Merge tag 'dmaengine-4.16-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[sfrench/cifs-2.6.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41
42 #include <net/tls.h>
43
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
47
48 enum {
49         TLS_BASE_TX,
50         TLS_SW_TX,
51         TLS_NUM_CONFIG,
52 };
53
54 static struct proto tls_prots[TLS_NUM_CONFIG];
55
56 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
57 {
58         sk->sk_prot = &tls_prots[ctx->tx_conf];
59 }
60
61 int wait_on_pending_writer(struct sock *sk, long *timeo)
62 {
63         int rc = 0;
64         DEFINE_WAIT_FUNC(wait, woken_wake_function);
65
66         add_wait_queue(sk_sleep(sk), &wait);
67         while (1) {
68                 if (!*timeo) {
69                         rc = -EAGAIN;
70                         break;
71                 }
72
73                 if (signal_pending(current)) {
74                         rc = sock_intr_errno(*timeo);
75                         break;
76                 }
77
78                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
79                         break;
80         }
81         remove_wait_queue(sk_sleep(sk), &wait);
82         return rc;
83 }
84
85 int tls_push_sg(struct sock *sk,
86                 struct tls_context *ctx,
87                 struct scatterlist *sg,
88                 u16 first_offset,
89                 int flags)
90 {
91         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
92         int ret = 0;
93         struct page *p;
94         size_t size;
95         int offset = first_offset;
96
97         size = sg->length - offset;
98         offset += sg->offset;
99
100         while (1) {
101                 if (sg_is_last(sg))
102                         sendpage_flags = flags;
103
104                 /* is sending application-limited? */
105                 tcp_rate_check_app_limited(sk);
106                 p = sg_page(sg);
107 retry:
108                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
109
110                 if (ret != size) {
111                         if (ret > 0) {
112                                 offset += ret;
113                                 size -= ret;
114                                 goto retry;
115                         }
116
117                         offset -= sg->offset;
118                         ctx->partially_sent_offset = offset;
119                         ctx->partially_sent_record = (void *)sg;
120                         return ret;
121                 }
122
123                 put_page(p);
124                 sk_mem_uncharge(sk, sg->length);
125                 sg = sg_next(sg);
126                 if (!sg)
127                         break;
128
129                 offset = sg->offset;
130                 size = sg->length;
131         }
132
133         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
134
135         return 0;
136 }
137
138 static int tls_handle_open_record(struct sock *sk, int flags)
139 {
140         struct tls_context *ctx = tls_get_ctx(sk);
141
142         if (tls_is_pending_open_record(ctx))
143                 return ctx->push_pending_record(sk, flags);
144
145         return 0;
146 }
147
148 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
149                       unsigned char *record_type)
150 {
151         struct cmsghdr *cmsg;
152         int rc = -EINVAL;
153
154         for_each_cmsghdr(cmsg, msg) {
155                 if (!CMSG_OK(msg, cmsg))
156                         return -EINVAL;
157                 if (cmsg->cmsg_level != SOL_TLS)
158                         continue;
159
160                 switch (cmsg->cmsg_type) {
161                 case TLS_SET_RECORD_TYPE:
162                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
163                                 return -EINVAL;
164
165                         if (msg->msg_flags & MSG_MORE)
166                                 return -EINVAL;
167
168                         rc = tls_handle_open_record(sk, msg->msg_flags);
169                         if (rc)
170                                 return rc;
171
172                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
173                         rc = 0;
174                         break;
175                 default:
176                         return -EINVAL;
177                 }
178         }
179
180         return rc;
181 }
182
183 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
184                                    int flags, long *timeo)
185 {
186         struct scatterlist *sg;
187         u16 offset;
188
189         if (!tls_is_partially_sent_record(ctx))
190                 return ctx->push_pending_record(sk, flags);
191
192         sg = ctx->partially_sent_record;
193         offset = ctx->partially_sent_offset;
194
195         ctx->partially_sent_record = NULL;
196         return tls_push_sg(sk, ctx, sg, offset, flags);
197 }
198
199 static void tls_write_space(struct sock *sk)
200 {
201         struct tls_context *ctx = tls_get_ctx(sk);
202
203         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
204                 gfp_t sk_allocation = sk->sk_allocation;
205                 int rc;
206                 long timeo = 0;
207
208                 sk->sk_allocation = GFP_ATOMIC;
209                 rc = tls_push_pending_closed_record(sk, ctx,
210                                                     MSG_DONTWAIT |
211                                                     MSG_NOSIGNAL,
212                                                     &timeo);
213                 sk->sk_allocation = sk_allocation;
214
215                 if (rc < 0)
216                         return;
217         }
218
219         ctx->sk_write_space(sk);
220 }
221
222 static void tls_sk_proto_close(struct sock *sk, long timeout)
223 {
224         struct tls_context *ctx = tls_get_ctx(sk);
225         long timeo = sock_sndtimeo(sk, 0);
226         void (*sk_proto_close)(struct sock *sk, long timeout);
227
228         lock_sock(sk);
229         sk_proto_close = ctx->sk_proto_close;
230
231         if (ctx->tx_conf == TLS_BASE_TX) {
232                 kfree(ctx);
233                 goto skip_tx_cleanup;
234         }
235
236         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
237                 tls_handle_open_record(sk, 0);
238
239         if (ctx->partially_sent_record) {
240                 struct scatterlist *sg = ctx->partially_sent_record;
241
242                 while (1) {
243                         put_page(sg_page(sg));
244                         sk_mem_uncharge(sk, sg->length);
245
246                         if (sg_is_last(sg))
247                                 break;
248                         sg++;
249                 }
250         }
251
252         kfree(ctx->rec_seq);
253         kfree(ctx->iv);
254
255         if (ctx->tx_conf == TLS_SW_TX)
256                 tls_sw_free_tx_resources(sk);
257
258 skip_tx_cleanup:
259         release_sock(sk);
260         sk_proto_close(sk, timeout);
261 }
262
263 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
264                                 int __user *optlen)
265 {
266         int rc = 0;
267         struct tls_context *ctx = tls_get_ctx(sk);
268         struct tls_crypto_info *crypto_info;
269         int len;
270
271         if (get_user(len, optlen))
272                 return -EFAULT;
273
274         if (!optval || (len < sizeof(*crypto_info))) {
275                 rc = -EINVAL;
276                 goto out;
277         }
278
279         if (!ctx) {
280                 rc = -EBUSY;
281                 goto out;
282         }
283
284         /* get user crypto info */
285         crypto_info = &ctx->crypto_send;
286
287         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
288                 rc = -EBUSY;
289                 goto out;
290         }
291
292         if (len == sizeof(*crypto_info)) {
293                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
294                         rc = -EFAULT;
295                 goto out;
296         }
297
298         switch (crypto_info->cipher_type) {
299         case TLS_CIPHER_AES_GCM_128: {
300                 struct tls12_crypto_info_aes_gcm_128 *
301                   crypto_info_aes_gcm_128 =
302                   container_of(crypto_info,
303                                struct tls12_crypto_info_aes_gcm_128,
304                                info);
305
306                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
307                         rc = -EINVAL;
308                         goto out;
309                 }
310                 lock_sock(sk);
311                 memcpy(crypto_info_aes_gcm_128->iv, ctx->iv,
312                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
313                 release_sock(sk);
314                 if (copy_to_user(optval,
315                                  crypto_info_aes_gcm_128,
316                                  sizeof(*crypto_info_aes_gcm_128)))
317                         rc = -EFAULT;
318                 break;
319         }
320         default:
321                 rc = -EINVAL;
322         }
323
324 out:
325         return rc;
326 }
327
328 static int do_tls_getsockopt(struct sock *sk, int optname,
329                              char __user *optval, int __user *optlen)
330 {
331         int rc = 0;
332
333         switch (optname) {
334         case TLS_TX:
335                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
336                 break;
337         default:
338                 rc = -ENOPROTOOPT;
339                 break;
340         }
341         return rc;
342 }
343
344 static int tls_getsockopt(struct sock *sk, int level, int optname,
345                           char __user *optval, int __user *optlen)
346 {
347         struct tls_context *ctx = tls_get_ctx(sk);
348
349         if (level != SOL_TLS)
350                 return ctx->getsockopt(sk, level, optname, optval, optlen);
351
352         return do_tls_getsockopt(sk, optname, optval, optlen);
353 }
354
355 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
356                                 unsigned int optlen)
357 {
358         struct tls_crypto_info *crypto_info;
359         struct tls_context *ctx = tls_get_ctx(sk);
360         int rc = 0;
361         int tx_conf;
362
363         if (!optval || (optlen < sizeof(*crypto_info))) {
364                 rc = -EINVAL;
365                 goto out;
366         }
367
368         crypto_info = &ctx->crypto_send;
369         /* Currently we don't support set crypto info more than one time */
370         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
371                 rc = -EBUSY;
372                 goto out;
373         }
374
375         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
376         if (rc) {
377                 rc = -EFAULT;
378                 goto out;
379         }
380
381         /* check version */
382         if (crypto_info->version != TLS_1_2_VERSION) {
383                 rc = -ENOTSUPP;
384                 goto err_crypto_info;
385         }
386
387         switch (crypto_info->cipher_type) {
388         case TLS_CIPHER_AES_GCM_128: {
389                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
390                         rc = -EINVAL;
391                         goto err_crypto_info;
392                 }
393                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
394                                     optlen - sizeof(*crypto_info));
395                 if (rc) {
396                         rc = -EFAULT;
397                         goto err_crypto_info;
398                 }
399                 break;
400         }
401         default:
402                 rc = -EINVAL;
403                 goto err_crypto_info;
404         }
405
406         /* currently SW is default, we will have ethtool in future */
407         rc = tls_set_sw_offload(sk, ctx);
408         tx_conf = TLS_SW_TX;
409         if (rc)
410                 goto err_crypto_info;
411
412         ctx->tx_conf = tx_conf;
413         update_sk_prot(sk, ctx);
414         ctx->sk_write_space = sk->sk_write_space;
415         sk->sk_write_space = tls_write_space;
416         goto out;
417
418 err_crypto_info:
419         memset(crypto_info, 0, sizeof(*crypto_info));
420 out:
421         return rc;
422 }
423
424 static int do_tls_setsockopt(struct sock *sk, int optname,
425                              char __user *optval, unsigned int optlen)
426 {
427         int rc = 0;
428
429         switch (optname) {
430         case TLS_TX:
431                 lock_sock(sk);
432                 rc = do_tls_setsockopt_tx(sk, optval, optlen);
433                 release_sock(sk);
434                 break;
435         default:
436                 rc = -ENOPROTOOPT;
437                 break;
438         }
439         return rc;
440 }
441
442 static int tls_setsockopt(struct sock *sk, int level, int optname,
443                           char __user *optval, unsigned int optlen)
444 {
445         struct tls_context *ctx = tls_get_ctx(sk);
446
447         if (level != SOL_TLS)
448                 return ctx->setsockopt(sk, level, optname, optval, optlen);
449
450         return do_tls_setsockopt(sk, optname, optval, optlen);
451 }
452
453 static int tls_init(struct sock *sk)
454 {
455         struct inet_connection_sock *icsk = inet_csk(sk);
456         struct tls_context *ctx;
457         int rc = 0;
458
459         /* The TLS ulp is currently supported only for TCP sockets
460          * in ESTABLISHED state.
461          * Supporting sockets in LISTEN state will require us
462          * to modify the accept implementation to clone rather then
463          * share the ulp context.
464          */
465         if (sk->sk_state != TCP_ESTABLISHED)
466                 return -ENOTSUPP;
467
468         /* allocate tls context */
469         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
470         if (!ctx) {
471                 rc = -ENOMEM;
472                 goto out;
473         }
474         icsk->icsk_ulp_data = ctx;
475         ctx->setsockopt = sk->sk_prot->setsockopt;
476         ctx->getsockopt = sk->sk_prot->getsockopt;
477         ctx->sk_proto_close = sk->sk_prot->close;
478
479         ctx->tx_conf = TLS_BASE_TX;
480         update_sk_prot(sk, ctx);
481 out:
482         return rc;
483 }
484
485 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
486         .name                   = "tls",
487         .owner                  = THIS_MODULE,
488         .init                   = tls_init,
489 };
490
491 static void build_protos(struct proto *prot, struct proto *base)
492 {
493         prot[TLS_BASE_TX] = *base;
494         prot[TLS_BASE_TX].setsockopt    = tls_setsockopt;
495         prot[TLS_BASE_TX].getsockopt    = tls_getsockopt;
496         prot[TLS_BASE_TX].close         = tls_sk_proto_close;
497
498         prot[TLS_SW_TX] = prot[TLS_BASE_TX];
499         prot[TLS_SW_TX].sendmsg         = tls_sw_sendmsg;
500         prot[TLS_SW_TX].sendpage        = tls_sw_sendpage;
501 }
502
503 static int __init tls_register(void)
504 {
505         build_protos(tls_prots, &tcp_prot);
506
507         tcp_register_ulp(&tcp_tls_ulp_ops);
508
509         return 0;
510 }
511
512 static void __exit tls_unregister(void)
513 {
514         tcp_unregister_ulp(&tcp_tls_ulp_ops);
515 }
516
517 module_init(tls_register);
518 module_exit(tls_unregister);