ata: pata_pdc2027x: Replace mdelay with msleep
[sfrench/cifs-2.6.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49 #include <net/nsh.h>
50
51 #include "conntrack.h"
52 #include "datapath.h"
53 #include "flow.h"
54 #include "flow_netlink.h"
55 #include "vport.h"
56
57 u64 ovs_flow_used_time(unsigned long flow_jiffies)
58 {
59         struct timespec cur_ts;
60         u64 cur_ms, idle_ms;
61
62         ktime_get_ts(&cur_ts);
63         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
64         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
65                  cur_ts.tv_nsec / NSEC_PER_MSEC;
66
67         return cur_ms - idle_ms;
68 }
69
70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
71
72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
73                            const struct sk_buff *skb)
74 {
75         struct flow_stats *stats;
76         unsigned int cpu = smp_processor_id();
77         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78
79         stats = rcu_dereference(flow->stats[cpu]);
80
81         /* Check if already have CPU-specific stats. */
82         if (likely(stats)) {
83                 spin_lock(&stats->lock);
84                 /* Mark if we write on the pre-allocated stats. */
85                 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86                         flow->stats_last_writer = cpu;
87         } else {
88                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89                 spin_lock(&stats->lock);
90
91                 /* If the current CPU is the only writer on the
92                  * pre-allocated stats keep using them.
93                  */
94                 if (unlikely(flow->stats_last_writer != cpu)) {
95                         /* A previous locker may have already allocated the
96                          * stats, so we need to check again.  If CPU-specific
97                          * stats were already allocated, we update the pre-
98                          * allocated stats as we have already locked them.
99                          */
100                         if (likely(flow->stats_last_writer != -1) &&
101                             likely(!rcu_access_pointer(flow->stats[cpu]))) {
102                                 /* Try to allocate CPU-specific stats. */
103                                 struct flow_stats *new_stats;
104
105                                 new_stats =
106                                         kmem_cache_alloc_node(flow_stats_cache,
107                                                               GFP_NOWAIT |
108                                                               __GFP_THISNODE |
109                                                               __GFP_NOWARN |
110                                                               __GFP_NOMEMALLOC,
111                                                               numa_node_id());
112                                 if (likely(new_stats)) {
113                                         new_stats->used = jiffies;
114                                         new_stats->packet_count = 1;
115                                         new_stats->byte_count = len;
116                                         new_stats->tcp_flags = tcp_flags;
117                                         spin_lock_init(&new_stats->lock);
118
119                                         rcu_assign_pointer(flow->stats[cpu],
120                                                            new_stats);
121                                         cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122                                         goto unlock;
123                                 }
124                         }
125                         flow->stats_last_writer = cpu;
126                 }
127         }
128
129         stats->used = jiffies;
130         stats->packet_count++;
131         stats->byte_count += len;
132         stats->tcp_flags |= tcp_flags;
133 unlock:
134         spin_unlock(&stats->lock);
135 }
136
137 /* Must be called with rcu_read_lock or ovs_mutex. */
138 void ovs_flow_stats_get(const struct sw_flow *flow,
139                         struct ovs_flow_stats *ovs_stats,
140                         unsigned long *used, __be16 *tcp_flags)
141 {
142         int cpu;
143
144         *used = 0;
145         *tcp_flags = 0;
146         memset(ovs_stats, 0, sizeof(*ovs_stats));
147
148         /* We open code this to make sure cpu 0 is always considered */
149         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
151
152                 if (stats) {
153                         /* Local CPU may write on non-local stats, so we must
154                          * block bottom-halves here.
155                          */
156                         spin_lock_bh(&stats->lock);
157                         if (!*used || time_after(stats->used, *used))
158                                 *used = stats->used;
159                         *tcp_flags |= stats->tcp_flags;
160                         ovs_stats->n_packets += stats->packet_count;
161                         ovs_stats->n_bytes += stats->byte_count;
162                         spin_unlock_bh(&stats->lock);
163                 }
164         }
165 }
166
167 /* Called with ovs_mutex. */
168 void ovs_flow_stats_clear(struct sw_flow *flow)
169 {
170         int cpu;
171
172         /* We open code this to make sure cpu 0 is always considered */
173         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174                 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
175
176                 if (stats) {
177                         spin_lock_bh(&stats->lock);
178                         stats->used = 0;
179                         stats->packet_count = 0;
180                         stats->byte_count = 0;
181                         stats->tcp_flags = 0;
182                         spin_unlock_bh(&stats->lock);
183                 }
184         }
185 }
186
187 static int check_header(struct sk_buff *skb, int len)
188 {
189         if (unlikely(skb->len < len))
190                 return -EINVAL;
191         if (unlikely(!pskb_may_pull(skb, len)))
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static bool arphdr_ok(struct sk_buff *skb)
197 {
198         return pskb_may_pull(skb, skb_network_offset(skb) +
199                                   sizeof(struct arp_eth_header));
200 }
201
202 static int check_iphdr(struct sk_buff *skb)
203 {
204         unsigned int nh_ofs = skb_network_offset(skb);
205         unsigned int ip_len;
206         int err;
207
208         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209         if (unlikely(err))
210                 return err;
211
212         ip_len = ip_hdrlen(skb);
213         if (unlikely(ip_len < sizeof(struct iphdr) ||
214                      skb->len < nh_ofs + ip_len))
215                 return -EINVAL;
216
217         skb_set_transport_header(skb, nh_ofs + ip_len);
218         return 0;
219 }
220
221 static bool tcphdr_ok(struct sk_buff *skb)
222 {
223         int th_ofs = skb_transport_offset(skb);
224         int tcp_len;
225
226         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227                 return false;
228
229         tcp_len = tcp_hdrlen(skb);
230         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231                      skb->len < th_ofs + tcp_len))
232                 return false;
233
234         return true;
235 }
236
237 static bool udphdr_ok(struct sk_buff *skb)
238 {
239         return pskb_may_pull(skb, skb_transport_offset(skb) +
240                                   sizeof(struct udphdr));
241 }
242
243 static bool sctphdr_ok(struct sk_buff *skb)
244 {
245         return pskb_may_pull(skb, skb_transport_offset(skb) +
246                                   sizeof(struct sctphdr));
247 }
248
249 static bool icmphdr_ok(struct sk_buff *skb)
250 {
251         return pskb_may_pull(skb, skb_transport_offset(skb) +
252                                   sizeof(struct icmphdr));
253 }
254
255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
256 {
257         unsigned int nh_ofs = skb_network_offset(skb);
258         unsigned int nh_len;
259         int payload_ofs;
260         struct ipv6hdr *nh;
261         uint8_t nexthdr;
262         __be16 frag_off;
263         int err;
264
265         err = check_header(skb, nh_ofs + sizeof(*nh));
266         if (unlikely(err))
267                 return err;
268
269         nh = ipv6_hdr(skb);
270         nexthdr = nh->nexthdr;
271         payload_ofs = (u8 *)(nh + 1) - skb->data;
272
273         key->ip.proto = NEXTHDR_NONE;
274         key->ip.tos = ipv6_get_dsfield(nh);
275         key->ip.ttl = nh->hop_limit;
276         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
277         key->ipv6.addr.src = nh->saddr;
278         key->ipv6.addr.dst = nh->daddr;
279
280         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
281
282         if (frag_off) {
283                 if (frag_off & htons(~0x7))
284                         key->ip.frag = OVS_FRAG_TYPE_LATER;
285                 else
286                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
287         } else {
288                 key->ip.frag = OVS_FRAG_TYPE_NONE;
289         }
290
291         /* Delayed handling of error in ipv6_skip_exthdr() as it
292          * always sets frag_off to a valid value which may be
293          * used to set key->ip.frag above.
294          */
295         if (unlikely(payload_ofs < 0))
296                 return -EPROTO;
297
298         nh_len = payload_ofs - nh_ofs;
299         skb_set_transport_header(skb, nh_ofs + nh_len);
300         key->ip.proto = nexthdr;
301         return nh_len;
302 }
303
304 static bool icmp6hdr_ok(struct sk_buff *skb)
305 {
306         return pskb_may_pull(skb, skb_transport_offset(skb) +
307                                   sizeof(struct icmp6hdr));
308 }
309
310 /**
311  * Parse vlan tag from vlan header.
312  * Returns ERROR on memory error.
313  * Returns 0 if it encounters a non-vlan or incomplete packet.
314  * Returns 1 after successfully parsing vlan tag.
315  */
316 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
317                           bool untag_vlan)
318 {
319         struct vlan_head *vh = (struct vlan_head *)skb->data;
320
321         if (likely(!eth_type_vlan(vh->tpid)))
322                 return 0;
323
324         if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
325                 return 0;
326
327         if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
328                                  sizeof(__be16))))
329                 return -ENOMEM;
330
331         vh = (struct vlan_head *)skb->data;
332         key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
333         key_vh->tpid = vh->tpid;
334
335         if (unlikely(untag_vlan)) {
336                 int offset = skb->data - skb_mac_header(skb);
337                 u16 tci;
338                 int err;
339
340                 __skb_push(skb, offset);
341                 err = __skb_vlan_pop(skb, &tci);
342                 __skb_pull(skb, offset);
343                 if (err)
344                         return err;
345                 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
346         } else {
347                 __skb_pull(skb, sizeof(struct vlan_head));
348         }
349         return 1;
350 }
351
352 static void clear_vlan(struct sw_flow_key *key)
353 {
354         key->eth.vlan.tci = 0;
355         key->eth.vlan.tpid = 0;
356         key->eth.cvlan.tci = 0;
357         key->eth.cvlan.tpid = 0;
358 }
359
360 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
361 {
362         int res;
363
364         if (skb_vlan_tag_present(skb)) {
365                 key->eth.vlan.tci = htons(skb->vlan_tci);
366                 key->eth.vlan.tpid = skb->vlan_proto;
367         } else {
368                 /* Parse outer vlan tag in the non-accelerated case. */
369                 res = parse_vlan_tag(skb, &key->eth.vlan, true);
370                 if (res <= 0)
371                         return res;
372         }
373
374         /* Parse inner vlan tag. */
375         res = parse_vlan_tag(skb, &key->eth.cvlan, false);
376         if (res <= 0)
377                 return res;
378
379         return 0;
380 }
381
382 static __be16 parse_ethertype(struct sk_buff *skb)
383 {
384         struct llc_snap_hdr {
385                 u8  dsap;  /* Always 0xAA */
386                 u8  ssap;  /* Always 0xAA */
387                 u8  ctrl;
388                 u8  oui[3];
389                 __be16 ethertype;
390         };
391         struct llc_snap_hdr *llc;
392         __be16 proto;
393
394         proto = *(__be16 *) skb->data;
395         __skb_pull(skb, sizeof(__be16));
396
397         if (eth_proto_is_802_3(proto))
398                 return proto;
399
400         if (skb->len < sizeof(struct llc_snap_hdr))
401                 return htons(ETH_P_802_2);
402
403         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
404                 return htons(0);
405
406         llc = (struct llc_snap_hdr *) skb->data;
407         if (llc->dsap != LLC_SAP_SNAP ||
408             llc->ssap != LLC_SAP_SNAP ||
409             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
410                 return htons(ETH_P_802_2);
411
412         __skb_pull(skb, sizeof(struct llc_snap_hdr));
413
414         if (eth_proto_is_802_3(llc->ethertype))
415                 return llc->ethertype;
416
417         return htons(ETH_P_802_2);
418 }
419
420 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
421                         int nh_len)
422 {
423         struct icmp6hdr *icmp = icmp6_hdr(skb);
424
425         /* The ICMPv6 type and code fields use the 16-bit transport port
426          * fields, so we need to store them in 16-bit network byte order.
427          */
428         key->tp.src = htons(icmp->icmp6_type);
429         key->tp.dst = htons(icmp->icmp6_code);
430         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
431
432         if (icmp->icmp6_code == 0 &&
433             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
434              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
435                 int icmp_len = skb->len - skb_transport_offset(skb);
436                 struct nd_msg *nd;
437                 int offset;
438
439                 /* In order to process neighbor discovery options, we need the
440                  * entire packet.
441                  */
442                 if (unlikely(icmp_len < sizeof(*nd)))
443                         return 0;
444
445                 if (unlikely(skb_linearize(skb)))
446                         return -ENOMEM;
447
448                 nd = (struct nd_msg *)skb_transport_header(skb);
449                 key->ipv6.nd.target = nd->target;
450
451                 icmp_len -= sizeof(*nd);
452                 offset = 0;
453                 while (icmp_len >= 8) {
454                         struct nd_opt_hdr *nd_opt =
455                                  (struct nd_opt_hdr *)(nd->opt + offset);
456                         int opt_len = nd_opt->nd_opt_len * 8;
457
458                         if (unlikely(!opt_len || opt_len > icmp_len))
459                                 return 0;
460
461                         /* Store the link layer address if the appropriate
462                          * option is provided.  It is considered an error if
463                          * the same link layer option is specified twice.
464                          */
465                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
466                             && opt_len == 8) {
467                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
468                                         goto invalid;
469                                 ether_addr_copy(key->ipv6.nd.sll,
470                                                 &nd->opt[offset+sizeof(*nd_opt)]);
471                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
472                                    && opt_len == 8) {
473                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
474                                         goto invalid;
475                                 ether_addr_copy(key->ipv6.nd.tll,
476                                                 &nd->opt[offset+sizeof(*nd_opt)]);
477                         }
478
479                         icmp_len -= opt_len;
480                         offset += opt_len;
481                 }
482         }
483
484         return 0;
485
486 invalid:
487         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
488         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
489         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
490
491         return 0;
492 }
493
494 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
495 {
496         struct nshhdr *nh;
497         unsigned int nh_ofs = skb_network_offset(skb);
498         u8 version, length;
499         int err;
500
501         err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
502         if (unlikely(err))
503                 return err;
504
505         nh = nsh_hdr(skb);
506         version = nsh_get_ver(nh);
507         length = nsh_hdr_len(nh);
508
509         if (version != 0)
510                 return -EINVAL;
511
512         err = check_header(skb, nh_ofs + length);
513         if (unlikely(err))
514                 return err;
515
516         nh = nsh_hdr(skb);
517         key->nsh.base.flags = nsh_get_flags(nh);
518         key->nsh.base.ttl = nsh_get_ttl(nh);
519         key->nsh.base.mdtype = nh->mdtype;
520         key->nsh.base.np = nh->np;
521         key->nsh.base.path_hdr = nh->path_hdr;
522         switch (key->nsh.base.mdtype) {
523         case NSH_M_TYPE1:
524                 if (length != NSH_M_TYPE1_LEN)
525                         return -EINVAL;
526                 memcpy(key->nsh.context, nh->md1.context,
527                        sizeof(nh->md1));
528                 break;
529         case NSH_M_TYPE2:
530                 memset(key->nsh.context, 0,
531                        sizeof(nh->md1));
532                 break;
533         default:
534                 return -EINVAL;
535         }
536
537         return 0;
538 }
539
540 /**
541  * key_extract - extracts a flow key from an Ethernet frame.
542  * @skb: sk_buff that contains the frame, with skb->data pointing to the
543  * Ethernet header
544  * @key: output flow key
545  *
546  * The caller must ensure that skb->len >= ETH_HLEN.
547  *
548  * Returns 0 if successful, otherwise a negative errno value.
549  *
550  * Initializes @skb header fields as follows:
551  *
552  *    - skb->mac_header: the L2 header.
553  *
554  *    - skb->network_header: just past the L2 header, or just past the
555  *      VLAN header, to the first byte of the L2 payload.
556  *
557  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
558  *      on output, then just past the IP header, if one is present and
559  *      of a correct length, otherwise the same as skb->network_header.
560  *      For other key->eth.type values it is left untouched.
561  *
562  *    - skb->protocol: the type of the data starting at skb->network_header.
563  *      Equals to key->eth.type.
564  */
565 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
566 {
567         int error;
568         struct ethhdr *eth;
569
570         /* Flags are always used as part of stats */
571         key->tp.flags = 0;
572
573         skb_reset_mac_header(skb);
574
575         /* Link layer. */
576         clear_vlan(key);
577         if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
578                 if (unlikely(eth_type_vlan(skb->protocol)))
579                         return -EINVAL;
580
581                 skb_reset_network_header(skb);
582         } else {
583                 eth = eth_hdr(skb);
584                 ether_addr_copy(key->eth.src, eth->h_source);
585                 ether_addr_copy(key->eth.dst, eth->h_dest);
586
587                 __skb_pull(skb, 2 * ETH_ALEN);
588                 /* We are going to push all headers that we pull, so no need to
589                 * update skb->csum here.
590                 */
591
592                 if (unlikely(parse_vlan(skb, key)))
593                         return -ENOMEM;
594
595                 skb->protocol = parse_ethertype(skb);
596                 if (unlikely(skb->protocol == htons(0)))
597                         return -ENOMEM;
598
599                 skb_reset_network_header(skb);
600                 __skb_push(skb, skb->data - skb_mac_header(skb));
601         }
602         skb_reset_mac_len(skb);
603         key->eth.type = skb->protocol;
604
605         /* Network layer. */
606         if (key->eth.type == htons(ETH_P_IP)) {
607                 struct iphdr *nh;
608                 __be16 offset;
609
610                 error = check_iphdr(skb);
611                 if (unlikely(error)) {
612                         memset(&key->ip, 0, sizeof(key->ip));
613                         memset(&key->ipv4, 0, sizeof(key->ipv4));
614                         if (error == -EINVAL) {
615                                 skb->transport_header = skb->network_header;
616                                 error = 0;
617                         }
618                         return error;
619                 }
620
621                 nh = ip_hdr(skb);
622                 key->ipv4.addr.src = nh->saddr;
623                 key->ipv4.addr.dst = nh->daddr;
624
625                 key->ip.proto = nh->protocol;
626                 key->ip.tos = nh->tos;
627                 key->ip.ttl = nh->ttl;
628
629                 offset = nh->frag_off & htons(IP_OFFSET);
630                 if (offset) {
631                         key->ip.frag = OVS_FRAG_TYPE_LATER;
632                         return 0;
633                 }
634                 if (nh->frag_off & htons(IP_MF) ||
635                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
636                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
637                 else
638                         key->ip.frag = OVS_FRAG_TYPE_NONE;
639
640                 /* Transport layer. */
641                 if (key->ip.proto == IPPROTO_TCP) {
642                         if (tcphdr_ok(skb)) {
643                                 struct tcphdr *tcp = tcp_hdr(skb);
644                                 key->tp.src = tcp->source;
645                                 key->tp.dst = tcp->dest;
646                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
647                         } else {
648                                 memset(&key->tp, 0, sizeof(key->tp));
649                         }
650
651                 } else if (key->ip.proto == IPPROTO_UDP) {
652                         if (udphdr_ok(skb)) {
653                                 struct udphdr *udp = udp_hdr(skb);
654                                 key->tp.src = udp->source;
655                                 key->tp.dst = udp->dest;
656                         } else {
657                                 memset(&key->tp, 0, sizeof(key->tp));
658                         }
659                 } else if (key->ip.proto == IPPROTO_SCTP) {
660                         if (sctphdr_ok(skb)) {
661                                 struct sctphdr *sctp = sctp_hdr(skb);
662                                 key->tp.src = sctp->source;
663                                 key->tp.dst = sctp->dest;
664                         } else {
665                                 memset(&key->tp, 0, sizeof(key->tp));
666                         }
667                 } else if (key->ip.proto == IPPROTO_ICMP) {
668                         if (icmphdr_ok(skb)) {
669                                 struct icmphdr *icmp = icmp_hdr(skb);
670                                 /* The ICMP type and code fields use the 16-bit
671                                  * transport port fields, so we need to store
672                                  * them in 16-bit network byte order. */
673                                 key->tp.src = htons(icmp->type);
674                                 key->tp.dst = htons(icmp->code);
675                         } else {
676                                 memset(&key->tp, 0, sizeof(key->tp));
677                         }
678                 }
679
680         } else if (key->eth.type == htons(ETH_P_ARP) ||
681                    key->eth.type == htons(ETH_P_RARP)) {
682                 struct arp_eth_header *arp;
683                 bool arp_available = arphdr_ok(skb);
684
685                 arp = (struct arp_eth_header *)skb_network_header(skb);
686
687                 if (arp_available &&
688                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
689                     arp->ar_pro == htons(ETH_P_IP) &&
690                     arp->ar_hln == ETH_ALEN &&
691                     arp->ar_pln == 4) {
692
693                         /* We only match on the lower 8 bits of the opcode. */
694                         if (ntohs(arp->ar_op) <= 0xff)
695                                 key->ip.proto = ntohs(arp->ar_op);
696                         else
697                                 key->ip.proto = 0;
698
699                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
700                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
701                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
702                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
703                 } else {
704                         memset(&key->ip, 0, sizeof(key->ip));
705                         memset(&key->ipv4, 0, sizeof(key->ipv4));
706                 }
707         } else if (eth_p_mpls(key->eth.type)) {
708                 size_t stack_len = MPLS_HLEN;
709
710                 skb_set_inner_network_header(skb, skb->mac_len);
711                 while (1) {
712                         __be32 lse;
713
714                         error = check_header(skb, skb->mac_len + stack_len);
715                         if (unlikely(error))
716                                 return 0;
717
718                         memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
719
720                         if (stack_len == MPLS_HLEN)
721                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
722
723                         skb_set_inner_network_header(skb, skb->mac_len + stack_len);
724                         if (lse & htonl(MPLS_LS_S_MASK))
725                                 break;
726
727                         stack_len += MPLS_HLEN;
728                 }
729         } else if (key->eth.type == htons(ETH_P_IPV6)) {
730                 int nh_len;             /* IPv6 Header + Extensions */
731
732                 nh_len = parse_ipv6hdr(skb, key);
733                 if (unlikely(nh_len < 0)) {
734                         switch (nh_len) {
735                         case -EINVAL:
736                                 memset(&key->ip, 0, sizeof(key->ip));
737                                 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
738                                 /* fall-through */
739                         case -EPROTO:
740                                 skb->transport_header = skb->network_header;
741                                 error = 0;
742                                 break;
743                         default:
744                                 error = nh_len;
745                         }
746                         return error;
747                 }
748
749                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
750                         return 0;
751                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
752                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
753
754                 /* Transport layer. */
755                 if (key->ip.proto == NEXTHDR_TCP) {
756                         if (tcphdr_ok(skb)) {
757                                 struct tcphdr *tcp = tcp_hdr(skb);
758                                 key->tp.src = tcp->source;
759                                 key->tp.dst = tcp->dest;
760                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
761                         } else {
762                                 memset(&key->tp, 0, sizeof(key->tp));
763                         }
764                 } else if (key->ip.proto == NEXTHDR_UDP) {
765                         if (udphdr_ok(skb)) {
766                                 struct udphdr *udp = udp_hdr(skb);
767                                 key->tp.src = udp->source;
768                                 key->tp.dst = udp->dest;
769                         } else {
770                                 memset(&key->tp, 0, sizeof(key->tp));
771                         }
772                 } else if (key->ip.proto == NEXTHDR_SCTP) {
773                         if (sctphdr_ok(skb)) {
774                                 struct sctphdr *sctp = sctp_hdr(skb);
775                                 key->tp.src = sctp->source;
776                                 key->tp.dst = sctp->dest;
777                         } else {
778                                 memset(&key->tp, 0, sizeof(key->tp));
779                         }
780                 } else if (key->ip.proto == NEXTHDR_ICMP) {
781                         if (icmp6hdr_ok(skb)) {
782                                 error = parse_icmpv6(skb, key, nh_len);
783                                 if (error)
784                                         return error;
785                         } else {
786                                 memset(&key->tp, 0, sizeof(key->tp));
787                         }
788                 }
789         } else if (key->eth.type == htons(ETH_P_NSH)) {
790                 error = parse_nsh(skb, key);
791                 if (error)
792                         return error;
793         }
794         return 0;
795 }
796
797 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
798 {
799         int res;
800
801         res = key_extract(skb, key);
802         if (!res)
803                 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
804
805         return res;
806 }
807
808 static int key_extract_mac_proto(struct sk_buff *skb)
809 {
810         switch (skb->dev->type) {
811         case ARPHRD_ETHER:
812                 return MAC_PROTO_ETHERNET;
813         case ARPHRD_NONE:
814                 if (skb->protocol == htons(ETH_P_TEB))
815                         return MAC_PROTO_ETHERNET;
816                 return MAC_PROTO_NONE;
817         }
818         WARN_ON_ONCE(1);
819         return -EINVAL;
820 }
821
822 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
823                          struct sk_buff *skb, struct sw_flow_key *key)
824 {
825         int res, err;
826
827         /* Extract metadata from packet. */
828         if (tun_info) {
829                 key->tun_proto = ip_tunnel_info_af(tun_info);
830                 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
831
832                 if (tun_info->options_len) {
833                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
834                                                    8)) - 1
835                                         > sizeof(key->tun_opts));
836
837                         ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
838                                                 tun_info);
839                         key->tun_opts_len = tun_info->options_len;
840                 } else {
841                         key->tun_opts_len = 0;
842                 }
843         } else  {
844                 key->tun_proto = 0;
845                 key->tun_opts_len = 0;
846                 memset(&key->tun_key, 0, sizeof(key->tun_key));
847         }
848
849         key->phy.priority = skb->priority;
850         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
851         key->phy.skb_mark = skb->mark;
852         key->ovs_flow_hash = 0;
853         res = key_extract_mac_proto(skb);
854         if (res < 0)
855                 return res;
856         key->mac_proto = res;
857         key->recirc_id = 0;
858
859         err = key_extract(skb, key);
860         if (!err)
861                 ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
862         return err;
863 }
864
865 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
866                                    struct sk_buff *skb,
867                                    struct sw_flow_key *key, bool log)
868 {
869         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
870         u64 attrs = 0;
871         int err;
872
873         err = parse_flow_nlattrs(attr, a, &attrs, log);
874         if (err)
875                 return -EINVAL;
876
877         /* Extract metadata from netlink attributes. */
878         err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
879         if (err)
880                 return err;
881
882         /* key_extract assumes that skb->protocol is set-up for
883          * layer 3 packets which is the case for other callers,
884          * in particular packets received from the network stack.
885          * Here the correct value can be set from the metadata
886          * extracted above.
887          * For L2 packet key eth type would be zero. skb protocol
888          * would be set to correct value later during key-extact.
889          */
890
891         skb->protocol = key->eth.type;
892         err = key_extract(skb, key);
893         if (err)
894                 return err;
895
896         /* Check that we have conntrack original direction tuple metadata only
897          * for packets for which it makes sense.  Otherwise the key may be
898          * corrupted due to overlapping key fields.
899          */
900         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
901             key->eth.type != htons(ETH_P_IP))
902                 return -EINVAL;
903         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
904             (key->eth.type != htons(ETH_P_IPV6) ||
905              sw_flow_key_is_nd(key)))
906                 return -EINVAL;
907
908         return 0;
909 }