Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[sfrench/cifs-2.6.git] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
28
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30                                 struct tid_ampdu_rx *tid_agg_rx,
31                                 struct sk_buff *skb, u16 mpdu_seq_num,
32                                 int bar_req);
33 /*
34  * monitor mode reception
35  *
36  * This function cleans up the SKB, i.e. it removes all the stuff
37  * only useful for monitoring.
38  */
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40                                            struct sk_buff *skb,
41                                            int rtap_len)
42 {
43         skb_pull(skb, rtap_len);
44
45         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46                 if (likely(skb->len > FCS_LEN))
47                         skb_trim(skb, skb->len - FCS_LEN);
48                 else {
49                         /* driver bug */
50                         WARN_ON(1);
51                         dev_kfree_skb(skb);
52                         skb = NULL;
53                 }
54         }
55
56         return skb;
57 }
58
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60                                     struct sk_buff *skb,
61                                     int present_fcs_len,
62                                     int radiotap_len)
63 {
64         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
65
66         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67                 return 1;
68         if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69                 return 1;
70         if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
71                         cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
72             ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
73                         cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
74             ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
75                         cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
76                 return 1;
77         return 0;
78 }
79
80 static int
81 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
82                           struct ieee80211_rx_status *status)
83 {
84         int len;
85
86         /* always present fields */
87         len = sizeof(struct ieee80211_radiotap_header) + 9;
88
89         if (status->flag & RX_FLAG_TSFT)
90                 len += 8;
91         if (local->hw.flags & IEEE80211_HW_SIGNAL_DB ||
92             local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
93                 len += 1;
94         if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
95                 len += 1;
96
97         if (len & 1) /* padding for RX_FLAGS if necessary */
98                 len++;
99
100         /* make sure radiotap starts at a naturally aligned address */
101         if (len % 8)
102                 len = roundup(len, 8);
103
104         return len;
105 }
106
107 /**
108  * ieee80211_add_rx_radiotap_header - add radiotap header
109  *
110  * add a radiotap header containing all the fields which the hardware provided.
111  */
112 static void
113 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
114                                  struct sk_buff *skb,
115                                  struct ieee80211_rx_status *status,
116                                  struct ieee80211_rate *rate,
117                                  int rtap_len)
118 {
119         struct ieee80211_radiotap_header *rthdr;
120         unsigned char *pos;
121
122         rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
123         memset(rthdr, 0, rtap_len);
124
125         /* radiotap header, set always present flags */
126         rthdr->it_present =
127                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
128                             (1 << IEEE80211_RADIOTAP_RATE) |
129                             (1 << IEEE80211_RADIOTAP_CHANNEL) |
130                             (1 << IEEE80211_RADIOTAP_ANTENNA) |
131                             (1 << IEEE80211_RADIOTAP_RX_FLAGS));
132         rthdr->it_len = cpu_to_le16(rtap_len);
133
134         pos = (unsigned char *)(rthdr+1);
135
136         /* the order of the following fields is important */
137
138         /* IEEE80211_RADIOTAP_TSFT */
139         if (status->flag & RX_FLAG_TSFT) {
140                 *(__le64 *)pos = cpu_to_le64(status->mactime);
141                 rthdr->it_present |=
142                         cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
143                 pos += 8;
144         }
145
146         /* IEEE80211_RADIOTAP_FLAGS */
147         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
148                 *pos |= IEEE80211_RADIOTAP_F_FCS;
149         pos++;
150
151         /* IEEE80211_RADIOTAP_RATE */
152         *pos = rate->bitrate / 5;
153         pos++;
154
155         /* IEEE80211_RADIOTAP_CHANNEL */
156         *(__le16 *)pos = cpu_to_le16(status->freq);
157         pos += 2;
158         if (status->band == IEEE80211_BAND_5GHZ)
159                 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
160                                              IEEE80211_CHAN_5GHZ);
161         else
162                 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_DYN |
163                                              IEEE80211_CHAN_2GHZ);
164         pos += 2;
165
166         /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
167         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
168                 *pos = status->signal;
169                 rthdr->it_present |=
170                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
171                 pos++;
172         }
173
174         /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
175         if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
176                 *pos = status->noise;
177                 rthdr->it_present |=
178                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
179                 pos++;
180         }
181
182         /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183
184         /* IEEE80211_RADIOTAP_ANTENNA */
185         *pos = status->antenna;
186         pos++;
187
188         /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
189         if (local->hw.flags & IEEE80211_HW_SIGNAL_DB) {
190                 *pos = status->signal;
191                 rthdr->it_present |=
192                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL);
193                 pos++;
194         }
195
196         /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
197
198         /* IEEE80211_RADIOTAP_RX_FLAGS */
199         /* ensure 2 byte alignment for the 2 byte field as required */
200         if ((pos - (unsigned char *)rthdr) & 1)
201                 pos++;
202         /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
203         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
204                 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
205         pos += 2;
206 }
207
208 /*
209  * This function copies a received frame to all monitor interfaces and
210  * returns a cleaned-up SKB that no longer includes the FCS nor the
211  * radiotap header the driver might have added.
212  */
213 static struct sk_buff *
214 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
215                      struct ieee80211_rx_status *status,
216                      struct ieee80211_rate *rate)
217 {
218         struct ieee80211_sub_if_data *sdata;
219         int needed_headroom = 0;
220         struct sk_buff *skb, *skb2;
221         struct net_device *prev_dev = NULL;
222         int present_fcs_len = 0;
223         int rtap_len = 0;
224
225         /*
226          * First, we may need to make a copy of the skb because
227          *  (1) we need to modify it for radiotap (if not present), and
228          *  (2) the other RX handlers will modify the skb we got.
229          *
230          * We don't need to, of course, if we aren't going to return
231          * the SKB because it has a bad FCS/PLCP checksum.
232          */
233         if (status->flag & RX_FLAG_RADIOTAP)
234                 rtap_len = ieee80211_get_radiotap_len(origskb->data);
235         else
236                 /* room for the radiotap header based on driver features */
237                 needed_headroom = ieee80211_rx_radiotap_len(local, status);
238
239         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
240                 present_fcs_len = FCS_LEN;
241
242         if (!local->monitors) {
243                 if (should_drop_frame(status, origskb, present_fcs_len,
244                                       rtap_len)) {
245                         dev_kfree_skb(origskb);
246                         return NULL;
247                 }
248
249                 return remove_monitor_info(local, origskb, rtap_len);
250         }
251
252         if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
253                 /* only need to expand headroom if necessary */
254                 skb = origskb;
255                 origskb = NULL;
256
257                 /*
258                  * This shouldn't trigger often because most devices have an
259                  * RX header they pull before we get here, and that should
260                  * be big enough for our radiotap information. We should
261                  * probably export the length to drivers so that we can have
262                  * them allocate enough headroom to start with.
263                  */
264                 if (skb_headroom(skb) < needed_headroom &&
265                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
266                         dev_kfree_skb(skb);
267                         return NULL;
268                 }
269         } else {
270                 /*
271                  * Need to make a copy and possibly remove radiotap header
272                  * and FCS from the original.
273                  */
274                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
275
276                 origskb = remove_monitor_info(local, origskb, rtap_len);
277
278                 if (!skb)
279                         return origskb;
280         }
281
282         /* if necessary, prepend radiotap information */
283         if (!(status->flag & RX_FLAG_RADIOTAP))
284                 ieee80211_add_rx_radiotap_header(local, skb, status, rate,
285                                                  needed_headroom);
286
287         skb_reset_mac_header(skb);
288         skb->ip_summed = CHECKSUM_UNNECESSARY;
289         skb->pkt_type = PACKET_OTHERHOST;
290         skb->protocol = htons(ETH_P_802_2);
291
292         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
293                 if (!netif_running(sdata->dev))
294                         continue;
295
296                 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
297                         continue;
298
299                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
300                         continue;
301
302                 if (prev_dev) {
303                         skb2 = skb_clone(skb, GFP_ATOMIC);
304                         if (skb2) {
305                                 skb2->dev = prev_dev;
306                                 netif_rx(skb2);
307                         }
308                 }
309
310                 prev_dev = sdata->dev;
311                 sdata->dev->stats.rx_packets++;
312                 sdata->dev->stats.rx_bytes += skb->len;
313         }
314
315         if (prev_dev) {
316                 skb->dev = prev_dev;
317                 netif_rx(skb);
318         } else
319                 dev_kfree_skb(skb);
320
321         return origskb;
322 }
323
324
325 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
326 {
327         u8 *data = rx->skb->data;
328         int tid;
329
330         /* does the frame have a qos control field? */
331         if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
332                 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
333                 /* frame has qos control */
334                 tid = qc[0] & QOS_CONTROL_TID_MASK;
335                 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
336                         rx->flags |= IEEE80211_RX_AMSDU;
337                 else
338                         rx->flags &= ~IEEE80211_RX_AMSDU;
339         } else {
340                 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
341                         /* Separate TID for management frames */
342                         tid = NUM_RX_DATA_QUEUES - 1;
343                 } else {
344                         /* no qos control present */
345                         tid = 0; /* 802.1d - Best Effort */
346                 }
347         }
348
349         rx->queue = tid;
350         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
351          * For now, set skb->priority to 0 for other cases. */
352         rx->skb->priority = (tid > 7) ? 0 : tid;
353 }
354
355 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
356 {
357 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
358         int hdrlen;
359
360         if (!WLAN_FC_DATA_PRESENT(rx->fc))
361                 return;
362
363         /*
364          * Drivers are required to align the payload data in a way that
365          * guarantees that the contained IP header is aligned to a four-
366          * byte boundary. In the case of regular frames, this simply means
367          * aligning the payload to a four-byte boundary (because either
368          * the IP header is directly contained, or IV/RFC1042 headers that
369          * have a length divisible by four are in front of it.
370          *
371          * With A-MSDU frames, however, the payload data address must
372          * yield two modulo four because there are 14-byte 802.3 headers
373          * within the A-MSDU frames that push the IP header further back
374          * to a multiple of four again. Thankfully, the specs were sane
375          * enough this time around to require padding each A-MSDU subframe
376          * to a length that is a multiple of four.
377          *
378          * Padding like atheros hardware adds which is inbetween the 802.11
379          * header and the payload is not supported, the driver is required
380          * to move the 802.11 header further back in that case.
381          */
382         hdrlen = ieee80211_get_hdrlen(rx->fc);
383         if (rx->flags & IEEE80211_RX_AMSDU)
384                 hdrlen += ETH_HLEN;
385         WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
386 #endif
387 }
388
389
390 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
391                                    struct sk_buff *skb,
392                                    struct ieee80211_rx_status *status,
393                                    struct ieee80211_rate *rate)
394 {
395         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
396         u32 load = 0, hdrtime;
397
398         /* Estimate total channel use caused by this frame */
399
400         /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
401          * 1 usec = 1/8 * (1080 / 10) = 13.5 */
402
403         if (status->band == IEEE80211_BAND_5GHZ ||
404             (status->band == IEEE80211_BAND_5GHZ &&
405              rate->flags & IEEE80211_RATE_ERP_G))
406                 hdrtime = CHAN_UTIL_HDR_SHORT;
407         else
408                 hdrtime = CHAN_UTIL_HDR_LONG;
409
410         load = hdrtime;
411         if (!is_multicast_ether_addr(hdr->addr1))
412                 load += hdrtime;
413
414         /* TODO: optimise again */
415         load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
416
417         /* Divide channel_use by 8 to avoid wrapping around the counter */
418         load >>= CHAN_UTIL_SHIFT;
419
420         return load;
421 }
422
423 /* rx handlers */
424
425 static ieee80211_rx_result
426 ieee80211_rx_h_if_stats(struct ieee80211_rx_data *rx)
427 {
428         if (rx->sta)
429                 rx->sta->channel_use_raw += rx->load;
430         rx->sdata->channel_use_raw += rx->load;
431         return RX_CONTINUE;
432 }
433
434 static ieee80211_rx_result
435 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
436 {
437         struct ieee80211_local *local = rx->local;
438         struct sk_buff *skb = rx->skb;
439
440         if (unlikely(local->sta_hw_scanning))
441                 return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
442
443         if (unlikely(local->sta_sw_scanning)) {
444                 /* drop all the other packets during a software scan anyway */
445                 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
446                     != RX_QUEUED)
447                         dev_kfree_skb(skb);
448                 return RX_QUEUED;
449         }
450
451         if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
452                 /* scanning finished during invoking of handlers */
453                 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
454                 return RX_DROP_UNUSABLE;
455         }
456
457         return RX_CONTINUE;
458 }
459
460 static ieee80211_rx_result
461 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
462 {
463         int hdrlen = ieee80211_get_hdrlen(rx->fc);
464         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
465
466 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
467
468         if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) {
469                 if (!((rx->fc & IEEE80211_FCTL_FROMDS) &&
470                       (rx->fc & IEEE80211_FCTL_TODS)))
471                         return RX_DROP_MONITOR;
472                 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
473                         return RX_DROP_MONITOR;
474         }
475
476         /* If there is not an established peer link and this is not a peer link
477          * establisment frame, beacon or probe, drop the frame.
478          */
479
480         if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
481                 struct ieee80211_mgmt *mgmt;
482
483                 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT)
484                         return RX_DROP_MONITOR;
485
486                 switch (rx->fc & IEEE80211_FCTL_STYPE) {
487                 case IEEE80211_STYPE_ACTION:
488                         mgmt = (struct ieee80211_mgmt *)hdr;
489                         if (mgmt->u.action.category != PLINK_CATEGORY)
490                                 return RX_DROP_MONITOR;
491                         /* fall through on else */
492                 case IEEE80211_STYPE_PROBE_REQ:
493                 case IEEE80211_STYPE_PROBE_RESP:
494                 case IEEE80211_STYPE_BEACON:
495                         return RX_CONTINUE;
496                         break;
497                 default:
498                         return RX_DROP_MONITOR;
499                 }
500
501          } else if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
502                     is_multicast_ether_addr(hdr->addr1) &&
503                     mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
504                 return RX_DROP_MONITOR;
505 #undef msh_h_get
506
507         return RX_CONTINUE;
508 }
509
510
511 static ieee80211_rx_result
512 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
513 {
514         struct ieee80211_hdr *hdr;
515
516         hdr = (struct ieee80211_hdr *) rx->skb->data;
517
518         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
519         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
520                 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
521                              rx->sta->last_seq_ctrl[rx->queue] ==
522                              hdr->seq_ctrl)) {
523                         if (rx->flags & IEEE80211_RX_RA_MATCH) {
524                                 rx->local->dot11FrameDuplicateCount++;
525                                 rx->sta->num_duplicates++;
526                         }
527                         return RX_DROP_MONITOR;
528                 } else
529                         rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
530         }
531
532         if (unlikely(rx->skb->len < 16)) {
533                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
534                 return RX_DROP_MONITOR;
535         }
536
537         /* Drop disallowed frame classes based on STA auth/assoc state;
538          * IEEE 802.11, Chap 5.5.
539          *
540          * 80211.o does filtering only based on association state, i.e., it
541          * drops Class 3 frames from not associated stations. hostapd sends
542          * deauth/disassoc frames when needed. In addition, hostapd is
543          * responsible for filtering on both auth and assoc states.
544          */
545
546         if (ieee80211_vif_is_mesh(&rx->sdata->vif))
547                 return ieee80211_rx_mesh_check(rx);
548
549         if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
550                       ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
551                        (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
552                      rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
553                      (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
554                 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
555                      !(rx->fc & IEEE80211_FCTL_TODS) &&
556                      (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
557                     || !(rx->flags & IEEE80211_RX_RA_MATCH)) {
558                         /* Drop IBSS frames and frames for other hosts
559                          * silently. */
560                         return RX_DROP_MONITOR;
561                 }
562
563                 return RX_DROP_MONITOR;
564         }
565
566         return RX_CONTINUE;
567 }
568
569
570 static ieee80211_rx_result
571 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
572 {
573         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
574         int keyidx;
575         int hdrlen;
576         ieee80211_rx_result result = RX_DROP_UNUSABLE;
577         struct ieee80211_key *stakey = NULL;
578
579         /*
580          * Key selection 101
581          *
582          * There are three types of keys:
583          *  - GTK (group keys)
584          *  - PTK (pairwise keys)
585          *  - STK (station-to-station pairwise keys)
586          *
587          * When selecting a key, we have to distinguish between multicast
588          * (including broadcast) and unicast frames, the latter can only
589          * use PTKs and STKs while the former always use GTKs. Unless, of
590          * course, actual WEP keys ("pre-RSNA") are used, then unicast
591          * frames can also use key indizes like GTKs. Hence, if we don't
592          * have a PTK/STK we check the key index for a WEP key.
593          *
594          * Note that in a regular BSS, multicast frames are sent by the
595          * AP only, associated stations unicast the frame to the AP first
596          * which then multicasts it on their behalf.
597          *
598          * There is also a slight problem in IBSS mode: GTKs are negotiated
599          * with each station, that is something we don't currently handle.
600          * The spec seems to expect that one negotiates the same key with
601          * every station but there's no such requirement; VLANs could be
602          * possible.
603          */
604
605         if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
606                 return RX_CONTINUE;
607
608         /*
609          * No point in finding a key and decrypting if the frame is neither
610          * addressed to us nor a multicast frame.
611          */
612         if (!(rx->flags & IEEE80211_RX_RA_MATCH))
613                 return RX_CONTINUE;
614
615         if (rx->sta)
616                 stakey = rcu_dereference(rx->sta->key);
617
618         if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
619                 rx->key = stakey;
620         } else {
621                 /*
622                  * The device doesn't give us the IV so we won't be
623                  * able to look up the key. That's ok though, we
624                  * don't need to decrypt the frame, we just won't
625                  * be able to keep statistics accurate.
626                  * Except for key threshold notifications, should
627                  * we somehow allow the driver to tell us which key
628                  * the hardware used if this flag is set?
629                  */
630                 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
631                     (rx->status->flag & RX_FLAG_IV_STRIPPED))
632                         return RX_CONTINUE;
633
634                 hdrlen = ieee80211_get_hdrlen(rx->fc);
635
636                 if (rx->skb->len < 8 + hdrlen)
637                         return RX_DROP_UNUSABLE; /* TODO: count this? */
638
639                 /*
640                  * no need to call ieee80211_wep_get_keyidx,
641                  * it verifies a bunch of things we've done already
642                  */
643                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
644
645                 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
646
647                 /*
648                  * RSNA-protected unicast frames should always be sent with
649                  * pairwise or station-to-station keys, but for WEP we allow
650                  * using a key index as well.
651                  */
652                 if (rx->key && rx->key->conf.alg != ALG_WEP &&
653                     !is_multicast_ether_addr(hdr->addr1))
654                         rx->key = NULL;
655         }
656
657         if (rx->key) {
658                 rx->key->tx_rx_count++;
659                 /* TODO: add threshold stuff again */
660         } else {
661 #ifdef CONFIG_MAC80211_DEBUG
662                 if (net_ratelimit())
663                         printk(KERN_DEBUG "%s: RX protected frame,"
664                                " but have no key\n", rx->dev->name);
665 #endif /* CONFIG_MAC80211_DEBUG */
666                 return RX_DROP_MONITOR;
667         }
668
669         /* Check for weak IVs if possible */
670         if (rx->sta && rx->key->conf.alg == ALG_WEP &&
671             ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
672             (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
673              !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
674             ieee80211_wep_is_weak_iv(rx->skb, rx->key))
675                 rx->sta->wep_weak_iv_count++;
676
677         switch (rx->key->conf.alg) {
678         case ALG_WEP:
679                 result = ieee80211_crypto_wep_decrypt(rx);
680                 break;
681         case ALG_TKIP:
682                 result = ieee80211_crypto_tkip_decrypt(rx);
683                 break;
684         case ALG_CCMP:
685                 result = ieee80211_crypto_ccmp_decrypt(rx);
686                 break;
687         }
688
689         /* either the frame has been decrypted or will be dropped */
690         rx->status->flag |= RX_FLAG_DECRYPTED;
691
692         return result;
693 }
694
695 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
696 {
697         struct ieee80211_sub_if_data *sdata;
698         DECLARE_MAC_BUF(mac);
699
700         sdata = sta->sdata;
701
702         if (sdata->bss)
703                 atomic_inc(&sdata->bss->num_sta_ps);
704         set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
705 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
706         printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
707                dev->name, print_mac(mac, sta->addr), sta->aid);
708 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
709 }
710
711 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
712 {
713         struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
714         struct sk_buff *skb;
715         int sent = 0;
716         struct ieee80211_sub_if_data *sdata;
717         struct ieee80211_tx_packet_data *pkt_data;
718         DECLARE_MAC_BUF(mac);
719
720         sdata = sta->sdata;
721
722         if (sdata->bss)
723                 atomic_dec(&sdata->bss->num_sta_ps);
724
725         clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
726
727         if (!skb_queue_empty(&sta->ps_tx_buf))
728                 sta_info_clear_tim_bit(sta);
729
730 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
731         printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
732                dev->name, print_mac(mac, sta->addr), sta->aid);
733 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
734
735         /* Send all buffered frames to the station */
736         while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
737                 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
738                 sent++;
739                 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
740                 dev_queue_xmit(skb);
741         }
742         while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
743                 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
744                 local->total_ps_buffered--;
745                 sent++;
746 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
747                 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
748                        "since STA not sleeping anymore\n", dev->name,
749                        print_mac(mac, sta->addr), sta->aid);
750 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
751                 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
752                 dev_queue_xmit(skb);
753         }
754
755         return sent;
756 }
757
758 static ieee80211_rx_result
759 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
760 {
761         struct sta_info *sta = rx->sta;
762         struct net_device *dev = rx->dev;
763         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
764
765         if (!sta)
766                 return RX_CONTINUE;
767
768         /* Update last_rx only for IBSS packets which are for the current
769          * BSSID to avoid keeping the current IBSS network alive in cases where
770          * other STAs are using different BSSID. */
771         if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
772                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
773                                                 IEEE80211_IF_TYPE_IBSS);
774                 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
775                         sta->last_rx = jiffies;
776         } else
777         if (!is_multicast_ether_addr(hdr->addr1) ||
778             rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
779                 /* Update last_rx only for unicast frames in order to prevent
780                  * the Probe Request frames (the only broadcast frames from a
781                  * STA in infrastructure mode) from keeping a connection alive.
782                  * Mesh beacons will update last_rx when if they are found to
783                  * match the current local configuration when processed.
784                  */
785                 sta->last_rx = jiffies;
786         }
787
788         if (!(rx->flags & IEEE80211_RX_RA_MATCH))
789                 return RX_CONTINUE;
790
791         sta->rx_fragments++;
792         sta->rx_bytes += rx->skb->len;
793         sta->last_signal = rx->status->signal;
794         sta->last_qual = rx->status->qual;
795         sta->last_noise = rx->status->noise;
796
797         if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
798                 /* Change STA power saving mode only in the end of a frame
799                  * exchange sequence */
800                 if (test_sta_flags(sta, WLAN_STA_PS) &&
801                     !(rx->fc & IEEE80211_FCTL_PM))
802                         rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
803                 else if (!test_sta_flags(sta, WLAN_STA_PS) &&
804                          (rx->fc & IEEE80211_FCTL_PM))
805                         ap_sta_ps_start(dev, sta);
806         }
807
808         /* Drop data::nullfunc frames silently, since they are used only to
809          * control station power saving mode. */
810         if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
811             (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
812                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
813                 /* Update counter and free packet here to avoid counting this
814                  * as a dropped packed. */
815                 sta->rx_packets++;
816                 dev_kfree_skb(rx->skb);
817                 return RX_QUEUED;
818         }
819
820         return RX_CONTINUE;
821 } /* ieee80211_rx_h_sta_process */
822
823 static inline struct ieee80211_fragment_entry *
824 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
825                          unsigned int frag, unsigned int seq, int rx_queue,
826                          struct sk_buff **skb)
827 {
828         struct ieee80211_fragment_entry *entry;
829         int idx;
830
831         idx = sdata->fragment_next;
832         entry = &sdata->fragments[sdata->fragment_next++];
833         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
834                 sdata->fragment_next = 0;
835
836         if (!skb_queue_empty(&entry->skb_list)) {
837 #ifdef CONFIG_MAC80211_DEBUG
838                 struct ieee80211_hdr *hdr =
839                         (struct ieee80211_hdr *) entry->skb_list.next->data;
840                 DECLARE_MAC_BUF(mac);
841                 DECLARE_MAC_BUF(mac2);
842                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
843                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
844                        "addr1=%s addr2=%s\n",
845                        sdata->dev->name, idx,
846                        jiffies - entry->first_frag_time, entry->seq,
847                        entry->last_frag, print_mac(mac, hdr->addr1),
848                        print_mac(mac2, hdr->addr2));
849 #endif /* CONFIG_MAC80211_DEBUG */
850                 __skb_queue_purge(&entry->skb_list);
851         }
852
853         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
854         *skb = NULL;
855         entry->first_frag_time = jiffies;
856         entry->seq = seq;
857         entry->rx_queue = rx_queue;
858         entry->last_frag = frag;
859         entry->ccmp = 0;
860         entry->extra_len = 0;
861
862         return entry;
863 }
864
865 static inline struct ieee80211_fragment_entry *
866 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
867                           u16 fc, unsigned int frag, unsigned int seq,
868                           int rx_queue, struct ieee80211_hdr *hdr)
869 {
870         struct ieee80211_fragment_entry *entry;
871         int i, idx;
872
873         idx = sdata->fragment_next;
874         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
875                 struct ieee80211_hdr *f_hdr;
876                 u16 f_fc;
877
878                 idx--;
879                 if (idx < 0)
880                         idx = IEEE80211_FRAGMENT_MAX - 1;
881
882                 entry = &sdata->fragments[idx];
883                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
884                     entry->rx_queue != rx_queue ||
885                     entry->last_frag + 1 != frag)
886                         continue;
887
888                 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
889                 f_fc = le16_to_cpu(f_hdr->frame_control);
890
891                 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
892                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
893                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
894                         continue;
895
896                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
897                         __skb_queue_purge(&entry->skb_list);
898                         continue;
899                 }
900                 return entry;
901         }
902
903         return NULL;
904 }
905
906 static ieee80211_rx_result
907 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
908 {
909         struct ieee80211_hdr *hdr;
910         u16 sc;
911         unsigned int frag, seq;
912         struct ieee80211_fragment_entry *entry;
913         struct sk_buff *skb;
914         DECLARE_MAC_BUF(mac);
915
916         hdr = (struct ieee80211_hdr *) rx->skb->data;
917         sc = le16_to_cpu(hdr->seq_ctrl);
918         frag = sc & IEEE80211_SCTL_FRAG;
919
920         if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
921                    (rx->skb)->len < 24 ||
922                    is_multicast_ether_addr(hdr->addr1))) {
923                 /* not fragmented */
924                 goto out;
925         }
926         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
927
928         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
929
930         if (frag == 0) {
931                 /* This is the first fragment of a new frame. */
932                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
933                                                  rx->queue, &(rx->skb));
934                 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
935                     (rx->fc & IEEE80211_FCTL_PROTECTED)) {
936                         /* Store CCMP PN so that we can verify that the next
937                          * fragment has a sequential PN value. */
938                         entry->ccmp = 1;
939                         memcpy(entry->last_pn,
940                                rx->key->u.ccmp.rx_pn[rx->queue],
941                                CCMP_PN_LEN);
942                 }
943                 return RX_QUEUED;
944         }
945
946         /* This is a fragment for a frame that should already be pending in
947          * fragment cache. Add this fragment to the end of the pending entry.
948          */
949         entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
950                                           rx->queue, hdr);
951         if (!entry) {
952                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
953                 return RX_DROP_MONITOR;
954         }
955
956         /* Verify that MPDUs within one MSDU have sequential PN values.
957          * (IEEE 802.11i, 8.3.3.4.5) */
958         if (entry->ccmp) {
959                 int i;
960                 u8 pn[CCMP_PN_LEN], *rpn;
961                 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
962                         return RX_DROP_UNUSABLE;
963                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
964                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
965                         pn[i]++;
966                         if (pn[i])
967                                 break;
968                 }
969                 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
970                 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
971                         if (net_ratelimit())
972                                 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
973                                        "sequential A2=%s"
974                                        " PN=%02x%02x%02x%02x%02x%02x "
975                                        "(expected %02x%02x%02x%02x%02x%02x)\n",
976                                        rx->dev->name, print_mac(mac, hdr->addr2),
977                                        rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
978                                        rpn[5], pn[0], pn[1], pn[2], pn[3],
979                                        pn[4], pn[5]);
980                         return RX_DROP_UNUSABLE;
981                 }
982                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
983         }
984
985         skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
986         __skb_queue_tail(&entry->skb_list, rx->skb);
987         entry->last_frag = frag;
988         entry->extra_len += rx->skb->len;
989         if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
990                 rx->skb = NULL;
991                 return RX_QUEUED;
992         }
993
994         rx->skb = __skb_dequeue(&entry->skb_list);
995         if (skb_tailroom(rx->skb) < entry->extra_len) {
996                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
997                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
998                                               GFP_ATOMIC))) {
999                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1000                         __skb_queue_purge(&entry->skb_list);
1001                         return RX_DROP_UNUSABLE;
1002                 }
1003         }
1004         while ((skb = __skb_dequeue(&entry->skb_list))) {
1005                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1006                 dev_kfree_skb(skb);
1007         }
1008
1009         /* Complete frame has been reassembled - process it now */
1010         rx->flags |= IEEE80211_RX_FRAGMENTED;
1011
1012  out:
1013         if (rx->sta)
1014                 rx->sta->rx_packets++;
1015         if (is_multicast_ether_addr(hdr->addr1))
1016                 rx->local->dot11MulticastReceivedFrameCount++;
1017         else
1018                 ieee80211_led_rx(rx->local);
1019         return RX_CONTINUE;
1020 }
1021
1022 static ieee80211_rx_result
1023 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1024 {
1025         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1026         struct sk_buff *skb;
1027         int no_pending_pkts;
1028         DECLARE_MAC_BUF(mac);
1029
1030         if (likely(!rx->sta ||
1031                    (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
1032                    (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
1033                    !(rx->flags & IEEE80211_RX_RA_MATCH)))
1034                 return RX_CONTINUE;
1035
1036         if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
1037             (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
1038                 return RX_DROP_UNUSABLE;
1039
1040         skb = skb_dequeue(&rx->sta->tx_filtered);
1041         if (!skb) {
1042                 skb = skb_dequeue(&rx->sta->ps_tx_buf);
1043                 if (skb)
1044                         rx->local->total_ps_buffered--;
1045         }
1046         no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
1047                 skb_queue_empty(&rx->sta->ps_tx_buf);
1048
1049         if (skb) {
1050                 struct ieee80211_hdr *hdr =
1051                         (struct ieee80211_hdr *) skb->data;
1052
1053                 /*
1054                  * Tell TX path to send one frame even though the STA may
1055                  * still remain is PS mode after this frame exchange.
1056                  */
1057                 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1058
1059 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1060                 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
1061                        print_mac(mac, rx->sta->addr), rx->sta->aid,
1062                        skb_queue_len(&rx->sta->ps_tx_buf));
1063 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1064
1065                 /* Use MoreData flag to indicate whether there are more
1066                  * buffered frames for this STA */
1067                 if (no_pending_pkts)
1068                         hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1069                 else
1070                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1071
1072                 dev_queue_xmit(skb);
1073
1074                 if (no_pending_pkts)
1075                         sta_info_clear_tim_bit(rx->sta);
1076 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1077         } else if (!rx->sent_ps_buffered) {
1078                 /*
1079                  * FIXME: This can be the result of a race condition between
1080                  *        us expiring a frame and the station polling for it.
1081                  *        Should we send it a null-func frame indicating we
1082                  *        have nothing buffered for it?
1083                  */
1084                 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1085                        "though there is no buffered frames for it\n",
1086                        rx->dev->name, print_mac(mac, rx->sta->addr));
1087 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1088         }
1089
1090         /* Free PS Poll skb here instead of returning RX_DROP that would
1091          * count as an dropped frame. */
1092         dev_kfree_skb(rx->skb);
1093
1094         return RX_QUEUED;
1095 }
1096
1097 static ieee80211_rx_result
1098 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1099 {
1100         u16 fc = rx->fc;
1101         u8 *data = rx->skb->data;
1102         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
1103
1104         if (!WLAN_FC_IS_QOS_DATA(fc))
1105                 return RX_CONTINUE;
1106
1107         /* remove the qos control field, update frame type and meta-data */
1108         memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
1109         hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
1110         /* change frame type to non QOS */
1111         rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
1112         hdr->frame_control = cpu_to_le16(fc);
1113
1114         return RX_CONTINUE;
1115 }
1116
1117 static int
1118 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1119 {
1120         if (unlikely(!rx->sta ||
1121             !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED))) {
1122 #ifdef CONFIG_MAC80211_DEBUG
1123                 if (net_ratelimit())
1124                         printk(KERN_DEBUG "%s: dropped frame "
1125                                "(unauthorized port)\n", rx->dev->name);
1126 #endif /* CONFIG_MAC80211_DEBUG */
1127                 return -EACCES;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static int
1134 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
1135 {
1136         /*
1137          * Pass through unencrypted frames if the hardware has
1138          * decrypted them already.
1139          */
1140         if (rx->status->flag & RX_FLAG_DECRYPTED)
1141                 return 0;
1142
1143         /* Drop unencrypted frames if key is set. */
1144         if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1145                      (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1146                      (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1147                      (rx->key || rx->sdata->drop_unencrypted)))
1148                 return -EACCES;
1149
1150         return 0;
1151 }
1152
1153 static int
1154 ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1155 {
1156         struct net_device *dev = rx->dev;
1157         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1158         u16 fc, hdrlen, ethertype;
1159         u8 *payload;
1160         u8 dst[ETH_ALEN];
1161         u8 src[ETH_ALEN];
1162         struct sk_buff *skb = rx->skb;
1163         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1164         DECLARE_MAC_BUF(mac);
1165         DECLARE_MAC_BUF(mac2);
1166         DECLARE_MAC_BUF(mac3);
1167         DECLARE_MAC_BUF(mac4);
1168
1169         fc = rx->fc;
1170
1171         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1172                 return -1;
1173
1174         hdrlen = ieee80211_get_hdrlen(fc);
1175
1176         if (ieee80211_vif_is_mesh(&sdata->vif)) {
1177                 int meshhdrlen = ieee80211_get_mesh_hdrlen(
1178                                 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1179                 /* Copy on cb:
1180                  *  - mesh header: to be used for mesh forwarding
1181                  * decision. It will also be used as mesh header template at
1182                  * tx.c:ieee80211_subif_start_xmit() if interface
1183                  * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1184                  *  - ta: to be used if a RERR needs to be sent.
1185                  */
1186                 memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
1187                 memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
1188                 hdrlen += meshhdrlen;
1189         }
1190
1191         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1192          * header
1193          * IEEE 802.11 address fields:
1194          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1195          *   0     0   DA    SA    BSSID n/a
1196          *   0     1   DA    BSSID SA    n/a
1197          *   1     0   BSSID SA    DA    n/a
1198          *   1     1   RA    TA    DA    SA
1199          */
1200
1201         switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1202         case IEEE80211_FCTL_TODS:
1203                 /* BSSID SA DA */
1204                 memcpy(dst, hdr->addr3, ETH_ALEN);
1205                 memcpy(src, hdr->addr2, ETH_ALEN);
1206
1207                 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1208                              sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1209                         if (net_ratelimit())
1210                                 printk(KERN_DEBUG "%s: dropped ToDS frame "
1211                                        "(BSSID=%s SA=%s DA=%s)\n",
1212                                        dev->name,
1213                                        print_mac(mac, hdr->addr1),
1214                                        print_mac(mac2, hdr->addr2),
1215                                        print_mac(mac3, hdr->addr3));
1216                         return -1;
1217                 }
1218                 break;
1219         case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1220                 /* RA TA DA SA */
1221                 memcpy(dst, hdr->addr3, ETH_ALEN);
1222                 memcpy(src, hdr->addr4, ETH_ALEN);
1223
1224                  if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1225                              sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT)) {
1226                          if (net_ratelimit())
1227                                  printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1228                                        "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1229                                        rx->dev->name,
1230                                        print_mac(mac, hdr->addr1),
1231                                        print_mac(mac2, hdr->addr2),
1232                                        print_mac(mac3, hdr->addr3),
1233                                        print_mac(mac4, hdr->addr4));
1234                         return -1;
1235                 }
1236                 break;
1237         case IEEE80211_FCTL_FROMDS:
1238                 /* DA BSSID SA */
1239                 memcpy(dst, hdr->addr1, ETH_ALEN);
1240                 memcpy(src, hdr->addr3, ETH_ALEN);
1241
1242                 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1243                     (is_multicast_ether_addr(dst) &&
1244                      !compare_ether_addr(src, dev->dev_addr)))
1245                         return -1;
1246                 break;
1247         case 0:
1248                 /* DA SA BSSID */
1249                 memcpy(dst, hdr->addr1, ETH_ALEN);
1250                 memcpy(src, hdr->addr2, ETH_ALEN);
1251
1252                 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1253                         if (net_ratelimit()) {
1254                                 printk(KERN_DEBUG "%s: dropped IBSS frame "
1255                                        "(DA=%s SA=%s BSSID=%s)\n",
1256                                        dev->name,
1257                                        print_mac(mac, hdr->addr1),
1258                                        print_mac(mac2, hdr->addr2),
1259                                        print_mac(mac3, hdr->addr3));
1260                         }
1261                         return -1;
1262                 }
1263                 break;
1264         }
1265
1266         if (unlikely(skb->len - hdrlen < 8)) {
1267                 if (net_ratelimit()) {
1268                         printk(KERN_DEBUG "%s: RX too short data frame "
1269                                "payload\n", dev->name);
1270                 }
1271                 return -1;
1272         }
1273
1274         payload = skb->data + hdrlen;
1275         ethertype = (payload[6] << 8) | payload[7];
1276
1277         if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1278                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1279                    compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1280                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1281                  * replace EtherType */
1282                 skb_pull(skb, hdrlen + 6);
1283                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1284                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1285         } else {
1286                 struct ethhdr *ehdr;
1287                 __be16 len;
1288
1289                 skb_pull(skb, hdrlen);
1290                 len = htons(skb->len);
1291                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1292                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1293                 memcpy(ehdr->h_source, src, ETH_ALEN);
1294                 ehdr->h_proto = len;
1295         }
1296         return 0;
1297 }
1298
1299 /*
1300  * requires that rx->skb is a frame with ethernet header
1301  */
1302 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
1303 {
1304         static const u8 pae_group_addr[ETH_ALEN]
1305                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1306         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1307
1308         /*
1309          * Allow EAPOL frames to us/the PAE group address regardless
1310          * of whether the frame was encrypted or not.
1311          */
1312         if (ehdr->h_proto == htons(ETH_P_PAE) &&
1313             (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1314              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1315                 return true;
1316
1317         if (ieee80211_802_1x_port_control(rx) ||
1318             ieee80211_drop_unencrypted(rx))
1319                 return false;
1320
1321         return true;
1322 }
1323
1324 /*
1325  * requires that rx->skb is a frame with ethernet header
1326  */
1327 static void
1328 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1329 {
1330         struct net_device *dev = rx->dev;
1331         struct ieee80211_local *local = rx->local;
1332         struct sk_buff *skb, *xmit_skb;
1333         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1334         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1335         struct sta_info *dsta;
1336
1337         skb = rx->skb;
1338         xmit_skb = NULL;
1339
1340         if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1341                                       sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1342             (rx->flags & IEEE80211_RX_RA_MATCH)) {
1343                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1344                         /*
1345                          * send multicast frames both to higher layers in
1346                          * local net stack and back to the wireless medium
1347                          */
1348                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1349                         if (!xmit_skb && net_ratelimit())
1350                                 printk(KERN_DEBUG "%s: failed to clone "
1351                                        "multicast frame\n", dev->name);
1352                 } else {
1353                         dsta = sta_info_get(local, skb->data);
1354                         if (dsta && dsta->sdata->dev == dev) {
1355                                 /*
1356                                  * The destination station is associated to
1357                                  * this AP (in this VLAN), so send the frame
1358                                  * directly to it and do not pass it to local
1359                                  * net stack.
1360                                  */
1361                                 xmit_skb = skb;
1362                                 skb = NULL;
1363                         }
1364                 }
1365         }
1366
1367         /* Mesh forwarding */
1368         if (ieee80211_vif_is_mesh(&sdata->vif)) {
1369                 u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
1370                 (*mesh_ttl)--;
1371
1372                 if (is_multicast_ether_addr(skb->data)) {
1373                         if (*mesh_ttl > 0) {
1374                                 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1375                                 if (xmit_skb)
1376                                         xmit_skb->pkt_type = PACKET_OTHERHOST;
1377                                 else if (net_ratelimit())
1378                                         printk(KERN_DEBUG "%s: failed to clone "
1379                                                "multicast frame\n", dev->name);
1380                         } else
1381                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1382                                                              dropped_frames_ttl);
1383                 } else if (skb->pkt_type != PACKET_OTHERHOST &&
1384                         compare_ether_addr(dev->dev_addr, skb->data) != 0) {
1385                         if (*mesh_ttl == 0) {
1386                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1387                                                              dropped_frames_ttl);
1388                                 dev_kfree_skb(skb);
1389                                 skb = NULL;
1390                         } else {
1391                                 xmit_skb = skb;
1392                                 xmit_skb->pkt_type = PACKET_OTHERHOST;
1393                                 if (!(dev->flags & IFF_PROMISC))
1394                                         skb  = NULL;
1395                         }
1396                 }
1397         }
1398
1399         if (skb) {
1400                 /* deliver to local stack */
1401                 skb->protocol = eth_type_trans(skb, dev);
1402                 memset(skb->cb, 0, sizeof(skb->cb));
1403                 netif_rx(skb);
1404         }
1405
1406         if (xmit_skb) {
1407                 /* send to wireless media */
1408                 xmit_skb->protocol = htons(ETH_P_802_3);
1409                 skb_reset_network_header(xmit_skb);
1410                 skb_reset_mac_header(xmit_skb);
1411                 dev_queue_xmit(xmit_skb);
1412         }
1413 }
1414
1415 static ieee80211_rx_result
1416 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1417 {
1418         struct net_device *dev = rx->dev;
1419         struct ieee80211_local *local = rx->local;
1420         u16 fc, ethertype;
1421         u8 *payload;
1422         struct sk_buff *skb = rx->skb, *frame = NULL;
1423         const struct ethhdr *eth;
1424         int remaining, err;
1425         u8 dst[ETH_ALEN];
1426         u8 src[ETH_ALEN];
1427         DECLARE_MAC_BUF(mac);
1428
1429         fc = rx->fc;
1430         if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1431                 return RX_CONTINUE;
1432
1433         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1434                 return RX_DROP_MONITOR;
1435
1436         if (!(rx->flags & IEEE80211_RX_AMSDU))
1437                 return RX_CONTINUE;
1438
1439         err = ieee80211_data_to_8023(rx);
1440         if (unlikely(err))
1441                 return RX_DROP_UNUSABLE;
1442
1443         skb->dev = dev;
1444
1445         dev->stats.rx_packets++;
1446         dev->stats.rx_bytes += skb->len;
1447
1448         /* skip the wrapping header */
1449         eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1450         if (!eth)
1451                 return RX_DROP_UNUSABLE;
1452
1453         while (skb != frame) {
1454                 u8 padding;
1455                 __be16 len = eth->h_proto;
1456                 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1457
1458                 remaining = skb->len;
1459                 memcpy(dst, eth->h_dest, ETH_ALEN);
1460                 memcpy(src, eth->h_source, ETH_ALEN);
1461
1462                 padding = ((4 - subframe_len) & 0x3);
1463                 /* the last MSDU has no padding */
1464                 if (subframe_len > remaining) {
1465                         printk(KERN_DEBUG "%s: wrong buffer size\n", dev->name);
1466                         return RX_DROP_UNUSABLE;
1467                 }
1468
1469                 skb_pull(skb, sizeof(struct ethhdr));
1470                 /* if last subframe reuse skb */
1471                 if (remaining <= subframe_len + padding)
1472                         frame = skb;
1473                 else {
1474                         frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1475                                               subframe_len);
1476
1477                         if (frame == NULL)
1478                                 return RX_DROP_UNUSABLE;
1479
1480                         skb_reserve(frame, local->hw.extra_tx_headroom +
1481                                     sizeof(struct ethhdr));
1482                         memcpy(skb_put(frame, ntohs(len)), skb->data,
1483                                 ntohs(len));
1484
1485                         eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1486                                                         padding);
1487                         if (!eth) {
1488                                 printk(KERN_DEBUG "%s: wrong buffer size\n",
1489                                        dev->name);
1490                                 dev_kfree_skb(frame);
1491                                 return RX_DROP_UNUSABLE;
1492                         }
1493                 }
1494
1495                 skb_reset_network_header(frame);
1496                 frame->dev = dev;
1497                 frame->priority = skb->priority;
1498                 rx->skb = frame;
1499
1500                 payload = frame->data;
1501                 ethertype = (payload[6] << 8) | payload[7];
1502
1503                 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1504                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1505                            compare_ether_addr(payload,
1506                                               bridge_tunnel_header) == 0)) {
1507                         /* remove RFC1042 or Bridge-Tunnel
1508                          * encapsulation and replace EtherType */
1509                         skb_pull(frame, 6);
1510                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1511                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1512                 } else {
1513                         memcpy(skb_push(frame, sizeof(__be16)),
1514                                &len, sizeof(__be16));
1515                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1516                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1517                 }
1518
1519                 if (!ieee80211_frame_allowed(rx)) {
1520                         if (skb == frame) /* last frame */
1521                                 return RX_DROP_UNUSABLE;
1522                         dev_kfree_skb(frame);
1523                         continue;
1524                 }
1525
1526                 ieee80211_deliver_skb(rx);
1527         }
1528
1529         return RX_QUEUED;
1530 }
1531
1532 static ieee80211_rx_result
1533 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1534 {
1535         struct net_device *dev = rx->dev;
1536         u16 fc;
1537         int err;
1538
1539         fc = rx->fc;
1540         if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1541                 return RX_CONTINUE;
1542
1543         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1544                 return RX_DROP_MONITOR;
1545
1546         err = ieee80211_data_to_8023(rx);
1547         if (unlikely(err))
1548                 return RX_DROP_UNUSABLE;
1549
1550         if (!ieee80211_frame_allowed(rx))
1551                 return RX_DROP_MONITOR;
1552
1553         rx->skb->dev = dev;
1554
1555         dev->stats.rx_packets++;
1556         dev->stats.rx_bytes += rx->skb->len;
1557
1558         ieee80211_deliver_skb(rx);
1559
1560         return RX_QUEUED;
1561 }
1562
1563 static ieee80211_rx_result
1564 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1565 {
1566         struct ieee80211_local *local = rx->local;
1567         struct ieee80211_hw *hw = &local->hw;
1568         struct sk_buff *skb = rx->skb;
1569         struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1570         struct tid_ampdu_rx *tid_agg_rx;
1571         u16 start_seq_num;
1572         u16 tid;
1573
1574         if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1575                 return RX_CONTINUE;
1576
1577         if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1578                 if (!rx->sta)
1579                         return RX_CONTINUE;
1580                 tid = le16_to_cpu(bar->control) >> 12;
1581                 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1582                                         != HT_AGG_STATE_OPERATIONAL)
1583                         return RX_CONTINUE;
1584                 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1585
1586                 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1587
1588                 /* reset session timer */
1589                 if (tid_agg_rx->timeout) {
1590                         unsigned long expires =
1591                                 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1592                         mod_timer(&tid_agg_rx->session_timer, expires);
1593                 }
1594
1595                 /* manage reordering buffer according to requested */
1596                 /* sequence number */
1597                 rcu_read_lock();
1598                 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1599                                                  start_seq_num, 1);
1600                 rcu_read_unlock();
1601                 return RX_DROP_UNUSABLE;
1602         }
1603
1604         return RX_CONTINUE;
1605 }
1606
1607 static ieee80211_rx_result
1608 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1609 {
1610         struct ieee80211_sub_if_data *sdata;
1611
1612         if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1613                 return RX_DROP_MONITOR;
1614
1615         sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1616         if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1617              sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1618              sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1619             !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1620                 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
1621         else
1622                 return RX_DROP_MONITOR;
1623
1624         return RX_QUEUED;
1625 }
1626
1627 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1628                                             struct ieee80211_hdr *hdr,
1629                                             struct ieee80211_rx_data *rx)
1630 {
1631         int keyidx, hdrlen;
1632         DECLARE_MAC_BUF(mac);
1633         DECLARE_MAC_BUF(mac2);
1634
1635         hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1636         if (rx->skb->len >= hdrlen + 4)
1637                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1638         else
1639                 keyidx = -1;
1640
1641         if (net_ratelimit())
1642                 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1643                        "failure from %s to %s keyidx=%d\n",
1644                        dev->name, print_mac(mac, hdr->addr2),
1645                        print_mac(mac2, hdr->addr1), keyidx);
1646
1647         if (!rx->sta) {
1648                 /*
1649                  * Some hardware seem to generate incorrect Michael MIC
1650                  * reports; ignore them to avoid triggering countermeasures.
1651                  */
1652                 if (net_ratelimit())
1653                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1654                                "error for unknown address %s\n",
1655                                dev->name, print_mac(mac, hdr->addr2));
1656                 goto ignore;
1657         }
1658
1659         if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1660                 if (net_ratelimit())
1661                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1662                                "error for a frame with no PROTECTED flag (src "
1663                                "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1664                 goto ignore;
1665         }
1666
1667         if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1668                 /*
1669                  * APs with pairwise keys should never receive Michael MIC
1670                  * errors for non-zero keyidx because these are reserved for
1671                  * group keys and only the AP is sending real multicast
1672                  * frames in the BSS.
1673                  */
1674                 if (net_ratelimit())
1675                         printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1676                                "a frame with non-zero keyidx (%d)"
1677                                " (src %s)\n", dev->name, keyidx,
1678                                print_mac(mac, hdr->addr2));
1679                 goto ignore;
1680         }
1681
1682         if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1683             ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1684              (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1685                 if (net_ratelimit())
1686                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1687                                "error for a frame that cannot be encrypted "
1688                                "(fc=0x%04x) (src %s)\n",
1689                                dev->name, rx->fc, print_mac(mac, hdr->addr2));
1690                 goto ignore;
1691         }
1692
1693         mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1694  ignore:
1695         dev_kfree_skb(rx->skb);
1696         rx->skb = NULL;
1697 }
1698
1699 /* TODO: use IEEE80211_RX_FRAGMENTED */
1700 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1701 {
1702         struct ieee80211_sub_if_data *sdata;
1703         struct ieee80211_local *local = rx->local;
1704         struct ieee80211_rtap_hdr {
1705                 struct ieee80211_radiotap_header hdr;
1706                 u8 flags;
1707                 u8 rate;
1708                 __le16 chan_freq;
1709                 __le16 chan_flags;
1710         } __attribute__ ((packed)) *rthdr;
1711         struct sk_buff *skb = rx->skb, *skb2;
1712         struct net_device *prev_dev = NULL;
1713         struct ieee80211_rx_status *status = rx->status;
1714
1715         if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1716                 goto out_free_skb;
1717
1718         if (skb_headroom(skb) < sizeof(*rthdr) &&
1719             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1720                 goto out_free_skb;
1721
1722         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1723         memset(rthdr, 0, sizeof(*rthdr));
1724         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1725         rthdr->hdr.it_present =
1726                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1727                             (1 << IEEE80211_RADIOTAP_RATE) |
1728                             (1 << IEEE80211_RADIOTAP_CHANNEL));
1729
1730         rthdr->rate = rx->rate->bitrate / 5;
1731         rthdr->chan_freq = cpu_to_le16(status->freq);
1732
1733         if (status->band == IEEE80211_BAND_5GHZ)
1734                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1735                                                 IEEE80211_CHAN_5GHZ);
1736         else
1737                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1738                                                 IEEE80211_CHAN_2GHZ);
1739
1740         skb_set_mac_header(skb, 0);
1741         skb->ip_summed = CHECKSUM_UNNECESSARY;
1742         skb->pkt_type = PACKET_OTHERHOST;
1743         skb->protocol = htons(ETH_P_802_2);
1744
1745         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1746                 if (!netif_running(sdata->dev))
1747                         continue;
1748
1749                 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1750                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1751                         continue;
1752
1753                 if (prev_dev) {
1754                         skb2 = skb_clone(skb, GFP_ATOMIC);
1755                         if (skb2) {
1756                                 skb2->dev = prev_dev;
1757                                 netif_rx(skb2);
1758                         }
1759                 }
1760
1761                 prev_dev = sdata->dev;
1762                 sdata->dev->stats.rx_packets++;
1763                 sdata->dev->stats.rx_bytes += skb->len;
1764         }
1765
1766         if (prev_dev) {
1767                 skb->dev = prev_dev;
1768                 netif_rx(skb);
1769                 skb = NULL;
1770         } else
1771                 goto out_free_skb;
1772
1773         rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1774         return;
1775
1776  out_free_skb:
1777         dev_kfree_skb(skb);
1778 }
1779
1780 typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_rx_data *);
1781 static ieee80211_rx_handler ieee80211_rx_handlers[] =
1782 {
1783         ieee80211_rx_h_if_stats,
1784         ieee80211_rx_h_passive_scan,
1785         ieee80211_rx_h_check,
1786         ieee80211_rx_h_decrypt,
1787         ieee80211_rx_h_sta_process,
1788         ieee80211_rx_h_defragment,
1789         ieee80211_rx_h_ps_poll,
1790         ieee80211_rx_h_michael_mic_verify,
1791         /* this must be after decryption - so header is counted in MPDU mic
1792          * must be before pae and data, so QOS_DATA format frames
1793          * are not passed to user space by these functions
1794          */
1795         ieee80211_rx_h_remove_qos_control,
1796         ieee80211_rx_h_amsdu,
1797         ieee80211_rx_h_data,
1798         ieee80211_rx_h_ctrl,
1799         ieee80211_rx_h_mgmt,
1800         NULL
1801 };
1802
1803 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1804                                          struct ieee80211_rx_data *rx,
1805                                          struct sk_buff *skb)
1806 {
1807         ieee80211_rx_handler *handler;
1808         ieee80211_rx_result res = RX_DROP_MONITOR;
1809
1810         rx->skb = skb;
1811         rx->sdata = sdata;
1812         rx->dev = sdata->dev;
1813
1814         for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) {
1815                 res = (*handler)(rx);
1816
1817                 switch (res) {
1818                 case RX_CONTINUE:
1819                         continue;
1820                 case RX_DROP_UNUSABLE:
1821                 case RX_DROP_MONITOR:
1822                         I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1823                         if (rx->sta)
1824                                 rx->sta->rx_dropped++;
1825                         break;
1826                 case RX_QUEUED:
1827                         I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1828                         break;
1829                 }
1830                 break;
1831         }
1832
1833         switch (res) {
1834         case RX_CONTINUE:
1835         case RX_DROP_MONITOR:
1836                 ieee80211_rx_cooked_monitor(rx);
1837                 break;
1838         case RX_DROP_UNUSABLE:
1839                 dev_kfree_skb(rx->skb);
1840                 break;
1841         }
1842 }
1843
1844 /* main receive path */
1845
1846 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1847                                 u8 *bssid, struct ieee80211_rx_data *rx,
1848                                 struct ieee80211_hdr *hdr)
1849 {
1850         int multicast = is_multicast_ether_addr(hdr->addr1);
1851
1852         switch (sdata->vif.type) {
1853         case IEEE80211_IF_TYPE_STA:
1854                 if (!bssid)
1855                         return 0;
1856                 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1857                         if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1858                                 return 0;
1859                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1860                 } else if (!multicast &&
1861                            compare_ether_addr(sdata->dev->dev_addr,
1862                                               hdr->addr1) != 0) {
1863                         if (!(sdata->dev->flags & IFF_PROMISC))
1864                                 return 0;
1865                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1866                 }
1867                 break;
1868         case IEEE80211_IF_TYPE_IBSS:
1869                 if (!bssid)
1870                         return 0;
1871                 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1872                     (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)
1873                         return 1;
1874                 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1875                         if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1876                                 return 0;
1877                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1878                 } else if (!multicast &&
1879                            compare_ether_addr(sdata->dev->dev_addr,
1880                                               hdr->addr1) != 0) {
1881                         if (!(sdata->dev->flags & IFF_PROMISC))
1882                                 return 0;
1883                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1884                 } else if (!rx->sta)
1885                         rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1886                                                          bssid, hdr->addr2);
1887                 break;
1888         case IEEE80211_IF_TYPE_MESH_POINT:
1889                 if (!multicast &&
1890                     compare_ether_addr(sdata->dev->dev_addr,
1891                                        hdr->addr1) != 0) {
1892                         if (!(sdata->dev->flags & IFF_PROMISC))
1893                                 return 0;
1894
1895                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1896                 }
1897                 break;
1898         case IEEE80211_IF_TYPE_VLAN:
1899         case IEEE80211_IF_TYPE_AP:
1900                 if (!bssid) {
1901                         if (compare_ether_addr(sdata->dev->dev_addr,
1902                                                hdr->addr1))
1903                                 return 0;
1904                 } else if (!ieee80211_bssid_match(bssid,
1905                                         sdata->dev->dev_addr)) {
1906                         if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1907                                 return 0;
1908                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1909                 }
1910                 if (sdata->dev == sdata->local->mdev &&
1911                     !(rx->flags & IEEE80211_RX_IN_SCAN))
1912                         /* do not receive anything via
1913                          * master device when not scanning */
1914                         return 0;
1915                 break;
1916         case IEEE80211_IF_TYPE_WDS:
1917                 if (bssid ||
1918                     (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1919                         return 0;
1920                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1921                         return 0;
1922                 break;
1923         case IEEE80211_IF_TYPE_MNTR:
1924                 /* take everything */
1925                 break;
1926         case IEEE80211_IF_TYPE_INVALID:
1927                 /* should never get here */
1928                 WARN_ON(1);
1929                 break;
1930         }
1931
1932         return 1;
1933 }
1934
1935 /*
1936  * This is the actual Rx frames handler. as it blongs to Rx path it must
1937  * be called with rcu_read_lock protection.
1938  */
1939 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1940                                          struct sk_buff *skb,
1941                                          struct ieee80211_rx_status *status,
1942                                          u32 load,
1943                                          struct ieee80211_rate *rate)
1944 {
1945         struct ieee80211_local *local = hw_to_local(hw);
1946         struct ieee80211_sub_if_data *sdata;
1947         struct ieee80211_hdr *hdr;
1948         struct ieee80211_rx_data rx;
1949         u16 type;
1950         int prepares;
1951         struct ieee80211_sub_if_data *prev = NULL;
1952         struct sk_buff *skb_new;
1953         u8 *bssid;
1954
1955         hdr = (struct ieee80211_hdr *) skb->data;
1956         memset(&rx, 0, sizeof(rx));
1957         rx.skb = skb;
1958         rx.local = local;
1959
1960         rx.status = status;
1961         rx.load = load;
1962         rx.rate = rate;
1963         rx.fc = le16_to_cpu(hdr->frame_control);
1964         type = rx.fc & IEEE80211_FCTL_FTYPE;
1965
1966         if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1967                 local->dot11ReceivedFragmentCount++;
1968
1969         rx.sta = sta_info_get(local, hdr->addr2);
1970         if (rx.sta) {
1971                 rx.sdata = rx.sta->sdata;
1972                 rx.dev = rx.sta->sdata->dev;
1973         }
1974
1975         if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1976                 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1977                 return;
1978         }
1979
1980         if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1981                 rx.flags |= IEEE80211_RX_IN_SCAN;
1982
1983         ieee80211_parse_qos(&rx);
1984         ieee80211_verify_ip_alignment(&rx);
1985
1986         skb = rx.skb;
1987
1988         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1989                 if (!netif_running(sdata->dev))
1990                         continue;
1991
1992                 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1993                         continue;
1994
1995                 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1996                 rx.flags |= IEEE80211_RX_RA_MATCH;
1997                 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1998
1999                 if (!prepares)
2000                         continue;
2001
2002                 /*
2003                  * frame is destined for this interface, but if it's not
2004                  * also for the previous one we handle that after the
2005                  * loop to avoid copying the SKB once too much
2006                  */
2007
2008                 if (!prev) {
2009                         prev = sdata;
2010                         continue;
2011                 }
2012
2013                 /*
2014                  * frame was destined for the previous interface
2015                  * so invoke RX handlers for it
2016                  */
2017
2018                 skb_new = skb_copy(skb, GFP_ATOMIC);
2019                 if (!skb_new) {
2020                         if (net_ratelimit())
2021                                 printk(KERN_DEBUG "%s: failed to copy "
2022                                        "multicast frame for %s\n",
2023                                        wiphy_name(local->hw.wiphy),
2024                                        prev->dev->name);
2025                         continue;
2026                 }
2027                 rx.fc = le16_to_cpu(hdr->frame_control);
2028                 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
2029                 prev = sdata;
2030         }
2031         if (prev) {
2032                 rx.fc = le16_to_cpu(hdr->frame_control);
2033                 ieee80211_invoke_rx_handlers(prev, &rx, skb);
2034         } else
2035                 dev_kfree_skb(skb);
2036 }
2037
2038 #define SEQ_MODULO 0x1000
2039 #define SEQ_MASK   0xfff
2040
2041 static inline int seq_less(u16 sq1, u16 sq2)
2042 {
2043         return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
2044 }
2045
2046 static inline u16 seq_inc(u16 sq)
2047 {
2048         return ((sq + 1) & SEQ_MASK);
2049 }
2050
2051 static inline u16 seq_sub(u16 sq1, u16 sq2)
2052 {
2053         return ((sq1 - sq2) & SEQ_MASK);
2054 }
2055
2056
2057 /*
2058  * As it function blongs to Rx path it must be called with
2059  * the proper rcu_read_lock protection for its flow.
2060  */
2061 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
2062                                 struct tid_ampdu_rx *tid_agg_rx,
2063                                 struct sk_buff *skb, u16 mpdu_seq_num,
2064                                 int bar_req)
2065 {
2066         struct ieee80211_local *local = hw_to_local(hw);
2067         struct ieee80211_rx_status status;
2068         u16 head_seq_num, buf_size;
2069         int index;
2070         u32 pkt_load;
2071         struct ieee80211_supported_band *sband;
2072         struct ieee80211_rate *rate;
2073
2074         buf_size = tid_agg_rx->buf_size;
2075         head_seq_num = tid_agg_rx->head_seq_num;
2076
2077         /* frame with out of date sequence number */
2078         if (seq_less(mpdu_seq_num, head_seq_num)) {
2079                 dev_kfree_skb(skb);
2080                 return 1;
2081         }
2082
2083         /* if frame sequence number exceeds our buffering window size or
2084          * block Ack Request arrived - release stored frames */
2085         if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
2086                 /* new head to the ordering buffer */
2087                 if (bar_req)
2088                         head_seq_num = mpdu_seq_num;
2089                 else
2090                         head_seq_num =
2091                                 seq_inc(seq_sub(mpdu_seq_num, buf_size));
2092                 /* release stored frames up to new head to stack */
2093                 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
2094                         index = seq_sub(tid_agg_rx->head_seq_num,
2095                                 tid_agg_rx->ssn)
2096                                 % tid_agg_rx->buf_size;
2097
2098                         if (tid_agg_rx->reorder_buf[index]) {
2099                                 /* release the reordered frames to stack */
2100                                 memcpy(&status,
2101                                         tid_agg_rx->reorder_buf[index]->cb,
2102                                         sizeof(status));
2103                                 sband = local->hw.wiphy->bands[status.band];
2104                                 rate = &sband->bitrates[status.rate_idx];
2105                                 pkt_load = ieee80211_rx_load_stats(local,
2106                                                 tid_agg_rx->reorder_buf[index],
2107                                                 &status, rate);
2108                                 __ieee80211_rx_handle_packet(hw,
2109                                         tid_agg_rx->reorder_buf[index],
2110                                         &status, pkt_load, rate);
2111                                 tid_agg_rx->stored_mpdu_num--;
2112                                 tid_agg_rx->reorder_buf[index] = NULL;
2113                         }
2114                         tid_agg_rx->head_seq_num =
2115                                 seq_inc(tid_agg_rx->head_seq_num);
2116                 }
2117                 if (bar_req)
2118                         return 1;
2119         }
2120
2121         /* now the new frame is always in the range of the reordering */
2122         /* buffer window */
2123         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
2124                                 % tid_agg_rx->buf_size;
2125         /* check if we already stored this frame */
2126         if (tid_agg_rx->reorder_buf[index]) {
2127                 dev_kfree_skb(skb);
2128                 return 1;
2129         }
2130
2131         /* if arrived mpdu is in the right order and nothing else stored */
2132         /* release it immediately */
2133         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
2134                         tid_agg_rx->stored_mpdu_num == 0) {
2135                 tid_agg_rx->head_seq_num =
2136                         seq_inc(tid_agg_rx->head_seq_num);
2137                 return 0;
2138         }
2139
2140         /* put the frame in the reordering buffer */
2141         tid_agg_rx->reorder_buf[index] = skb;
2142         tid_agg_rx->stored_mpdu_num++;
2143         /* release the buffer until next missing frame */
2144         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2145                                                 % tid_agg_rx->buf_size;
2146         while (tid_agg_rx->reorder_buf[index]) {
2147                 /* release the reordered frame back to stack */
2148                 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2149                         sizeof(status));
2150                 sband = local->hw.wiphy->bands[status.band];
2151                 rate = &sband->bitrates[status.rate_idx];
2152                 pkt_load = ieee80211_rx_load_stats(local,
2153                                         tid_agg_rx->reorder_buf[index],
2154                                         &status, rate);
2155                 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2156                                              &status, pkt_load, rate);
2157                 tid_agg_rx->stored_mpdu_num--;
2158                 tid_agg_rx->reorder_buf[index] = NULL;
2159                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2160                 index = seq_sub(tid_agg_rx->head_seq_num,
2161                         tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2162         }
2163         return 1;
2164 }
2165
2166 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2167                                      struct sk_buff *skb)
2168 {
2169         struct ieee80211_hw *hw = &local->hw;
2170         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2171         struct sta_info *sta;
2172         struct tid_ampdu_rx *tid_agg_rx;
2173         u16 fc, sc;
2174         u16 mpdu_seq_num;
2175         u8 ret = 0, *qc;
2176         int tid;
2177
2178         sta = sta_info_get(local, hdr->addr2);
2179         if (!sta)
2180                 return ret;
2181
2182         fc = le16_to_cpu(hdr->frame_control);
2183
2184         /* filter the QoS data rx stream according to
2185          * STA/TID and check if this STA/TID is on aggregation */
2186         if (!WLAN_FC_IS_QOS_DATA(fc))
2187                 goto end_reorder;
2188
2189         qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
2190         tid = qc[0] & QOS_CONTROL_TID_MASK;
2191
2192         if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
2193                 goto end_reorder;
2194
2195         tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
2196
2197         /* null data frames are excluded */
2198         if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
2199                 goto end_reorder;
2200
2201         /* new un-ordered ampdu frame - process it */
2202
2203         /* reset session timer */
2204         if (tid_agg_rx->timeout) {
2205                 unsigned long expires =
2206                         jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2207                 mod_timer(&tid_agg_rx->session_timer, expires);
2208         }
2209
2210         /* if this mpdu is fragmented - terminate rx aggregation session */
2211         sc = le16_to_cpu(hdr->seq_ctrl);
2212         if (sc & IEEE80211_SCTL_FRAG) {
2213                 ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
2214                         tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2215                 ret = 1;
2216                 goto end_reorder;
2217         }
2218
2219         /* according to mpdu sequence number deal with reordering buffer */
2220         mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2221         ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2222                                                 mpdu_seq_num, 0);
2223  end_reorder:
2224         return ret;
2225 }
2226
2227 /*
2228  * This is the receive path handler. It is called by a low level driver when an
2229  * 802.11 MPDU is received from the hardware.
2230  */
2231 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2232                     struct ieee80211_rx_status *status)
2233 {
2234         struct ieee80211_local *local = hw_to_local(hw);
2235         u32 pkt_load;
2236         struct ieee80211_rate *rate = NULL;
2237         struct ieee80211_supported_band *sband;
2238
2239         if (status->band < 0 ||
2240             status->band >= IEEE80211_NUM_BANDS) {
2241                 WARN_ON(1);
2242                 return;
2243         }
2244
2245         sband = local->hw.wiphy->bands[status->band];
2246
2247         if (!sband ||
2248             status->rate_idx < 0 ||
2249             status->rate_idx >= sband->n_bitrates) {
2250                 WARN_ON(1);
2251                 return;
2252         }
2253
2254         rate = &sband->bitrates[status->rate_idx];
2255
2256         /*
2257          * key references and virtual interfaces are protected using RCU
2258          * and this requires that we are in a read-side RCU section during
2259          * receive processing
2260          */
2261         rcu_read_lock();
2262
2263         /*
2264          * Frames with failed FCS/PLCP checksum are not returned,
2265          * all other frames are returned without radiotap header
2266          * if it was previously present.
2267          * Also, frames with less than 16 bytes are dropped.
2268          */
2269         skb = ieee80211_rx_monitor(local, skb, status, rate);
2270         if (!skb) {
2271                 rcu_read_unlock();
2272                 return;
2273         }
2274
2275         pkt_load = ieee80211_rx_load_stats(local, skb, status, rate);
2276         local->channel_use_raw += pkt_load;
2277
2278         if (!ieee80211_rx_reorder_ampdu(local, skb))
2279                 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate);
2280
2281         rcu_read_unlock();
2282 }
2283 EXPORT_SYMBOL(__ieee80211_rx);
2284
2285 /* This is a version of the rx handler that can be called from hard irq
2286  * context. Post the skb on the queue and schedule the tasklet */
2287 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2288                           struct ieee80211_rx_status *status)
2289 {
2290         struct ieee80211_local *local = hw_to_local(hw);
2291
2292         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2293
2294         skb->dev = local->mdev;
2295         /* copy status into skb->cb for use by tasklet */
2296         memcpy(skb->cb, status, sizeof(*status));
2297         skb->pkt_type = IEEE80211_RX_MSG;
2298         skb_queue_tail(&local->skb_queue, skb);
2299         tasklet_schedule(&local->tasklet);
2300 }
2301 EXPORT_SYMBOL(ieee80211_rx_irqsafe);