ASoC: Intel: bxt: add channel map support in bxt_da7219_max98357a machine
[sfrench/cifs-2.6.git] / net / socket.c
1 /*
2  * NET          An implementation of the SOCKET network access protocol.
3  *
4  * Version:     @(#)socket.c    1.1.93  18/02/95
5  *
6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
7  *              Ross Biro
8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
12  *                                      shutdown()
13  *              Alan Cox        :       verify_area() fixes
14  *              Alan Cox        :       Removed DDI
15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
16  *              Alan Cox        :       Moved a load of checks to the very
17  *                                      top level.
18  *              Alan Cox        :       Move address structures to/from user
19  *                                      mode above the protocol layers.
20  *              Rob Janssen     :       Allow 0 length sends.
21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
22  *                                      tty drivers).
23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
24  *              Jeff Uphoff     :       Made max number of sockets command-line
25  *                                      configurable.
26  *              Matti Aarnio    :       Made the number of sockets dynamic,
27  *                                      to be allocated when needed, and mr.
28  *                                      Uphoff's max is used as max to be
29  *                                      allowed to allocate.
30  *              Linus           :       Argh. removed all the socket allocation
31  *                                      altogether: it's in the inode now.
32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
33  *                                      for NetROM and future kernel nfsd type
34  *                                      stuff.
35  *              Alan Cox        :       sendmsg/recvmsg basics.
36  *              Tom Dyas        :       Export net symbols.
37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
38  *              Alan Cox        :       Added thread locking to sys_* calls
39  *                                      for sockets. May have errors at the
40  *                                      moment.
41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
42  *              Andi Kleen      :       Some small cleanups, optimizations,
43  *                                      and fixed a copy_from_user() bug.
44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
46  *                                      protocol-independent
47  *
48  *
49  *              This program is free software; you can redistribute it and/or
50  *              modify it under the terms of the GNU General Public License
51  *              as published by the Free Software Foundation; either version
52  *              2 of the License, or (at your option) any later version.
53  *
54  *
55  *      This module is effectively the top level interface to the BSD socket
56  *      paradigm.
57  *
58  *      Based upon Swansea University Computer Society NET3.039
59  */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122                               struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126                               unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130                              int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132                                 struct pipe_inode_info *pipe, size_t len,
133                                 unsigned int flags);
134
135 /*
136  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *      in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139
140 static const struct file_operations socket_file_ops = {
141         .owner =        THIS_MODULE,
142         .llseek =       no_llseek,
143         .read_iter =    sock_read_iter,
144         .write_iter =   sock_write_iter,
145         .poll =         sock_poll,
146         .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148         .compat_ioctl = compat_sock_ioctl,
149 #endif
150         .mmap =         sock_mmap,
151         .release =      sock_close,
152         .fasync =       sock_fasync,
153         .sendpage =     sock_sendpage,
154         .splice_write = generic_splice_sendpage,
155         .splice_read =  sock_splice_read,
156 };
157
158 /*
159  *      The protocol list. Each protocol is registered in here.
160  */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166  *      Statistics counters of the socket lists
167  */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176
177 /**
178  *      move_addr_to_kernel     -       copy a socket address into kernel space
179  *      @uaddr: Address in user space
180  *      @kaddr: Address in kernel space
181  *      @ulen: Length in user space
182  *
183  *      The address is copied into kernel space. If the provided address is
184  *      too long an error code of -EINVAL is returned. If the copy gives
185  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191                 return -EINVAL;
192         if (ulen == 0)
193                 return 0;
194         if (copy_from_user(kaddr, uaddr, ulen))
195                 return -EFAULT;
196         return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200  *      move_addr_to_user       -       copy an address to user space
201  *      @kaddr: kernel space address
202  *      @klen: length of address in kernel
203  *      @uaddr: user space address
204  *      @ulen: pointer to user length field
205  *
206  *      The value pointed to by ulen on entry is the buffer length available.
207  *      This is overwritten with the buffer space used. -EINVAL is returned
208  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *      is returned if either the buffer or the length field are not
210  *      accessible.
211  *      After copying the data up to the limit the user specifies, the true
212  *      length of the data is written over the length limit the user
213  *      specified. Zero is returned for a success.
214  */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217                              void __user *uaddr, int __user *ulen)
218 {
219         int err;
220         int len;
221
222         BUG_ON(klen > sizeof(struct sockaddr_storage));
223         err = get_user(len, ulen);
224         if (err)
225                 return err;
226         if (len > klen)
227                 len = klen;
228         if (len < 0)
229                 return -EINVAL;
230         if (len) {
231                 if (audit_sockaddr(klen, kaddr))
232                         return -ENOMEM;
233                 if (copy_to_user(uaddr, kaddr, len))
234                         return -EFAULT;
235         }
236         /*
237          *      "fromlen shall refer to the value before truncation.."
238          *                      1003.1g
239          */
240         return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247         struct socket_alloc *ei;
248         struct socket_wq *wq;
249
250         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251         if (!ei)
252                 return NULL;
253         wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254         if (!wq) {
255                 kmem_cache_free(sock_inode_cachep, ei);
256                 return NULL;
257         }
258         init_waitqueue_head(&wq->wait);
259         wq->fasync_list = NULL;
260         wq->flags = 0;
261         RCU_INIT_POINTER(ei->socket.wq, wq);
262
263         ei->socket.state = SS_UNCONNECTED;
264         ei->socket.flags = 0;
265         ei->socket.ops = NULL;
266         ei->socket.sk = NULL;
267         ei->socket.file = NULL;
268
269         return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274         struct socket_alloc *ei;
275         struct socket_wq *wq;
276
277         ei = container_of(inode, struct socket_alloc, vfs_inode);
278         wq = rcu_dereference_protected(ei->socket.wq, 1);
279         kfree_rcu(wq, rcu);
280         kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285         struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287         inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293                                               sizeof(struct socket_alloc),
294                                               0,
295                                               (SLAB_HWCACHE_ALIGN |
296                                                SLAB_RECLAIM_ACCOUNT |
297                                                SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298                                               init_once);
299         if (sock_inode_cachep == NULL)
300                 return -ENOMEM;
301         return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305         .alloc_inode    = sock_alloc_inode,
306         .destroy_inode  = sock_destroy_inode,
307         .statfs         = simple_statfs,
308 };
309
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316                                 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320         .d_dname  = sockfs_dname,
321 };
322
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324                             struct dentry *dentry, struct inode *inode,
325                             const char *suffix, void *value, size_t size)
326 {
327         if (value) {
328                 if (dentry->d_name.len + 1 > size)
329                         return -ERANGE;
330                 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331         }
332         return dentry->d_name.len + 1;
333 }
334
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338
339 static const struct xattr_handler sockfs_xattr_handler = {
340         .name = XATTR_NAME_SOCKPROTONAME,
341         .get = sockfs_xattr_get,
342 };
343
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345                                      struct dentry *dentry, struct inode *inode,
346                                      const char *suffix, const void *value,
347                                      size_t size, int flags)
348 {
349         /* Handled by LSM. */
350         return -EAGAIN;
351 }
352
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354         .prefix = XATTR_SECURITY_PREFIX,
355         .set = sockfs_security_xattr_set,
356 };
357
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359         &sockfs_xattr_handler,
360         &sockfs_security_xattr_handler,
361         NULL
362 };
363
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365                          int flags, const char *dev_name, void *data)
366 {
367         return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368                                   sockfs_xattr_handlers,
369                                   &sockfs_dentry_operations, SOCKFS_MAGIC);
370 }
371
372 static struct vfsmount *sock_mnt __read_mostly;
373
374 static struct file_system_type sock_fs_type = {
375         .name =         "sockfs",
376         .mount =        sockfs_mount,
377         .kill_sb =      kill_anon_super,
378 };
379
380 /*
381  *      Obtains the first available file descriptor and sets it up for use.
382  *
383  *      These functions create file structures and maps them to fd space
384  *      of the current process. On success it returns file descriptor
385  *      and file struct implicitly stored in sock->file.
386  *      Note that another thread may close file descriptor before we return
387  *      from this function. We use the fact that now we do not refer
388  *      to socket after mapping. If one day we will need it, this
389  *      function will increment ref. count on file by 1.
390  *
391  *      In any case returned fd MAY BE not valid!
392  *      This race condition is unavoidable
393  *      with shared fd spaces, we cannot solve it inside kernel,
394  *      but we take care of internal coherence yet.
395  */
396
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398 {
399         struct qstr name = { .name = "" };
400         struct path path;
401         struct file *file;
402
403         if (dname) {
404                 name.name = dname;
405                 name.len = strlen(name.name);
406         } else if (sock->sk) {
407                 name.name = sock->sk->sk_prot_creator->name;
408                 name.len = strlen(name.name);
409         }
410         path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411         if (unlikely(!path.dentry))
412                 return ERR_PTR(-ENOMEM);
413         path.mnt = mntget(sock_mnt);
414
415         d_instantiate(path.dentry, SOCK_INODE(sock));
416
417         file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418                   &socket_file_ops);
419         if (IS_ERR(file)) {
420                 /* drop dentry, keep inode */
421                 ihold(d_inode(path.dentry));
422                 path_put(&path);
423                 return file;
424         }
425
426         sock->file = file;
427         file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428         file->private_data = sock;
429         return file;
430 }
431 EXPORT_SYMBOL(sock_alloc_file);
432
433 static int sock_map_fd(struct socket *sock, int flags)
434 {
435         struct file *newfile;
436         int fd = get_unused_fd_flags(flags);
437         if (unlikely(fd < 0))
438                 return fd;
439
440         newfile = sock_alloc_file(sock, flags, NULL);
441         if (likely(!IS_ERR(newfile))) {
442                 fd_install(fd, newfile);
443                 return fd;
444         }
445
446         put_unused_fd(fd);
447         return PTR_ERR(newfile);
448 }
449
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452         if (file->f_op == &socket_file_ops)
453                 return file->private_data;      /* set in sock_map_fd */
454
455         *err = -ENOTSOCK;
456         return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459
460 /**
461  *      sockfd_lookup - Go from a file number to its socket slot
462  *      @fd: file handle
463  *      @err: pointer to an error code return
464  *
465  *      The file handle passed in is locked and the socket it is bound
466  *      too is returned. If an error occurs the err pointer is overwritten
467  *      with a negative errno code and NULL is returned. The function checks
468  *      for both invalid handles and passing a handle which is not a socket.
469  *
470  *      On a success the socket object pointer is returned.
471  */
472
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475         struct file *file;
476         struct socket *sock;
477
478         file = fget(fd);
479         if (!file) {
480                 *err = -EBADF;
481                 return NULL;
482         }
483
484         sock = sock_from_file(file, err);
485         if (!sock)
486                 fput(file);
487         return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493         struct fd f = fdget(fd);
494         struct socket *sock;
495
496         *err = -EBADF;
497         if (f.file) {
498                 sock = sock_from_file(f.file, err);
499                 if (likely(sock)) {
500                         *fput_needed = f.flags;
501                         return sock;
502                 }
503                 fdput(f);
504         }
505         return NULL;
506 }
507
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509                                 size_t size)
510 {
511         ssize_t len;
512         ssize_t used = 0;
513
514         len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515         if (len < 0)
516                 return len;
517         used += len;
518         if (buffer) {
519                 if (size < used)
520                         return -ERANGE;
521                 buffer += len;
522         }
523
524         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525         used += len;
526         if (buffer) {
527                 if (size < used)
528                         return -ERANGE;
529                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530                 buffer += len;
531         }
532
533         return used;
534 }
535
536 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538         int err = simple_setattr(dentry, iattr);
539
540         if (!err) {
541                 struct socket *sock = SOCKET_I(d_inode(dentry));
542
543                 sock->sk->sk_uid = iattr->ia_uid;
544         }
545
546         return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550         .listxattr = sockfs_listxattr,
551         .setattr = sockfs_setattr,
552 };
553
554 /**
555  *      sock_alloc      -       allocate a socket
556  *
557  *      Allocate a new inode and socket object. The two are bound together
558  *      and initialised. The socket is then returned. If we are out of inodes
559  *      NULL is returned.
560  */
561
562 struct socket *sock_alloc(void)
563 {
564         struct inode *inode;
565         struct socket *sock;
566
567         inode = new_inode_pseudo(sock_mnt->mnt_sb);
568         if (!inode)
569                 return NULL;
570
571         sock = SOCKET_I(inode);
572
573         kmemcheck_annotate_bitfield(sock, type);
574         inode->i_ino = get_next_ino();
575         inode->i_mode = S_IFSOCK | S_IRWXUGO;
576         inode->i_uid = current_fsuid();
577         inode->i_gid = current_fsgid();
578         inode->i_op = &sockfs_inode_ops;
579
580         this_cpu_add(sockets_in_use, 1);
581         return sock;
582 }
583 EXPORT_SYMBOL(sock_alloc);
584
585 /**
586  *      sock_release    -       close a socket
587  *      @sock: socket to close
588  *
589  *      The socket is released from the protocol stack if it has a release
590  *      callback, and the inode is then released if the socket is bound to
591  *      an inode not a file.
592  */
593
594 void sock_release(struct socket *sock)
595 {
596         if (sock->ops) {
597                 struct module *owner = sock->ops->owner;
598
599                 sock->ops->release(sock);
600                 sock->ops = NULL;
601                 module_put(owner);
602         }
603
604         if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605                 pr_err("%s: fasync list not empty!\n", __func__);
606
607         this_cpu_sub(sockets_in_use, 1);
608         if (!sock->file) {
609                 iput(SOCK_INODE(sock));
610                 return;
611         }
612         sock->file = NULL;
613 }
614 EXPORT_SYMBOL(sock_release);
615
616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
617 {
618         u8 flags = *tx_flags;
619
620         if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621                 flags |= SKBTX_HW_TSTAMP;
622
623         if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624                 flags |= SKBTX_SW_TSTAMP;
625
626         if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627                 flags |= SKBTX_SCHED_TSTAMP;
628
629         *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
634 {
635         int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636         BUG_ON(ret == -EIOCBQUEUED);
637         return ret;
638 }
639
640 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
641 {
642         int err = security_socket_sendmsg(sock, msg,
643                                           msg_data_left(msg));
644
645         return err ?: sock_sendmsg_nosec(sock, msg);
646 }
647 EXPORT_SYMBOL(sock_sendmsg);
648
649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650                    struct kvec *vec, size_t num, size_t size)
651 {
652         iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653         return sock_sendmsg(sock, msg);
654 }
655 EXPORT_SYMBOL(kernel_sendmsg);
656
657 /*
658  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
659  */
660 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
661         struct sk_buff *skb)
662 {
663         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
664         struct scm_timestamping tss;
665         int empty = 1;
666         struct skb_shared_hwtstamps *shhwtstamps =
667                 skb_hwtstamps(skb);
668
669         /* Race occurred between timestamp enabling and packet
670            receiving.  Fill in the current time for now. */
671         if (need_software_tstamp && skb->tstamp == 0)
672                 __net_timestamp(skb);
673
674         if (need_software_tstamp) {
675                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
676                         struct timeval tv;
677                         skb_get_timestamp(skb, &tv);
678                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
679                                  sizeof(tv), &tv);
680                 } else {
681                         struct timespec ts;
682                         skb_get_timestampns(skb, &ts);
683                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
684                                  sizeof(ts), &ts);
685                 }
686         }
687
688         memset(&tss, 0, sizeof(tss));
689         if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
690             ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
691                 empty = 0;
692         if (shhwtstamps &&
693             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
694             ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
695                 empty = 0;
696         if (!empty) {
697                 put_cmsg(msg, SOL_SOCKET,
698                          SCM_TIMESTAMPING, sizeof(tss), &tss);
699
700                 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
701                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
702                                  skb->len, skb->data);
703         }
704 }
705 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
706
707 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
708         struct sk_buff *skb)
709 {
710         int ack;
711
712         if (!sock_flag(sk, SOCK_WIFI_STATUS))
713                 return;
714         if (!skb->wifi_acked_valid)
715                 return;
716
717         ack = skb->wifi_acked;
718
719         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
720 }
721 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
722
723 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
724                                    struct sk_buff *skb)
725 {
726         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
727                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
728                         sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
729 }
730
731 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
732         struct sk_buff *skb)
733 {
734         sock_recv_timestamp(msg, sk, skb);
735         sock_recv_drops(msg, sk, skb);
736 }
737 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
738
739 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
740                                      int flags)
741 {
742         return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
743 }
744
745 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
746 {
747         int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
748
749         return err ?: sock_recvmsg_nosec(sock, msg, flags);
750 }
751 EXPORT_SYMBOL(sock_recvmsg);
752
753 /**
754  * kernel_recvmsg - Receive a message from a socket (kernel space)
755  * @sock:       The socket to receive the message from
756  * @msg:        Received message
757  * @vec:        Input s/g array for message data
758  * @num:        Size of input s/g array
759  * @size:       Number of bytes to read
760  * @flags:      Message flags (MSG_DONTWAIT, etc...)
761  *
762  * On return the msg structure contains the scatter/gather array passed in the
763  * vec argument. The array is modified so that it consists of the unfilled
764  * portion of the original array.
765  *
766  * The returned value is the total number of bytes received, or an error.
767  */
768 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
769                    struct kvec *vec, size_t num, size_t size, int flags)
770 {
771         mm_segment_t oldfs = get_fs();
772         int result;
773
774         iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
775         set_fs(KERNEL_DS);
776         result = sock_recvmsg(sock, msg, flags);
777         set_fs(oldfs);
778         return result;
779 }
780 EXPORT_SYMBOL(kernel_recvmsg);
781
782 static ssize_t sock_sendpage(struct file *file, struct page *page,
783                              int offset, size_t size, loff_t *ppos, int more)
784 {
785         struct socket *sock;
786         int flags;
787
788         sock = file->private_data;
789
790         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
791         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
792         flags |= more;
793
794         return kernel_sendpage(sock, page, offset, size, flags);
795 }
796
797 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
798                                 struct pipe_inode_info *pipe, size_t len,
799                                 unsigned int flags)
800 {
801         struct socket *sock = file->private_data;
802
803         if (unlikely(!sock->ops->splice_read))
804                 return -EINVAL;
805
806         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
807 }
808
809 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
810 {
811         struct file *file = iocb->ki_filp;
812         struct socket *sock = file->private_data;
813         struct msghdr msg = {.msg_iter = *to,
814                              .msg_iocb = iocb};
815         ssize_t res;
816
817         if (file->f_flags & O_NONBLOCK)
818                 msg.msg_flags = MSG_DONTWAIT;
819
820         if (iocb->ki_pos != 0)
821                 return -ESPIPE;
822
823         if (!iov_iter_count(to))        /* Match SYS5 behaviour */
824                 return 0;
825
826         res = sock_recvmsg(sock, &msg, msg.msg_flags);
827         *to = msg.msg_iter;
828         return res;
829 }
830
831 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
832 {
833         struct file *file = iocb->ki_filp;
834         struct socket *sock = file->private_data;
835         struct msghdr msg = {.msg_iter = *from,
836                              .msg_iocb = iocb};
837         ssize_t res;
838
839         if (iocb->ki_pos != 0)
840                 return -ESPIPE;
841
842         if (file->f_flags & O_NONBLOCK)
843                 msg.msg_flags = MSG_DONTWAIT;
844
845         if (sock->type == SOCK_SEQPACKET)
846                 msg.msg_flags |= MSG_EOR;
847
848         res = sock_sendmsg(sock, &msg);
849         *from = msg.msg_iter;
850         return res;
851 }
852
853 /*
854  * Atomic setting of ioctl hooks to avoid race
855  * with module unload.
856  */
857
858 static DEFINE_MUTEX(br_ioctl_mutex);
859 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
860
861 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
862 {
863         mutex_lock(&br_ioctl_mutex);
864         br_ioctl_hook = hook;
865         mutex_unlock(&br_ioctl_mutex);
866 }
867 EXPORT_SYMBOL(brioctl_set);
868
869 static DEFINE_MUTEX(vlan_ioctl_mutex);
870 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
871
872 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
873 {
874         mutex_lock(&vlan_ioctl_mutex);
875         vlan_ioctl_hook = hook;
876         mutex_unlock(&vlan_ioctl_mutex);
877 }
878 EXPORT_SYMBOL(vlan_ioctl_set);
879
880 static DEFINE_MUTEX(dlci_ioctl_mutex);
881 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
882
883 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
884 {
885         mutex_lock(&dlci_ioctl_mutex);
886         dlci_ioctl_hook = hook;
887         mutex_unlock(&dlci_ioctl_mutex);
888 }
889 EXPORT_SYMBOL(dlci_ioctl_set);
890
891 static long sock_do_ioctl(struct net *net, struct socket *sock,
892                                  unsigned int cmd, unsigned long arg)
893 {
894         int err;
895         void __user *argp = (void __user *)arg;
896
897         err = sock->ops->ioctl(sock, cmd, arg);
898
899         /*
900          * If this ioctl is unknown try to hand it down
901          * to the NIC driver.
902          */
903         if (err == -ENOIOCTLCMD)
904                 err = dev_ioctl(net, cmd, argp);
905
906         return err;
907 }
908
909 /*
910  *      With an ioctl, arg may well be a user mode pointer, but we don't know
911  *      what to do with it - that's up to the protocol still.
912  */
913
914 static struct ns_common *get_net_ns(struct ns_common *ns)
915 {
916         return &get_net(container_of(ns, struct net, ns))->ns;
917 }
918
919 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
920 {
921         struct socket *sock;
922         struct sock *sk;
923         void __user *argp = (void __user *)arg;
924         int pid, err;
925         struct net *net;
926
927         sock = file->private_data;
928         sk = sock->sk;
929         net = sock_net(sk);
930         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
931                 err = dev_ioctl(net, cmd, argp);
932         } else
933 #ifdef CONFIG_WEXT_CORE
934         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
935                 err = dev_ioctl(net, cmd, argp);
936         } else
937 #endif
938                 switch (cmd) {
939                 case FIOSETOWN:
940                 case SIOCSPGRP:
941                         err = -EFAULT;
942                         if (get_user(pid, (int __user *)argp))
943                                 break;
944                         f_setown(sock->file, pid, 1);
945                         err = 0;
946                         break;
947                 case FIOGETOWN:
948                 case SIOCGPGRP:
949                         err = put_user(f_getown(sock->file),
950                                        (int __user *)argp);
951                         break;
952                 case SIOCGIFBR:
953                 case SIOCSIFBR:
954                 case SIOCBRADDBR:
955                 case SIOCBRDELBR:
956                         err = -ENOPKG;
957                         if (!br_ioctl_hook)
958                                 request_module("bridge");
959
960                         mutex_lock(&br_ioctl_mutex);
961                         if (br_ioctl_hook)
962                                 err = br_ioctl_hook(net, cmd, argp);
963                         mutex_unlock(&br_ioctl_mutex);
964                         break;
965                 case SIOCGIFVLAN:
966                 case SIOCSIFVLAN:
967                         err = -ENOPKG;
968                         if (!vlan_ioctl_hook)
969                                 request_module("8021q");
970
971                         mutex_lock(&vlan_ioctl_mutex);
972                         if (vlan_ioctl_hook)
973                                 err = vlan_ioctl_hook(net, argp);
974                         mutex_unlock(&vlan_ioctl_mutex);
975                         break;
976                 case SIOCADDDLCI:
977                 case SIOCDELDLCI:
978                         err = -ENOPKG;
979                         if (!dlci_ioctl_hook)
980                                 request_module("dlci");
981
982                         mutex_lock(&dlci_ioctl_mutex);
983                         if (dlci_ioctl_hook)
984                                 err = dlci_ioctl_hook(cmd, argp);
985                         mutex_unlock(&dlci_ioctl_mutex);
986                         break;
987                 case SIOCGSKNS:
988                         err = -EPERM;
989                         if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
990                                 break;
991
992                         err = open_related_ns(&net->ns, get_net_ns);
993                         break;
994                 default:
995                         err = sock_do_ioctl(net, sock, cmd, arg);
996                         break;
997                 }
998         return err;
999 }
1000
1001 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002 {
1003         int err;
1004         struct socket *sock = NULL;
1005
1006         err = security_socket_create(family, type, protocol, 1);
1007         if (err)
1008                 goto out;
1009
1010         sock = sock_alloc();
1011         if (!sock) {
1012                 err = -ENOMEM;
1013                 goto out;
1014         }
1015
1016         sock->type = type;
1017         err = security_socket_post_create(sock, family, type, protocol, 1);
1018         if (err)
1019                 goto out_release;
1020
1021 out:
1022         *res = sock;
1023         return err;
1024 out_release:
1025         sock_release(sock);
1026         sock = NULL;
1027         goto out;
1028 }
1029 EXPORT_SYMBOL(sock_create_lite);
1030
1031 /* No kernel lock held - perfect */
1032 static unsigned int sock_poll(struct file *file, poll_table *wait)
1033 {
1034         unsigned int busy_flag = 0;
1035         struct socket *sock;
1036
1037         /*
1038          *      We can't return errors to poll, so it's either yes or no.
1039          */
1040         sock = file->private_data;
1041
1042         if (sk_can_busy_loop(sock->sk)) {
1043                 /* this socket can poll_ll so tell the system call */
1044                 busy_flag = POLL_BUSY_LOOP;
1045
1046                 /* once, only if requested by syscall */
1047                 if (wait && (wait->_key & POLL_BUSY_LOOP))
1048                         sk_busy_loop(sock->sk, 1);
1049         }
1050
1051         return busy_flag | sock->ops->poll(file, sock, wait);
1052 }
1053
1054 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055 {
1056         struct socket *sock = file->private_data;
1057
1058         return sock->ops->mmap(file, sock, vma);
1059 }
1060
1061 static int sock_close(struct inode *inode, struct file *filp)
1062 {
1063         sock_release(SOCKET_I(inode));
1064         return 0;
1065 }
1066
1067 /*
1068  *      Update the socket async list
1069  *
1070  *      Fasync_list locking strategy.
1071  *
1072  *      1. fasync_list is modified only under process context socket lock
1073  *         i.e. under semaphore.
1074  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075  *         or under socket lock
1076  */
1077
1078 static int sock_fasync(int fd, struct file *filp, int on)
1079 {
1080         struct socket *sock = filp->private_data;
1081         struct sock *sk = sock->sk;
1082         struct socket_wq *wq;
1083
1084         if (sk == NULL)
1085                 return -EINVAL;
1086
1087         lock_sock(sk);
1088         wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089         fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091         if (!wq->fasync_list)
1092                 sock_reset_flag(sk, SOCK_FASYNC);
1093         else
1094                 sock_set_flag(sk, SOCK_FASYNC);
1095
1096         release_sock(sk);
1097         return 0;
1098 }
1099
1100 /* This function may be called only under rcu_lock */
1101
1102 int sock_wake_async(struct socket_wq *wq, int how, int band)
1103 {
1104         if (!wq || !wq->fasync_list)
1105                 return -1;
1106
1107         switch (how) {
1108         case SOCK_WAKE_WAITD:
1109                 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110                         break;
1111                 goto call_kill;
1112         case SOCK_WAKE_SPACE:
1113                 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114                         break;
1115                 /* fall through */
1116         case SOCK_WAKE_IO:
1117 call_kill:
1118                 kill_fasync(&wq->fasync_list, SIGIO, band);
1119                 break;
1120         case SOCK_WAKE_URG:
1121                 kill_fasync(&wq->fasync_list, SIGURG, band);
1122         }
1123
1124         return 0;
1125 }
1126 EXPORT_SYMBOL(sock_wake_async);
1127
1128 int __sock_create(struct net *net, int family, int type, int protocol,
1129                          struct socket **res, int kern)
1130 {
1131         int err;
1132         struct socket *sock;
1133         const struct net_proto_family *pf;
1134
1135         /*
1136          *      Check protocol is in range
1137          */
1138         if (family < 0 || family >= NPROTO)
1139                 return -EAFNOSUPPORT;
1140         if (type < 0 || type >= SOCK_MAX)
1141                 return -EINVAL;
1142
1143         /* Compatibility.
1144
1145            This uglymoron is moved from INET layer to here to avoid
1146            deadlock in module load.
1147          */
1148         if (family == PF_INET && type == SOCK_PACKET) {
1149                 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150                              current->comm);
1151                 family = PF_PACKET;
1152         }
1153
1154         err = security_socket_create(family, type, protocol, kern);
1155         if (err)
1156                 return err;
1157
1158         /*
1159          *      Allocate the socket and allow the family to set things up. if
1160          *      the protocol is 0, the family is instructed to select an appropriate
1161          *      default.
1162          */
1163         sock = sock_alloc();
1164         if (!sock) {
1165                 net_warn_ratelimited("socket: no more sockets\n");
1166                 return -ENFILE; /* Not exactly a match, but its the
1167                                    closest posix thing */
1168         }
1169
1170         sock->type = type;
1171
1172 #ifdef CONFIG_MODULES
1173         /* Attempt to load a protocol module if the find failed.
1174          *
1175          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176          * requested real, full-featured networking support upon configuration.
1177          * Otherwise module support will break!
1178          */
1179         if (rcu_access_pointer(net_families[family]) == NULL)
1180                 request_module("net-pf-%d", family);
1181 #endif
1182
1183         rcu_read_lock();
1184         pf = rcu_dereference(net_families[family]);
1185         err = -EAFNOSUPPORT;
1186         if (!pf)
1187                 goto out_release;
1188
1189         /*
1190          * We will call the ->create function, that possibly is in a loadable
1191          * module, so we have to bump that loadable module refcnt first.
1192          */
1193         if (!try_module_get(pf->owner))
1194                 goto out_release;
1195
1196         /* Now protected by module ref count */
1197         rcu_read_unlock();
1198
1199         err = pf->create(net, sock, protocol, kern);
1200         if (err < 0)
1201                 goto out_module_put;
1202
1203         /*
1204          * Now to bump the refcnt of the [loadable] module that owns this
1205          * socket at sock_release time we decrement its refcnt.
1206          */
1207         if (!try_module_get(sock->ops->owner))
1208                 goto out_module_busy;
1209
1210         /*
1211          * Now that we're done with the ->create function, the [loadable]
1212          * module can have its refcnt decremented
1213          */
1214         module_put(pf->owner);
1215         err = security_socket_post_create(sock, family, type, protocol, kern);
1216         if (err)
1217                 goto out_sock_release;
1218         *res = sock;
1219
1220         return 0;
1221
1222 out_module_busy:
1223         err = -EAFNOSUPPORT;
1224 out_module_put:
1225         sock->ops = NULL;
1226         module_put(pf->owner);
1227 out_sock_release:
1228         sock_release(sock);
1229         return err;
1230
1231 out_release:
1232         rcu_read_unlock();
1233         goto out_sock_release;
1234 }
1235 EXPORT_SYMBOL(__sock_create);
1236
1237 int sock_create(int family, int type, int protocol, struct socket **res)
1238 {
1239         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240 }
1241 EXPORT_SYMBOL(sock_create);
1242
1243 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244 {
1245         return __sock_create(net, family, type, protocol, res, 1);
1246 }
1247 EXPORT_SYMBOL(sock_create_kern);
1248
1249 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250 {
1251         int retval;
1252         struct socket *sock;
1253         int flags;
1254
1255         /* Check the SOCK_* constants for consistency.  */
1256         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261         flags = type & ~SOCK_TYPE_MASK;
1262         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263                 return -EINVAL;
1264         type &= SOCK_TYPE_MASK;
1265
1266         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269         retval = sock_create(family, type, protocol, &sock);
1270         if (retval < 0)
1271                 goto out;
1272
1273         retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274         if (retval < 0)
1275                 goto out_release;
1276
1277 out:
1278         /* It may be already another descriptor 8) Not kernel problem. */
1279         return retval;
1280
1281 out_release:
1282         sock_release(sock);
1283         return retval;
1284 }
1285
1286 /*
1287  *      Create a pair of connected sockets.
1288  */
1289
1290 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291                 int __user *, usockvec)
1292 {
1293         struct socket *sock1, *sock2;
1294         int fd1, fd2, err;
1295         struct file *newfile1, *newfile2;
1296         int flags;
1297
1298         flags = type & ~SOCK_TYPE_MASK;
1299         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300                 return -EINVAL;
1301         type &= SOCK_TYPE_MASK;
1302
1303         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306         /*
1307          * Obtain the first socket and check if the underlying protocol
1308          * supports the socketpair call.
1309          */
1310
1311         err = sock_create(family, type, protocol, &sock1);
1312         if (err < 0)
1313                 goto out;
1314
1315         err = sock_create(family, type, protocol, &sock2);
1316         if (err < 0)
1317                 goto out_release_1;
1318
1319         err = sock1->ops->socketpair(sock1, sock2);
1320         if (err < 0)
1321                 goto out_release_both;
1322
1323         fd1 = get_unused_fd_flags(flags);
1324         if (unlikely(fd1 < 0)) {
1325                 err = fd1;
1326                 goto out_release_both;
1327         }
1328
1329         fd2 = get_unused_fd_flags(flags);
1330         if (unlikely(fd2 < 0)) {
1331                 err = fd2;
1332                 goto out_put_unused_1;
1333         }
1334
1335         newfile1 = sock_alloc_file(sock1, flags, NULL);
1336         if (IS_ERR(newfile1)) {
1337                 err = PTR_ERR(newfile1);
1338                 goto out_put_unused_both;
1339         }
1340
1341         newfile2 = sock_alloc_file(sock2, flags, NULL);
1342         if (IS_ERR(newfile2)) {
1343                 err = PTR_ERR(newfile2);
1344                 goto out_fput_1;
1345         }
1346
1347         err = put_user(fd1, &usockvec[0]);
1348         if (err)
1349                 goto out_fput_both;
1350
1351         err = put_user(fd2, &usockvec[1]);
1352         if (err)
1353                 goto out_fput_both;
1354
1355         audit_fd_pair(fd1, fd2);
1356
1357         fd_install(fd1, newfile1);
1358         fd_install(fd2, newfile2);
1359         /* fd1 and fd2 may be already another descriptors.
1360          * Not kernel problem.
1361          */
1362
1363         return 0;
1364
1365 out_fput_both:
1366         fput(newfile2);
1367         fput(newfile1);
1368         put_unused_fd(fd2);
1369         put_unused_fd(fd1);
1370         goto out;
1371
1372 out_fput_1:
1373         fput(newfile1);
1374         put_unused_fd(fd2);
1375         put_unused_fd(fd1);
1376         sock_release(sock2);
1377         goto out;
1378
1379 out_put_unused_both:
1380         put_unused_fd(fd2);
1381 out_put_unused_1:
1382         put_unused_fd(fd1);
1383 out_release_both:
1384         sock_release(sock2);
1385 out_release_1:
1386         sock_release(sock1);
1387 out:
1388         return err;
1389 }
1390
1391 /*
1392  *      Bind a name to a socket. Nothing much to do here since it's
1393  *      the protocol's responsibility to handle the local address.
1394  *
1395  *      We move the socket address to kernel space before we call
1396  *      the protocol layer (having also checked the address is ok).
1397  */
1398
1399 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400 {
1401         struct socket *sock;
1402         struct sockaddr_storage address;
1403         int err, fput_needed;
1404
1405         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406         if (sock) {
1407                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408                 if (err >= 0) {
1409                         err = security_socket_bind(sock,
1410                                                    (struct sockaddr *)&address,
1411                                                    addrlen);
1412                         if (!err)
1413                                 err = sock->ops->bind(sock,
1414                                                       (struct sockaddr *)
1415                                                       &address, addrlen);
1416                 }
1417                 fput_light(sock->file, fput_needed);
1418         }
1419         return err;
1420 }
1421
1422 /*
1423  *      Perform a listen. Basically, we allow the protocol to do anything
1424  *      necessary for a listen, and if that works, we mark the socket as
1425  *      ready for listening.
1426  */
1427
1428 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429 {
1430         struct socket *sock;
1431         int err, fput_needed;
1432         int somaxconn;
1433
1434         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435         if (sock) {
1436                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437                 if ((unsigned int)backlog > somaxconn)
1438                         backlog = somaxconn;
1439
1440                 err = security_socket_listen(sock, backlog);
1441                 if (!err)
1442                         err = sock->ops->listen(sock, backlog);
1443
1444                 fput_light(sock->file, fput_needed);
1445         }
1446         return err;
1447 }
1448
1449 /*
1450  *      For accept, we attempt to create a new socket, set up the link
1451  *      with the client, wake up the client, then return the new
1452  *      connected fd. We collect the address of the connector in kernel
1453  *      space and move it to user at the very end. This is unclean because
1454  *      we open the socket then return an error.
1455  *
1456  *      1003.1g adds the ability to recvmsg() to query connection pending
1457  *      status to recvmsg. We need to add that support in a way thats
1458  *      clean when we restucture accept also.
1459  */
1460
1461 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462                 int __user *, upeer_addrlen, int, flags)
1463 {
1464         struct socket *sock, *newsock;
1465         struct file *newfile;
1466         int err, len, newfd, fput_needed;
1467         struct sockaddr_storage address;
1468
1469         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470                 return -EINVAL;
1471
1472         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476         if (!sock)
1477                 goto out;
1478
1479         err = -ENFILE;
1480         newsock = sock_alloc();
1481         if (!newsock)
1482                 goto out_put;
1483
1484         newsock->type = sock->type;
1485         newsock->ops = sock->ops;
1486
1487         /*
1488          * We don't need try_module_get here, as the listening socket (sock)
1489          * has the protocol module (sock->ops->owner) held.
1490          */
1491         __module_get(newsock->ops->owner);
1492
1493         newfd = get_unused_fd_flags(flags);
1494         if (unlikely(newfd < 0)) {
1495                 err = newfd;
1496                 sock_release(newsock);
1497                 goto out_put;
1498         }
1499         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500         if (IS_ERR(newfile)) {
1501                 err = PTR_ERR(newfile);
1502                 put_unused_fd(newfd);
1503                 sock_release(newsock);
1504                 goto out_put;
1505         }
1506
1507         err = security_socket_accept(sock, newsock);
1508         if (err)
1509                 goto out_fd;
1510
1511         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512         if (err < 0)
1513                 goto out_fd;
1514
1515         if (upeer_sockaddr) {
1516                 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517                                           &len, 2) < 0) {
1518                         err = -ECONNABORTED;
1519                         goto out_fd;
1520                 }
1521                 err = move_addr_to_user(&address,
1522                                         len, upeer_sockaddr, upeer_addrlen);
1523                 if (err < 0)
1524                         goto out_fd;
1525         }
1526
1527         /* File flags are not inherited via accept() unlike another OSes. */
1528
1529         fd_install(newfd, newfile);
1530         err = newfd;
1531
1532 out_put:
1533         fput_light(sock->file, fput_needed);
1534 out:
1535         return err;
1536 out_fd:
1537         fput(newfile);
1538         put_unused_fd(newfd);
1539         goto out_put;
1540 }
1541
1542 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543                 int __user *, upeer_addrlen)
1544 {
1545         return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546 }
1547
1548 /*
1549  *      Attempt to connect to a socket with the server address.  The address
1550  *      is in user space so we verify it is OK and move it to kernel space.
1551  *
1552  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553  *      break bindings
1554  *
1555  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556  *      other SEQPACKET protocols that take time to connect() as it doesn't
1557  *      include the -EINPROGRESS status for such sockets.
1558  */
1559
1560 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561                 int, addrlen)
1562 {
1563         struct socket *sock;
1564         struct sockaddr_storage address;
1565         int err, fput_needed;
1566
1567         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568         if (!sock)
1569                 goto out;
1570         err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571         if (err < 0)
1572                 goto out_put;
1573
1574         err =
1575             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576         if (err)
1577                 goto out_put;
1578
1579         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580                                  sock->file->f_flags);
1581 out_put:
1582         fput_light(sock->file, fput_needed);
1583 out:
1584         return err;
1585 }
1586
1587 /*
1588  *      Get the local address ('name') of a socket object. Move the obtained
1589  *      name to user space.
1590  */
1591
1592 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593                 int __user *, usockaddr_len)
1594 {
1595         struct socket *sock;
1596         struct sockaddr_storage address;
1597         int len, err, fput_needed;
1598
1599         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600         if (!sock)
1601                 goto out;
1602
1603         err = security_socket_getsockname(sock);
1604         if (err)
1605                 goto out_put;
1606
1607         err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608         if (err)
1609                 goto out_put;
1610         err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1611
1612 out_put:
1613         fput_light(sock->file, fput_needed);
1614 out:
1615         return err;
1616 }
1617
1618 /*
1619  *      Get the remote address ('name') of a socket object. Move the obtained
1620  *      name to user space.
1621  */
1622
1623 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624                 int __user *, usockaddr_len)
1625 {
1626         struct socket *sock;
1627         struct sockaddr_storage address;
1628         int len, err, fput_needed;
1629
1630         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631         if (sock != NULL) {
1632                 err = security_socket_getpeername(sock);
1633                 if (err) {
1634                         fput_light(sock->file, fput_needed);
1635                         return err;
1636                 }
1637
1638                 err =
1639                     sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640                                        1);
1641                 if (!err)
1642                         err = move_addr_to_user(&address, len, usockaddr,
1643                                                 usockaddr_len);
1644                 fput_light(sock->file, fput_needed);
1645         }
1646         return err;
1647 }
1648
1649 /*
1650  *      Send a datagram to a given address. We move the address into kernel
1651  *      space and check the user space data area is readable before invoking
1652  *      the protocol.
1653  */
1654
1655 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656                 unsigned int, flags, struct sockaddr __user *, addr,
1657                 int, addr_len)
1658 {
1659         struct socket *sock;
1660         struct sockaddr_storage address;
1661         int err;
1662         struct msghdr msg;
1663         struct iovec iov;
1664         int fput_needed;
1665
1666         err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667         if (unlikely(err))
1668                 return err;
1669         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670         if (!sock)
1671                 goto out;
1672
1673         msg.msg_name = NULL;
1674         msg.msg_control = NULL;
1675         msg.msg_controllen = 0;
1676         msg.msg_namelen = 0;
1677         if (addr) {
1678                 err = move_addr_to_kernel(addr, addr_len, &address);
1679                 if (err < 0)
1680                         goto out_put;
1681                 msg.msg_name = (struct sockaddr *)&address;
1682                 msg.msg_namelen = addr_len;
1683         }
1684         if (sock->file->f_flags & O_NONBLOCK)
1685                 flags |= MSG_DONTWAIT;
1686         msg.msg_flags = flags;
1687         err = sock_sendmsg(sock, &msg);
1688
1689 out_put:
1690         fput_light(sock->file, fput_needed);
1691 out:
1692         return err;
1693 }
1694
1695 /*
1696  *      Send a datagram down a socket.
1697  */
1698
1699 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700                 unsigned int, flags)
1701 {
1702         return sys_sendto(fd, buff, len, flags, NULL, 0);
1703 }
1704
1705 /*
1706  *      Receive a frame from the socket and optionally record the address of the
1707  *      sender. We verify the buffers are writable and if needed move the
1708  *      sender address from kernel to user space.
1709  */
1710
1711 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712                 unsigned int, flags, struct sockaddr __user *, addr,
1713                 int __user *, addr_len)
1714 {
1715         struct socket *sock;
1716         struct iovec iov;
1717         struct msghdr msg;
1718         struct sockaddr_storage address;
1719         int err, err2;
1720         int fput_needed;
1721
1722         err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723         if (unlikely(err))
1724                 return err;
1725         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726         if (!sock)
1727                 goto out;
1728
1729         msg.msg_control = NULL;
1730         msg.msg_controllen = 0;
1731         /* Save some cycles and don't copy the address if not needed */
1732         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733         /* We assume all kernel code knows the size of sockaddr_storage */
1734         msg.msg_namelen = 0;
1735         msg.msg_iocb = NULL;
1736         if (sock->file->f_flags & O_NONBLOCK)
1737                 flags |= MSG_DONTWAIT;
1738         err = sock_recvmsg(sock, &msg, flags);
1739
1740         if (err >= 0 && addr != NULL) {
1741                 err2 = move_addr_to_user(&address,
1742                                          msg.msg_namelen, addr, addr_len);
1743                 if (err2 < 0)
1744                         err = err2;
1745         }
1746
1747         fput_light(sock->file, fput_needed);
1748 out:
1749         return err;
1750 }
1751
1752 /*
1753  *      Receive a datagram from a socket.
1754  */
1755
1756 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757                 unsigned int, flags)
1758 {
1759         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760 }
1761
1762 /*
1763  *      Set a socket option. Because we don't know the option lengths we have
1764  *      to pass the user mode parameter for the protocols to sort out.
1765  */
1766
1767 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768                 char __user *, optval, int, optlen)
1769 {
1770         int err, fput_needed;
1771         struct socket *sock;
1772
1773         if (optlen < 0)
1774                 return -EINVAL;
1775
1776         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777         if (sock != NULL) {
1778                 err = security_socket_setsockopt(sock, level, optname);
1779                 if (err)
1780                         goto out_put;
1781
1782                 if (level == SOL_SOCKET)
1783                         err =
1784                             sock_setsockopt(sock, level, optname, optval,
1785                                             optlen);
1786                 else
1787                         err =
1788                             sock->ops->setsockopt(sock, level, optname, optval,
1789                                                   optlen);
1790 out_put:
1791                 fput_light(sock->file, fput_needed);
1792         }
1793         return err;
1794 }
1795
1796 /*
1797  *      Get a socket option. Because we don't know the option lengths we have
1798  *      to pass a user mode parameter for the protocols to sort out.
1799  */
1800
1801 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802                 char __user *, optval, int __user *, optlen)
1803 {
1804         int err, fput_needed;
1805         struct socket *sock;
1806
1807         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808         if (sock != NULL) {
1809                 err = security_socket_getsockopt(sock, level, optname);
1810                 if (err)
1811                         goto out_put;
1812
1813                 if (level == SOL_SOCKET)
1814                         err =
1815                             sock_getsockopt(sock, level, optname, optval,
1816                                             optlen);
1817                 else
1818                         err =
1819                             sock->ops->getsockopt(sock, level, optname, optval,
1820                                                   optlen);
1821 out_put:
1822                 fput_light(sock->file, fput_needed);
1823         }
1824         return err;
1825 }
1826
1827 /*
1828  *      Shutdown a socket.
1829  */
1830
1831 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832 {
1833         int err, fput_needed;
1834         struct socket *sock;
1835
1836         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837         if (sock != NULL) {
1838                 err = security_socket_shutdown(sock, how);
1839                 if (!err)
1840                         err = sock->ops->shutdown(sock, how);
1841                 fput_light(sock->file, fput_needed);
1842         }
1843         return err;
1844 }
1845
1846 /* A couple of helpful macros for getting the address of the 32/64 bit
1847  * fields which are the same type (int / unsigned) on our platforms.
1848  */
1849 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1851 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1852
1853 struct used_address {
1854         struct sockaddr_storage name;
1855         unsigned int name_len;
1856 };
1857
1858 static int copy_msghdr_from_user(struct msghdr *kmsg,
1859                                  struct user_msghdr __user *umsg,
1860                                  struct sockaddr __user **save_addr,
1861                                  struct iovec **iov)
1862 {
1863         struct sockaddr __user *uaddr;
1864         struct iovec __user *uiov;
1865         size_t nr_segs;
1866         ssize_t err;
1867
1868         if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869             __get_user(uaddr, &umsg->msg_name) ||
1870             __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871             __get_user(uiov, &umsg->msg_iov) ||
1872             __get_user(nr_segs, &umsg->msg_iovlen) ||
1873             __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874             __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875             __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876                 return -EFAULT;
1877
1878         if (!uaddr)
1879                 kmsg->msg_namelen = 0;
1880
1881         if (kmsg->msg_namelen < 0)
1882                 return -EINVAL;
1883
1884         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887         if (save_addr)
1888                 *save_addr = uaddr;
1889
1890         if (uaddr && kmsg->msg_namelen) {
1891                 if (!save_addr) {
1892                         err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1893                                                   kmsg->msg_name);
1894                         if (err < 0)
1895                                 return err;
1896                 }
1897         } else {
1898                 kmsg->msg_name = NULL;
1899                 kmsg->msg_namelen = 0;
1900         }
1901
1902         if (nr_segs > UIO_MAXIOV)
1903                 return -EMSGSIZE;
1904
1905         kmsg->msg_iocb = NULL;
1906
1907         return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908                             UIO_FASTIOV, iov, &kmsg->msg_iter);
1909 }
1910
1911 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912                          struct msghdr *msg_sys, unsigned int flags,
1913                          struct used_address *used_address,
1914                          unsigned int allowed_msghdr_flags)
1915 {
1916         struct compat_msghdr __user *msg_compat =
1917             (struct compat_msghdr __user *)msg;
1918         struct sockaddr_storage address;
1919         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920         unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921                                 __aligned(sizeof(__kernel_size_t));
1922         /* 20 is size of ipv6_pktinfo */
1923         unsigned char *ctl_buf = ctl;
1924         int ctl_len;
1925         ssize_t err;
1926
1927         msg_sys->msg_name = &address;
1928
1929         if (MSG_CMSG_COMPAT & flags)
1930                 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931         else
1932                 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933         if (err < 0)
1934                 return err;
1935
1936         err = -ENOBUFS;
1937
1938         if (msg_sys->msg_controllen > INT_MAX)
1939                 goto out_freeiov;
1940         flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941         ctl_len = msg_sys->msg_controllen;
1942         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943                 err =
1944                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945                                                      sizeof(ctl));
1946                 if (err)
1947                         goto out_freeiov;
1948                 ctl_buf = msg_sys->msg_control;
1949                 ctl_len = msg_sys->msg_controllen;
1950         } else if (ctl_len) {
1951                 if (ctl_len > sizeof(ctl)) {
1952                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953                         if (ctl_buf == NULL)
1954                                 goto out_freeiov;
1955                 }
1956                 err = -EFAULT;
1957                 /*
1958                  * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960                  * checking falls down on this.
1961                  */
1962                 if (copy_from_user(ctl_buf,
1963                                    (void __user __force *)msg_sys->msg_control,
1964                                    ctl_len))
1965                         goto out_freectl;
1966                 msg_sys->msg_control = ctl_buf;
1967         }
1968         msg_sys->msg_flags = flags;
1969
1970         if (sock->file->f_flags & O_NONBLOCK)
1971                 msg_sys->msg_flags |= MSG_DONTWAIT;
1972         /*
1973          * If this is sendmmsg() and current destination address is same as
1974          * previously succeeded address, omit asking LSM's decision.
1975          * used_address->name_len is initialized to UINT_MAX so that the first
1976          * destination address never matches.
1977          */
1978         if (used_address && msg_sys->msg_name &&
1979             used_address->name_len == msg_sys->msg_namelen &&
1980             !memcmp(&used_address->name, msg_sys->msg_name,
1981                     used_address->name_len)) {
1982                 err = sock_sendmsg_nosec(sock, msg_sys);
1983                 goto out_freectl;
1984         }
1985         err = sock_sendmsg(sock, msg_sys);
1986         /*
1987          * If this is sendmmsg() and sending to current destination address was
1988          * successful, remember it.
1989          */
1990         if (used_address && err >= 0) {
1991                 used_address->name_len = msg_sys->msg_namelen;
1992                 if (msg_sys->msg_name)
1993                         memcpy(&used_address->name, msg_sys->msg_name,
1994                                used_address->name_len);
1995         }
1996
1997 out_freectl:
1998         if (ctl_buf != ctl)
1999                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000 out_freeiov:
2001         kfree(iov);
2002         return err;
2003 }
2004
2005 /*
2006  *      BSD sendmsg interface
2007  */
2008
2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010 {
2011         int fput_needed, err;
2012         struct msghdr msg_sys;
2013         struct socket *sock;
2014
2015         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016         if (!sock)
2017                 goto out;
2018
2019         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021         fput_light(sock->file, fput_needed);
2022 out:
2023         return err;
2024 }
2025
2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027 {
2028         if (flags & MSG_CMSG_COMPAT)
2029                 return -EINVAL;
2030         return __sys_sendmsg(fd, msg, flags);
2031 }
2032
2033 /*
2034  *      Linux sendmmsg interface
2035  */
2036
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038                    unsigned int flags)
2039 {
2040         int fput_needed, err, datagrams;
2041         struct socket *sock;
2042         struct mmsghdr __user *entry;
2043         struct compat_mmsghdr __user *compat_entry;
2044         struct msghdr msg_sys;
2045         struct used_address used_address;
2046         unsigned int oflags = flags;
2047
2048         if (vlen > UIO_MAXIOV)
2049                 vlen = UIO_MAXIOV;
2050
2051         datagrams = 0;
2052
2053         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054         if (!sock)
2055                 return err;
2056
2057         used_address.name_len = UINT_MAX;
2058         entry = mmsg;
2059         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060         err = 0;
2061         flags |= MSG_BATCH;
2062
2063         while (datagrams < vlen) {
2064                 if (datagrams == vlen - 1)
2065                         flags = oflags;
2066
2067                 if (MSG_CMSG_COMPAT & flags) {
2068                         err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069                                              &msg_sys, flags, &used_address, MSG_EOR);
2070                         if (err < 0)
2071                                 break;
2072                         err = __put_user(err, &compat_entry->msg_len);
2073                         ++compat_entry;
2074                 } else {
2075                         err = ___sys_sendmsg(sock,
2076                                              (struct user_msghdr __user *)entry,
2077                                              &msg_sys, flags, &used_address, MSG_EOR);
2078                         if (err < 0)
2079                                 break;
2080                         err = put_user(err, &entry->msg_len);
2081                         ++entry;
2082                 }
2083
2084                 if (err)
2085                         break;
2086                 ++datagrams;
2087                 if (msg_data_left(&msg_sys))
2088                         break;
2089                 cond_resched();
2090         }
2091
2092         fput_light(sock->file, fput_needed);
2093
2094         /* We only return an error if no datagrams were able to be sent */
2095         if (datagrams != 0)
2096                 return datagrams;
2097
2098         return err;
2099 }
2100
2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102                 unsigned int, vlen, unsigned int, flags)
2103 {
2104         if (flags & MSG_CMSG_COMPAT)
2105                 return -EINVAL;
2106         return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107 }
2108
2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2111 {
2112         struct compat_msghdr __user *msg_compat =
2113             (struct compat_msghdr __user *)msg;
2114         struct iovec iovstack[UIO_FASTIOV];
2115         struct iovec *iov = iovstack;
2116         unsigned long cmsg_ptr;
2117         int len;
2118         ssize_t err;
2119
2120         /* kernel mode address */
2121         struct sockaddr_storage addr;
2122
2123         /* user mode address pointers */
2124         struct sockaddr __user *uaddr;
2125         int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127         msg_sys->msg_name = &addr;
2128
2129         if (MSG_CMSG_COMPAT & flags)
2130                 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131         else
2132                 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133         if (err < 0)
2134                 return err;
2135
2136         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139         /* We assume all kernel code knows the size of sockaddr_storage */
2140         msg_sys->msg_namelen = 0;
2141
2142         if (sock->file->f_flags & O_NONBLOCK)
2143                 flags |= MSG_DONTWAIT;
2144         err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145         if (err < 0)
2146                 goto out_freeiov;
2147         len = err;
2148
2149         if (uaddr != NULL) {
2150                 err = move_addr_to_user(&addr,
2151                                         msg_sys->msg_namelen, uaddr,
2152                                         uaddr_len);
2153                 if (err < 0)
2154                         goto out_freeiov;
2155         }
2156         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157                          COMPAT_FLAGS(msg));
2158         if (err)
2159                 goto out_freeiov;
2160         if (MSG_CMSG_COMPAT & flags)
2161                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162                                  &msg_compat->msg_controllen);
2163         else
2164                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165                                  &msg->msg_controllen);
2166         if (err)
2167                 goto out_freeiov;
2168         err = len;
2169
2170 out_freeiov:
2171         kfree(iov);
2172         return err;
2173 }
2174
2175 /*
2176  *      BSD recvmsg interface
2177  */
2178
2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2180 {
2181         int fput_needed, err;
2182         struct msghdr msg_sys;
2183         struct socket *sock;
2184
2185         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186         if (!sock)
2187                 goto out;
2188
2189         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191         fput_light(sock->file, fput_needed);
2192 out:
2193         return err;
2194 }
2195
2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197                 unsigned int, flags)
2198 {
2199         if (flags & MSG_CMSG_COMPAT)
2200                 return -EINVAL;
2201         return __sys_recvmsg(fd, msg, flags);
2202 }
2203
2204 /*
2205  *     Linux recvmmsg interface
2206  */
2207
2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209                    unsigned int flags, struct timespec *timeout)
2210 {
2211         int fput_needed, err, datagrams;
2212         struct socket *sock;
2213         struct mmsghdr __user *entry;
2214         struct compat_mmsghdr __user *compat_entry;
2215         struct msghdr msg_sys;
2216         struct timespec64 end_time;
2217         struct timespec64 timeout64;
2218
2219         if (timeout &&
2220             poll_select_set_timeout(&end_time, timeout->tv_sec,
2221                                     timeout->tv_nsec))
2222                 return -EINVAL;
2223
2224         datagrams = 0;
2225
2226         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227         if (!sock)
2228                 return err;
2229
2230         err = sock_error(sock->sk);
2231         if (err)
2232                 goto out_put;
2233
2234         entry = mmsg;
2235         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236
2237         while (datagrams < vlen) {
2238                 /*
2239                  * No need to ask LSM for more than the first datagram.
2240                  */
2241                 if (MSG_CMSG_COMPAT & flags) {
2242                         err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2243                                              &msg_sys, flags & ~MSG_WAITFORONE,
2244                                              datagrams);
2245                         if (err < 0)
2246                                 break;
2247                         err = __put_user(err, &compat_entry->msg_len);
2248                         ++compat_entry;
2249                 } else {
2250                         err = ___sys_recvmsg(sock,
2251                                              (struct user_msghdr __user *)entry,
2252                                              &msg_sys, flags & ~MSG_WAITFORONE,
2253                                              datagrams);
2254                         if (err < 0)
2255                                 break;
2256                         err = put_user(err, &entry->msg_len);
2257                         ++entry;
2258                 }
2259
2260                 if (err)
2261                         break;
2262                 ++datagrams;
2263
2264                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265                 if (flags & MSG_WAITFORONE)
2266                         flags |= MSG_DONTWAIT;
2267
2268                 if (timeout) {
2269                         ktime_get_ts64(&timeout64);
2270                         *timeout = timespec64_to_timespec(
2271                                         timespec64_sub(end_time, timeout64));
2272                         if (timeout->tv_sec < 0) {
2273                                 timeout->tv_sec = timeout->tv_nsec = 0;
2274                                 break;
2275                         }
2276
2277                         /* Timeout, return less than vlen datagrams */
2278                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2279                                 break;
2280                 }
2281
2282                 /* Out of band data, return right away */
2283                 if (msg_sys.msg_flags & MSG_OOB)
2284                         break;
2285                 cond_resched();
2286         }
2287
2288         if (err == 0)
2289                 goto out_put;
2290
2291         if (datagrams == 0) {
2292                 datagrams = err;
2293                 goto out_put;
2294         }
2295
2296         /*
2297          * We may return less entries than requested (vlen) if the
2298          * sock is non block and there aren't enough datagrams...
2299          */
2300         if (err != -EAGAIN) {
2301                 /*
2302                  * ... or  if recvmsg returns an error after we
2303                  * received some datagrams, where we record the
2304                  * error to return on the next call or if the
2305                  * app asks about it using getsockopt(SO_ERROR).
2306                  */
2307                 sock->sk->sk_err = -err;
2308         }
2309 out_put:
2310         fput_light(sock->file, fput_needed);
2311
2312         return datagrams;
2313 }
2314
2315 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2316                 unsigned int, vlen, unsigned int, flags,
2317                 struct timespec __user *, timeout)
2318 {
2319         int datagrams;
2320         struct timespec timeout_sys;
2321
2322         if (flags & MSG_CMSG_COMPAT)
2323                 return -EINVAL;
2324
2325         if (!timeout)
2326                 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2327
2328         if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2329                 return -EFAULT;
2330
2331         datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2332
2333         if (datagrams > 0 &&
2334             copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2335                 datagrams = -EFAULT;
2336
2337         return datagrams;
2338 }
2339
2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2341 /* Argument list sizes for sys_socketcall */
2342 #define AL(x) ((x) * sizeof(unsigned long))
2343 static const unsigned char nargs[21] = {
2344         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2347         AL(4), AL(5), AL(4)
2348 };
2349
2350 #undef AL
2351
2352 /*
2353  *      System call vectors.
2354  *
2355  *      Argument checking cleaned up. Saved 20% in size.
2356  *  This function doesn't need to set the kernel lock because
2357  *  it is set by the callees.
2358  */
2359
2360 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2361 {
2362         unsigned long a[AUDITSC_ARGS];
2363         unsigned long a0, a1;
2364         int err;
2365         unsigned int len;
2366
2367         if (call < 1 || call > SYS_SENDMMSG)
2368                 return -EINVAL;
2369
2370         len = nargs[call];
2371         if (len > sizeof(a))
2372                 return -EINVAL;
2373
2374         /* copy_from_user should be SMP safe. */
2375         if (copy_from_user(a, args, len))
2376                 return -EFAULT;
2377
2378         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2379         if (err)
2380                 return err;
2381
2382         a0 = a[0];
2383         a1 = a[1];
2384
2385         switch (call) {
2386         case SYS_SOCKET:
2387                 err = sys_socket(a0, a1, a[2]);
2388                 break;
2389         case SYS_BIND:
2390                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2391                 break;
2392         case SYS_CONNECT:
2393                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2394                 break;
2395         case SYS_LISTEN:
2396                 err = sys_listen(a0, a1);
2397                 break;
2398         case SYS_ACCEPT:
2399                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2400                                   (int __user *)a[2], 0);
2401                 break;
2402         case SYS_GETSOCKNAME:
2403                 err =
2404                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2405                                     (int __user *)a[2]);
2406                 break;
2407         case SYS_GETPEERNAME:
2408                 err =
2409                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2410                                     (int __user *)a[2]);
2411                 break;
2412         case SYS_SOCKETPAIR:
2413                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2414                 break;
2415         case SYS_SEND:
2416                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2417                 break;
2418         case SYS_SENDTO:
2419                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2420                                  (struct sockaddr __user *)a[4], a[5]);
2421                 break;
2422         case SYS_RECV:
2423                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2424                 break;
2425         case SYS_RECVFROM:
2426                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2427                                    (struct sockaddr __user *)a[4],
2428                                    (int __user *)a[5]);
2429                 break;
2430         case SYS_SHUTDOWN:
2431                 err = sys_shutdown(a0, a1);
2432                 break;
2433         case SYS_SETSOCKOPT:
2434                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2435                 break;
2436         case SYS_GETSOCKOPT:
2437                 err =
2438                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2439                                    (int __user *)a[4]);
2440                 break;
2441         case SYS_SENDMSG:
2442                 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2443                 break;
2444         case SYS_SENDMMSG:
2445                 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2446                 break;
2447         case SYS_RECVMSG:
2448                 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2449                 break;
2450         case SYS_RECVMMSG:
2451                 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2452                                    (struct timespec __user *)a[4]);
2453                 break;
2454         case SYS_ACCEPT4:
2455                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2456                                   (int __user *)a[2], a[3]);
2457                 break;
2458         default:
2459                 err = -EINVAL;
2460                 break;
2461         }
2462         return err;
2463 }
2464
2465 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2466
2467 /**
2468  *      sock_register - add a socket protocol handler
2469  *      @ops: description of protocol
2470  *
2471  *      This function is called by a protocol handler that wants to
2472  *      advertise its address family, and have it linked into the
2473  *      socket interface. The value ops->family corresponds to the
2474  *      socket system call protocol family.
2475  */
2476 int sock_register(const struct net_proto_family *ops)
2477 {
2478         int err;
2479
2480         if (ops->family >= NPROTO) {
2481                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2482                 return -ENOBUFS;
2483         }
2484
2485         spin_lock(&net_family_lock);
2486         if (rcu_dereference_protected(net_families[ops->family],
2487                                       lockdep_is_held(&net_family_lock)))
2488                 err = -EEXIST;
2489         else {
2490                 rcu_assign_pointer(net_families[ops->family], ops);
2491                 err = 0;
2492         }
2493         spin_unlock(&net_family_lock);
2494
2495         pr_info("NET: Registered protocol family %d\n", ops->family);
2496         return err;
2497 }
2498 EXPORT_SYMBOL(sock_register);
2499
2500 /**
2501  *      sock_unregister - remove a protocol handler
2502  *      @family: protocol family to remove
2503  *
2504  *      This function is called by a protocol handler that wants to
2505  *      remove its address family, and have it unlinked from the
2506  *      new socket creation.
2507  *
2508  *      If protocol handler is a module, then it can use module reference
2509  *      counts to protect against new references. If protocol handler is not
2510  *      a module then it needs to provide its own protection in
2511  *      the ops->create routine.
2512  */
2513 void sock_unregister(int family)
2514 {
2515         BUG_ON(family < 0 || family >= NPROTO);
2516
2517         spin_lock(&net_family_lock);
2518         RCU_INIT_POINTER(net_families[family], NULL);
2519         spin_unlock(&net_family_lock);
2520
2521         synchronize_rcu();
2522
2523         pr_info("NET: Unregistered protocol family %d\n", family);
2524 }
2525 EXPORT_SYMBOL(sock_unregister);
2526
2527 static int __init sock_init(void)
2528 {
2529         int err;
2530         /*
2531          *      Initialize the network sysctl infrastructure.
2532          */
2533         err = net_sysctl_init();
2534         if (err)
2535                 goto out;
2536
2537         /*
2538          *      Initialize skbuff SLAB cache
2539          */
2540         skb_init();
2541
2542         /*
2543          *      Initialize the protocols module.
2544          */
2545
2546         init_inodecache();
2547
2548         err = register_filesystem(&sock_fs_type);
2549         if (err)
2550                 goto out_fs;
2551         sock_mnt = kern_mount(&sock_fs_type);
2552         if (IS_ERR(sock_mnt)) {
2553                 err = PTR_ERR(sock_mnt);
2554                 goto out_mount;
2555         }
2556
2557         /* The real protocol initialization is performed in later initcalls.
2558          */
2559
2560 #ifdef CONFIG_NETFILTER
2561         err = netfilter_init();
2562         if (err)
2563                 goto out;
2564 #endif
2565
2566         ptp_classifier_init();
2567
2568 out:
2569         return err;
2570
2571 out_mount:
2572         unregister_filesystem(&sock_fs_type);
2573 out_fs:
2574         goto out;
2575 }
2576
2577 core_initcall(sock_init);       /* early initcall */
2578
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file *seq)
2581 {
2582         int cpu;
2583         int counter = 0;
2584
2585         for_each_possible_cpu(cpu)
2586             counter += per_cpu(sockets_in_use, cpu);
2587
2588         /* It can be negative, by the way. 8) */
2589         if (counter < 0)
2590                 counter = 0;
2591
2592         seq_printf(seq, "sockets: used %d\n", counter);
2593 }
2594 #endif                          /* CONFIG_PROC_FS */
2595
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net *net, struct socket *sock,
2598                          unsigned int cmd, void __user *up)
2599 {
2600         mm_segment_t old_fs = get_fs();
2601         struct timeval ktv;
2602         int err;
2603
2604         set_fs(KERNEL_DS);
2605         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606         set_fs(old_fs);
2607         if (!err)
2608                 err = compat_put_timeval(&ktv, up);
2609
2610         return err;
2611 }
2612
2613 static int do_siocgstampns(struct net *net, struct socket *sock,
2614                            unsigned int cmd, void __user *up)
2615 {
2616         mm_segment_t old_fs = get_fs();
2617         struct timespec kts;
2618         int err;
2619
2620         set_fs(KERNEL_DS);
2621         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622         set_fs(old_fs);
2623         if (!err)
2624                 err = compat_put_timespec(&kts, up);
2625
2626         return err;
2627 }
2628
2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630 {
2631         struct ifreq __user *uifr;
2632         int err;
2633
2634         uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636                 return -EFAULT;
2637
2638         err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639         if (err)
2640                 return err;
2641
2642         if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643                 return -EFAULT;
2644
2645         return 0;
2646 }
2647
2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649 {
2650         struct compat_ifconf ifc32;
2651         struct ifconf ifc;
2652         struct ifconf __user *uifc;
2653         struct compat_ifreq __user *ifr32;
2654         struct ifreq __user *ifr;
2655         unsigned int i, j;
2656         int err;
2657
2658         if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659                 return -EFAULT;
2660
2661         memset(&ifc, 0, sizeof(ifc));
2662         if (ifc32.ifcbuf == 0) {
2663                 ifc32.ifc_len = 0;
2664                 ifc.ifc_len = 0;
2665                 ifc.ifc_req = NULL;
2666                 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667         } else {
2668                 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669                         sizeof(struct ifreq);
2670                 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671                 ifc.ifc_len = len;
2672                 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673                 ifr32 = compat_ptr(ifc32.ifcbuf);
2674                 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675                         if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676                                 return -EFAULT;
2677                         ifr++;
2678                         ifr32++;
2679                 }
2680         }
2681         if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682                 return -EFAULT;
2683
2684         err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685         if (err)
2686                 return err;
2687
2688         if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689                 return -EFAULT;
2690
2691         ifr = ifc.ifc_req;
2692         ifr32 = compat_ptr(ifc32.ifcbuf);
2693         for (i = 0, j = 0;
2694              i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695              i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696                 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697                         return -EFAULT;
2698                 ifr32++;
2699                 ifr++;
2700         }
2701
2702         if (ifc32.ifcbuf == 0) {
2703                 /* Translate from 64-bit structure multiple to
2704                  * a 32-bit one.
2705                  */
2706                 i = ifc.ifc_len;
2707                 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708                 ifc32.ifc_len = i;
2709         } else {
2710                 ifc32.ifc_len = i;
2711         }
2712         if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713                 return -EFAULT;
2714
2715         return 0;
2716 }
2717
2718 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719 {
2720         struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721         bool convert_in = false, convert_out = false;
2722         size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723         struct ethtool_rxnfc __user *rxnfc;
2724         struct ifreq __user *ifr;
2725         u32 rule_cnt = 0, actual_rule_cnt;
2726         u32 ethcmd;
2727         u32 data;
2728         int ret;
2729
2730         if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731                 return -EFAULT;
2732
2733         compat_rxnfc = compat_ptr(data);
2734
2735         if (get_user(ethcmd, &compat_rxnfc->cmd))
2736                 return -EFAULT;
2737
2738         /* Most ethtool structures are defined without padding.
2739          * Unfortunately struct ethtool_rxnfc is an exception.
2740          */
2741         switch (ethcmd) {
2742         default:
2743                 break;
2744         case ETHTOOL_GRXCLSRLALL:
2745                 /* Buffer size is variable */
2746                 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747                         return -EFAULT;
2748                 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749                         return -ENOMEM;
2750                 buf_size += rule_cnt * sizeof(u32);
2751                 /* fall through */
2752         case ETHTOOL_GRXRINGS:
2753         case ETHTOOL_GRXCLSRLCNT:
2754         case ETHTOOL_GRXCLSRULE:
2755         case ETHTOOL_SRXCLSRLINS:
2756                 convert_out = true;
2757                 /* fall through */
2758         case ETHTOOL_SRXCLSRLDEL:
2759                 buf_size += sizeof(struct ethtool_rxnfc);
2760                 convert_in = true;
2761                 break;
2762         }
2763
2764         ifr = compat_alloc_user_space(buf_size);
2765         rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766
2767         if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768                 return -EFAULT;
2769
2770         if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771                      &ifr->ifr_ifru.ifru_data))
2772                 return -EFAULT;
2773
2774         if (convert_in) {
2775                 /* We expect there to be holes between fs.m_ext and
2776                  * fs.ring_cookie and at the end of fs, but nowhere else.
2777                  */
2778                 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779                              sizeof(compat_rxnfc->fs.m_ext) !=
2780                              offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781                              sizeof(rxnfc->fs.m_ext));
2782                 BUILD_BUG_ON(
2783                         offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784                         offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785                         offsetof(struct ethtool_rxnfc, fs.location) -
2786                         offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787
2788                 if (copy_in_user(rxnfc, compat_rxnfc,
2789                                  (void __user *)(&rxnfc->fs.m_ext + 1) -
2790                                  (void __user *)rxnfc) ||
2791                     copy_in_user(&rxnfc->fs.ring_cookie,
2792                                  &compat_rxnfc->fs.ring_cookie,
2793                                  (void __user *)(&rxnfc->fs.location + 1) -
2794                                  (void __user *)&rxnfc->fs.ring_cookie) ||
2795                     copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796                                  sizeof(rxnfc->rule_cnt)))
2797                         return -EFAULT;
2798         }
2799
2800         ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801         if (ret)
2802                 return ret;
2803
2804         if (convert_out) {
2805                 if (copy_in_user(compat_rxnfc, rxnfc,
2806                                  (const void __user *)(&rxnfc->fs.m_ext + 1) -
2807                                  (const void __user *)rxnfc) ||
2808                     copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809                                  &rxnfc->fs.ring_cookie,
2810                                  (const void __user *)(&rxnfc->fs.location + 1) -
2811                                  (const void __user *)&rxnfc->fs.ring_cookie) ||
2812                     copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813                                  sizeof(rxnfc->rule_cnt)))
2814                         return -EFAULT;
2815
2816                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817                         /* As an optimisation, we only copy the actual
2818                          * number of rules that the underlying
2819                          * function returned.  Since Mallory might
2820                          * change the rule count in user memory, we
2821                          * check that it is less than the rule count
2822                          * originally given (as the user buffer size),
2823                          * which has been range-checked.
2824                          */
2825                         if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826                                 return -EFAULT;
2827                         if (actual_rule_cnt < rule_cnt)
2828                                 rule_cnt = actual_rule_cnt;
2829                         if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830                                          &rxnfc->rule_locs[0],
2831                                          rule_cnt * sizeof(u32)))
2832                                 return -EFAULT;
2833                 }
2834         }
2835
2836         return 0;
2837 }
2838
2839 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840 {
2841         void __user *uptr;
2842         compat_uptr_t uptr32;
2843         struct ifreq __user *uifr;
2844
2845         uifr = compat_alloc_user_space(sizeof(*uifr));
2846         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847                 return -EFAULT;
2848
2849         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850                 return -EFAULT;
2851
2852         uptr = compat_ptr(uptr32);
2853
2854         if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855                 return -EFAULT;
2856
2857         return dev_ioctl(net, SIOCWANDEV, uifr);
2858 }
2859
2860 static int bond_ioctl(struct net *net, unsigned int cmd,
2861                          struct compat_ifreq __user *ifr32)
2862 {
2863         struct ifreq kifr;
2864         mm_segment_t old_fs;
2865         int err;
2866
2867         switch (cmd) {
2868         case SIOCBONDENSLAVE:
2869         case SIOCBONDRELEASE:
2870         case SIOCBONDSETHWADDR:
2871         case SIOCBONDCHANGEACTIVE:
2872                 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2873                         return -EFAULT;
2874
2875                 old_fs = get_fs();
2876                 set_fs(KERNEL_DS);
2877                 err = dev_ioctl(net, cmd,
2878                                 (struct ifreq __user __force *) &kifr);
2879                 set_fs(old_fs);
2880
2881                 return err;
2882         default:
2883                 return -ENOIOCTLCMD;
2884         }
2885 }
2886
2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2888 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2889                                  struct compat_ifreq __user *u_ifreq32)
2890 {
2891         struct ifreq __user *u_ifreq64;
2892         char tmp_buf[IFNAMSIZ];
2893         void __user *data64;
2894         u32 data32;
2895
2896         if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2897                            IFNAMSIZ))
2898                 return -EFAULT;
2899         if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2900                 return -EFAULT;
2901         data64 = compat_ptr(data32);
2902
2903         u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2904
2905         if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2906                          IFNAMSIZ))
2907                 return -EFAULT;
2908         if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2909                 return -EFAULT;
2910
2911         return dev_ioctl(net, cmd, u_ifreq64);
2912 }
2913
2914 static int dev_ifsioc(struct net *net, struct socket *sock,
2915                          unsigned int cmd, struct compat_ifreq __user *uifr32)
2916 {
2917         struct ifreq __user *uifr;
2918         int err;
2919
2920         uifr = compat_alloc_user_space(sizeof(*uifr));
2921         if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2922                 return -EFAULT;
2923
2924         err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2925
2926         if (!err) {
2927                 switch (cmd) {
2928                 case SIOCGIFFLAGS:
2929                 case SIOCGIFMETRIC:
2930                 case SIOCGIFMTU:
2931                 case SIOCGIFMEM:
2932                 case SIOCGIFHWADDR:
2933                 case SIOCGIFINDEX:
2934                 case SIOCGIFADDR:
2935                 case SIOCGIFBRDADDR:
2936                 case SIOCGIFDSTADDR:
2937                 case SIOCGIFNETMASK:
2938                 case SIOCGIFPFLAGS:
2939                 case SIOCGIFTXQLEN:
2940                 case SIOCGMIIPHY:
2941                 case SIOCGMIIREG:
2942                         if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2943                                 err = -EFAULT;
2944                         break;
2945                 }
2946         }
2947         return err;
2948 }
2949
2950 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2951                         struct compat_ifreq __user *uifr32)
2952 {
2953         struct ifreq ifr;
2954         struct compat_ifmap __user *uifmap32;
2955         mm_segment_t old_fs;
2956         int err;
2957
2958         uifmap32 = &uifr32->ifr_ifru.ifru_map;
2959         err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2960         err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2961         err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2962         err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2963         err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2964         err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2965         err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2966         if (err)
2967                 return -EFAULT;
2968
2969         old_fs = get_fs();
2970         set_fs(KERNEL_DS);
2971         err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2972         set_fs(old_fs);
2973
2974         if (cmd == SIOCGIFMAP && !err) {
2975                 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2976                 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2977                 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2978                 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2979                 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2980                 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2981                 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2982                 if (err)
2983                         err = -EFAULT;
2984         }
2985         return err;
2986 }
2987
2988 struct rtentry32 {
2989         u32             rt_pad1;
2990         struct sockaddr rt_dst;         /* target address               */
2991         struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2992         struct sockaddr rt_genmask;     /* target network mask (IP)     */
2993         unsigned short  rt_flags;
2994         short           rt_pad2;
2995         u32             rt_pad3;
2996         unsigned char   rt_tos;
2997         unsigned char   rt_class;
2998         short           rt_pad4;
2999         short           rt_metric;      /* +1 for binary compatibility! */
3000         /* char * */ u32 rt_dev;        /* forcing the device at add    */
3001         u32             rt_mtu;         /* per route MTU/Window         */
3002         u32             rt_window;      /* Window clamping              */
3003         unsigned short  rt_irtt;        /* Initial RTT                  */
3004 };
3005
3006 struct in6_rtmsg32 {
3007         struct in6_addr         rtmsg_dst;
3008         struct in6_addr         rtmsg_src;
3009         struct in6_addr         rtmsg_gateway;
3010         u32                     rtmsg_type;
3011         u16                     rtmsg_dst_len;
3012         u16                     rtmsg_src_len;
3013         u32                     rtmsg_metric;
3014         u32                     rtmsg_info;
3015         u32                     rtmsg_flags;
3016         s32                     rtmsg_ifindex;
3017 };
3018
3019 static int routing_ioctl(struct net *net, struct socket *sock,
3020                          unsigned int cmd, void __user *argp)
3021 {
3022         int ret;
3023         void *r = NULL;
3024         struct in6_rtmsg r6;
3025         struct rtentry r4;
3026         char devname[16];
3027         u32 rtdev;
3028         mm_segment_t old_fs = get_fs();
3029
3030         if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3031                 struct in6_rtmsg32 __user *ur6 = argp;
3032                 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3033                         3 * sizeof(struct in6_addr));
3034                 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3035                 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3036                 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3037                 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3038                 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3039                 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3040                 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3041
3042                 r = (void *) &r6;
3043         } else { /* ipv4 */
3044                 struct rtentry32 __user *ur4 = argp;
3045                 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3046                                         3 * sizeof(struct sockaddr));
3047                 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3048                 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3049                 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3050                 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3051                 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3052                 ret |= get_user(rtdev, &(ur4->rt_dev));
3053                 if (rtdev) {
3054                         ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3055                         r4.rt_dev = (char __user __force *)devname;
3056                         devname[15] = 0;
3057                 } else
3058                         r4.rt_dev = NULL;
3059
3060                 r = (void *) &r4;
3061         }
3062
3063         if (ret) {
3064                 ret = -EFAULT;
3065                 goto out;
3066         }
3067
3068         set_fs(KERNEL_DS);
3069         ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3070         set_fs(old_fs);
3071
3072 out:
3073         return ret;
3074 }
3075
3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3077  * for some operations; this forces use of the newer bridge-utils that
3078  * use compatible ioctls
3079  */
3080 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3081 {
3082         compat_ulong_t tmp;
3083
3084         if (get_user(tmp, argp))
3085                 return -EFAULT;
3086         if (tmp == BRCTL_GET_VERSION)
3087                 return BRCTL_VERSION + 1;
3088         return -EINVAL;
3089 }
3090
3091 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3092                          unsigned int cmd, unsigned long arg)
3093 {
3094         void __user *argp = compat_ptr(arg);
3095         struct sock *sk = sock->sk;
3096         struct net *net = sock_net(sk);
3097
3098         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3099                 return compat_ifr_data_ioctl(net, cmd, argp);
3100
3101         switch (cmd) {
3102         case SIOCSIFBR:
3103         case SIOCGIFBR:
3104                 return old_bridge_ioctl(argp);
3105         case SIOCGIFNAME:
3106                 return dev_ifname32(net, argp);
3107         case SIOCGIFCONF:
3108                 return dev_ifconf(net, argp);
3109         case SIOCETHTOOL:
3110                 return ethtool_ioctl(net, argp);
3111         case SIOCWANDEV:
3112                 return compat_siocwandev(net, argp);
3113         case SIOCGIFMAP:
3114         case SIOCSIFMAP:
3115                 return compat_sioc_ifmap(net, cmd, argp);
3116         case SIOCBONDENSLAVE:
3117         case SIOCBONDRELEASE:
3118         case SIOCBONDSETHWADDR:
3119         case SIOCBONDCHANGEACTIVE:
3120                 return bond_ioctl(net, cmd, argp);
3121         case SIOCADDRT:
3122         case SIOCDELRT:
3123                 return routing_ioctl(net, sock, cmd, argp);
3124         case SIOCGSTAMP:
3125                 return do_siocgstamp(net, sock, cmd, argp);
3126         case SIOCGSTAMPNS:
3127                 return do_siocgstampns(net, sock, cmd, argp);
3128         case SIOCBONDSLAVEINFOQUERY:
3129         case SIOCBONDINFOQUERY:
3130         case SIOCSHWTSTAMP:
3131         case SIOCGHWTSTAMP:
3132                 return compat_ifr_data_ioctl(net, cmd, argp);
3133
3134         case FIOSETOWN:
3135         case SIOCSPGRP:
3136         case FIOGETOWN:
3137         case SIOCGPGRP:
3138         case SIOCBRADDBR:
3139         case SIOCBRDELBR:
3140         case SIOCGIFVLAN:
3141         case SIOCSIFVLAN:
3142         case SIOCADDDLCI:
3143         case SIOCDELDLCI:
3144         case SIOCGSKNS:
3145                 return sock_ioctl(file, cmd, arg);
3146
3147         case SIOCGIFFLAGS:
3148         case SIOCSIFFLAGS:
3149         case SIOCGIFMETRIC:
3150         case SIOCSIFMETRIC:
3151         case SIOCGIFMTU:
3152         case SIOCSIFMTU:
3153         case SIOCGIFMEM:
3154         case SIOCSIFMEM:
3155         case SIOCGIFHWADDR:
3156         case SIOCSIFHWADDR:
3157         case SIOCADDMULTI:
3158         case SIOCDELMULTI:
3159         case SIOCGIFINDEX:
3160         case SIOCGIFADDR:
3161         case SIOCSIFADDR:
3162         case SIOCSIFHWBROADCAST:
3163         case SIOCDIFADDR:
3164         case SIOCGIFBRDADDR:
3165         case SIOCSIFBRDADDR:
3166         case SIOCGIFDSTADDR:
3167         case SIOCSIFDSTADDR:
3168         case SIOCGIFNETMASK:
3169         case SIOCSIFNETMASK:
3170         case SIOCSIFPFLAGS:
3171         case SIOCGIFPFLAGS:
3172         case SIOCGIFTXQLEN:
3173         case SIOCSIFTXQLEN:
3174         case SIOCBRADDIF:
3175         case SIOCBRDELIF:
3176         case SIOCSIFNAME:
3177         case SIOCGMIIPHY:
3178         case SIOCGMIIREG:
3179         case SIOCSMIIREG:
3180                 return dev_ifsioc(net, sock, cmd, argp);
3181
3182         case SIOCSARP:
3183         case SIOCGARP:
3184         case SIOCDARP:
3185         case SIOCATMARK:
3186                 return sock_do_ioctl(net, sock, cmd, arg);
3187         }
3188
3189         return -ENOIOCTLCMD;
3190 }
3191
3192 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3193                               unsigned long arg)
3194 {
3195         struct socket *sock = file->private_data;
3196         int ret = -ENOIOCTLCMD;
3197         struct sock *sk;
3198         struct net *net;
3199
3200         sk = sock->sk;
3201         net = sock_net(sk);
3202
3203         if (sock->ops->compat_ioctl)
3204                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3205
3206         if (ret == -ENOIOCTLCMD &&
3207             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3208                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3209
3210         if (ret == -ENOIOCTLCMD)
3211                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3212
3213         return ret;
3214 }
3215 #endif
3216
3217 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3218 {
3219         return sock->ops->bind(sock, addr, addrlen);
3220 }
3221 EXPORT_SYMBOL(kernel_bind);
3222
3223 int kernel_listen(struct socket *sock, int backlog)
3224 {
3225         return sock->ops->listen(sock, backlog);
3226 }
3227 EXPORT_SYMBOL(kernel_listen);
3228
3229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3230 {
3231         struct sock *sk = sock->sk;
3232         int err;
3233
3234         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3235                                newsock);
3236         if (err < 0)
3237                 goto done;
3238
3239         err = sock->ops->accept(sock, *newsock, flags);
3240         if (err < 0) {
3241                 sock_release(*newsock);
3242                 *newsock = NULL;
3243                 goto done;
3244         }
3245
3246         (*newsock)->ops = sock->ops;
3247         __module_get((*newsock)->ops->owner);
3248
3249 done:
3250         return err;
3251 }
3252 EXPORT_SYMBOL(kernel_accept);
3253
3254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3255                    int flags)
3256 {
3257         return sock->ops->connect(sock, addr, addrlen, flags);
3258 }
3259 EXPORT_SYMBOL(kernel_connect);
3260
3261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3262                          int *addrlen)
3263 {
3264         return sock->ops->getname(sock, addr, addrlen, 0);
3265 }
3266 EXPORT_SYMBOL(kernel_getsockname);
3267
3268 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3269                          int *addrlen)
3270 {
3271         return sock->ops->getname(sock, addr, addrlen, 1);
3272 }
3273 EXPORT_SYMBOL(kernel_getpeername);
3274
3275 int kernel_getsockopt(struct socket *sock, int level, int optname,
3276                         char *optval, int *optlen)
3277 {
3278         mm_segment_t oldfs = get_fs();
3279         char __user *uoptval;
3280         int __user *uoptlen;
3281         int err;
3282
3283         uoptval = (char __user __force *) optval;
3284         uoptlen = (int __user __force *) optlen;
3285
3286         set_fs(KERNEL_DS);
3287         if (level == SOL_SOCKET)
3288                 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3289         else
3290                 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3291                                             uoptlen);
3292         set_fs(oldfs);
3293         return err;
3294 }
3295 EXPORT_SYMBOL(kernel_getsockopt);
3296
3297 int kernel_setsockopt(struct socket *sock, int level, int optname,
3298                         char *optval, unsigned int optlen)
3299 {
3300         mm_segment_t oldfs = get_fs();
3301         char __user *uoptval;
3302         int err;
3303
3304         uoptval = (char __user __force *) optval;
3305
3306         set_fs(KERNEL_DS);
3307         if (level == SOL_SOCKET)
3308                 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3309         else
3310                 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3311                                             optlen);
3312         set_fs(oldfs);
3313         return err;
3314 }
3315 EXPORT_SYMBOL(kernel_setsockopt);
3316
3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3318                     size_t size, int flags)
3319 {
3320         if (sock->ops->sendpage)
3321                 return sock->ops->sendpage(sock, page, offset, size, flags);
3322
3323         return sock_no_sendpage(sock, page, offset, size, flags);
3324 }
3325 EXPORT_SYMBOL(kernel_sendpage);
3326
3327 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3328 {
3329         mm_segment_t oldfs = get_fs();
3330         int err;
3331
3332         set_fs(KERNEL_DS);
3333         err = sock->ops->ioctl(sock, cmd, arg);
3334         set_fs(oldfs);
3335
3336         return err;
3337 }
3338 EXPORT_SYMBOL(kernel_sock_ioctl);
3339
3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3341 {
3342         return sock->ops->shutdown(sock, how);
3343 }
3344 EXPORT_SYMBOL(kernel_sock_shutdown);