mutex: Fix up mutex_waiter usage
[sfrench/cifs-2.6.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213         struct scatterlist *sg;
214
215         sg = ctx->partially_sent_record;
216         if (!sg)
217                 return false;
218
219         while (1) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222
223                 if (sg_is_last(sg))
224                         break;
225                 sg++;
226         }
227         ctx->partially_sent_record = NULL;
228         return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233         struct tls_context *ctx = tls_get_ctx(sk);
234
235         /* If in_tcp_sendpages call lower protocol write space handler
236          * to ensure we wake up any waiting operations there. For example
237          * if do_tcp_sendpages where to call sk_wait_event.
238          */
239         if (ctx->in_tcp_sendpages) {
240                 ctx->sk_write_space(sk);
241                 return;
242         }
243
244 #ifdef CONFIG_TLS_DEVICE
245         if (ctx->tx_conf == TLS_HW)
246                 tls_device_write_space(sk, ctx);
247         else
248 #endif
249                 tls_sw_write_space(sk, ctx);
250
251         ctx->sk_write_space(sk);
252 }
253
254 void tls_ctx_free(struct tls_context *ctx)
255 {
256         if (!ctx)
257                 return;
258
259         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261         kfree(ctx);
262 }
263
264 static void tls_sk_proto_close(struct sock *sk, long timeout)
265 {
266         struct tls_context *ctx = tls_get_ctx(sk);
267         long timeo = sock_sndtimeo(sk, 0);
268         void (*sk_proto_close)(struct sock *sk, long timeout);
269         bool free_ctx = false;
270
271         lock_sock(sk);
272         sk_proto_close = ctx->sk_proto_close;
273
274         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
275                 goto skip_tx_cleanup;
276
277         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
278                 free_ctx = true;
279                 goto skip_tx_cleanup;
280         }
281
282         if (unlikely(sk->sk_write_pending) &&
283             !wait_on_pending_writer(sk, &timeo))
284                 tls_handle_open_record(sk, 0);
285
286         /* We need these for tls_sw_fallback handling of other packets */
287         if (ctx->tx_conf == TLS_SW) {
288                 kfree(ctx->tx.rec_seq);
289                 kfree(ctx->tx.iv);
290                 tls_sw_free_resources_tx(sk);
291 #ifdef CONFIG_TLS_DEVICE
292         } else if (ctx->tx_conf == TLS_HW) {
293                 tls_device_free_resources_tx(sk);
294 #endif
295         }
296
297         if (ctx->rx_conf == TLS_SW)
298                 tls_sw_free_resources_rx(sk);
299
300 #ifdef CONFIG_TLS_DEVICE
301         if (ctx->rx_conf == TLS_HW)
302                 tls_device_offload_cleanup_rx(sk);
303
304         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
305 #else
306         {
307 #endif
308                 tls_ctx_free(ctx);
309                 ctx = NULL;
310         }
311
312 skip_tx_cleanup:
313         release_sock(sk);
314         sk_proto_close(sk, timeout);
315         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
316          * for sk->sk_prot->unhash [tls_hw_unhash]
317          */
318         if (free_ctx)
319                 tls_ctx_free(ctx);
320 }
321
322 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
323                                 int __user *optlen)
324 {
325         int rc = 0;
326         struct tls_context *ctx = tls_get_ctx(sk);
327         struct tls_crypto_info *crypto_info;
328         int len;
329
330         if (get_user(len, optlen))
331                 return -EFAULT;
332
333         if (!optval || (len < sizeof(*crypto_info))) {
334                 rc = -EINVAL;
335                 goto out;
336         }
337
338         if (!ctx) {
339                 rc = -EBUSY;
340                 goto out;
341         }
342
343         /* get user crypto info */
344         crypto_info = &ctx->crypto_send.info;
345
346         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
347                 rc = -EBUSY;
348                 goto out;
349         }
350
351         if (len == sizeof(*crypto_info)) {
352                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
353                         rc = -EFAULT;
354                 goto out;
355         }
356
357         switch (crypto_info->cipher_type) {
358         case TLS_CIPHER_AES_GCM_128: {
359                 struct tls12_crypto_info_aes_gcm_128 *
360                   crypto_info_aes_gcm_128 =
361                   container_of(crypto_info,
362                                struct tls12_crypto_info_aes_gcm_128,
363                                info);
364
365                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
366                         rc = -EINVAL;
367                         goto out;
368                 }
369                 lock_sock(sk);
370                 memcpy(crypto_info_aes_gcm_128->iv,
371                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
372                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
373                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
374                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
375                 release_sock(sk);
376                 if (copy_to_user(optval,
377                                  crypto_info_aes_gcm_128,
378                                  sizeof(*crypto_info_aes_gcm_128)))
379                         rc = -EFAULT;
380                 break;
381         }
382         case TLS_CIPHER_AES_GCM_256: {
383                 struct tls12_crypto_info_aes_gcm_256 *
384                   crypto_info_aes_gcm_256 =
385                   container_of(crypto_info,
386                                struct tls12_crypto_info_aes_gcm_256,
387                                info);
388
389                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
390                         rc = -EINVAL;
391                         goto out;
392                 }
393                 lock_sock(sk);
394                 memcpy(crypto_info_aes_gcm_256->iv,
395                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
396                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
397                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
398                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
399                 release_sock(sk);
400                 if (copy_to_user(optval,
401                                  crypto_info_aes_gcm_256,
402                                  sizeof(*crypto_info_aes_gcm_256)))
403                         rc = -EFAULT;
404                 break;
405         }
406         default:
407                 rc = -EINVAL;
408         }
409
410 out:
411         return rc;
412 }
413
414 static int do_tls_getsockopt(struct sock *sk, int optname,
415                              char __user *optval, int __user *optlen)
416 {
417         int rc = 0;
418
419         switch (optname) {
420         case TLS_TX:
421                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
422                 break;
423         default:
424                 rc = -ENOPROTOOPT;
425                 break;
426         }
427         return rc;
428 }
429
430 static int tls_getsockopt(struct sock *sk, int level, int optname,
431                           char __user *optval, int __user *optlen)
432 {
433         struct tls_context *ctx = tls_get_ctx(sk);
434
435         if (level != SOL_TLS)
436                 return ctx->getsockopt(sk, level, optname, optval, optlen);
437
438         return do_tls_getsockopt(sk, optname, optval, optlen);
439 }
440
441 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
442                                   unsigned int optlen, int tx)
443 {
444         struct tls_crypto_info *crypto_info;
445         struct tls_crypto_info *alt_crypto_info;
446         struct tls_context *ctx = tls_get_ctx(sk);
447         size_t optsize;
448         int rc = 0;
449         int conf;
450
451         if (!optval || (optlen < sizeof(*crypto_info))) {
452                 rc = -EINVAL;
453                 goto out;
454         }
455
456         if (tx) {
457                 crypto_info = &ctx->crypto_send.info;
458                 alt_crypto_info = &ctx->crypto_recv.info;
459         } else {
460                 crypto_info = &ctx->crypto_recv.info;
461                 alt_crypto_info = &ctx->crypto_send.info;
462         }
463
464         /* Currently we don't support set crypto info more than one time */
465         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
466                 rc = -EBUSY;
467                 goto out;
468         }
469
470         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
471         if (rc) {
472                 rc = -EFAULT;
473                 goto err_crypto_info;
474         }
475
476         /* check version */
477         if (crypto_info->version != TLS_1_2_VERSION &&
478             crypto_info->version != TLS_1_3_VERSION) {
479                 rc = -ENOTSUPP;
480                 goto err_crypto_info;
481         }
482
483         /* Ensure that TLS version and ciphers are same in both directions */
484         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
485                 if (alt_crypto_info->version != crypto_info->version ||
486                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
487                         rc = -EINVAL;
488                         goto err_crypto_info;
489                 }
490         }
491
492         switch (crypto_info->cipher_type) {
493         case TLS_CIPHER_AES_GCM_128:
494                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
495                 break;
496         case TLS_CIPHER_AES_GCM_256: {
497                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
498                 break;
499         }
500         case TLS_CIPHER_AES_CCM_128:
501                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
502                 break;
503         default:
504                 rc = -EINVAL;
505                 goto err_crypto_info;
506         }
507
508         if (optlen != optsize) {
509                 rc = -EINVAL;
510                 goto err_crypto_info;
511         }
512
513         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
514                             optlen - sizeof(*crypto_info));
515         if (rc) {
516                 rc = -EFAULT;
517                 goto err_crypto_info;
518         }
519
520         if (tx) {
521 #ifdef CONFIG_TLS_DEVICE
522                 rc = tls_set_device_offload(sk, ctx);
523                 conf = TLS_HW;
524                 if (rc) {
525 #else
526                 {
527 #endif
528                         rc = tls_set_sw_offload(sk, ctx, 1);
529                         conf = TLS_SW;
530                 }
531         } else {
532 #ifdef CONFIG_TLS_DEVICE
533                 rc = tls_set_device_offload_rx(sk, ctx);
534                 conf = TLS_HW;
535                 if (rc) {
536 #else
537                 {
538 #endif
539                         rc = tls_set_sw_offload(sk, ctx, 0);
540                         conf = TLS_SW;
541                 }
542         }
543
544         if (rc)
545                 goto err_crypto_info;
546
547         if (tx)
548                 ctx->tx_conf = conf;
549         else
550                 ctx->rx_conf = conf;
551         update_sk_prot(sk, ctx);
552         if (tx) {
553                 ctx->sk_write_space = sk->sk_write_space;
554                 sk->sk_write_space = tls_write_space;
555         } else {
556                 sk->sk_socket->ops = &tls_sw_proto_ops;
557         }
558         goto out;
559
560 err_crypto_info:
561         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
562 out:
563         return rc;
564 }
565
566 static int do_tls_setsockopt(struct sock *sk, int optname,
567                              char __user *optval, unsigned int optlen)
568 {
569         int rc = 0;
570
571         switch (optname) {
572         case TLS_TX:
573         case TLS_RX:
574                 lock_sock(sk);
575                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
576                                             optname == TLS_TX);
577                 release_sock(sk);
578                 break;
579         default:
580                 rc = -ENOPROTOOPT;
581                 break;
582         }
583         return rc;
584 }
585
586 static int tls_setsockopt(struct sock *sk, int level, int optname,
587                           char __user *optval, unsigned int optlen)
588 {
589         struct tls_context *ctx = tls_get_ctx(sk);
590
591         if (level != SOL_TLS)
592                 return ctx->setsockopt(sk, level, optname, optval, optlen);
593
594         return do_tls_setsockopt(sk, optname, optval, optlen);
595 }
596
597 static struct tls_context *create_ctx(struct sock *sk)
598 {
599         struct inet_connection_sock *icsk = inet_csk(sk);
600         struct tls_context *ctx;
601
602         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
603         if (!ctx)
604                 return NULL;
605
606         icsk->icsk_ulp_data = ctx;
607         ctx->setsockopt = sk->sk_prot->setsockopt;
608         ctx->getsockopt = sk->sk_prot->getsockopt;
609         ctx->sk_proto_close = sk->sk_prot->close;
610         return ctx;
611 }
612
613 static void tls_build_proto(struct sock *sk)
614 {
615         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
616
617         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
618         if (ip_ver == TLSV6 &&
619             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
620                 mutex_lock(&tcpv6_prot_mutex);
621                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
622                         build_protos(tls_prots[TLSV6], sk->sk_prot);
623                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
624                 }
625                 mutex_unlock(&tcpv6_prot_mutex);
626         }
627
628         if (ip_ver == TLSV4 &&
629             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
630                 mutex_lock(&tcpv4_prot_mutex);
631                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
632                         build_protos(tls_prots[TLSV4], sk->sk_prot);
633                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
634                 }
635                 mutex_unlock(&tcpv4_prot_mutex);
636         }
637 }
638
639 static void tls_hw_sk_destruct(struct sock *sk)
640 {
641         struct tls_context *ctx = tls_get_ctx(sk);
642         struct inet_connection_sock *icsk = inet_csk(sk);
643
644         ctx->sk_destruct(sk);
645         /* Free ctx */
646         tls_ctx_free(ctx);
647         icsk->icsk_ulp_data = NULL;
648 }
649
650 static int tls_hw_prot(struct sock *sk)
651 {
652         struct tls_context *ctx;
653         struct tls_device *dev;
654         int rc = 0;
655
656         spin_lock_bh(&device_spinlock);
657         list_for_each_entry(dev, &device_list, dev_list) {
658                 if (dev->feature && dev->feature(dev)) {
659                         ctx = create_ctx(sk);
660                         if (!ctx)
661                                 goto out;
662
663                         spin_unlock_bh(&device_spinlock);
664                         tls_build_proto(sk);
665                         ctx->hash = sk->sk_prot->hash;
666                         ctx->unhash = sk->sk_prot->unhash;
667                         ctx->sk_proto_close = sk->sk_prot->close;
668                         ctx->sk_destruct = sk->sk_destruct;
669                         sk->sk_destruct = tls_hw_sk_destruct;
670                         ctx->rx_conf = TLS_HW_RECORD;
671                         ctx->tx_conf = TLS_HW_RECORD;
672                         update_sk_prot(sk, ctx);
673                         spin_lock_bh(&device_spinlock);
674                         rc = 1;
675                         break;
676                 }
677         }
678 out:
679         spin_unlock_bh(&device_spinlock);
680         return rc;
681 }
682
683 static void tls_hw_unhash(struct sock *sk)
684 {
685         struct tls_context *ctx = tls_get_ctx(sk);
686         struct tls_device *dev;
687
688         spin_lock_bh(&device_spinlock);
689         list_for_each_entry(dev, &device_list, dev_list) {
690                 if (dev->unhash) {
691                         kref_get(&dev->kref);
692                         spin_unlock_bh(&device_spinlock);
693                         dev->unhash(dev, sk);
694                         kref_put(&dev->kref, dev->release);
695                         spin_lock_bh(&device_spinlock);
696                 }
697         }
698         spin_unlock_bh(&device_spinlock);
699         ctx->unhash(sk);
700 }
701
702 static int tls_hw_hash(struct sock *sk)
703 {
704         struct tls_context *ctx = tls_get_ctx(sk);
705         struct tls_device *dev;
706         int err;
707
708         err = ctx->hash(sk);
709         spin_lock_bh(&device_spinlock);
710         list_for_each_entry(dev, &device_list, dev_list) {
711                 if (dev->hash) {
712                         kref_get(&dev->kref);
713                         spin_unlock_bh(&device_spinlock);
714                         err |= dev->hash(dev, sk);
715                         kref_put(&dev->kref, dev->release);
716                         spin_lock_bh(&device_spinlock);
717                 }
718         }
719         spin_unlock_bh(&device_spinlock);
720
721         if (err)
722                 tls_hw_unhash(sk);
723         return err;
724 }
725
726 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
727                          struct proto *base)
728 {
729         prot[TLS_BASE][TLS_BASE] = *base;
730         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
731         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
732         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
733
734         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
735         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
736         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
737
738         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
739         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
740         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
741         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
742
743         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
744         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
745         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
746         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
747
748 #ifdef CONFIG_TLS_DEVICE
749         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
750         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
751         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
752
753         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
754         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
755         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
756
757         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
758
759         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
760
761         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
762 #endif
763
764         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
765         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
766         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
767         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
768 }
769
770 static int tls_init(struct sock *sk)
771 {
772         struct tls_context *ctx;
773         int rc = 0;
774
775         if (tls_hw_prot(sk))
776                 goto out;
777
778         /* The TLS ulp is currently supported only for TCP sockets
779          * in ESTABLISHED state.
780          * Supporting sockets in LISTEN state will require us
781          * to modify the accept implementation to clone rather then
782          * share the ulp context.
783          */
784         if (sk->sk_state != TCP_ESTABLISHED)
785                 return -ENOTSUPP;
786
787         /* allocate tls context */
788         ctx = create_ctx(sk);
789         if (!ctx) {
790                 rc = -ENOMEM;
791                 goto out;
792         }
793
794         tls_build_proto(sk);
795         ctx->tx_conf = TLS_BASE;
796         ctx->rx_conf = TLS_BASE;
797         update_sk_prot(sk, ctx);
798 out:
799         return rc;
800 }
801
802 void tls_register_device(struct tls_device *device)
803 {
804         spin_lock_bh(&device_spinlock);
805         list_add_tail(&device->dev_list, &device_list);
806         spin_unlock_bh(&device_spinlock);
807 }
808 EXPORT_SYMBOL(tls_register_device);
809
810 void tls_unregister_device(struct tls_device *device)
811 {
812         spin_lock_bh(&device_spinlock);
813         list_del(&device->dev_list);
814         spin_unlock_bh(&device_spinlock);
815 }
816 EXPORT_SYMBOL(tls_unregister_device);
817
818 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
819         .name                   = "tls",
820         .owner                  = THIS_MODULE,
821         .init                   = tls_init,
822 };
823
824 static int __init tls_register(void)
825 {
826         tls_sw_proto_ops = inet_stream_ops;
827         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
828
829 #ifdef CONFIG_TLS_DEVICE
830         tls_device_init();
831 #endif
832         tcp_register_ulp(&tcp_tls_ulp_ops);
833
834         return 0;
835 }
836
837 static void __exit tls_unregister(void)
838 {
839         tcp_unregister_ulp(&tcp_tls_ulp_ops);
840 #ifdef CONFIG_TLS_DEVICE
841         tls_device_cleanup();
842 #endif
843 }
844
845 module_init(tls_register);
846 module_exit(tls_unregister);