Merge tag 'ecryptfs-4.0-rc3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50
51 #include "flow_netlink.h"
52 #include "vport-vxlan.h"
53
54 struct ovs_len_tbl {
55         int len;
56         const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60
61 static void update_range(struct sw_flow_match *match,
62                          size_t offset, size_t size, bool is_mask)
63 {
64         struct sw_flow_key_range *range;
65         size_t start = rounddown(offset, sizeof(long));
66         size_t end = roundup(offset + size, sizeof(long));
67
68         if (!is_mask)
69                 range = &match->range;
70         else
71                 range = &match->mask->range;
72
73         if (range->start == range->end) {
74                 range->start = start;
75                 range->end = end;
76                 return;
77         }
78
79         if (range->start > start)
80                 range->start = start;
81
82         if (range->end < end)
83                 range->end = end;
84 }
85
86 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
87         do { \
88                 update_range(match, offsetof(struct sw_flow_key, field),    \
89                              sizeof((match)->key->field), is_mask);         \
90                 if (is_mask)                                                \
91                         (match)->mask->key.field = value;                   \
92                 else                                                        \
93                         (match)->key->field = value;                        \
94         } while (0)
95
96 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
97         do {                                                                \
98                 update_range(match, offset, len, is_mask);                  \
99                 if (is_mask)                                                \
100                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
101                                len);                                       \
102                 else                                                        \
103                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
104         } while (0)
105
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
107         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108                                   value_p, len, is_mask)
109
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
111         do {                                                                \
112                 update_range(match, offsetof(struct sw_flow_key, field),    \
113                              sizeof((match)->key->field), is_mask);         \
114                 if (is_mask)                                                \
115                         memset((u8 *)&(match)->mask->key.field, value,      \
116                                sizeof((match)->mask->key.field));           \
117                 else                                                        \
118                         memset((u8 *)&(match)->key->field, value,           \
119                                sizeof((match)->key->field));                \
120         } while (0)
121
122 static bool match_validate(const struct sw_flow_match *match,
123                            u64 key_attrs, u64 mask_attrs, bool log)
124 {
125         u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
126         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
127
128         /* The following mask attributes allowed only if they
129          * pass the validation tests. */
130         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
131                         | (1 << OVS_KEY_ATTR_IPV6)
132                         | (1 << OVS_KEY_ATTR_TCP)
133                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
134                         | (1 << OVS_KEY_ATTR_UDP)
135                         | (1 << OVS_KEY_ATTR_SCTP)
136                         | (1 << OVS_KEY_ATTR_ICMP)
137                         | (1 << OVS_KEY_ATTR_ICMPV6)
138                         | (1 << OVS_KEY_ATTR_ARP)
139                         | (1 << OVS_KEY_ATTR_ND)
140                         | (1 << OVS_KEY_ATTR_MPLS));
141
142         /* Always allowed mask fields. */
143         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
144                        | (1 << OVS_KEY_ATTR_IN_PORT)
145                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
146
147         /* Check key attributes. */
148         if (match->key->eth.type == htons(ETH_P_ARP)
149                         || match->key->eth.type == htons(ETH_P_RARP)) {
150                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
151                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
152                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
153         }
154
155         if (eth_p_mpls(match->key->eth.type)) {
156                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
157                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
158                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
159         }
160
161         if (match->key->eth.type == htons(ETH_P_IP)) {
162                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
163                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
164                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
165
166                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
167                         if (match->key->ip.proto == IPPROTO_UDP) {
168                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
169                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
170                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
171                         }
172
173                         if (match->key->ip.proto == IPPROTO_SCTP) {
174                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
175                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
176                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
177                         }
178
179                         if (match->key->ip.proto == IPPROTO_TCP) {
180                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
181                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
182                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
183                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
184                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
185                                 }
186                         }
187
188                         if (match->key->ip.proto == IPPROTO_ICMP) {
189                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
190                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
191                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
192                         }
193                 }
194         }
195
196         if (match->key->eth.type == htons(ETH_P_IPV6)) {
197                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
198                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
199                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
200
201                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202                         if (match->key->ip.proto == IPPROTO_UDP) {
203                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
204                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
205                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206                         }
207
208                         if (match->key->ip.proto == IPPROTO_SCTP) {
209                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
211                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212                         }
213
214                         if (match->key->ip.proto == IPPROTO_TCP) {
215                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
216                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220                                 }
221                         }
222
223                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
224                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
225                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
226                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
227
228                                 if (match->key->tp.src ==
229                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
230                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
231                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
232                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
233                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
234                                 }
235                         }
236                 }
237         }
238
239         if ((key_attrs & key_expected) != key_expected) {
240                 /* Key attributes check failed. */
241                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
242                           (unsigned long long)key_attrs,
243                           (unsigned long long)key_expected);
244                 return false;
245         }
246
247         if ((mask_attrs & mask_allowed) != mask_attrs) {
248                 /* Mask attributes check failed. */
249                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
250                           (unsigned long long)mask_attrs,
251                           (unsigned long long)mask_allowed);
252                 return false;
253         }
254
255         return true;
256 }
257
258 size_t ovs_tun_key_attr_size(void)
259 {
260         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
261          * updating this function.
262          */
263         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
264                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
265                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
266                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
267                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
268                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
269                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
270                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
271                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
273                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
274                  */
275                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
276                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
277 }
278
279 size_t ovs_key_attr_size(void)
280 {
281         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
282          * updating this function.
283          */
284         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
285
286         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
287                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
288                   + ovs_tun_key_attr_size()
289                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
290                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
291                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
293                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
294                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
295                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
296                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
297                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
298                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
299                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
300                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
301 }
302
303 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
304         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
305         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
306         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
307         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
308         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
309         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
310         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
311         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
312         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
313         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
314         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_NESTED },
315         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED },
316 };
317
318 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
319 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
320         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
321         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
322         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
323         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
324         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
325         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
326         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
327         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
328         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
329         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
330         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
331         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
332         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
333         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
334         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
335         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
336         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
337         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
338         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
339         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
340                                      .next = ovs_tunnel_key_lens, },
341         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
342 };
343
344 static bool is_all_zero(const u8 *fp, size_t size)
345 {
346         int i;
347
348         if (!fp)
349                 return false;
350
351         for (i = 0; i < size; i++)
352                 if (fp[i])
353                         return false;
354
355         return true;
356 }
357
358 static int __parse_flow_nlattrs(const struct nlattr *attr,
359                                 const struct nlattr *a[],
360                                 u64 *attrsp, bool log, bool nz)
361 {
362         const struct nlattr *nla;
363         u64 attrs;
364         int rem;
365
366         attrs = *attrsp;
367         nla_for_each_nested(nla, attr, rem) {
368                 u16 type = nla_type(nla);
369                 int expected_len;
370
371                 if (type > OVS_KEY_ATTR_MAX) {
372                         OVS_NLERR(log, "Key type %d is out of range max %d",
373                                   type, OVS_KEY_ATTR_MAX);
374                         return -EINVAL;
375                 }
376
377                 if (attrs & (1 << type)) {
378                         OVS_NLERR(log, "Duplicate key (type %d).", type);
379                         return -EINVAL;
380                 }
381
382                 expected_len = ovs_key_lens[type].len;
383                 if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
384                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
385                                   type, nla_len(nla), expected_len);
386                         return -EINVAL;
387                 }
388
389                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
390                         attrs |= 1 << type;
391                         a[type] = nla;
392                 }
393         }
394         if (rem) {
395                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
396                 return -EINVAL;
397         }
398
399         *attrsp = attrs;
400         return 0;
401 }
402
403 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
404                                    const struct nlattr *a[], u64 *attrsp,
405                                    bool log)
406 {
407         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
408 }
409
410 static int parse_flow_nlattrs(const struct nlattr *attr,
411                               const struct nlattr *a[], u64 *attrsp,
412                               bool log)
413 {
414         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
415 }
416
417 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
418                                      struct sw_flow_match *match, bool is_mask,
419                                      bool log)
420 {
421         unsigned long opt_key_offset;
422
423         if (nla_len(a) > sizeof(match->key->tun_opts)) {
424                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
425                           nla_len(a), sizeof(match->key->tun_opts));
426                 return -EINVAL;
427         }
428
429         if (nla_len(a) % 4 != 0) {
430                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
431                           nla_len(a));
432                 return -EINVAL;
433         }
434
435         /* We need to record the length of the options passed
436          * down, otherwise packets with the same format but
437          * additional options will be silently matched.
438          */
439         if (!is_mask) {
440                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
441                                 false);
442         } else {
443                 /* This is somewhat unusual because it looks at
444                  * both the key and mask while parsing the
445                  * attributes (and by extension assumes the key
446                  * is parsed first). Normally, we would verify
447                  * that each is the correct length and that the
448                  * attributes line up in the validate function.
449                  * However, that is difficult because this is
450                  * variable length and we won't have the
451                  * information later.
452                  */
453                 if (match->key->tun_opts_len != nla_len(a)) {
454                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
455                                   match->key->tun_opts_len, nla_len(a));
456                         return -EINVAL;
457                 }
458
459                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
460         }
461
462         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
463         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
464                                   nla_len(a), is_mask);
465         return 0;
466 }
467
468 static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
469         [OVS_VXLAN_EXT_GBP]     = { .type = NLA_U32 },
470 };
471
472 static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
473                                      struct sw_flow_match *match, bool is_mask,
474                                      bool log)
475 {
476         struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
477         unsigned long opt_key_offset;
478         struct ovs_vxlan_opts opts;
479         int err;
480
481         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
482
483         err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
484         if (err < 0)
485                 return err;
486
487         memset(&opts, 0, sizeof(opts));
488
489         if (tb[OVS_VXLAN_EXT_GBP])
490                 opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);
491
492         if (!is_mask)
493                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
494         else
495                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
496
497         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
498         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
499                                   is_mask);
500         return 0;
501 }
502
503 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
504                                 struct sw_flow_match *match, bool is_mask,
505                                 bool log)
506 {
507         struct nlattr *a;
508         int rem;
509         bool ttl = false;
510         __be16 tun_flags = 0;
511         int opts_type = 0;
512
513         nla_for_each_nested(a, attr, rem) {
514                 int type = nla_type(a);
515                 int err;
516
517                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
518                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
519                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
520                         return -EINVAL;
521                 }
522
523                 if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
524                     ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
525                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
526                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
527                         return -EINVAL;
528                 }
529
530                 switch (type) {
531                 case OVS_TUNNEL_KEY_ATTR_ID:
532                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
533                                         nla_get_be64(a), is_mask);
534                         tun_flags |= TUNNEL_KEY;
535                         break;
536                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
537                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
538                                         nla_get_be32(a), is_mask);
539                         break;
540                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
541                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
542                                         nla_get_be32(a), is_mask);
543                         break;
544                 case OVS_TUNNEL_KEY_ATTR_TOS:
545                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
546                                         nla_get_u8(a), is_mask);
547                         break;
548                 case OVS_TUNNEL_KEY_ATTR_TTL:
549                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
550                                         nla_get_u8(a), is_mask);
551                         ttl = true;
552                         break;
553                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
554                         tun_flags |= TUNNEL_DONT_FRAGMENT;
555                         break;
556                 case OVS_TUNNEL_KEY_ATTR_CSUM:
557                         tun_flags |= TUNNEL_CSUM;
558                         break;
559                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
560                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
561                                         nla_get_be16(a), is_mask);
562                         break;
563                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
564                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
565                                         nla_get_be16(a), is_mask);
566                         break;
567                 case OVS_TUNNEL_KEY_ATTR_OAM:
568                         tun_flags |= TUNNEL_OAM;
569                         break;
570                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
571                         if (opts_type) {
572                                 OVS_NLERR(log, "Multiple metadata blocks provided");
573                                 return -EINVAL;
574                         }
575
576                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
577                         if (err)
578                                 return err;
579
580                         tun_flags |= TUNNEL_GENEVE_OPT;
581                         opts_type = type;
582                         break;
583                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
584                         if (opts_type) {
585                                 OVS_NLERR(log, "Multiple metadata blocks provided");
586                                 return -EINVAL;
587                         }
588
589                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
590                         if (err)
591                                 return err;
592
593                         tun_flags |= TUNNEL_VXLAN_OPT;
594                         opts_type = type;
595                         break;
596                 default:
597                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
598                                   type);
599                         return -EINVAL;
600                 }
601         }
602
603         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
604
605         if (rem > 0) {
606                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
607                           rem);
608                 return -EINVAL;
609         }
610
611         if (!is_mask) {
612                 if (!match->key->tun_key.ipv4_dst) {
613                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
614                         return -EINVAL;
615                 }
616
617                 if (!ttl) {
618                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
619                         return -EINVAL;
620                 }
621         }
622
623         return opts_type;
624 }
625
626 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
627                                const void *tun_opts, int swkey_tun_opts_len)
628 {
629         const struct ovs_vxlan_opts *opts = tun_opts;
630         struct nlattr *nla;
631
632         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
633         if (!nla)
634                 return -EMSGSIZE;
635
636         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
637                 return -EMSGSIZE;
638
639         nla_nest_end(skb, nla);
640         return 0;
641 }
642
643 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
644                                 const struct ovs_key_ipv4_tunnel *output,
645                                 const void *tun_opts, int swkey_tun_opts_len)
646 {
647         if (output->tun_flags & TUNNEL_KEY &&
648             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
649                 return -EMSGSIZE;
650         if (output->ipv4_src &&
651             nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
652                 return -EMSGSIZE;
653         if (output->ipv4_dst &&
654             nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
655                 return -EMSGSIZE;
656         if (output->ipv4_tos &&
657             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
658                 return -EMSGSIZE;
659         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
660                 return -EMSGSIZE;
661         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
662             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
663                 return -EMSGSIZE;
664         if ((output->tun_flags & TUNNEL_CSUM) &&
665             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
666                 return -EMSGSIZE;
667         if (output->tp_src &&
668             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
669                 return -EMSGSIZE;
670         if (output->tp_dst &&
671             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
672                 return -EMSGSIZE;
673         if ((output->tun_flags & TUNNEL_OAM) &&
674             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
675                 return -EMSGSIZE;
676         if (tun_opts) {
677                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
678                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
679                             swkey_tun_opts_len, tun_opts))
680                         return -EMSGSIZE;
681                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
682                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
683                         return -EMSGSIZE;
684         }
685
686         return 0;
687 }
688
689 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
690                               const struct ovs_key_ipv4_tunnel *output,
691                               const void *tun_opts, int swkey_tun_opts_len)
692 {
693         struct nlattr *nla;
694         int err;
695
696         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
697         if (!nla)
698                 return -EMSGSIZE;
699
700         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
701         if (err)
702                 return err;
703
704         nla_nest_end(skb, nla);
705         return 0;
706 }
707
708 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
709                                   const struct ovs_tunnel_info *egress_tun_info)
710 {
711         return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
712                                     egress_tun_info->options,
713                                     egress_tun_info->options_len);
714 }
715
716 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
717                                  const struct nlattr **a, bool is_mask,
718                                  bool log)
719 {
720         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
721                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
722
723                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
724                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
725         }
726
727         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
728                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
729
730                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
731                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
732         }
733
734         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
735                 SW_FLOW_KEY_PUT(match, phy.priority,
736                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
737                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
738         }
739
740         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
741                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
742
743                 if (is_mask) {
744                         in_port = 0xffffffff; /* Always exact match in_port. */
745                 } else if (in_port >= DP_MAX_PORTS) {
746                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
747                                   in_port, DP_MAX_PORTS);
748                         return -EINVAL;
749                 }
750
751                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
752                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
753         } else if (!is_mask) {
754                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
755         }
756
757         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
758                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
759
760                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
761                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
762         }
763         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
764                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
765                                          is_mask, log) < 0)
766                         return -EINVAL;
767                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
768         }
769         return 0;
770 }
771
772 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
773                                 const struct nlattr **a, bool is_mask,
774                                 bool log)
775 {
776         int err;
777
778         err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
779         if (err)
780                 return err;
781
782         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
783                 const struct ovs_key_ethernet *eth_key;
784
785                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
786                 SW_FLOW_KEY_MEMCPY(match, eth.src,
787                                 eth_key->eth_src, ETH_ALEN, is_mask);
788                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
789                                 eth_key->eth_dst, ETH_ALEN, is_mask);
790                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
791         }
792
793         if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
794                 __be16 tci;
795
796                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
797                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
798                         if (is_mask)
799                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
800                         else
801                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
802
803                         return -EINVAL;
804                 }
805
806                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
807                 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
808         }
809
810         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
811                 __be16 eth_type;
812
813                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
814                 if (is_mask) {
815                         /* Always exact match EtherType. */
816                         eth_type = htons(0xffff);
817                 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
818                         OVS_NLERR(log, "EtherType %x is less than min %x",
819                                   ntohs(eth_type), ETH_P_802_3_MIN);
820                         return -EINVAL;
821                 }
822
823                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
824                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
825         } else if (!is_mask) {
826                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
827         }
828
829         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
830                 const struct ovs_key_ipv4 *ipv4_key;
831
832                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
833                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
834                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
835                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
836                         return -EINVAL;
837                 }
838                 SW_FLOW_KEY_PUT(match, ip.proto,
839                                 ipv4_key->ipv4_proto, is_mask);
840                 SW_FLOW_KEY_PUT(match, ip.tos,
841                                 ipv4_key->ipv4_tos, is_mask);
842                 SW_FLOW_KEY_PUT(match, ip.ttl,
843                                 ipv4_key->ipv4_ttl, is_mask);
844                 SW_FLOW_KEY_PUT(match, ip.frag,
845                                 ipv4_key->ipv4_frag, is_mask);
846                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
847                                 ipv4_key->ipv4_src, is_mask);
848                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
849                                 ipv4_key->ipv4_dst, is_mask);
850                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
851         }
852
853         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
854                 const struct ovs_key_ipv6 *ipv6_key;
855
856                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
857                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
858                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
859                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
860                         return -EINVAL;
861                 }
862
863                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
864                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
865                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
866                         return -EINVAL;
867                 }
868
869                 SW_FLOW_KEY_PUT(match, ipv6.label,
870                                 ipv6_key->ipv6_label, is_mask);
871                 SW_FLOW_KEY_PUT(match, ip.proto,
872                                 ipv6_key->ipv6_proto, is_mask);
873                 SW_FLOW_KEY_PUT(match, ip.tos,
874                                 ipv6_key->ipv6_tclass, is_mask);
875                 SW_FLOW_KEY_PUT(match, ip.ttl,
876                                 ipv6_key->ipv6_hlimit, is_mask);
877                 SW_FLOW_KEY_PUT(match, ip.frag,
878                                 ipv6_key->ipv6_frag, is_mask);
879                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
880                                 ipv6_key->ipv6_src,
881                                 sizeof(match->key->ipv6.addr.src),
882                                 is_mask);
883                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
884                                 ipv6_key->ipv6_dst,
885                                 sizeof(match->key->ipv6.addr.dst),
886                                 is_mask);
887
888                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
889         }
890
891         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
892                 const struct ovs_key_arp *arp_key;
893
894                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
895                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
896                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
897                                   arp_key->arp_op);
898                         return -EINVAL;
899                 }
900
901                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
902                                 arp_key->arp_sip, is_mask);
903                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
904                         arp_key->arp_tip, is_mask);
905                 SW_FLOW_KEY_PUT(match, ip.proto,
906                                 ntohs(arp_key->arp_op), is_mask);
907                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
908                                 arp_key->arp_sha, ETH_ALEN, is_mask);
909                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
910                                 arp_key->arp_tha, ETH_ALEN, is_mask);
911
912                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
913         }
914
915         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
916                 const struct ovs_key_mpls *mpls_key;
917
918                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
919                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
920                                 mpls_key->mpls_lse, is_mask);
921
922                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
923          }
924
925         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
926                 const struct ovs_key_tcp *tcp_key;
927
928                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
929                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
930                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
931                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
932         }
933
934         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
935                 SW_FLOW_KEY_PUT(match, tp.flags,
936                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
937                                 is_mask);
938                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
939         }
940
941         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
942                 const struct ovs_key_udp *udp_key;
943
944                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
945                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
946                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
947                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
948         }
949
950         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
951                 const struct ovs_key_sctp *sctp_key;
952
953                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
954                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
955                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
956                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
957         }
958
959         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
960                 const struct ovs_key_icmp *icmp_key;
961
962                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
963                 SW_FLOW_KEY_PUT(match, tp.src,
964                                 htons(icmp_key->icmp_type), is_mask);
965                 SW_FLOW_KEY_PUT(match, tp.dst,
966                                 htons(icmp_key->icmp_code), is_mask);
967                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
968         }
969
970         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
971                 const struct ovs_key_icmpv6 *icmpv6_key;
972
973                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
974                 SW_FLOW_KEY_PUT(match, tp.src,
975                                 htons(icmpv6_key->icmpv6_type), is_mask);
976                 SW_FLOW_KEY_PUT(match, tp.dst,
977                                 htons(icmpv6_key->icmpv6_code), is_mask);
978                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
979         }
980
981         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
982                 const struct ovs_key_nd *nd_key;
983
984                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
985                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
986                         nd_key->nd_target,
987                         sizeof(match->key->ipv6.nd.target),
988                         is_mask);
989                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
990                         nd_key->nd_sll, ETH_ALEN, is_mask);
991                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
992                                 nd_key->nd_tll, ETH_ALEN, is_mask);
993                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
994         }
995
996         if (attrs != 0) {
997                 OVS_NLERR(log, "Unknown key attributes %llx",
998                           (unsigned long long)attrs);
999                 return -EINVAL;
1000         }
1001
1002         return 0;
1003 }
1004
1005 static void nlattr_set(struct nlattr *attr, u8 val,
1006                        const struct ovs_len_tbl *tbl)
1007 {
1008         struct nlattr *nla;
1009         int rem;
1010
1011         /* The nlattr stream should already have been validated */
1012         nla_for_each_nested(nla, attr, rem) {
1013                 if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1014                         nlattr_set(nla, val, tbl[nla_type(nla)].next);
1015                 else
1016                         memset(nla_data(nla), val, nla_len(nla));
1017         }
1018 }
1019
1020 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1021 {
1022         nlattr_set(attr, val, ovs_key_lens);
1023 }
1024
1025 /**
1026  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1027  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1028  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1029  * does not include any don't care bit.
1030  * @match: receives the extracted flow match information.
1031  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1032  * sequence. The fields should of the packet that triggered the creation
1033  * of this flow.
1034  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1035  * attribute specifies the mask field of the wildcarded flow.
1036  * @log: Boolean to allow kernel error logging.  Normally true, but when
1037  * probing for feature compatibility this should be passed in as false to
1038  * suppress unnecessary error logging.
1039  */
1040 int ovs_nla_get_match(struct sw_flow_match *match,
1041                       const struct nlattr *nla_key,
1042                       const struct nlattr *nla_mask,
1043                       bool log)
1044 {
1045         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1046         const struct nlattr *encap;
1047         struct nlattr *newmask = NULL;
1048         u64 key_attrs = 0;
1049         u64 mask_attrs = 0;
1050         bool encap_valid = false;
1051         int err;
1052
1053         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1054         if (err)
1055                 return err;
1056
1057         if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1058             (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1059             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1060                 __be16 tci;
1061
1062                 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1063                       (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1064                         OVS_NLERR(log, "Invalid Vlan frame.");
1065                         return -EINVAL;
1066                 }
1067
1068                 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1069                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1070                 encap = a[OVS_KEY_ATTR_ENCAP];
1071                 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1072                 encap_valid = true;
1073
1074                 if (tci & htons(VLAN_TAG_PRESENT)) {
1075                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1076                         if (err)
1077                                 return err;
1078                 } else if (!tci) {
1079                         /* Corner case for truncated 802.1Q header. */
1080                         if (nla_len(encap)) {
1081                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1082                                 return -EINVAL;
1083                         }
1084                 } else {
1085                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1086                         return  -EINVAL;
1087                 }
1088         }
1089
1090         err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1091         if (err)
1092                 return err;
1093
1094         if (match->mask) {
1095                 if (!nla_mask) {
1096                         /* Create an exact match mask. We need to set to 0xff
1097                          * all the 'match->mask' fields that have been touched
1098                          * in 'match->key'. We cannot simply memset
1099                          * 'match->mask', because padding bytes and fields not
1100                          * specified in 'match->key' should be left to 0.
1101                          * Instead, we use a stream of netlink attributes,
1102                          * copied from 'key' and set to 0xff.
1103                          * ovs_key_from_nlattrs() will take care of filling
1104                          * 'match->mask' appropriately.
1105                          */
1106                         newmask = kmemdup(nla_key,
1107                                           nla_total_size(nla_len(nla_key)),
1108                                           GFP_KERNEL);
1109                         if (!newmask)
1110                                 return -ENOMEM;
1111
1112                         mask_set_nlattr(newmask, 0xff);
1113
1114                         /* The userspace does not send tunnel attributes that
1115                          * are 0, but we should not wildcard them nonetheless.
1116                          */
1117                         if (match->key->tun_key.ipv4_dst)
1118                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1119                                                          0xff, true);
1120
1121                         nla_mask = newmask;
1122                 }
1123
1124                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1125                 if (err)
1126                         goto free_newmask;
1127
1128                 /* Always match on tci. */
1129                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1130
1131                 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1132                         __be16 eth_type = 0;
1133                         __be16 tci = 0;
1134
1135                         if (!encap_valid) {
1136                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1137                                 err = -EINVAL;
1138                                 goto free_newmask;
1139                         }
1140
1141                         mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1142                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1143                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1144
1145                         if (eth_type == htons(0xffff)) {
1146                                 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1147                                 encap = a[OVS_KEY_ATTR_ENCAP];
1148                                 err = parse_flow_mask_nlattrs(encap, a,
1149                                                               &mask_attrs, log);
1150                                 if (err)
1151                                         goto free_newmask;
1152                         } else {
1153                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1154                                           ntohs(eth_type));
1155                                 err = -EINVAL;
1156                                 goto free_newmask;
1157                         }
1158
1159                         if (a[OVS_KEY_ATTR_VLAN])
1160                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1161
1162                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1163                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1164                                           ntohs(tci));
1165                                 err = -EINVAL;
1166                                 goto free_newmask;
1167                         }
1168                 }
1169
1170                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1171                 if (err)
1172                         goto free_newmask;
1173         }
1174
1175         if (!match_validate(match, key_attrs, mask_attrs, log))
1176                 err = -EINVAL;
1177
1178 free_newmask:
1179         kfree(newmask);
1180         return err;
1181 }
1182
1183 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1184 {
1185         size_t len;
1186
1187         if (!attr)
1188                 return 0;
1189
1190         len = nla_len(attr);
1191         if (len < 1 || len > MAX_UFID_LENGTH) {
1192                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1193                           nla_len(attr), MAX_UFID_LENGTH);
1194                 return 0;
1195         }
1196
1197         return len;
1198 }
1199
1200 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1201  * or false otherwise.
1202  */
1203 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1204                       bool log)
1205 {
1206         sfid->ufid_len = get_ufid_len(attr, log);
1207         if (sfid->ufid_len)
1208                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1209
1210         return sfid->ufid_len;
1211 }
1212
1213 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1214                            const struct sw_flow_key *key, bool log)
1215 {
1216         struct sw_flow_key *new_key;
1217
1218         if (ovs_nla_get_ufid(sfid, ufid, log))
1219                 return 0;
1220
1221         /* If UFID was not provided, use unmasked key. */
1222         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1223         if (!new_key)
1224                 return -ENOMEM;
1225         memcpy(new_key, key, sizeof(*key));
1226         sfid->unmasked_key = new_key;
1227
1228         return 0;
1229 }
1230
1231 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1232 {
1233         return attr ? nla_get_u32(attr) : 0;
1234 }
1235
1236 /**
1237  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1238  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1239  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1240  * sequence.
1241  * @log: Boolean to allow kernel error logging.  Normally true, but when
1242  * probing for feature compatibility this should be passed in as false to
1243  * suppress unnecessary error logging.
1244  *
1245  * This parses a series of Netlink attributes that form a flow key, which must
1246  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1247  * get the metadata, that is, the parts of the flow key that cannot be
1248  * extracted from the packet itself.
1249  */
1250
1251 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1252                               struct sw_flow_key *key,
1253                               bool log)
1254 {
1255         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1256         struct sw_flow_match match;
1257         u64 attrs = 0;
1258         int err;
1259
1260         err = parse_flow_nlattrs(attr, a, &attrs, log);
1261         if (err)
1262                 return -EINVAL;
1263
1264         memset(&match, 0, sizeof(match));
1265         match.key = key;
1266
1267         key->phy.in_port = DP_MAX_PORTS;
1268
1269         return metadata_from_nlattrs(&match, &attrs, a, false, log);
1270 }
1271
1272 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1273                              const struct sw_flow_key *output, bool is_mask,
1274                              struct sk_buff *skb)
1275 {
1276         struct ovs_key_ethernet *eth_key;
1277         struct nlattr *nla, *encap;
1278
1279         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1280                 goto nla_put_failure;
1281
1282         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1283                 goto nla_put_failure;
1284
1285         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1286                 goto nla_put_failure;
1287
1288         if ((swkey->tun_key.ipv4_dst || is_mask)) {
1289                 const void *opts = NULL;
1290
1291                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1292                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1293
1294                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1295                                        swkey->tun_opts_len))
1296                         goto nla_put_failure;
1297         }
1298
1299         if (swkey->phy.in_port == DP_MAX_PORTS) {
1300                 if (is_mask && (output->phy.in_port == 0xffff))
1301                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1302                                 goto nla_put_failure;
1303         } else {
1304                 u16 upper_u16;
1305                 upper_u16 = !is_mask ? 0 : 0xffff;
1306
1307                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1308                                 (upper_u16 << 16) | output->phy.in_port))
1309                         goto nla_put_failure;
1310         }
1311
1312         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1313                 goto nla_put_failure;
1314
1315         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1316         if (!nla)
1317                 goto nla_put_failure;
1318
1319         eth_key = nla_data(nla);
1320         ether_addr_copy(eth_key->eth_src, output->eth.src);
1321         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1322
1323         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1324                 __be16 eth_type;
1325                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1326                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1327                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1328                         goto nla_put_failure;
1329                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1330                 if (!swkey->eth.tci)
1331                         goto unencap;
1332         } else
1333                 encap = NULL;
1334
1335         if (swkey->eth.type == htons(ETH_P_802_2)) {
1336                 /*
1337                  * Ethertype 802.2 is represented in the netlink with omitted
1338                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1339                  * 0xffff in the mask attribute.  Ethertype can also
1340                  * be wildcarded.
1341                  */
1342                 if (is_mask && output->eth.type)
1343                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1344                                                 output->eth.type))
1345                                 goto nla_put_failure;
1346                 goto unencap;
1347         }
1348
1349         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1350                 goto nla_put_failure;
1351
1352         if (swkey->eth.type == htons(ETH_P_IP)) {
1353                 struct ovs_key_ipv4 *ipv4_key;
1354
1355                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1356                 if (!nla)
1357                         goto nla_put_failure;
1358                 ipv4_key = nla_data(nla);
1359                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1360                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1361                 ipv4_key->ipv4_proto = output->ip.proto;
1362                 ipv4_key->ipv4_tos = output->ip.tos;
1363                 ipv4_key->ipv4_ttl = output->ip.ttl;
1364                 ipv4_key->ipv4_frag = output->ip.frag;
1365         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1366                 struct ovs_key_ipv6 *ipv6_key;
1367
1368                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1369                 if (!nla)
1370                         goto nla_put_failure;
1371                 ipv6_key = nla_data(nla);
1372                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1373                                 sizeof(ipv6_key->ipv6_src));
1374                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1375                                 sizeof(ipv6_key->ipv6_dst));
1376                 ipv6_key->ipv6_label = output->ipv6.label;
1377                 ipv6_key->ipv6_proto = output->ip.proto;
1378                 ipv6_key->ipv6_tclass = output->ip.tos;
1379                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1380                 ipv6_key->ipv6_frag = output->ip.frag;
1381         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1382                    swkey->eth.type == htons(ETH_P_RARP)) {
1383                 struct ovs_key_arp *arp_key;
1384
1385                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1386                 if (!nla)
1387                         goto nla_put_failure;
1388                 arp_key = nla_data(nla);
1389                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1390                 arp_key->arp_sip = output->ipv4.addr.src;
1391                 arp_key->arp_tip = output->ipv4.addr.dst;
1392                 arp_key->arp_op = htons(output->ip.proto);
1393                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1394                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1395         } else if (eth_p_mpls(swkey->eth.type)) {
1396                 struct ovs_key_mpls *mpls_key;
1397
1398                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1399                 if (!nla)
1400                         goto nla_put_failure;
1401                 mpls_key = nla_data(nla);
1402                 mpls_key->mpls_lse = output->mpls.top_lse;
1403         }
1404
1405         if ((swkey->eth.type == htons(ETH_P_IP) ||
1406              swkey->eth.type == htons(ETH_P_IPV6)) &&
1407              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1408
1409                 if (swkey->ip.proto == IPPROTO_TCP) {
1410                         struct ovs_key_tcp *tcp_key;
1411
1412                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1413                         if (!nla)
1414                                 goto nla_put_failure;
1415                         tcp_key = nla_data(nla);
1416                         tcp_key->tcp_src = output->tp.src;
1417                         tcp_key->tcp_dst = output->tp.dst;
1418                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1419                                          output->tp.flags))
1420                                 goto nla_put_failure;
1421                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1422                         struct ovs_key_udp *udp_key;
1423
1424                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1425                         if (!nla)
1426                                 goto nla_put_failure;
1427                         udp_key = nla_data(nla);
1428                         udp_key->udp_src = output->tp.src;
1429                         udp_key->udp_dst = output->tp.dst;
1430                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1431                         struct ovs_key_sctp *sctp_key;
1432
1433                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1434                         if (!nla)
1435                                 goto nla_put_failure;
1436                         sctp_key = nla_data(nla);
1437                         sctp_key->sctp_src = output->tp.src;
1438                         sctp_key->sctp_dst = output->tp.dst;
1439                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1440                            swkey->ip.proto == IPPROTO_ICMP) {
1441                         struct ovs_key_icmp *icmp_key;
1442
1443                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1444                         if (!nla)
1445                                 goto nla_put_failure;
1446                         icmp_key = nla_data(nla);
1447                         icmp_key->icmp_type = ntohs(output->tp.src);
1448                         icmp_key->icmp_code = ntohs(output->tp.dst);
1449                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1450                            swkey->ip.proto == IPPROTO_ICMPV6) {
1451                         struct ovs_key_icmpv6 *icmpv6_key;
1452
1453                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1454                                                 sizeof(*icmpv6_key));
1455                         if (!nla)
1456                                 goto nla_put_failure;
1457                         icmpv6_key = nla_data(nla);
1458                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1459                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1460
1461                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1462                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1463                                 struct ovs_key_nd *nd_key;
1464
1465                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1466                                 if (!nla)
1467                                         goto nla_put_failure;
1468                                 nd_key = nla_data(nla);
1469                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1470                                                         sizeof(nd_key->nd_target));
1471                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1472                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1473                         }
1474                 }
1475         }
1476
1477 unencap:
1478         if (encap)
1479                 nla_nest_end(skb, encap);
1480
1481         return 0;
1482
1483 nla_put_failure:
1484         return -EMSGSIZE;
1485 }
1486
1487 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1488                     const struct sw_flow_key *output, int attr, bool is_mask,
1489                     struct sk_buff *skb)
1490 {
1491         int err;
1492         struct nlattr *nla;
1493
1494         nla = nla_nest_start(skb, attr);
1495         if (!nla)
1496                 return -EMSGSIZE;
1497         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1498         if (err)
1499                 return err;
1500         nla_nest_end(skb, nla);
1501
1502         return 0;
1503 }
1504
1505 /* Called with ovs_mutex or RCU read lock. */
1506 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1507 {
1508         if (ovs_identifier_is_ufid(&flow->id))
1509                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1510                                flow->id.ufid);
1511
1512         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1513                                OVS_FLOW_ATTR_KEY, false, skb);
1514 }
1515
1516 /* Called with ovs_mutex or RCU read lock. */
1517 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1518 {
1519         return ovs_nla_put_key(&flow->key, &flow->key,
1520                                 OVS_FLOW_ATTR_KEY, false, skb);
1521 }
1522
1523 /* Called with ovs_mutex or RCU read lock. */
1524 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1525 {
1526         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1527                                 OVS_FLOW_ATTR_MASK, true, skb);
1528 }
1529
1530 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1531
1532 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1533 {
1534         struct sw_flow_actions *sfa;
1535
1536         if (size > MAX_ACTIONS_BUFSIZE) {
1537                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1538                 return ERR_PTR(-EINVAL);
1539         }
1540
1541         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1542         if (!sfa)
1543                 return ERR_PTR(-ENOMEM);
1544
1545         sfa->actions_len = 0;
1546         return sfa;
1547 }
1548
1549 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1550  * The caller must hold rcu_read_lock for this to be sensible. */
1551 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1552 {
1553         kfree_rcu(sf_acts, rcu);
1554 }
1555
1556 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1557                                        int attr_len, bool log)
1558 {
1559
1560         struct sw_flow_actions *acts;
1561         int new_acts_size;
1562         int req_size = NLA_ALIGN(attr_len);
1563         int next_offset = offsetof(struct sw_flow_actions, actions) +
1564                                         (*sfa)->actions_len;
1565
1566         if (req_size <= (ksize(*sfa) - next_offset))
1567                 goto out;
1568
1569         new_acts_size = ksize(*sfa) * 2;
1570
1571         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1572                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1573                         return ERR_PTR(-EMSGSIZE);
1574                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1575         }
1576
1577         acts = nla_alloc_flow_actions(new_acts_size, log);
1578         if (IS_ERR(acts))
1579                 return (void *)acts;
1580
1581         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1582         acts->actions_len = (*sfa)->actions_len;
1583         kfree(*sfa);
1584         *sfa = acts;
1585
1586 out:
1587         (*sfa)->actions_len += req_size;
1588         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1589 }
1590
1591 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1592                                    int attrtype, void *data, int len, bool log)
1593 {
1594         struct nlattr *a;
1595
1596         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1597         if (IS_ERR(a))
1598                 return a;
1599
1600         a->nla_type = attrtype;
1601         a->nla_len = nla_attr_size(len);
1602
1603         if (data)
1604                 memcpy(nla_data(a), data, len);
1605         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1606
1607         return a;
1608 }
1609
1610 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1611                       void *data, int len, bool log)
1612 {
1613         struct nlattr *a;
1614
1615         a = __add_action(sfa, attrtype, data, len, log);
1616
1617         return PTR_ERR_OR_ZERO(a);
1618 }
1619
1620 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1621                                           int attrtype, bool log)
1622 {
1623         int used = (*sfa)->actions_len;
1624         int err;
1625
1626         err = add_action(sfa, attrtype, NULL, 0, log);
1627         if (err)
1628                 return err;
1629
1630         return used;
1631 }
1632
1633 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1634                                          int st_offset)
1635 {
1636         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1637                                                                st_offset);
1638
1639         a->nla_len = sfa->actions_len - st_offset;
1640 }
1641
1642 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1643                                   const struct sw_flow_key *key,
1644                                   int depth, struct sw_flow_actions **sfa,
1645                                   __be16 eth_type, __be16 vlan_tci, bool log);
1646
1647 static int validate_and_copy_sample(const struct nlattr *attr,
1648                                     const struct sw_flow_key *key, int depth,
1649                                     struct sw_flow_actions **sfa,
1650                                     __be16 eth_type, __be16 vlan_tci, bool log)
1651 {
1652         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1653         const struct nlattr *probability, *actions;
1654         const struct nlattr *a;
1655         int rem, start, err, st_acts;
1656
1657         memset(attrs, 0, sizeof(attrs));
1658         nla_for_each_nested(a, attr, rem) {
1659                 int type = nla_type(a);
1660                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1661                         return -EINVAL;
1662                 attrs[type] = a;
1663         }
1664         if (rem)
1665                 return -EINVAL;
1666
1667         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1668         if (!probability || nla_len(probability) != sizeof(u32))
1669                 return -EINVAL;
1670
1671         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1672         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1673                 return -EINVAL;
1674
1675         /* validation done, copy sample action. */
1676         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1677         if (start < 0)
1678                 return start;
1679         err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1680                          nla_data(probability), sizeof(u32), log);
1681         if (err)
1682                 return err;
1683         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1684         if (st_acts < 0)
1685                 return st_acts;
1686
1687         err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1688                                      eth_type, vlan_tci, log);
1689         if (err)
1690                 return err;
1691
1692         add_nested_action_end(*sfa, st_acts);
1693         add_nested_action_end(*sfa, start);
1694
1695         return 0;
1696 }
1697
1698 void ovs_match_init(struct sw_flow_match *match,
1699                     struct sw_flow_key *key,
1700                     struct sw_flow_mask *mask)
1701 {
1702         memset(match, 0, sizeof(*match));
1703         match->key = key;
1704         match->mask = mask;
1705
1706         memset(key, 0, sizeof(*key));
1707
1708         if (mask) {
1709                 memset(&mask->key, 0, sizeof(mask->key));
1710                 mask->range.start = mask->range.end = 0;
1711         }
1712 }
1713
1714 static int validate_geneve_opts(struct sw_flow_key *key)
1715 {
1716         struct geneve_opt *option;
1717         int opts_len = key->tun_opts_len;
1718         bool crit_opt = false;
1719
1720         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1721         while (opts_len > 0) {
1722                 int len;
1723
1724                 if (opts_len < sizeof(*option))
1725                         return -EINVAL;
1726
1727                 len = sizeof(*option) + option->length * 4;
1728                 if (len > opts_len)
1729                         return -EINVAL;
1730
1731                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1732
1733                 option = (struct geneve_opt *)((u8 *)option + len);
1734                 opts_len -= len;
1735         };
1736
1737         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1738
1739         return 0;
1740 }
1741
1742 static int validate_and_copy_set_tun(const struct nlattr *attr,
1743                                      struct sw_flow_actions **sfa, bool log)
1744 {
1745         struct sw_flow_match match;
1746         struct sw_flow_key key;
1747         struct ovs_tunnel_info *tun_info;
1748         struct nlattr *a;
1749         int err = 0, start, opts_type;
1750
1751         ovs_match_init(&match, &key, NULL);
1752         opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1753         if (opts_type < 0)
1754                 return opts_type;
1755
1756         if (key.tun_opts_len) {
1757                 switch (opts_type) {
1758                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1759                         err = validate_geneve_opts(&key);
1760                         if (err < 0)
1761                                 return err;
1762                         break;
1763                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1764                         break;
1765                 }
1766         };
1767
1768         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1769         if (start < 0)
1770                 return start;
1771
1772         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1773                          sizeof(*tun_info) + key.tun_opts_len, log);
1774         if (IS_ERR(a))
1775                 return PTR_ERR(a);
1776
1777         tun_info = nla_data(a);
1778         tun_info->tunnel = key.tun_key;
1779         tun_info->options_len = key.tun_opts_len;
1780
1781         if (tun_info->options_len) {
1782                 /* We need to store the options in the action itself since
1783                  * everything else will go away after flow setup. We can append
1784                  * it to tun_info and then point there.
1785                  */
1786                 memcpy((tun_info + 1),
1787                        TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
1788                 tun_info->options = (tun_info + 1);
1789         } else {
1790                 tun_info->options = NULL;
1791         }
1792
1793         add_nested_action_end(*sfa, start);
1794
1795         return err;
1796 }
1797
1798 /* Return false if there are any non-masked bits set.
1799  * Mask follows data immediately, before any netlink padding.
1800  */
1801 static bool validate_masked(u8 *data, int len)
1802 {
1803         u8 *mask = data + len;
1804
1805         while (len--)
1806                 if (*data++ & ~*mask++)
1807                         return false;
1808
1809         return true;
1810 }
1811
1812 static int validate_set(const struct nlattr *a,
1813                         const struct sw_flow_key *flow_key,
1814                         struct sw_flow_actions **sfa,
1815                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
1816 {
1817         const struct nlattr *ovs_key = nla_data(a);
1818         int key_type = nla_type(ovs_key);
1819         size_t key_len;
1820
1821         /* There can be only one key in a action */
1822         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1823                 return -EINVAL;
1824
1825         key_len = nla_len(ovs_key);
1826         if (masked)
1827                 key_len /= 2;
1828
1829         if (key_type > OVS_KEY_ATTR_MAX ||
1830             (ovs_key_lens[key_type].len != key_len &&
1831              ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
1832                 return -EINVAL;
1833
1834         if (masked && !validate_masked(nla_data(ovs_key), key_len))
1835                 return -EINVAL;
1836
1837         switch (key_type) {
1838         const struct ovs_key_ipv4 *ipv4_key;
1839         const struct ovs_key_ipv6 *ipv6_key;
1840         int err;
1841
1842         case OVS_KEY_ATTR_PRIORITY:
1843         case OVS_KEY_ATTR_SKB_MARK:
1844         case OVS_KEY_ATTR_ETHERNET:
1845                 break;
1846
1847         case OVS_KEY_ATTR_TUNNEL:
1848                 if (eth_p_mpls(eth_type))
1849                         return -EINVAL;
1850
1851                 if (masked)
1852                         return -EINVAL; /* Masked tunnel set not supported. */
1853
1854                 *skip_copy = true;
1855                 err = validate_and_copy_set_tun(a, sfa, log);
1856                 if (err)
1857                         return err;
1858                 break;
1859
1860         case OVS_KEY_ATTR_IPV4:
1861                 if (eth_type != htons(ETH_P_IP))
1862                         return -EINVAL;
1863
1864                 ipv4_key = nla_data(ovs_key);
1865
1866                 if (masked) {
1867                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1868
1869                         /* Non-writeable fields. */
1870                         if (mask->ipv4_proto || mask->ipv4_frag)
1871                                 return -EINVAL;
1872                 } else {
1873                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1874                                 return -EINVAL;
1875
1876                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1877                                 return -EINVAL;
1878                 }
1879                 break;
1880
1881         case OVS_KEY_ATTR_IPV6:
1882                 if (eth_type != htons(ETH_P_IPV6))
1883                         return -EINVAL;
1884
1885                 ipv6_key = nla_data(ovs_key);
1886
1887                 if (masked) {
1888                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
1889
1890                         /* Non-writeable fields. */
1891                         if (mask->ipv6_proto || mask->ipv6_frag)
1892                                 return -EINVAL;
1893
1894                         /* Invalid bits in the flow label mask? */
1895                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
1896                                 return -EINVAL;
1897                 } else {
1898                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1899                                 return -EINVAL;
1900
1901                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1902                                 return -EINVAL;
1903                 }
1904                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1905                         return -EINVAL;
1906
1907                 break;
1908
1909         case OVS_KEY_ATTR_TCP:
1910                 if ((eth_type != htons(ETH_P_IP) &&
1911                      eth_type != htons(ETH_P_IPV6)) ||
1912                     flow_key->ip.proto != IPPROTO_TCP)
1913                         return -EINVAL;
1914
1915                 break;
1916
1917         case OVS_KEY_ATTR_UDP:
1918                 if ((eth_type != htons(ETH_P_IP) &&
1919                      eth_type != htons(ETH_P_IPV6)) ||
1920                     flow_key->ip.proto != IPPROTO_UDP)
1921                         return -EINVAL;
1922
1923                 break;
1924
1925         case OVS_KEY_ATTR_MPLS:
1926                 if (!eth_p_mpls(eth_type))
1927                         return -EINVAL;
1928                 break;
1929
1930         case OVS_KEY_ATTR_SCTP:
1931                 if ((eth_type != htons(ETH_P_IP) &&
1932                      eth_type != htons(ETH_P_IPV6)) ||
1933                     flow_key->ip.proto != IPPROTO_SCTP)
1934                         return -EINVAL;
1935
1936                 break;
1937
1938         default:
1939                 return -EINVAL;
1940         }
1941
1942         /* Convert non-masked non-tunnel set actions to masked set actions. */
1943         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
1944                 int start, len = key_len * 2;
1945                 struct nlattr *at;
1946
1947                 *skip_copy = true;
1948
1949                 start = add_nested_action_start(sfa,
1950                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
1951                                                 log);
1952                 if (start < 0)
1953                         return start;
1954
1955                 at = __add_action(sfa, key_type, NULL, len, log);
1956                 if (IS_ERR(at))
1957                         return PTR_ERR(at);
1958
1959                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
1960                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
1961                 /* Clear non-writeable bits from otherwise writeable fields. */
1962                 if (key_type == OVS_KEY_ATTR_IPV6) {
1963                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
1964
1965                         mask->ipv6_label &= htonl(0x000FFFFF);
1966                 }
1967                 add_nested_action_end(*sfa, start);
1968         }
1969
1970         return 0;
1971 }
1972
1973 static int validate_userspace(const struct nlattr *attr)
1974 {
1975         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1976                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1977                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1978                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1979         };
1980         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1981         int error;
1982
1983         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1984                                  attr, userspace_policy);
1985         if (error)
1986                 return error;
1987
1988         if (!a[OVS_USERSPACE_ATTR_PID] ||
1989             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1990                 return -EINVAL;
1991
1992         return 0;
1993 }
1994
1995 static int copy_action(const struct nlattr *from,
1996                        struct sw_flow_actions **sfa, bool log)
1997 {
1998         int totlen = NLA_ALIGN(from->nla_len);
1999         struct nlattr *to;
2000
2001         to = reserve_sfa_size(sfa, from->nla_len, log);
2002         if (IS_ERR(to))
2003                 return PTR_ERR(to);
2004
2005         memcpy(to, from, totlen);
2006         return 0;
2007 }
2008
2009 static int __ovs_nla_copy_actions(const struct nlattr *attr,
2010                                   const struct sw_flow_key *key,
2011                                   int depth, struct sw_flow_actions **sfa,
2012                                   __be16 eth_type, __be16 vlan_tci, bool log)
2013 {
2014         const struct nlattr *a;
2015         int rem, err;
2016
2017         if (depth >= SAMPLE_ACTION_DEPTH)
2018                 return -EOVERFLOW;
2019
2020         nla_for_each_nested(a, attr, rem) {
2021                 /* Expected argument lengths, (u32)-1 for variable length. */
2022                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2023                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2024                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2025                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2026                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2027                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2028                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2029                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2030                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2031                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2032                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2033                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
2034                 };
2035                 const struct ovs_action_push_vlan *vlan;
2036                 int type = nla_type(a);
2037                 bool skip_copy;
2038
2039                 if (type > OVS_ACTION_ATTR_MAX ||
2040                     (action_lens[type] != nla_len(a) &&
2041                      action_lens[type] != (u32)-1))
2042                         return -EINVAL;
2043
2044                 skip_copy = false;
2045                 switch (type) {
2046                 case OVS_ACTION_ATTR_UNSPEC:
2047                         return -EINVAL;
2048
2049                 case OVS_ACTION_ATTR_USERSPACE:
2050                         err = validate_userspace(a);
2051                         if (err)
2052                                 return err;
2053                         break;
2054
2055                 case OVS_ACTION_ATTR_OUTPUT:
2056                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2057                                 return -EINVAL;
2058                         break;
2059
2060                 case OVS_ACTION_ATTR_HASH: {
2061                         const struct ovs_action_hash *act_hash = nla_data(a);
2062
2063                         switch (act_hash->hash_alg) {
2064                         case OVS_HASH_ALG_L4:
2065                                 break;
2066                         default:
2067                                 return  -EINVAL;
2068                         }
2069
2070                         break;
2071                 }
2072
2073                 case OVS_ACTION_ATTR_POP_VLAN:
2074                         vlan_tci = htons(0);
2075                         break;
2076
2077                 case OVS_ACTION_ATTR_PUSH_VLAN:
2078                         vlan = nla_data(a);
2079                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2080                                 return -EINVAL;
2081                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2082                                 return -EINVAL;
2083                         vlan_tci = vlan->vlan_tci;
2084                         break;
2085
2086                 case OVS_ACTION_ATTR_RECIRC:
2087                         break;
2088
2089                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2090                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2091
2092                         if (!eth_p_mpls(mpls->mpls_ethertype))
2093                                 return -EINVAL;
2094                         /* Prohibit push MPLS other than to a white list
2095                          * for packets that have a known tag order.
2096                          */
2097                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2098                             (eth_type != htons(ETH_P_IP) &&
2099                              eth_type != htons(ETH_P_IPV6) &&
2100                              eth_type != htons(ETH_P_ARP) &&
2101                              eth_type != htons(ETH_P_RARP) &&
2102                              !eth_p_mpls(eth_type)))
2103                                 return -EINVAL;
2104                         eth_type = mpls->mpls_ethertype;
2105                         break;
2106                 }
2107
2108                 case OVS_ACTION_ATTR_POP_MPLS:
2109                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2110                             !eth_p_mpls(eth_type))
2111                                 return -EINVAL;
2112
2113                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2114                          * as there is no check here to ensure that the new
2115                          * eth_type is valid and thus set actions could
2116                          * write off the end of the packet or otherwise
2117                          * corrupt it.
2118                          *
2119                          * Support for these actions is planned using packet
2120                          * recirculation.
2121                          */
2122                         eth_type = htons(0);
2123                         break;
2124
2125                 case OVS_ACTION_ATTR_SET:
2126                         err = validate_set(a, key, sfa,
2127                                            &skip_copy, eth_type, false, log);
2128                         if (err)
2129                                 return err;
2130                         break;
2131
2132                 case OVS_ACTION_ATTR_SET_MASKED:
2133                         err = validate_set(a, key, sfa,
2134                                            &skip_copy, eth_type, true, log);
2135                         if (err)
2136                                 return err;
2137                         break;
2138
2139                 case OVS_ACTION_ATTR_SAMPLE:
2140                         err = validate_and_copy_sample(a, key, depth, sfa,
2141                                                        eth_type, vlan_tci, log);
2142                         if (err)
2143                                 return err;
2144                         skip_copy = true;
2145                         break;
2146
2147                 default:
2148                         OVS_NLERR(log, "Unknown Action type %d", type);
2149                         return -EINVAL;
2150                 }
2151                 if (!skip_copy) {
2152                         err = copy_action(a, sfa, log);
2153                         if (err)
2154                                 return err;
2155                 }
2156         }
2157
2158         if (rem > 0)
2159                 return -EINVAL;
2160
2161         return 0;
2162 }
2163
2164 /* 'key' must be the masked key. */
2165 int ovs_nla_copy_actions(const struct nlattr *attr,
2166                          const struct sw_flow_key *key,
2167                          struct sw_flow_actions **sfa, bool log)
2168 {
2169         int err;
2170
2171         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2172         if (IS_ERR(*sfa))
2173                 return PTR_ERR(*sfa);
2174
2175         err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
2176                                      key->eth.tci, log);
2177         if (err)
2178                 kfree(*sfa);
2179
2180         return err;
2181 }
2182
2183 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2184 {
2185         const struct nlattr *a;
2186         struct nlattr *start;
2187         int err = 0, rem;
2188
2189         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2190         if (!start)
2191                 return -EMSGSIZE;
2192
2193         nla_for_each_nested(a, attr, rem) {
2194                 int type = nla_type(a);
2195                 struct nlattr *st_sample;
2196
2197                 switch (type) {
2198                 case OVS_SAMPLE_ATTR_PROBABILITY:
2199                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2200                                     sizeof(u32), nla_data(a)))
2201                                 return -EMSGSIZE;
2202                         break;
2203                 case OVS_SAMPLE_ATTR_ACTIONS:
2204                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2205                         if (!st_sample)
2206                                 return -EMSGSIZE;
2207                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2208                         if (err)
2209                                 return err;
2210                         nla_nest_end(skb, st_sample);
2211                         break;
2212                 }
2213         }
2214
2215         nla_nest_end(skb, start);
2216         return err;
2217 }
2218
2219 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2220 {
2221         const struct nlattr *ovs_key = nla_data(a);
2222         int key_type = nla_type(ovs_key);
2223         struct nlattr *start;
2224         int err;
2225
2226         switch (key_type) {
2227         case OVS_KEY_ATTR_TUNNEL_INFO: {
2228                 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
2229
2230                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2231                 if (!start)
2232                         return -EMSGSIZE;
2233
2234                 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
2235                                          tun_info->options_len ?
2236                                                 tun_info->options : NULL,
2237                                          tun_info->options_len);
2238                 if (err)
2239                         return err;
2240                 nla_nest_end(skb, start);
2241                 break;
2242         }
2243         default:
2244                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2245                         return -EMSGSIZE;
2246                 break;
2247         }
2248
2249         return 0;
2250 }
2251
2252 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2253                                                 struct sk_buff *skb)
2254 {
2255         const struct nlattr *ovs_key = nla_data(a);
2256         struct nlattr *nla;
2257         size_t key_len = nla_len(ovs_key) / 2;
2258
2259         /* Revert the conversion we did from a non-masked set action to
2260          * masked set action.
2261          */
2262         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2263         if (!nla)
2264                 return -EMSGSIZE;
2265
2266         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2267                 return -EMSGSIZE;
2268
2269         nla_nest_end(skb, nla);
2270         return 0;
2271 }
2272
2273 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2274 {
2275         const struct nlattr *a;
2276         int rem, err;
2277
2278         nla_for_each_attr(a, attr, len, rem) {
2279                 int type = nla_type(a);
2280
2281                 switch (type) {
2282                 case OVS_ACTION_ATTR_SET:
2283                         err = set_action_to_attr(a, skb);
2284                         if (err)
2285                                 return err;
2286                         break;
2287
2288                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2289                         err = masked_set_action_to_set_action_attr(a, skb);
2290                         if (err)
2291                                 return err;
2292                         break;
2293
2294                 case OVS_ACTION_ATTR_SAMPLE:
2295                         err = sample_action_to_attr(a, skb);
2296                         if (err)
2297                                 return err;
2298                         break;
2299                 default:
2300                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2301                                 return -EMSGSIZE;
2302                         break;
2303                 }
2304         }
2305
2306         return 0;
2307 }