pktgen: do not sleep with the thread lock held.
[sfrench/cifs-2.6.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 struct fq_skb_cb {
58         u64             time_to_send;
59 };
60
61 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
62 {
63         qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
64         return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
65 }
66
67 /*
68  * Per flow structure, dynamically allocated.
69  * If packets have monotically increasing time_to_send, they are placed in O(1)
70  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
71  */
72 struct fq_flow {
73         struct rb_root  t_root;
74         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
75         union {
76                 struct sk_buff *tail;   /* last skb in the list */
77                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
78         };
79         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
80         struct sock     *sk;
81         int             qlen;           /* number of packets in flow queue */
82         int             credit;
83         u32             socket_hash;    /* sk_hash */
84         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
85
86         struct rb_node  rate_node;      /* anchor in q->delayed tree */
87         u64             time_next_packet;
88 };
89
90 struct fq_flow_head {
91         struct fq_flow *first;
92         struct fq_flow *last;
93 };
94
95 struct fq_sched_data {
96         struct fq_flow_head new_flows;
97
98         struct fq_flow_head old_flows;
99
100         struct rb_root  delayed;        /* for rate limited flows */
101         u64             time_next_delayed_flow;
102         unsigned long   unthrottle_latency_ns;
103
104         struct fq_flow  internal;       /* for non classified or high prio packets */
105         u32             quantum;
106         u32             initial_quantum;
107         u32             flow_refill_delay;
108         u32             flow_plimit;    /* max packets per flow */
109         unsigned long   flow_max_rate;  /* optional max rate per flow */
110         u64             ce_threshold;
111         u32             orphan_mask;    /* mask for orphaned skb */
112         u32             low_rate_threshold;
113         struct rb_root  *fq_root;
114         u8              rate_enable;
115         u8              fq_trees_log;
116
117         u32             flows;
118         u32             inactive_flows;
119         u32             throttled_flows;
120
121         u64             stat_gc_flows;
122         u64             stat_internal_packets;
123         u64             stat_throttled;
124         u64             stat_ce_mark;
125         u64             stat_flows_plimit;
126         u64             stat_pkts_too_long;
127         u64             stat_allocation_errors;
128         struct qdisc_watchdog watchdog;
129 };
130
131 /* special value to mark a detached flow (not on old/new list) */
132 static struct fq_flow detached, throttled;
133
134 static void fq_flow_set_detached(struct fq_flow *f)
135 {
136         f->next = &detached;
137         f->age = jiffies;
138 }
139
140 static bool fq_flow_is_detached(const struct fq_flow *f)
141 {
142         return f->next == &detached;
143 }
144
145 static bool fq_flow_is_throttled(const struct fq_flow *f)
146 {
147         return f->next == &throttled;
148 }
149
150 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
151 {
152         if (head->first)
153                 head->last->next = flow;
154         else
155                 head->first = flow;
156         head->last = flow;
157         flow->next = NULL;
158 }
159
160 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
161 {
162         rb_erase(&f->rate_node, &q->delayed);
163         q->throttled_flows--;
164         fq_flow_add_tail(&q->old_flows, f);
165 }
166
167 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
168 {
169         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
170
171         while (*p) {
172                 struct fq_flow *aux;
173
174                 parent = *p;
175                 aux = rb_entry(parent, struct fq_flow, rate_node);
176                 if (f->time_next_packet >= aux->time_next_packet)
177                         p = &parent->rb_right;
178                 else
179                         p = &parent->rb_left;
180         }
181         rb_link_node(&f->rate_node, parent, p);
182         rb_insert_color(&f->rate_node, &q->delayed);
183         q->throttled_flows++;
184         q->stat_throttled++;
185
186         f->next = &throttled;
187         if (q->time_next_delayed_flow > f->time_next_packet)
188                 q->time_next_delayed_flow = f->time_next_packet;
189 }
190
191
192 static struct kmem_cache *fq_flow_cachep __read_mostly;
193
194
195 /* limit number of collected flows per round */
196 #define FQ_GC_MAX 8
197 #define FQ_GC_AGE (3*HZ)
198
199 static bool fq_gc_candidate(const struct fq_flow *f)
200 {
201         return fq_flow_is_detached(f) &&
202                time_after(jiffies, f->age + FQ_GC_AGE);
203 }
204
205 static void fq_gc(struct fq_sched_data *q,
206                   struct rb_root *root,
207                   struct sock *sk)
208 {
209         struct fq_flow *f, *tofree[FQ_GC_MAX];
210         struct rb_node **p, *parent;
211         int fcnt = 0;
212
213         p = &root->rb_node;
214         parent = NULL;
215         while (*p) {
216                 parent = *p;
217
218                 f = rb_entry(parent, struct fq_flow, fq_node);
219                 if (f->sk == sk)
220                         break;
221
222                 if (fq_gc_candidate(f)) {
223                         tofree[fcnt++] = f;
224                         if (fcnt == FQ_GC_MAX)
225                                 break;
226                 }
227
228                 if (f->sk > sk)
229                         p = &parent->rb_right;
230                 else
231                         p = &parent->rb_left;
232         }
233
234         q->flows -= fcnt;
235         q->inactive_flows -= fcnt;
236         q->stat_gc_flows += fcnt;
237         while (fcnt) {
238                 struct fq_flow *f = tofree[--fcnt];
239
240                 rb_erase(&f->fq_node, root);
241                 kmem_cache_free(fq_flow_cachep, f);
242         }
243 }
244
245 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
246 {
247         struct rb_node **p, *parent;
248         struct sock *sk = skb->sk;
249         struct rb_root *root;
250         struct fq_flow *f;
251
252         /* warning: no starvation prevention... */
253         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
254                 return &q->internal;
255
256         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
257          * or a listener (SYNCOOKIE mode)
258          * 1) request sockets are not full blown,
259          *    they do not contain sk_pacing_rate
260          * 2) They are not part of a 'flow' yet
261          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
262          *    especially if the listener set SO_MAX_PACING_RATE
263          * 4) We pretend they are orphaned
264          */
265         if (!sk || sk_listener(sk)) {
266                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
267
268                 /* By forcing low order bit to 1, we make sure to not
269                  * collide with a local flow (socket pointers are word aligned)
270                  */
271                 sk = (struct sock *)((hash << 1) | 1UL);
272                 skb_orphan(skb);
273         } else if (sk->sk_state == TCP_CLOSE) {
274                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
275                 /*
276                  * Sockets in TCP_CLOSE are non connected.
277                  * Typical use case is UDP sockets, they can send packets
278                  * with sendto() to many different destinations.
279                  * We probably could use a generic bit advertising
280                  * non connected sockets, instead of sk_state == TCP_CLOSE,
281                  * if we care enough.
282                  */
283                 sk = (struct sock *)((hash << 1) | 1UL);
284         }
285
286         root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
287
288         if (q->flows >= (2U << q->fq_trees_log) &&
289             q->inactive_flows > q->flows/2)
290                 fq_gc(q, root, sk);
291
292         p = &root->rb_node;
293         parent = NULL;
294         while (*p) {
295                 parent = *p;
296
297                 f = rb_entry(parent, struct fq_flow, fq_node);
298                 if (f->sk == sk) {
299                         /* socket might have been reallocated, so check
300                          * if its sk_hash is the same.
301                          * It not, we need to refill credit with
302                          * initial quantum
303                          */
304                         if (unlikely(skb->sk == sk &&
305                                      f->socket_hash != sk->sk_hash)) {
306                                 f->credit = q->initial_quantum;
307                                 f->socket_hash = sk->sk_hash;
308                                 if (fq_flow_is_throttled(f))
309                                         fq_flow_unset_throttled(q, f);
310                                 f->time_next_packet = 0ULL;
311                         }
312                         return f;
313                 }
314                 if (f->sk > sk)
315                         p = &parent->rb_right;
316                 else
317                         p = &parent->rb_left;
318         }
319
320         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
321         if (unlikely(!f)) {
322                 q->stat_allocation_errors++;
323                 return &q->internal;
324         }
325         /* f->t_root is already zeroed after kmem_cache_zalloc() */
326
327         fq_flow_set_detached(f);
328         f->sk = sk;
329         if (skb->sk == sk)
330                 f->socket_hash = sk->sk_hash;
331         f->credit = q->initial_quantum;
332
333         rb_link_node(&f->fq_node, parent, p);
334         rb_insert_color(&f->fq_node, root);
335
336         q->flows++;
337         q->inactive_flows++;
338         return f;
339 }
340
341 static struct sk_buff *fq_peek(struct fq_flow *flow)
342 {
343         struct sk_buff *skb = skb_rb_first(&flow->t_root);
344         struct sk_buff *head = flow->head;
345
346         if (!skb)
347                 return head;
348
349         if (!head)
350                 return skb;
351
352         if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
353                 return skb;
354         return head;
355 }
356
357 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
358                           struct sk_buff *skb)
359 {
360         if (skb == flow->head) {
361                 flow->head = skb->next;
362         } else {
363                 rb_erase(&skb->rbnode, &flow->t_root);
364                 skb->dev = qdisc_dev(sch);
365         }
366 }
367
368 /* remove one skb from head of flow queue */
369 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
370 {
371         struct sk_buff *skb = fq_peek(flow);
372
373         if (skb) {
374                 fq_erase_head(sch, flow, skb);
375                 skb_mark_not_on_list(skb);
376                 flow->qlen--;
377                 qdisc_qstats_backlog_dec(sch, skb);
378                 sch->q.qlen--;
379         }
380         return skb;
381 }
382
383 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
384 {
385         struct rb_node **p, *parent;
386         struct sk_buff *head, *aux;
387
388         fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
389
390         head = flow->head;
391         if (!head ||
392             fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
393                 if (!head)
394                         flow->head = skb;
395                 else
396                         flow->tail->next = skb;
397                 flow->tail = skb;
398                 skb->next = NULL;
399                 return;
400         }
401
402         p = &flow->t_root.rb_node;
403         parent = NULL;
404
405         while (*p) {
406                 parent = *p;
407                 aux = rb_to_skb(parent);
408                 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
409                         p = &parent->rb_right;
410                 else
411                         p = &parent->rb_left;
412         }
413         rb_link_node(&skb->rbnode, parent, p);
414         rb_insert_color(&skb->rbnode, &flow->t_root);
415 }
416
417 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
418                       struct sk_buff **to_free)
419 {
420         struct fq_sched_data *q = qdisc_priv(sch);
421         struct fq_flow *f;
422
423         if (unlikely(sch->q.qlen >= sch->limit))
424                 return qdisc_drop(skb, sch, to_free);
425
426         f = fq_classify(skb, q);
427         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
428                 q->stat_flows_plimit++;
429                 return qdisc_drop(skb, sch, to_free);
430         }
431
432         f->qlen++;
433         qdisc_qstats_backlog_inc(sch, skb);
434         if (fq_flow_is_detached(f)) {
435                 struct sock *sk = skb->sk;
436
437                 fq_flow_add_tail(&q->new_flows, f);
438                 if (time_after(jiffies, f->age + q->flow_refill_delay))
439                         f->credit = max_t(u32, f->credit, q->quantum);
440                 if (sk && q->rate_enable) {
441                         if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
442                                      SK_PACING_FQ))
443                                 smp_store_release(&sk->sk_pacing_status,
444                                                   SK_PACING_FQ);
445                 }
446                 q->inactive_flows--;
447         }
448
449         /* Note: this overwrites f->age */
450         flow_queue_add(f, skb);
451
452         if (unlikely(f == &q->internal)) {
453                 q->stat_internal_packets++;
454         }
455         sch->q.qlen++;
456
457         return NET_XMIT_SUCCESS;
458 }
459
460 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
461 {
462         unsigned long sample;
463         struct rb_node *p;
464
465         if (q->time_next_delayed_flow > now)
466                 return;
467
468         /* Update unthrottle latency EWMA.
469          * This is cheap and can help diagnosing timer/latency problems.
470          */
471         sample = (unsigned long)(now - q->time_next_delayed_flow);
472         q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
473         q->unthrottle_latency_ns += sample >> 3;
474
475         q->time_next_delayed_flow = ~0ULL;
476         while ((p = rb_first(&q->delayed)) != NULL) {
477                 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
478
479                 if (f->time_next_packet > now) {
480                         q->time_next_delayed_flow = f->time_next_packet;
481                         break;
482                 }
483                 fq_flow_unset_throttled(q, f);
484         }
485 }
486
487 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
488 {
489         struct fq_sched_data *q = qdisc_priv(sch);
490         struct fq_flow_head *head;
491         struct sk_buff *skb;
492         struct fq_flow *f;
493         unsigned long rate;
494         u32 plen;
495         u64 now;
496
497         if (!sch->q.qlen)
498                 return NULL;
499
500         skb = fq_dequeue_head(sch, &q->internal);
501         if (skb)
502                 goto out;
503
504         now = ktime_get_ns();
505         fq_check_throttled(q, now);
506 begin:
507         head = &q->new_flows;
508         if (!head->first) {
509                 head = &q->old_flows;
510                 if (!head->first) {
511                         if (q->time_next_delayed_flow != ~0ULL)
512                                 qdisc_watchdog_schedule_ns(&q->watchdog,
513                                                            q->time_next_delayed_flow);
514                         return NULL;
515                 }
516         }
517         f = head->first;
518
519         if (f->credit <= 0) {
520                 f->credit += q->quantum;
521                 head->first = f->next;
522                 fq_flow_add_tail(&q->old_flows, f);
523                 goto begin;
524         }
525
526         skb = fq_peek(f);
527         if (skb) {
528                 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
529                                              f->time_next_packet);
530
531                 if (now < time_next_packet) {
532                         head->first = f->next;
533                         f->time_next_packet = time_next_packet;
534                         fq_flow_set_throttled(q, f);
535                         goto begin;
536                 }
537                 if (time_next_packet &&
538                     (s64)(now - time_next_packet - q->ce_threshold) > 0) {
539                         INET_ECN_set_ce(skb);
540                         q->stat_ce_mark++;
541                 }
542         }
543
544         skb = fq_dequeue_head(sch, f);
545         if (!skb) {
546                 head->first = f->next;
547                 /* force a pass through old_flows to prevent starvation */
548                 if ((head == &q->new_flows) && q->old_flows.first) {
549                         fq_flow_add_tail(&q->old_flows, f);
550                 } else {
551                         fq_flow_set_detached(f);
552                         q->inactive_flows++;
553                 }
554                 goto begin;
555         }
556         prefetch(&skb->end);
557         plen = qdisc_pkt_len(skb);
558         f->credit -= plen;
559
560         if (!q->rate_enable)
561                 goto out;
562
563         rate = q->flow_max_rate;
564
565         /* If EDT time was provided for this skb, we need to
566          * update f->time_next_packet only if this qdisc enforces
567          * a flow max rate.
568          */
569         if (!skb->tstamp) {
570                 if (skb->sk)
571                         rate = min(skb->sk->sk_pacing_rate, rate);
572
573                 if (rate <= q->low_rate_threshold) {
574                         f->credit = 0;
575                 } else {
576                         plen = max(plen, q->quantum);
577                         if (f->credit > 0)
578                                 goto out;
579                 }
580         }
581         if (rate != ~0UL) {
582                 u64 len = (u64)plen * NSEC_PER_SEC;
583
584                 if (likely(rate))
585                         len = div64_ul(len, rate);
586                 /* Since socket rate can change later,
587                  * clamp the delay to 1 second.
588                  * Really, providers of too big packets should be fixed !
589                  */
590                 if (unlikely(len > NSEC_PER_SEC)) {
591                         len = NSEC_PER_SEC;
592                         q->stat_pkts_too_long++;
593                 }
594                 /* Account for schedule/timers drifts.
595                  * f->time_next_packet was set when prior packet was sent,
596                  * and current time (@now) can be too late by tens of us.
597                  */
598                 if (f->time_next_packet)
599                         len -= min(len/2, now - f->time_next_packet);
600                 f->time_next_packet = now + len;
601         }
602 out:
603         qdisc_bstats_update(sch, skb);
604         return skb;
605 }
606
607 static void fq_flow_purge(struct fq_flow *flow)
608 {
609         struct rb_node *p = rb_first(&flow->t_root);
610
611         while (p) {
612                 struct sk_buff *skb = rb_to_skb(p);
613
614                 p = rb_next(p);
615                 rb_erase(&skb->rbnode, &flow->t_root);
616                 rtnl_kfree_skbs(skb, skb);
617         }
618         rtnl_kfree_skbs(flow->head, flow->tail);
619         flow->head = NULL;
620         flow->qlen = 0;
621 }
622
623 static void fq_reset(struct Qdisc *sch)
624 {
625         struct fq_sched_data *q = qdisc_priv(sch);
626         struct rb_root *root;
627         struct rb_node *p;
628         struct fq_flow *f;
629         unsigned int idx;
630
631         sch->q.qlen = 0;
632         sch->qstats.backlog = 0;
633
634         fq_flow_purge(&q->internal);
635
636         if (!q->fq_root)
637                 return;
638
639         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
640                 root = &q->fq_root[idx];
641                 while ((p = rb_first(root)) != NULL) {
642                         f = rb_entry(p, struct fq_flow, fq_node);
643                         rb_erase(p, root);
644
645                         fq_flow_purge(f);
646
647                         kmem_cache_free(fq_flow_cachep, f);
648                 }
649         }
650         q->new_flows.first      = NULL;
651         q->old_flows.first      = NULL;
652         q->delayed              = RB_ROOT;
653         q->flows                = 0;
654         q->inactive_flows       = 0;
655         q->throttled_flows      = 0;
656 }
657
658 static void fq_rehash(struct fq_sched_data *q,
659                       struct rb_root *old_array, u32 old_log,
660                       struct rb_root *new_array, u32 new_log)
661 {
662         struct rb_node *op, **np, *parent;
663         struct rb_root *oroot, *nroot;
664         struct fq_flow *of, *nf;
665         int fcnt = 0;
666         u32 idx;
667
668         for (idx = 0; idx < (1U << old_log); idx++) {
669                 oroot = &old_array[idx];
670                 while ((op = rb_first(oroot)) != NULL) {
671                         rb_erase(op, oroot);
672                         of = rb_entry(op, struct fq_flow, fq_node);
673                         if (fq_gc_candidate(of)) {
674                                 fcnt++;
675                                 kmem_cache_free(fq_flow_cachep, of);
676                                 continue;
677                         }
678                         nroot = &new_array[hash_ptr(of->sk, new_log)];
679
680                         np = &nroot->rb_node;
681                         parent = NULL;
682                         while (*np) {
683                                 parent = *np;
684
685                                 nf = rb_entry(parent, struct fq_flow, fq_node);
686                                 BUG_ON(nf->sk == of->sk);
687
688                                 if (nf->sk > of->sk)
689                                         np = &parent->rb_right;
690                                 else
691                                         np = &parent->rb_left;
692                         }
693
694                         rb_link_node(&of->fq_node, parent, np);
695                         rb_insert_color(&of->fq_node, nroot);
696                 }
697         }
698         q->flows -= fcnt;
699         q->inactive_flows -= fcnt;
700         q->stat_gc_flows += fcnt;
701 }
702
703 static void fq_free(void *addr)
704 {
705         kvfree(addr);
706 }
707
708 static int fq_resize(struct Qdisc *sch, u32 log)
709 {
710         struct fq_sched_data *q = qdisc_priv(sch);
711         struct rb_root *array;
712         void *old_fq_root;
713         u32 idx;
714
715         if (q->fq_root && log == q->fq_trees_log)
716                 return 0;
717
718         /* If XPS was setup, we can allocate memory on right NUMA node */
719         array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
720                               netdev_queue_numa_node_read(sch->dev_queue));
721         if (!array)
722                 return -ENOMEM;
723
724         for (idx = 0; idx < (1U << log); idx++)
725                 array[idx] = RB_ROOT;
726
727         sch_tree_lock(sch);
728
729         old_fq_root = q->fq_root;
730         if (old_fq_root)
731                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
732
733         q->fq_root = array;
734         q->fq_trees_log = log;
735
736         sch_tree_unlock(sch);
737
738         fq_free(old_fq_root);
739
740         return 0;
741 }
742
743 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
744         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
745         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
746         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
747         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
748         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
749         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
750         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
751         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
752         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
753         [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
754         [TCA_FQ_CE_THRESHOLD]           = { .type = NLA_U32 },
755 };
756
757 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
758                      struct netlink_ext_ack *extack)
759 {
760         struct fq_sched_data *q = qdisc_priv(sch);
761         struct nlattr *tb[TCA_FQ_MAX + 1];
762         int err, drop_count = 0;
763         unsigned drop_len = 0;
764         u32 fq_log;
765
766         if (!opt)
767                 return -EINVAL;
768
769         err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
770                                           NULL);
771         if (err < 0)
772                 return err;
773
774         sch_tree_lock(sch);
775
776         fq_log = q->fq_trees_log;
777
778         if (tb[TCA_FQ_BUCKETS_LOG]) {
779                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
780
781                 if (nval >= 1 && nval <= ilog2(256*1024))
782                         fq_log = nval;
783                 else
784                         err = -EINVAL;
785         }
786         if (tb[TCA_FQ_PLIMIT])
787                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
788
789         if (tb[TCA_FQ_FLOW_PLIMIT])
790                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
791
792         if (tb[TCA_FQ_QUANTUM]) {
793                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
794
795                 if (quantum > 0)
796                         q->quantum = quantum;
797                 else
798                         err = -EINVAL;
799         }
800
801         if (tb[TCA_FQ_INITIAL_QUANTUM])
802                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
803
804         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
805                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
806                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
807
808         if (tb[TCA_FQ_FLOW_MAX_RATE]) {
809                 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
810
811                 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
812         }
813         if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
814                 q->low_rate_threshold =
815                         nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
816
817         if (tb[TCA_FQ_RATE_ENABLE]) {
818                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
819
820                 if (enable <= 1)
821                         q->rate_enable = enable;
822                 else
823                         err = -EINVAL;
824         }
825
826         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
827                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
828
829                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
830         }
831
832         if (tb[TCA_FQ_ORPHAN_MASK])
833                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
834
835         if (tb[TCA_FQ_CE_THRESHOLD])
836                 q->ce_threshold = (u64)NSEC_PER_USEC *
837                                   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
838
839         if (!err) {
840                 sch_tree_unlock(sch);
841                 err = fq_resize(sch, fq_log);
842                 sch_tree_lock(sch);
843         }
844         while (sch->q.qlen > sch->limit) {
845                 struct sk_buff *skb = fq_dequeue(sch);
846
847                 if (!skb)
848                         break;
849                 drop_len += qdisc_pkt_len(skb);
850                 rtnl_kfree_skbs(skb, skb);
851                 drop_count++;
852         }
853         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
854
855         sch_tree_unlock(sch);
856         return err;
857 }
858
859 static void fq_destroy(struct Qdisc *sch)
860 {
861         struct fq_sched_data *q = qdisc_priv(sch);
862
863         fq_reset(sch);
864         fq_free(q->fq_root);
865         qdisc_watchdog_cancel(&q->watchdog);
866 }
867
868 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
869                    struct netlink_ext_ack *extack)
870 {
871         struct fq_sched_data *q = qdisc_priv(sch);
872         int err;
873
874         sch->limit              = 10000;
875         q->flow_plimit          = 100;
876         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
877         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
878         q->flow_refill_delay    = msecs_to_jiffies(40);
879         q->flow_max_rate        = ~0UL;
880         q->time_next_delayed_flow = ~0ULL;
881         q->rate_enable          = 1;
882         q->new_flows.first      = NULL;
883         q->old_flows.first      = NULL;
884         q->delayed              = RB_ROOT;
885         q->fq_root              = NULL;
886         q->fq_trees_log         = ilog2(1024);
887         q->orphan_mask          = 1024 - 1;
888         q->low_rate_threshold   = 550000 / 8;
889
890         /* Default ce_threshold of 4294 seconds */
891         q->ce_threshold         = (u64)NSEC_PER_USEC * ~0U;
892
893         qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
894
895         if (opt)
896                 err = fq_change(sch, opt, extack);
897         else
898                 err = fq_resize(sch, q->fq_trees_log);
899
900         return err;
901 }
902
903 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
904 {
905         struct fq_sched_data *q = qdisc_priv(sch);
906         u64 ce_threshold = q->ce_threshold;
907         struct nlattr *opts;
908
909         opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
910         if (opts == NULL)
911                 goto nla_put_failure;
912
913         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
914
915         do_div(ce_threshold, NSEC_PER_USEC);
916
917         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
918             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
919             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
920             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
921             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
922             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
923                         min_t(unsigned long, q->flow_max_rate, ~0U)) ||
924             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
925                         jiffies_to_usecs(q->flow_refill_delay)) ||
926             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
927             nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
928                         q->low_rate_threshold) ||
929             nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
930             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
931                 goto nla_put_failure;
932
933         return nla_nest_end(skb, opts);
934
935 nla_put_failure:
936         return -1;
937 }
938
939 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
940 {
941         struct fq_sched_data *q = qdisc_priv(sch);
942         struct tc_fq_qd_stats st;
943
944         sch_tree_lock(sch);
945
946         st.gc_flows               = q->stat_gc_flows;
947         st.highprio_packets       = q->stat_internal_packets;
948         st.tcp_retrans            = 0;
949         st.throttled              = q->stat_throttled;
950         st.flows_plimit           = q->stat_flows_plimit;
951         st.pkts_too_long          = q->stat_pkts_too_long;
952         st.allocation_errors      = q->stat_allocation_errors;
953         st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
954         st.flows                  = q->flows;
955         st.inactive_flows         = q->inactive_flows;
956         st.throttled_flows        = q->throttled_flows;
957         st.unthrottle_latency_ns  = min_t(unsigned long,
958                                           q->unthrottle_latency_ns, ~0U);
959         st.ce_mark                = q->stat_ce_mark;
960         sch_tree_unlock(sch);
961
962         return gnet_stats_copy_app(d, &st, sizeof(st));
963 }
964
965 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
966         .id             =       "fq",
967         .priv_size      =       sizeof(struct fq_sched_data),
968
969         .enqueue        =       fq_enqueue,
970         .dequeue        =       fq_dequeue,
971         .peek           =       qdisc_peek_dequeued,
972         .init           =       fq_init,
973         .reset          =       fq_reset,
974         .destroy        =       fq_destroy,
975         .change         =       fq_change,
976         .dump           =       fq_dump,
977         .dump_stats     =       fq_dump_stats,
978         .owner          =       THIS_MODULE,
979 };
980
981 static int __init fq_module_init(void)
982 {
983         int ret;
984
985         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
986                                            sizeof(struct fq_flow),
987                                            0, 0, NULL);
988         if (!fq_flow_cachep)
989                 return -ENOMEM;
990
991         ret = register_qdisc(&fq_qdisc_ops);
992         if (ret)
993                 kmem_cache_destroy(fq_flow_cachep);
994         return ret;
995 }
996
997 static void __exit fq_module_exit(void)
998 {
999         unregister_qdisc(&fq_qdisc_ops);
1000         kmem_cache_destroy(fq_flow_cachep);
1001 }
1002
1003 module_init(fq_module_init)
1004 module_exit(fq_module_exit)
1005 MODULE_AUTHOR("Eric Dumazet");
1006 MODULE_LICENSE("GPL");