Merge branch 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[sfrench/cifs-2.6.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  *
8  * This software is available to you under a choice of one of two
9  * licenses.  You may choose to be licensed under the terms of the GNU
10  * General Public License (GPL) Version 2, available from the file
11  * COPYING in the main directory of this source tree, or the
12  * OpenIB.org BSD license below:
13  *
14  *     Redistribution and use in source and binary forms, with or
15  *     without modification, are permitted provided that the following
16  *     conditions are met:
17  *
18  *      - Redistributions of source code must retain the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer.
21  *
22  *      - Redistributions in binary form must reproduce the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer in the documentation and/or other materials
25  *        provided with the distribution.
26  *
27  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34  * SOFTWARE.
35  */
36
37 #include <linux/module.h>
38 #include <crypto/aead.h>
39
40 #include <net/tls.h>
41
42 static void trim_sg(struct sock *sk, struct scatterlist *sg,
43                     int *sg_num_elem, unsigned int *sg_size, int target_size)
44 {
45         int i = *sg_num_elem - 1;
46         int trim = *sg_size - target_size;
47
48         if (trim <= 0) {
49                 WARN_ON(trim < 0);
50                 return;
51         }
52
53         *sg_size = target_size;
54         while (trim >= sg[i].length) {
55                 trim -= sg[i].length;
56                 sk_mem_uncharge(sk, sg[i].length);
57                 put_page(sg_page(&sg[i]));
58                 i--;
59
60                 if (i < 0)
61                         goto out;
62         }
63
64         sg[i].length -= trim;
65         sk_mem_uncharge(sk, trim);
66
67 out:
68         *sg_num_elem = i + 1;
69 }
70
71 static void trim_both_sgl(struct sock *sk, int target_size)
72 {
73         struct tls_context *tls_ctx = tls_get_ctx(sk);
74         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
75
76         trim_sg(sk, ctx->sg_plaintext_data,
77                 &ctx->sg_plaintext_num_elem,
78                 &ctx->sg_plaintext_size,
79                 target_size);
80
81         if (target_size > 0)
82                 target_size += tls_ctx->overhead_size;
83
84         trim_sg(sk, ctx->sg_encrypted_data,
85                 &ctx->sg_encrypted_num_elem,
86                 &ctx->sg_encrypted_size,
87                 target_size);
88 }
89
90 static int alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
91                     int *sg_num_elem, unsigned int *sg_size,
92                     int first_coalesce)
93 {
94         struct page_frag *pfrag;
95         unsigned int size = *sg_size;
96         int num_elem = *sg_num_elem, use = 0, rc = 0;
97         struct scatterlist *sge;
98         unsigned int orig_offset;
99
100         len -= size;
101         pfrag = sk_page_frag(sk);
102
103         while (len > 0) {
104                 if (!sk_page_frag_refill(sk, pfrag)) {
105                         rc = -ENOMEM;
106                         goto out;
107                 }
108
109                 use = min_t(int, len, pfrag->size - pfrag->offset);
110
111                 if (!sk_wmem_schedule(sk, use)) {
112                         rc = -ENOMEM;
113                         goto out;
114                 }
115
116                 sk_mem_charge(sk, use);
117                 size += use;
118                 orig_offset = pfrag->offset;
119                 pfrag->offset += use;
120
121                 sge = sg + num_elem - 1;
122                 if (num_elem > first_coalesce && sg_page(sg) == pfrag->page &&
123                     sg->offset + sg->length == orig_offset) {
124                         sg->length += use;
125                 } else {
126                         sge++;
127                         sg_unmark_end(sge);
128                         sg_set_page(sge, pfrag->page, use, orig_offset);
129                         get_page(pfrag->page);
130                         ++num_elem;
131                         if (num_elem == MAX_SKB_FRAGS) {
132                                 rc = -ENOSPC;
133                                 break;
134                         }
135                 }
136
137                 len -= use;
138         }
139         goto out;
140
141 out:
142         *sg_size = size;
143         *sg_num_elem = num_elem;
144         return rc;
145 }
146
147 static int alloc_encrypted_sg(struct sock *sk, int len)
148 {
149         struct tls_context *tls_ctx = tls_get_ctx(sk);
150         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
151         int rc = 0;
152
153         rc = alloc_sg(sk, len, ctx->sg_encrypted_data,
154                       &ctx->sg_encrypted_num_elem, &ctx->sg_encrypted_size, 0);
155
156         return rc;
157 }
158
159 static int alloc_plaintext_sg(struct sock *sk, int len)
160 {
161         struct tls_context *tls_ctx = tls_get_ctx(sk);
162         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
163         int rc = 0;
164
165         rc = alloc_sg(sk, len, ctx->sg_plaintext_data,
166                       &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
167                       tls_ctx->pending_open_record_frags);
168
169         return rc;
170 }
171
172 static void free_sg(struct sock *sk, struct scatterlist *sg,
173                     int *sg_num_elem, unsigned int *sg_size)
174 {
175         int i, n = *sg_num_elem;
176
177         for (i = 0; i < n; ++i) {
178                 sk_mem_uncharge(sk, sg[i].length);
179                 put_page(sg_page(&sg[i]));
180         }
181         *sg_num_elem = 0;
182         *sg_size = 0;
183 }
184
185 static void tls_free_both_sg(struct sock *sk)
186 {
187         struct tls_context *tls_ctx = tls_get_ctx(sk);
188         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
189
190         free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
191                 &ctx->sg_encrypted_size);
192
193         free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
194                 &ctx->sg_plaintext_size);
195 }
196
197 static int tls_do_encryption(struct tls_context *tls_ctx,
198                              struct tls_sw_context *ctx, size_t data_len,
199                              gfp_t flags)
200 {
201         unsigned int req_size = sizeof(struct aead_request) +
202                 crypto_aead_reqsize(ctx->aead_send);
203         struct aead_request *aead_req;
204         int rc;
205
206         aead_req = kzalloc(req_size, flags);
207         if (!aead_req)
208                 return -ENOMEM;
209
210         ctx->sg_encrypted_data[0].offset += tls_ctx->prepend_size;
211         ctx->sg_encrypted_data[0].length -= tls_ctx->prepend_size;
212
213         aead_request_set_tfm(aead_req, ctx->aead_send);
214         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
215         aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
216                                data_len, tls_ctx->iv);
217         rc = crypto_aead_encrypt(aead_req);
218
219         ctx->sg_encrypted_data[0].offset -= tls_ctx->prepend_size;
220         ctx->sg_encrypted_data[0].length += tls_ctx->prepend_size;
221
222         kfree(aead_req);
223         return rc;
224 }
225
226 static int tls_push_record(struct sock *sk, int flags,
227                            unsigned char record_type)
228 {
229         struct tls_context *tls_ctx = tls_get_ctx(sk);
230         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
231         int rc;
232
233         sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
234         sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
235
236         tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
237                      tls_ctx->rec_seq, tls_ctx->rec_seq_size,
238                      record_type);
239
240         tls_fill_prepend(tls_ctx,
241                          page_address(sg_page(&ctx->sg_encrypted_data[0])) +
242                          ctx->sg_encrypted_data[0].offset,
243                          ctx->sg_plaintext_size, record_type);
244
245         tls_ctx->pending_open_record_frags = 0;
246         set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
247
248         rc = tls_do_encryption(tls_ctx, ctx, ctx->sg_plaintext_size,
249                                sk->sk_allocation);
250         if (rc < 0) {
251                 /* If we are called from write_space and
252                  * we fail, we need to set this SOCK_NOSPACE
253                  * to trigger another write_space in the future.
254                  */
255                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
256                 return rc;
257         }
258
259         free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
260                 &ctx->sg_plaintext_size);
261
262         ctx->sg_encrypted_num_elem = 0;
263         ctx->sg_encrypted_size = 0;
264
265         /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
266         rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
267         if (rc < 0 && rc != -EAGAIN)
268                 tls_err_abort(sk);
269
270         tls_advance_record_sn(sk, tls_ctx);
271         return rc;
272 }
273
274 static int tls_sw_push_pending_record(struct sock *sk, int flags)
275 {
276         return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
277 }
278
279 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
280                               int length)
281 {
282         struct tls_context *tls_ctx = tls_get_ctx(sk);
283         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
284         struct page *pages[MAX_SKB_FRAGS];
285
286         size_t offset;
287         ssize_t copied, use;
288         int i = 0;
289         unsigned int size = ctx->sg_plaintext_size;
290         int num_elem = ctx->sg_plaintext_num_elem;
291         int rc = 0;
292         int maxpages;
293
294         while (length > 0) {
295                 i = 0;
296                 maxpages = ARRAY_SIZE(ctx->sg_plaintext_data) - num_elem;
297                 if (maxpages == 0) {
298                         rc = -EFAULT;
299                         goto out;
300                 }
301                 copied = iov_iter_get_pages(from, pages,
302                                             length,
303                                             maxpages, &offset);
304                 if (copied <= 0) {
305                         rc = -EFAULT;
306                         goto out;
307                 }
308
309                 iov_iter_advance(from, copied);
310
311                 length -= copied;
312                 size += copied;
313                 while (copied) {
314                         use = min_t(int, copied, PAGE_SIZE - offset);
315
316                         sg_set_page(&ctx->sg_plaintext_data[num_elem],
317                                     pages[i], use, offset);
318                         sg_unmark_end(&ctx->sg_plaintext_data[num_elem]);
319                         sk_mem_charge(sk, use);
320
321                         offset = 0;
322                         copied -= use;
323
324                         ++i;
325                         ++num_elem;
326                 }
327         }
328
329 out:
330         ctx->sg_plaintext_size = size;
331         ctx->sg_plaintext_num_elem = num_elem;
332         return rc;
333 }
334
335 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
336                              int bytes)
337 {
338         struct tls_context *tls_ctx = tls_get_ctx(sk);
339         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
340         struct scatterlist *sg = ctx->sg_plaintext_data;
341         int copy, i, rc = 0;
342
343         for (i = tls_ctx->pending_open_record_frags;
344              i < ctx->sg_plaintext_num_elem; ++i) {
345                 copy = sg[i].length;
346                 if (copy_from_iter(
347                                 page_address(sg_page(&sg[i])) + sg[i].offset,
348                                 copy, from) != copy) {
349                         rc = -EFAULT;
350                         goto out;
351                 }
352                 bytes -= copy;
353
354                 ++tls_ctx->pending_open_record_frags;
355
356                 if (!bytes)
357                         break;
358         }
359
360 out:
361         return rc;
362 }
363
364 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
365 {
366         struct tls_context *tls_ctx = tls_get_ctx(sk);
367         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
368         int ret = 0;
369         int required_size;
370         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
371         bool eor = !(msg->msg_flags & MSG_MORE);
372         size_t try_to_copy, copied = 0;
373         unsigned char record_type = TLS_RECORD_TYPE_DATA;
374         int record_room;
375         bool full_record;
376         int orig_size;
377
378         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
379                 return -ENOTSUPP;
380
381         lock_sock(sk);
382
383         if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
384                 goto send_end;
385
386         if (unlikely(msg->msg_controllen)) {
387                 ret = tls_proccess_cmsg(sk, msg, &record_type);
388                 if (ret)
389                         goto send_end;
390         }
391
392         while (msg_data_left(msg)) {
393                 if (sk->sk_err) {
394                         ret = sk->sk_err;
395                         goto send_end;
396                 }
397
398                 orig_size = ctx->sg_plaintext_size;
399                 full_record = false;
400                 try_to_copy = msg_data_left(msg);
401                 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
402                 if (try_to_copy >= record_room) {
403                         try_to_copy = record_room;
404                         full_record = true;
405                 }
406
407                 required_size = ctx->sg_plaintext_size + try_to_copy +
408                                 tls_ctx->overhead_size;
409
410                 if (!sk_stream_memory_free(sk))
411                         goto wait_for_sndbuf;
412 alloc_encrypted:
413                 ret = alloc_encrypted_sg(sk, required_size);
414                 if (ret) {
415                         if (ret != -ENOSPC)
416                                 goto wait_for_memory;
417
418                         /* Adjust try_to_copy according to the amount that was
419                          * actually allocated. The difference is due
420                          * to max sg elements limit
421                          */
422                         try_to_copy -= required_size - ctx->sg_encrypted_size;
423                         full_record = true;
424                 }
425
426                 if (full_record || eor) {
427                         ret = zerocopy_from_iter(sk, &msg->msg_iter,
428                                                  try_to_copy);
429                         if (ret)
430                                 goto fallback_to_reg_send;
431
432                         copied += try_to_copy;
433                         ret = tls_push_record(sk, msg->msg_flags, record_type);
434                         if (!ret)
435                                 continue;
436                         if (ret == -EAGAIN)
437                                 goto send_end;
438
439                         copied -= try_to_copy;
440 fallback_to_reg_send:
441                         iov_iter_revert(&msg->msg_iter,
442                                         ctx->sg_plaintext_size - orig_size);
443                         trim_sg(sk, ctx->sg_plaintext_data,
444                                 &ctx->sg_plaintext_num_elem,
445                                 &ctx->sg_plaintext_size,
446                                 orig_size);
447                 }
448
449                 required_size = ctx->sg_plaintext_size + try_to_copy;
450 alloc_plaintext:
451                 ret = alloc_plaintext_sg(sk, required_size);
452                 if (ret) {
453                         if (ret != -ENOSPC)
454                                 goto wait_for_memory;
455
456                         /* Adjust try_to_copy according to the amount that was
457                          * actually allocated. The difference is due
458                          * to max sg elements limit
459                          */
460                         try_to_copy -= required_size - ctx->sg_plaintext_size;
461                         full_record = true;
462
463                         trim_sg(sk, ctx->sg_encrypted_data,
464                                 &ctx->sg_encrypted_num_elem,
465                                 &ctx->sg_encrypted_size,
466                                 ctx->sg_plaintext_size +
467                                 tls_ctx->overhead_size);
468                 }
469
470                 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
471                 if (ret)
472                         goto trim_sgl;
473
474                 copied += try_to_copy;
475                 if (full_record || eor) {
476 push_record:
477                         ret = tls_push_record(sk, msg->msg_flags, record_type);
478                         if (ret) {
479                                 if (ret == -ENOMEM)
480                                         goto wait_for_memory;
481
482                                 goto send_end;
483                         }
484                 }
485
486                 continue;
487
488 wait_for_sndbuf:
489                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
490 wait_for_memory:
491                 ret = sk_stream_wait_memory(sk, &timeo);
492                 if (ret) {
493 trim_sgl:
494                         trim_both_sgl(sk, orig_size);
495                         goto send_end;
496                 }
497
498                 if (tls_is_pending_closed_record(tls_ctx))
499                         goto push_record;
500
501                 if (ctx->sg_encrypted_size < required_size)
502                         goto alloc_encrypted;
503
504                 goto alloc_plaintext;
505         }
506
507 send_end:
508         ret = sk_stream_error(sk, msg->msg_flags, ret);
509
510         release_sock(sk);
511         return copied ? copied : ret;
512 }
513
514 int tls_sw_sendpage(struct sock *sk, struct page *page,
515                     int offset, size_t size, int flags)
516 {
517         struct tls_context *tls_ctx = tls_get_ctx(sk);
518         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
519         int ret = 0;
520         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
521         bool eor;
522         size_t orig_size = size;
523         unsigned char record_type = TLS_RECORD_TYPE_DATA;
524         struct scatterlist *sg;
525         bool full_record;
526         int record_room;
527
528         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
529                       MSG_SENDPAGE_NOTLAST))
530                 return -ENOTSUPP;
531
532         /* No MSG_EOR from splice, only look at MSG_MORE */
533         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
534
535         lock_sock(sk);
536
537         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
538
539         if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
540                 goto sendpage_end;
541
542         /* Call the sk_stream functions to manage the sndbuf mem. */
543         while (size > 0) {
544                 size_t copy, required_size;
545
546                 if (sk->sk_err) {
547                         ret = sk->sk_err;
548                         goto sendpage_end;
549                 }
550
551                 full_record = false;
552                 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
553                 copy = size;
554                 if (copy >= record_room) {
555                         copy = record_room;
556                         full_record = true;
557                 }
558                 required_size = ctx->sg_plaintext_size + copy +
559                               tls_ctx->overhead_size;
560
561                 if (!sk_stream_memory_free(sk))
562                         goto wait_for_sndbuf;
563 alloc_payload:
564                 ret = alloc_encrypted_sg(sk, required_size);
565                 if (ret) {
566                         if (ret != -ENOSPC)
567                                 goto wait_for_memory;
568
569                         /* Adjust copy according to the amount that was
570                          * actually allocated. The difference is due
571                          * to max sg elements limit
572                          */
573                         copy -= required_size - ctx->sg_plaintext_size;
574                         full_record = true;
575                 }
576
577                 get_page(page);
578                 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
579                 sg_set_page(sg, page, copy, offset);
580                 ctx->sg_plaintext_num_elem++;
581
582                 sk_mem_charge(sk, copy);
583                 offset += copy;
584                 size -= copy;
585                 ctx->sg_plaintext_size += copy;
586                 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
587
588                 if (full_record || eor ||
589                     ctx->sg_plaintext_num_elem ==
590                     ARRAY_SIZE(ctx->sg_plaintext_data)) {
591 push_record:
592                         ret = tls_push_record(sk, flags, record_type);
593                         if (ret) {
594                                 if (ret == -ENOMEM)
595                                         goto wait_for_memory;
596
597                                 goto sendpage_end;
598                         }
599                 }
600                 continue;
601 wait_for_sndbuf:
602                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
603 wait_for_memory:
604                 ret = sk_stream_wait_memory(sk, &timeo);
605                 if (ret) {
606                         trim_both_sgl(sk, ctx->sg_plaintext_size);
607                         goto sendpage_end;
608                 }
609
610                 if (tls_is_pending_closed_record(tls_ctx))
611                         goto push_record;
612
613                 goto alloc_payload;
614         }
615
616 sendpage_end:
617         if (orig_size > size)
618                 ret = orig_size - size;
619         else
620                 ret = sk_stream_error(sk, flags, ret);
621
622         release_sock(sk);
623         return ret;
624 }
625
626 void tls_sw_free_tx_resources(struct sock *sk)
627 {
628         struct tls_context *tls_ctx = tls_get_ctx(sk);
629         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
630
631         if (ctx->aead_send)
632                 crypto_free_aead(ctx->aead_send);
633
634         tls_free_both_sg(sk);
635
636         kfree(ctx);
637         kfree(tls_ctx);
638 }
639
640 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx)
641 {
642         char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
643         struct tls_crypto_info *crypto_info;
644         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
645         struct tls_sw_context *sw_ctx;
646         u16 nonce_size, tag_size, iv_size, rec_seq_size;
647         char *iv, *rec_seq;
648         int rc = 0;
649
650         if (!ctx) {
651                 rc = -EINVAL;
652                 goto out;
653         }
654
655         if (ctx->priv_ctx) {
656                 rc = -EEXIST;
657                 goto out;
658         }
659
660         sw_ctx = kzalloc(sizeof(*sw_ctx), GFP_KERNEL);
661         if (!sw_ctx) {
662                 rc = -ENOMEM;
663                 goto out;
664         }
665
666         ctx->priv_ctx = (struct tls_offload_context *)sw_ctx;
667
668         crypto_info = &ctx->crypto_send;
669         switch (crypto_info->cipher_type) {
670         case TLS_CIPHER_AES_GCM_128: {
671                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
672                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
673                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
674                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
675                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
676                 rec_seq =
677                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
678                 gcm_128_info =
679                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
680                 break;
681         }
682         default:
683                 rc = -EINVAL;
684                 goto out;
685         }
686
687         ctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
688         ctx->tag_size = tag_size;
689         ctx->overhead_size = ctx->prepend_size + ctx->tag_size;
690         ctx->iv_size = iv_size;
691         ctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
692                           GFP_KERNEL);
693         if (!ctx->iv) {
694                 rc = -ENOMEM;
695                 goto out;
696         }
697         memcpy(ctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
698         memcpy(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
699         ctx->rec_seq_size = rec_seq_size;
700         ctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
701         if (!ctx->rec_seq) {
702                 rc = -ENOMEM;
703                 goto free_iv;
704         }
705         memcpy(ctx->rec_seq, rec_seq, rec_seq_size);
706
707         sg_init_table(sw_ctx->sg_encrypted_data,
708                       ARRAY_SIZE(sw_ctx->sg_encrypted_data));
709         sg_init_table(sw_ctx->sg_plaintext_data,
710                       ARRAY_SIZE(sw_ctx->sg_plaintext_data));
711
712         sg_init_table(sw_ctx->sg_aead_in, 2);
713         sg_set_buf(&sw_ctx->sg_aead_in[0], sw_ctx->aad_space,
714                    sizeof(sw_ctx->aad_space));
715         sg_unmark_end(&sw_ctx->sg_aead_in[1]);
716         sg_chain(sw_ctx->sg_aead_in, 2, sw_ctx->sg_plaintext_data);
717         sg_init_table(sw_ctx->sg_aead_out, 2);
718         sg_set_buf(&sw_ctx->sg_aead_out[0], sw_ctx->aad_space,
719                    sizeof(sw_ctx->aad_space));
720         sg_unmark_end(&sw_ctx->sg_aead_out[1]);
721         sg_chain(sw_ctx->sg_aead_out, 2, sw_ctx->sg_encrypted_data);
722
723         if (!sw_ctx->aead_send) {
724                 sw_ctx->aead_send = crypto_alloc_aead("gcm(aes)", 0, 0);
725                 if (IS_ERR(sw_ctx->aead_send)) {
726                         rc = PTR_ERR(sw_ctx->aead_send);
727                         sw_ctx->aead_send = NULL;
728                         goto free_rec_seq;
729                 }
730         }
731
732         ctx->push_pending_record = tls_sw_push_pending_record;
733
734         memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
735
736         rc = crypto_aead_setkey(sw_ctx->aead_send, keyval,
737                                 TLS_CIPHER_AES_GCM_128_KEY_SIZE);
738         if (rc)
739                 goto free_aead;
740
741         rc = crypto_aead_setauthsize(sw_ctx->aead_send, ctx->tag_size);
742         if (!rc)
743                 goto out;
744
745 free_aead:
746         crypto_free_aead(sw_ctx->aead_send);
747         sw_ctx->aead_send = NULL;
748 free_rec_seq:
749         kfree(ctx->rec_seq);
750         ctx->rec_seq = NULL;
751 free_iv:
752         kfree(ctx->iv);
753         ctx->iv = NULL;
754 out:
755         return rc;
756 }