do this if there is no process context code executing
737          * for this socket since that may change the state.
738          */
739         bh_lock_sock(sk);
740
741         if (!sock_owned_by_user(sk)) {
742                 /* The local context ID may be out of date, update it. */
743                 vsk->local_addr.svm_cid = dst.svm_cid;
744
745                 if (sk->sk_state == TCP_ESTABLISHED)
746                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
747                                         sk, pkt, true, &dst, &src,
748                                         &bh_process_pkt);
749         }
750
751         bh_unlock_sock(sk);
752
753         if (!bh_process_pkt) {
754                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
755
756                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
757                 if (!recv_pkt_info) {
758                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
759                                 pr_err("unable to send reset\n");
760
761                         err = VMCI_ERROR_NO_MEM;
762                         goto out;
763                 }
764
765                 recv_pkt_info->sk = sk;
766                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
767                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
768
769                 schedule_work(&recv_pkt_info->work);
770                 /* Clear sk so that the reference count incremented by one of
771                  * the Find functions above is not decremented below.  We need
772                  * that reference count for the packet handler we've scheduled
773                  * to run.
774                  */
775                 sk = NULL;
776         }
777
778 out:
779         if (sk)
780                 sock_put(sk);
781
782         return err;
783 }
784
785 static void vmci_transport_handle_detach(struct sock *sk)
786 {
787         struct vsock_sock *vsk;
788
789         vsk = vsock_sk(sk);
790         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
791                 sock_set_flag(sk, SOCK_DONE);
792
793                 /* On a detach the peer will not be sending or receiving
794                  * anymore.
795                  */
796                 vsk->peer_shutdown = SHUTDOWN_MASK;
797
798                 /* We should not be sending anymore since the peer won't be
799                  * there to receive, but we can still receive if there is data
800                  * left in our consume queue.
801                  */
802                 if (vsock_stream_has_data(vsk) <= 0) {
803                         sk->sk_state = TCP_CLOSE;
804
805                         if (sk->sk_state == TCP_SYN_SENT) {
806                                 /* The peer may detach from a queue pair while
807                                  * we are still in the connecting state, i.e.,
808                                  * if the peer VM is killed after attaching to
809                                  * a queue pair, but before we complete the
810                                  * handshake. In that case, we treat the detach
811                                  * event like a reset.
812                                  */
813
814                                 sk->sk_err = ECONNRESET;
815                                 sk->sk_error_report(sk);
816                                 return;
817                         }
818                 }
819                 sk->sk_state_change(sk);
820         }
821 }
822
823 static void vmci_transport_peer_detach_cb(u32 sub_id,
824                                           const struct vmci_event_data *e_data,
825                                           void *client_data)
826 {
827         struct vmci_transport *trans = client_data;
828         const struct vmci_event_payload_qp *e_payload;
829
830         e_payload = vmci_event_data_const_payload(e_data);
831
832         /* XXX This is lame, we should provide a way to lookup sockets by
833          * qp_handle.
834          */
835         if (vmci_handle_is_invalid(e_payload->handle) ||
836             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
837                 return;
838
839         /* We don't ask for delayed CBs when we subscribe to this event (we
840          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
841          * guarantees in that case about what context we might be running in,
842          * so it could be BH or process, blockable or non-blockable.  So we
843          * need to account for all possible contexts here.
844          */
845         spin_lock_bh(&trans->lock);
846         if (!trans->sk)
847                 goto out;
848
849         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
850          * where trans->sk isn't locked.
851          */
852         bh_lock_sock(trans->sk);
853
854         vmci_transport_handle_detach(trans->sk);
855
856         bh_unlock_sock(trans->sk);
857  out:
858         spin_unlock_bh(&trans->lock);
859 }
860
861 static void vmci_transport_qp_resumed_cb(u32 sub_id,
862                                          const struct vmci_event_data *e_data,
863                                          void *client_data)
864 {
865         vsock_for_each_connected_socket(vmci_transport_handle_detach);
866 }
867
868 static void vmci_transport_recv_pkt_work(struct work_struct *work)
869 {
870         struct vmci_transport_recv_pkt_info *recv_pkt_info;
871         struct vmci_transport_packet *pkt;
872         struct sock *sk;
873
874         recv_pkt_info =
875                 container_of(work, struct vmci_transport_recv_pkt_info, work);
876         sk = recv_pkt_info->sk;
877         pkt = &recv_pkt_info->pkt;
878
879         lock_sock(sk);
880
881         /* The local context ID may be out of date. */
882         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
883
884         switch (sk->sk_state) {
885         case TCP_LISTEN:
886                 vmci_transport_recv_listen(sk, pkt);
887                 break;
888         case TCP_SYN_SENT:
889                 /* Processing of pending connections for servers goes through
890                  * the listening socket, so see vmci_transport_recv_listen()
891                  * for that path.
892                  */
893                 vmci_transport_recv_connecting_client(sk, pkt);
894                 break;
895         case TCP_ESTABLISHED:
896                 vmci_transport_recv_connected(sk, pkt);
897                 break;
898         default:
899                 /* Because this function does not run in the same context as
900                  * vmci_transport_recv_stream_cb it is possible that the
901                  * socket has closed. We need to let the other side know or it
902                  * could be sitting in a connect and hang forever. Send a
903                  * reset to prevent that.
904                  */
905                 vmci_transport_send_reset(sk, pkt);
906                 break;
907         }
908
909         release_sock(sk);
910         kfree(recv_pkt_info);
911         /* Release reference obtained in the stream callback when we fetched
912          * this socket out of the bound or connected list.
913          */
914         sock_put(sk);
915 }
916
917 static int vmci_transport_recv_listen(struct sock *sk,
918                                       struct vmci_transport_packet *pkt)
919 {
920         struct sock *pending;
921         struct vsock_sock *vpending;
922         int err;
923         u64 qp_size;
924         bool old_request = false;
925         bool old_pkt_proto = false;
926
927         err = 0;
928
929         /* Because we are in the listen state, we could be receiving a packet
930          * for ourself or any previous connection requests that we received.
931          * If it's the latter, we try to find a socket in our list of pending
932          * connections and, if we do, call the appropriate handler for the
933          * state that that socket is in.  Otherwise we try to service the
934          * connection request.
935          */
936         pending = vmci_transport_get_pending(sk, pkt);
937         if (pending) {
938                 lock_sock(pending);
939
940                 /* The local context ID may be out of date. */
941                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
942
943                 switch (pending->sk_state) {
944                 case TCP_SYN_SENT:
945                         err = vmci_transport_recv_connecting_server(sk,
946                                                                     pending,
947                                                                     pkt);
948                         break;
949                 default:
950                         vmci_transport_send_reset(pending, pkt);
951                         err = -EINVAL;
952                 }
953
954                 if (err < 0)
955                         vsock_remove_pending(sk, pending);
956
957                 release_sock(pending);
958                 vmci_transport_release_pending(pending);
959
960                 return err;
961         }
962
963         /* The listen state only accepts connection requests.  Reply with a
964          * reset unless we received a reset.
965          */
966
967         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
968               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
969                 vmci_transport_reply_reset(pkt);
970                 return -EINVAL;
971         }
972
973         if (pkt->u.size == 0) {
974                 vmci_transport_reply_reset(pkt);
975                 return -EINVAL;
976         }
977
978         /* If this socket can't accommodate this connection request, we send a
979          * reset.  Otherwise we create and initialize a child socket and reply
980          * with a connection negotiation.
981          */
982         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
983                 vmci_transport_reply_reset(pkt);
984                 return -ECONNREFUSED;
985         }
986
987         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
988                                  sk->sk_type, 0);
989         if (!pending) {
990                 vmci_transport_send_reset(sk, pkt);
991                 return -ENOMEM;
992         }
993
994         vpending = vsock_sk(pending);
995
996         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
997                         pkt->dst_port);
998         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
999                         pkt->src_port);
1000
1001         /* If the proposed size fits within our min/max, accept it. Otherwise
1002          * propose our own size.
1003          */
1004         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1005             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1006                 qp_size = pkt->u.size;
1007         } else {
1008                 qp_size = vmci_trans(vpending)->queue_pair_size;
1009         }
1010
1011         /* Figure out if we are using old or new requests based on the
1012          * overrides pkt types sent by our peer.
1013          */
1014         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1015                 old_request = old_pkt_proto;
1016         } else {
1017                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1018                         old_request = true;
1019                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1020                         old_request = false;
1021
1022         }
1023
1024         if (old_request) {
1025                 /* Handle a REQUEST (or override) */
1026                 u16 version = VSOCK_PROTO_INVALID;
1027                 if (vmci_transport_proto_to_notify_struct(
1028                         pending, &version, true))
1029                         err = vmci_transport_send_negotiate(pending, qp_size);
1030                 else
1031                         err = -EINVAL;
1032
1033         } else {
1034                 /* Handle a REQUEST2 (or override) */
1035                 int proto_int = pkt->proto;
1036                 int pos;
1037                 u16 active_proto_version = 0;
1038
1039                 /* The list of possible protocols is the intersection of all
1040                  * protocols the client supports ... plus all the protocols we
1041                  * support.
1042                  */
1043                 proto_int &= vmci_transport_new_proto_supported_versions();
1044
1045                 /* We choose the highest possible protocol version and use that
1046                  * one.
1047                  */
1048                 pos = fls(proto_int);
1049                 if (pos) {
1050                         active_proto_version = (1 << (pos - 1));
1051                         if (vmci_transport_proto_to_notify_struct(
1052                                 pending, &active_proto_version, false))
1053                                 err = vmci_transport_send_negotiate2(pending,
1054                                                         qp_size,
1055                                                         active_proto_version);
1056                         else
1057                                 err = -EINVAL;
1058
1059                 } else {
1060                         err = -EINVAL;
1061                 }
1062         }
1063
1064         if (err < 0) {
1065                 vmci_transport_send_reset(sk, pkt);
1066                 sock_put(pending);
1067                 err = vmci_transport_error_to_vsock_error(err);
1068                 goto out;
1069         }
1070
1071         vsock_add_pending(sk, pending);
1072         sk->sk_ack_backlog++;
1073
1074         pending->sk_state = TCP_SYN_SENT;
1075         vmci_trans(vpending)->produce_size =
1076                 vmci_trans(vpending)->consume_size = qp_size;
1077         vmci_trans(vpending)->queue_pair_size = qp_size;
1078
1079         vmci_trans(vpending)->notify_ops->process_request(pending);
1080
1081         /* We might never receive another message for this socket and it's not
1082          * connected to any process, so we have to ensure it gets cleaned up
1083          * ourself.  Our delayed work function will take care of that.  Note
1084          * that we do not ever cancel this function since we have few
1085          * guarantees about its state when calling cancel_delayed_work().
1086          * Instead we hold a reference on the socket for that function and make
1087          * it capable of handling cases where it needs to do nothing but
1088          * release that reference.
1089          */
1090         vpending->listener = sk;
1091         sock_hold(sk);
1092         sock_hold(pending);
1093         INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1094         schedule_delayed_work(&vpending->dwork, HZ);
1095
1096 out:
1097         return err;
1098 }
1099
1100 static int
1101 vmci_transport_recv_connecting_server(struct sock *listener,
1102                                       struct sock *pending,
1103                                       struct vmci_transport_packet *pkt)
1104 {
1105         struct vsock_sock *vpending;
1106         struct vmci_handle handle;
1107         struct vmci_qp *qpair;
1108         bool is_local;
1109         u32 flags;
1110         u32 detach_sub_id;
1111         int err;
1112         int skerr;
1113
1114         vpending = vsock_sk(pending);
1115         detach_sub_id = VMCI_INVALID_ID;
1116
1117         switch (pkt->type) {
1118         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1119                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1120                         vmci_transport_send_reset(pending, pkt);
1121                         skerr = EPROTO;
1122                         err = -EINVAL;
1123                         goto destroy;
1124                 }
1125                 break;
1126         default:
1127                 /* Close and cleanup the connection. */
1128                 vmci_transport_send_reset(pending, pkt);
1129                 skerr = EPROTO;
1130                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1131                 goto destroy;
1132         }
1133
1134         /* In order to complete the connection we need to attach to the offered
1135          * queue pair and send an attach notification.  We also subscribe to the
1136          * detach event so we know when our peer goes away, and we do that
1137          * before attaching so we don't miss an event.  If all this succeeds,
1138          * we update our state and wakeup anything waiting in accept() for a
1139          * connection.
1140          */
1141
1142         /* We don't care about attach since we ensure the other side has
1143          * attached by specifying the ATTACH_ONLY flag below.
1144          */
1145         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1146                                    vmci_transport_peer_detach_cb,
1147                                    vmci_trans(vpending), &detach_sub_id);
1148         if (err < VMCI_SUCCESS) {
1149                 vmci_transport_send_reset(pending, pkt);
1150                 err = vmci_transport_error_to_vsock_error(err);
1151                 skerr = -err;
1152                 goto destroy;
1153         }
1154
1155         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1156
1157         /* Now attach to the queue pair the client created. */
1158         handle = pkt->u.handle;
1159
1160         /* vpending->local_addr always has a context id so we do not need to
1161          * worry about VMADDR_CID_ANY in this case.
1162          */
1163         is_local =
1164             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1165         flags = VMCI_QPFLAG_ATTACH_ONLY;
1166         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1167
1168         err = vmci_transport_queue_pair_alloc(
1169                                         &qpair,
1170                                         &handle,
1171                                         vmci_trans(vpending)->produce_size,
1172                                         vmci_trans(vpending)->consume_size,
1173                                         pkt->dg.src.context,
1174                                         flags,
1175                                         vmci_transport_is_trusted(
1176                                                 vpending,
1177                                                 vpending->remote_addr.svm_cid));
1178         if (err < 0) {
1179                 vmci_transport_send_reset(pending, pkt);
1180                 skerr = -err;
1181                 goto destroy;
1182         }
1183
1184         vmci_trans(vpending)->qp_handle = handle;
1185         vmci_trans(vpending)->qpair = qpair;
1186
1187         /* When we send the attach message, we must be ready to handle incoming
1188          * control messages on the newly connected socket. So we move the
1189          * pending socket to the connected state before sending the attach
1190          * message. Otherwise, an incoming packet triggered by the attach being
1191          * received by the peer may be processed concurrently with what happens
1192          * below after sending the attach message, and that incoming packet
1193          * will find the listening socket instead of the (currently) pending
1194          * socket. Note that enqueueing the socket increments the reference
1195          * count, so even if a reset comes before the connection is accepted,
1196          * the socket will be valid until it is removed from the queue.
1197          *
1198          * If we fail sending the attach below, we remove the socket from the
1199          * connected list and move the socket to TCP_CLOSE before
1200          * releasing the lock, so a pending slow path processing of an incoming
1201          * packet will not see the socket in the connected state in that case.
1202          */
1203         pending->sk_state = TCP_ESTABLISHED;
1204
1205         vsock_insert_connected(vpending);
1206
1207         /* Notify our peer of our attach. */
1208         err = vmci_transport_send_attach(pending, handle);
1209         if (err < 0) {
1210                 vsock_remove_connected(vpending);
1211                 pr_err("Could not send attach\n");
1212                 vmci_transport_send_reset(pending, pkt);
1213                 err = vmci_transport_error_to_vsock_error(err);
1214                 skerr = -err;
1215                 goto destroy;
1216         }
1217
1218         /* We have a connection. Move the now connected socket from the
1219          * listener's pending list to the accept queue so callers of accept()
1220          * can find it.
1221          */
1222         vsock_remove_pending(listener, pending);
1223         vsock_enqueue_accept(listener, pending);
1224
1225         /* Callers of accept() will be be waiting on the listening socket, not
1226          * the pending socket.
1227          */
1228         listener->sk_data_ready(listener);
1229
1230         return 0;
1231
1232 destroy:
1233         pending->sk_err = skerr;
1234         pending->sk_state = TCP_CLOSE;
1235         /* As long as we drop our reference, all necessary cleanup will handle
1236          * when the cleanup function drops its reference and our destruct
1237          * implementation is called.  Note that since the listen handler will
1238          * remove pending from the pending list upon our failure, the cleanup
1239          * function won't drop the additional reference, which is why we do it
1240          * here.
1241          */
1242         sock_put(pending);
1243
1244         return err;
1245 }
1246
1247 static int
1248 vmci_transport_recv_connecting_client(struct sock *sk,
1249                                       struct vmci_transport_packet *pkt)
1250 {
1251         struct vsock_sock *vsk;
1252         int err;
1253         int skerr;
1254
1255         vsk = vsock_sk(sk);
1256
1257         switch (pkt->type) {
1258         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1259                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1260                     !vmci_handle_is_equal(pkt->u.handle,
1261                                           vmci_trans(vsk)->qp_handle)) {
1262                         skerr = EPROTO;
1263                         err = -EINVAL;
1264                         goto destroy;
1265                 }
1266
1267                 /* Signify the socket is connected and wakeup the waiter in
1268                  * connect(). Also place the socket in the connected table for
1269                  * accounting (it can already be found since it's in the bound
1270                  * table).
1271                  */
1272                 sk->sk_state = TCP_ESTABLISHED;
1273                 sk->sk_socket->state = SS_CONNECTED;
1274                 vsock_insert_connected(vsk);
1275                 sk->sk_state_change(sk);
1276
1277                 break;
1278         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1279         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1280                 if (pkt->u.size == 0
1281                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1282                     || pkt->src_port != vsk->remote_addr.svm_port
1283                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1284                     || vmci_trans(vsk)->qpair
1285                     || vmci_trans(vsk)->produce_size != 0
1286                     || vmci_trans(vsk)->consume_size != 0
1287                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1288                         skerr = EPROTO;
1289                         err = -EINVAL;
1290
1291                         goto destroy;
1292                 }
1293
1294                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1295                 if (err) {
1296                         skerr = -err;
1297                         goto destroy;
1298                 }
1299
1300                 break;
1301         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1302                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1303                 if (err) {
1304                         skerr = -err;
1305                         goto destroy;
1306                 }
1307
1308                 break;
1309         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1310                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1311                  * continue processing here after they sent an INVALID packet.
1312                  * This meant that we got a RST after the INVALID. We ignore a
1313                  * RST after an INVALID. The common code doesn't send the RST
1314                  * ... so we can hang if an old version of the common code
1315                  * fails between getting a REQUEST and sending an OFFER back.
1316                  * Not much we can do about it... except hope that it doesn't
1317                  * happen.
1318                  */
1319                 if (vsk->ignore_connecting_rst) {
1320                         vsk->ignore_connecting_rst = false;
1321                 } else {
1322                         skerr = ECONNRESET;
1323                         err = 0;
1324                         goto destroy;
1325                 }
1326
1327                 break;
1328         default:
1329                 /* Close and cleanup the connection. */
1330                 skerr = EPROTO;
1331                 err = -EINVAL;
1332                 goto destroy;
1333         }
1334
1335         return 0;
1336
1337 destroy:
1338         vmci_transport_send_reset(sk, pkt);
1339
1340         sk->sk_state = TCP_CLOSE;
1341         sk->sk_err = skerr;
1342         sk->sk_error_report(sk);
1343         return err;
1344 }
1345
1346 static int vmci_transport_recv_connecting_client_negotiate(
1347                                         struct sock *sk,
1348                                         struct vmci_transport_packet *pkt)
1349 {
1350         int err;
1351         struct vsock_sock *vsk;
1352         struct vmci_handle handle;
1353         struct vmci_qp *qpair;
1354         u32 detach_sub_id;
1355         bool is_local;
1356         u32 flags;
1357         bool old_proto = true;
1358         bool old_pkt_proto;
1359         u16 version;
1360
1361         vsk = vsock_sk(sk);
1362         handle = VMCI_INVALID_HANDLE;
1363         detach_sub_id = VMCI_INVALID_ID;
1364
1365         /* If we have gotten here then we should be past the point where old
1366          * linux vsock could have sent the bogus rst.
1367          */
1368         vsk->sent_request = false;
1369         vsk->ignore_connecting_rst = false;
1370
1371         /* Verify that we're OK with the proposed queue pair size */
1372         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1373             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1374                 err = -EINVAL;
1375                 goto destroy;
1376         }
1377
1378         /* At this point we know the CID the peer is using to talk to us. */
1379
1380         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1381                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1382
1383         /* Setup the notify ops to be the highest supported version that both
1384          * the server and the client support.
1385          */
1386
1387         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1388                 old_proto = old_pkt_proto;
1389         } else {
1390                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1391                         old_proto = true;
1392                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1393                         old_proto = false;
1394
1395         }
1396
1397         if (old_proto)
1398                 version = VSOCK_PROTO_INVALID;
1399         else
1400                 version = pkt->proto;
1401
1402         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1403                 err = -EINVAL;
1404                 goto destroy;
1405         }
1406
1407         /* Subscribe to detach events first.
1408          *
1409          * XXX We attach once for each queue pair created for now so it is easy
1410          * to find the socket (it's provided), but later we should only
1411          * subscribe once and add a way to lookup sockets by queue pair handle.
1412          */
1413         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1414                                    vmci_transport_peer_detach_cb,
1415                                    vmci_trans(vsk), &detach_sub_id);
1416         if (err < VMCI_SUCCESS) {
1417                 err = vmci_transport_error_to_vsock_error(err);
1418                 goto destroy;
1419         }
1420
1421         /* Make VMCI select the handle for us. */
1422         handle = VMCI_INVALID_HANDLE;
1423         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1424         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1425
1426         err = vmci_transport_queue_pair_alloc(&qpair,
1427                                               &handle,
1428                                               pkt->u.size,
1429                                               pkt->u.size,
1430                                               vsk->remote_addr.svm_cid,
1431                                               flags,
1432                                               vmci_transport_is_trusted(
1433                                                   vsk,
1434                                                   vsk->
1435                                                   remote_addr.svm_cid));
1436         if (err < 0)
1437                 goto destroy;
1438
1439         err = vmci_transport_send_qp_offer(sk, handle);
1440         if (err < 0) {
1441                 err = vmci_transport_error_to_vsock_error(err);
1442                 goto destroy;
1443         }
1444
1445         vmci_trans(vsk)->qp_handle = handle;
1446         vmci_trans(vsk)->qpair = qpair;
1447
1448         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1449                 pkt->u.size;
1450
1451         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1452
1453         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1454
1455         return 0;
1456
1457 destroy:
1458         if (detach_sub_id != VMCI_INVALID_ID)
1459                 vmci_event_unsubscribe(detach_sub_id);
1460
1461         if (!vmci_handle_is_invalid(handle))
1462                 vmci_qpair_detach(&qpair);
1463
1464         return err;
1465 }
1466
1467 static int
1468 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1469                                               struct vmci_transport_packet *pkt)
1470 {
1471         int err = 0;
1472         struct vsock_sock *vsk = vsock_sk(sk);
1473
1474         if (vsk->sent_request) {
1475                 vsk->sent_request = false;
1476                 vsk->ignore_connecting_rst = true;
1477
1478                 err = vmci_transport_send_conn_request(
1479                         sk, vmci_trans(vsk)->queue_pair_size);
1480                 if (err < 0)
1481                         err = vmci_transport_error_to_vsock_error(err);
1482                 else
1483                         err = 0;
1484
1485         }
1486
1487         return err;
1488 }
1489
1490 static int vmci_transport_recv_connected(struct sock *sk,
1491                                          struct vmci_transport_packet *pkt)
1492 {
1493         struct vsock_sock *vsk;
1494         bool pkt_processed = false;
1495
1496         /* In cases where we are closing the connection, it's sufficient to
1497          * mark the state change (and maybe error) and wake up any waiting
1498          * threads. Since this is a connected socket, it's owned by a user
1499          * process and will be cleaned up when the failure is passed back on
1500          * the current or next system call.  Our system call implementations
1501          * must therefore check for error and state changes on entry and when
1502          * being awoken.
1503          */
1504         switch (pkt->type) {
1505         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1506                 if (pkt->u.mode) {
1507                         vsk = vsock_sk(sk);
1508
1509                         vsk->peer_shutdown |= pkt->u.mode;
1510                         sk->sk_state_change(sk);
1511                 }
1512                 break;
1513
1514         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1515                 vsk = vsock_sk(sk);
1516                 /* It is possible that we sent our peer a message (e.g a
1517                  * WAITING_READ) right before we got notified that the peer had
1518                  * detached. If that happens then we can get a RST pkt back
1519                  * from our peer even though there is data available for us to
1520                  * read. In that case, don't shutdown the socket completely but
1521                  * instead allow the local client to finish reading data off
1522                  * the queuepair. Always treat a RST pkt in connected mode like
1523                  * a clean shutdown.
1524                  */
1525                 sock_set_flag(sk, SOCK_DONE);
1526                 vsk->peer_shutdown = SHUTDOWN_MASK;
1527                 if (vsock_stream_has_data(vsk) <= 0)
1528                         sk->sk_state = TCP_CLOSING;
1529
1530                 sk->sk_state_change(sk);
1531                 break;
1532
1533         default:
1534                 vsk = vsock_sk(sk);
1535                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1536                                 sk, pkt, false, NULL, NULL,
1537                                 &pkt_processed);
1538                 if (!pkt_processed)
1539                         return -EINVAL;
1540
1541                 break;
1542         }
1543
1544         return 0;
1545 }
1546
1547 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1548                                       struct vsock_sock *psk)
1549 {
1550         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1551         if (!vsk->trans)
1552                 return -ENOMEM;
1553
1554         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1555         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1556         vmci_trans(vsk)->qpair = NULL;
1557         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1558         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1559         vmci_trans(vsk)->notify_ops = NULL;
1560         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1561         vmci_trans(vsk)->sk = &vsk->sk;
1562         spin_lock_init(&vmci_trans(vsk)->lock);
1563         if (psk) {
1564                 vmci_trans(vsk)->queue_pair_size =
1565                         vmci_trans(psk)->queue_pair_size;
1566                 vmci_trans(vsk)->queue_pair_min_size =
1567                         vmci_trans(psk)->queue_pair_min_size;
1568                 vmci_trans(vsk)->queue_pair_max_size =
1569                         vmci_trans(psk)->queue_pair_max_size;
1570         } else {
1571                 vmci_trans(vsk)->queue_pair_size =
1572                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1573                 vmci_trans(vsk)->queue_pair_min_size =
1574                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1575                 vmci_trans(vsk)->queue_pair_max_size =
1576                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1577         }
1578
1579         return 0;
1580 }
1581
1582 static void vmci_transport_free_resources(struct list_head *transport_list)
1583 {
1584         while (!list_empty(transport_list)) {
1585                 struct vmci_transport *transport =
1586                     list_first_entry(transport_list, struct vmci_transport,
1587                                      elem);
1588                 list_del(&transport->elem);
1589
1590                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1591                         vmci_event_unsubscribe(transport->detach_sub_id);
1592                         transport->detach_sub_id = VMCI_INVALID_ID;
1593                 }
1594
1595                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1596                         vmci_qpair_detach(&transport->qpair);
1597                         transport->qp_handle = VMCI_INVALID_HANDLE;
1598                         transport->produce_size = 0;
1599                         transport->consume_size = 0;
1600                 }
1601
1602                 kfree(transport);
1603         }
1604 }
1605
1606 static void vmci_transport_cleanup(struct work_struct *work)
1607 {
1608         LIST_HEAD(pending);
1609
1610         spin_lock_bh(&vmci_transport_cleanup_lock);
1611         list_replace_init(&vmci_transport_cleanup_list, &pending);
1612         spin_unlock_bh(&vmci_transport_cleanup_lock);
1613         vmci_transport_free_resources(&pending);
1614 }
1615
1616 static void vmci_transport_destruct(struct vsock_sock *vsk)
1617 {
1618         /* Ensure that the detach callback doesn't use the sk/vsk
1619          * we are about to destruct.
1620          */
1621         spin_lock_bh(&vmci_trans(vsk)->lock);
1622         vmci_trans(vsk)->sk = NULL;
1623         spin_unlock_bh(&vmci_trans(vsk)->lock);
1624
1625         if (vmci_trans(vsk)->notify_ops)
1626                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1627
1628         spin_lock_bh(&vmci_transport_cleanup_lock);
1629         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1630         spin_unlock_bh(&vmci_transport_cleanup_lock);
1631         schedule_work(&vmci_transport_cleanup_work);
1632
1633         vsk->trans = NULL;
1634 }
1635
1636 static void vmci_transport_release(struct vsock_sock *vsk)
1637 {
1638         vsock_remove_sock(vsk);
1639
1640         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1641                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1642                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1643         }
1644 }
1645
1646 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1647                                      struct sockaddr_vm *addr)
1648 {
1649         u32 port;
1650         u32 flags;
1651         int err;
1652
1653         /* VMCI will select a resource ID for us if we provide
1654          * VMCI_INVALID_ID.
1655          */
1656         port = addr->svm_port == VMADDR_PORT_ANY ?
1657                         VMCI_INVALID_ID : addr->svm_port;
1658
1659         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1660                 return -EACCES;
1661
1662         flags = addr->svm_cid == VMADDR_CID_ANY ?
1663                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1664
1665         err = vmci_transport_datagram_create_hnd(port, flags,
1666                                                  vmci_transport_recv_dgram_cb,
1667                                                  &vsk->sk,
1668                                                  &vmci_trans(vsk)->dg_handle);
1669         if (err < VMCI_SUCCESS)
1670                 return vmci_transport_error_to_vsock_error(err);
1671         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1672                         vmci_trans(vsk)->dg_handle.resource);
1673
1674         return 0;
1675 }
1676
1677 static int vmci_transport_dgram_enqueue(
1678         struct vsock_sock *vsk,
1679         struct sockaddr_vm *remote_addr,
1680         struct msghdr *msg,
1681         size_t len)
1682 {
1683         int err;
1684         struct vmci_datagram *dg;
1685
1686         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1687                 return -EMSGSIZE;
1688
1689         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1690                 return -EPERM;
1691
1692         /* Allocate a buffer for the user's message and our packet header. */
1693         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1694         if (!dg)
1695                 return -ENOMEM;
1696
1697         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1698
1699         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1700                                    remote_addr->svm_port);
1701         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1702                                    vsk->local_addr.svm_port);
1703         dg->payload_size = len;
1704
1705         err = vmci_datagram_send(dg);
1706         kfree(dg);
1707         if (err < 0)
1708                 return vmci_transport_error_to_vsock_error(err);
1709
1710         return err - sizeof(*dg);
1711 }
1712
1713 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1714                                         struct msghdr *msg, size_t len,
1715                                         int flags)
1716 {
1717         int err;
1718         int noblock;
1719         struct vmci_datagram *dg;
1720         size_t payload_len;
1721         struct sk_buff *skb;
1722
1723         noblock = flags & MSG_DONTWAIT;
1724
1725         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1726                 return -EOPNOTSUPP;
1727
1728         /* Retrieve the head sk_buff from the socket's receive queue. */
1729         err = 0;
1730         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1731         if (!skb)
1732                 return err;
1733
1734         dg = (struct vmci_datagram *)skb->data;
1735         if (!dg)
1736                 /* err is 0, meaning we read zero bytes. */
1737                 goto out;
1738
1739         payload_len = dg->payload_size;
1740         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1741         if (payload_len != skb->len - sizeof(*dg)) {
1742                 err = -EINVAL;
1743                 goto out;
1744         }
1745
1746         if (payload_len > len) {
1747                 payload_len = len;
1748                 msg->msg_flags |= MSG_TRUNC;
1749         }
1750
1751         /* Place the datagram payload in the user's iovec. */
1752         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1753         if (err)
1754                 goto out;
1755
1756         if (msg->msg_name) {
1757                 /* Provide the address of the sender. */
1758                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1759                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1760                 msg->msg_namelen = sizeof(*vm_addr);
1761         }
1762         err = payload_len;
1763
1764 out:
1765         skb_free_datagram(&vsk->sk, skb);
1766         return err;
1767 }
1768
1769 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1770 {
1771         if (cid == VMADDR_CID_HYPERVISOR) {
1772                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1773                  * state and are allowed.
1774                  */
1775                 return port == VMCI_UNITY_PBRPC_REGISTER;
1776         }
1777
1778         return true;
1779 }
1780
1781 static int vmci_transport_connect(struct vsock_sock *vsk)
1782 {
1783         int err;
1784         bool old_pkt_proto = false;
1785         struct sock *sk = &vsk->sk;
1786
1787         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1788                 old_pkt_proto) {
1789                 err = vmci_transport_send_conn_request(
1790                         sk, vmci_trans(vsk)->queue_pair_size);
1791                 if (err < 0) {
1792                         sk->sk_state = TCP_CLOSE;
1793                         return err;
1794                 }
1795         } else {
1796                 int supported_proto_versions =
1797                         vmci_transport_new_proto_supported_versions();
1798                 err = vmci_transport_send_conn_request2(
1799                                 sk, vmci_trans(vsk)->queue_pair_size,
1800                                 supported_proto_versions);
1801                 if (err < 0) {
1802                         sk->sk_state = TCP_CLOSE;
1803                         return err;
1804                 }
1805
1806                 vsk->sent_request = true;
1807         }
1808
1809         return err;
1810 }
1811
1812 static ssize_t vmci_transport_stream_dequeue(
1813         struct vsock_sock *vsk,
1814         struct msghdr *msg,
1815         size_t len,
1816         int flags)
1817 {
1818         if (flags & MSG_PEEK)
1819                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1820         else
1821                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1822 }
1823
1824 static ssize_t vmci_transport_stream_enqueue(
1825         struct vsock_sock *vsk,
1826         struct msghdr *msg,
1827         size_t len)
1828 {
1829         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1830 }
1831
1832 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1833 {
1834         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1835 }
1836
1837 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1838 {
1839         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1840 }
1841
1842 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1843 {
1844         return vmci_trans(vsk)->consume_size;
1845 }
1846
1847 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1848 {
1849         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1850 }
1851
1852 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1853 {
1854         return vmci_trans(vsk)->queue_pair_size;
1855 }
1856
1857 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1858 {
1859         return vmci_trans(vsk)->queue_pair_min_size;
1860 }
1861
1862 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1863 {
1864         return vmci_trans(vsk)->queue_pair_max_size;
1865 }
1866
1867 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1868 {
1869         if (val < vmci_trans(vsk)->queue_pair_min_size)
1870                 vmci_trans(vsk)->queue_pair_min_size = val;
1871         if (val > vmci_trans(vsk)->queue_pair_max_size)
1872                 vmci_trans(vsk)->queue_pair_max_size = val;
1873         vmci_trans(vsk)->queue_pair_size = val;
1874 }
1875
1876 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1877                                                u64 val)
1878 {
1879         if (val > vmci_trans(vsk)->queue_pair_size)
1880                 vmci_trans(vsk)->queue_pair_size = val;
1881         vmci_trans(vsk)->queue_pair_min_size = val;
1882 }
1883
1884 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1885                                                u64 val)
1886 {
1887         if (val < vmci_trans(vsk)->queue_pair_size)
1888                 vmci_trans(vsk)->queue_pair_size = val;
1889         vmci_trans(vsk)->queue_pair_max_size = val;
1890 }
1891
1892 static int vmci_transport_notify_poll_in(
1893         struct vsock_sock *vsk,
1894         size_t target,
1895         bool *data_ready_now)
1896 {
1897         return vmci_trans(vsk)->notify_ops->poll_in(
1898                         &vsk->sk, target, data_ready_now);
1899 }
1900
1901 static int vmci_transport_notify_poll_out(
1902         struct vsock_sock *vsk,
1903         size_t target,
1904         bool *space_available_now)
1905 {
1906         return vmci_trans(vsk)->notify_ops->poll_out(
1907                         &vsk->sk, target, space_available_now);
1908 }
1909
1910 static int vmci_transport_notify_recv_init(
1911         struct vsock_sock *vsk,
1912         size_t target,
1913         struct vsock_transport_recv_notify_data *data)
1914 {
1915         return vmci_trans(vsk)->notify_ops->recv_init(
1916                         &vsk->sk, target,
1917                         (struct vmci_transport_recv_notify_data *)data);
1918 }
1919
1920 static int vmci_transport_notify_recv_pre_block(
1921         struct vsock_sock *vsk,
1922         size_t target,
1923         struct vsock_transport_recv_notify_data *data)
1924 {
1925         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1926                         &vsk->sk, target,
1927                         (struct vmci_transport_recv_notify_data *)data);
1928 }
1929
1930 static int vmci_transport_notify_recv_pre_dequeue(
1931         struct vsock_sock *vsk,
1932         size_t target,
1933         struct vsock_transport_recv_notify_data *data)
1934 {
1935         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1936                         &vsk->sk, target,
1937                         (struct vmci_transport_recv_notify_data *)data);
1938 }
1939
1940 static int vmci_transport_notify_recv_post_dequeue(
1941         struct vsock_sock *vsk,
1942         size_t target,
1943         ssize_t copied,
1944         bool data_read,
1945         struct vsock_transport_recv_notify_data *data)
1946 {
1947         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1948                         &vsk->sk, target, copied, data_read,
1949                         (struct vmci_transport_recv_notify_data *)data);
1950 }
1951
1952 static int vmci_transport_notify_send_init(
1953         struct vsock_sock *vsk,
1954         struct vsock_transport_send_notify_data *data)
1955 {
1956         return vmci_trans(vsk)->notify_ops->send_init(
1957                         &vsk->sk,
1958                         (struct vmci_transport_send_notify_data *)data);
1959 }
1960
1961 static int vmci_transport_notify_send_pre_block(
1962         struct vsock_sock *vsk,
1963         struct vsock_transport_send_notify_data *data)
1964 {
1965         return vmci_trans(vsk)->notify_ops->send_pre_block(
1966                         &vsk->sk,
1967                         (struct vmci_transport_send_notify_data *)data);
1968 }
1969
1970 static int vmci_transport_notify_send_pre_enqueue(
1971         struct vsock_sock *vsk,
1972         struct vsock_transport_send_notify_data *data)
1973 {
1974         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1975                         &vsk->sk,
1976                         (struct vmci_transport_send_notify_data *)data);
1977 }
1978
1979 static int vmci_transport_notify_send_post_enqueue(
1980         struct vsock_sock *vsk,
1981         ssize_t written,
1982         struct vsock_transport_send_notify_data *data)
1983 {
1984         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1985                         &vsk->sk, written,
1986                         (struct vmci_transport_send_notify_data *)data);
1987 }
1988
1989 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1990 {
1991         if (PROTOCOL_OVERRIDE != -1) {
1992                 if (PROTOCOL_OVERRIDE == 0)
1993                         *old_pkt_proto = true;
1994                 else
1995                         *old_pkt_proto = false;
1996
1997                 pr_info("Proto override in use\n");
1998                 return true;
1999         }
2000
2001         return false;
2002 }
2003
2004 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2005                                                   u16 *proto,
2006                                                   bool old_pkt_proto)
2007 {
2008         struct vsock_sock *vsk = vsock_sk(sk);
2009
2010         if (old_pkt_proto) {
2011                 if (*proto != VSOCK_PROTO_INVALID) {
2012                         pr_err("Can't set both an old and new protocol\n");
2013                         return false;
2014                 }
2015                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2016                 goto exit;
2017         }
2018
2019         switch (*proto) {
2020         case VSOCK_PROTO_PKT_ON_NOTIFY:
2021                 vmci_trans(vsk)->notify_ops =
2022                         &vmci_transport_notify_pkt_q_state_ops;
2023                 break;
2024         default:
2025                 pr_err("Unknown notify protocol version\n");
2026                 return false;
2027         }
2028
2029 exit:
2030         vmci_trans(vsk)->notify_ops->socket_init(sk);
2031         return true;
2032 }
2033
2034 static u16 vmci_transport_new_proto_supported_versions(void)
2035 {
2036         if (PROTOCOL_OVERRIDE != -1)
2037                 return PROTOCOL_OVERRIDE;
2038
2039         return VSOCK_PROTO_ALL_SUPPORTED;
2040 }
2041
2042 static u32 vmci_transport_get_local_cid(void)
2043 {
2044         return vmci_get_context_id();
2045 }
2046
2047 static const struct vsock_transport vmci_transport = {
2048         .init = vmci_transport_socket_init,
2049         .destruct = vmci_transport_destruct,
2050         .release = vmci_transport_release,
2051         .connect = vmci_transport_connect,
2052         .dgram_bind = vmci_transport_dgram_bind,
2053         .dgram_dequeue = vmci_transport_dgram_dequeue,
2054         .dgram_enqueue = vmci_transport_dgram_enqueue,
2055         .dgram_allow = vmci_transport_dgram_allow,
2056         .stream_dequeue = vmci_transport_stream_dequeue,
2057         .stream_enqueue = vmci_transport_stream_enqueue,
2058         .stream_has_data = vmci_transport_stream_has_data,
2059         .stream_has_space = vmci_transport_stream_has_space,
2060         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2061         .stream_is_active = vmci_transport_stream_is_active,
2062         .stream_allow = vmci_transport_stream_allow,
2063         .notify_poll_in = vmci_transport_notify_poll_in,
2064         .notify_poll_out = vmci_transport_notify_poll_out,
2065         .notify_recv_init = vmci_transport_notify_recv_init,
2066         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2067         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2068         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2069         .notify_send_init = vmci_transport_notify_send_init,
2070         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2071         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2072         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2073         .shutdown = vmci_transport_shutdown,
2074         .set_buffer_size = vmci_transport_set_buffer_size,
2075         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2076         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2077         .get_buffer_size = vmci_transport_get_buffer_size,
2078         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2079         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2080         .get_local_cid = vmci_transport_get_local_cid,
2081 };
2082
2083 static int __init vmci_transport_init(void)
2084 {
2085         int err;
2086
2087         /* Create the datagram handle that we will use to send and receive all
2088          * VSocket control messages for this context.
2089          */
2090         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2091                                                  VMCI_FLAG_ANYCID_DG_HND,
2092                                                  vmci_transport_recv_stream_cb,
2093                                                  NULL,
2094                                                  &vmci_transport_stream_handle);
2095         if (err < VMCI_SUCCESS) {
2096                 pr_err("Unable to create datagram handle. (%d)\n", err);
2097                 return vmci_transport_error_to_vsock_error(err);
2098         }
2099
2100         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2101                                    vmci_transport_qp_resumed_cb,
2102                                    NULL, &vmci_transport_qp_resumed_sub_id);
2103         if (err < VMCI_SUCCESS) {
2104                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2105                 err = vmci_transport_error_to_vsock_error(err);
2106                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2107                 goto err_destroy_stream_handle;
2108         }
2109
2110         err = vsock_core_init(&vmci_transport);
2111         if (err < 0)
2112                 goto err_unsubscribe;
2113
2114         return 0;
2115
2116 err_unsubscribe:
2117         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2118 err_destroy_stream_handle:
2119         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2120         return err;
2121 }
2122 module_init(vmci_transport_init);
2123
2124 static void __exit vmci_transport_exit(void)
2125 {
2126         cancel_work_sync(&vmci_transport_cleanup_work);
2127         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2128
2129         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2130                 if (vmci_datagram_destroy_handle(
2131                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2132                         pr_err("Couldn't destroy datagram handle\n");
2133                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2134         }
2135
2136         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2137                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2138                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2139         }
2140
2141         vsock_core_exit();
2142 }
2143 module_exit(vmci_transport_exit);
2144
2145 MODULE_AUTHOR("VMware, Inc.");
2146 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2147 MODULE_VERSION("1.0.4.0-k");
2148 MODULE_LICENSE("GPL v2");
2149 MODULE_ALIAS("vmware_vsock");
2150 MODULE_ALIAS_NETPROTO(PF_VSOCK);