Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / net / ipv4 / ipmr.c
1 /*
2  *      IP multicast routing support for mrouted 3.6/3.8
3  *
4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *        Linux Consultancy and Custom Driver Development
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  *
12  *      Fixes:
13  *      Michael Chastain        :       Incorrect size of copying.
14  *      Alan Cox                :       Added the cache manager code
15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
16  *      Mike McLagan            :       Routing by source
17  *      Malcolm Beattie         :       Buffer handling fixes.
18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
19  *      SVR Anand               :       Fixed several multicast bugs and problems.
20  *      Alexey Kuznetsov        :       Status, optimisations and more.
21  *      Brad Parker             :       Better behaviour on mrouted upcall
22  *                                      overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
25  *                                      Relax this requirement to work with older peers.
26  *
27  */
28
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72         struct fib_rule         common;
73 };
74
75 struct ipmr_result {
76         struct mr_table         *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80  * Note that the changes are semaphored via rtnl_lock.
81  */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91  * entries is changed only in process context and protected
92  * with weak lock mrt_lock. Queue of unresolved entries is protected
93  * with strong spinlock mfc_unres_lock.
94  *
95  * In this case data path is free of exclusive locks at all.
96  */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104                           struct sk_buff *skb, struct mfc_cache *cache,
105                           int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107                              struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109                               struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111                                  int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117         list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121         struct mr_table *mrt;
122
123         ipmr_for_each_table(mrt, net) {
124                 if (mrt->id == id)
125                         return mrt;
126         }
127         return NULL;
128 }
129
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131                            struct mr_table **mrt)
132 {
133         int err;
134         struct ipmr_result res;
135         struct fib_lookup_arg arg = {
136                 .result = &res,
137                 .flags = FIB_LOOKUP_NOREF,
138         };
139
140         /* update flow if oif or iif point to device enslaved to l3mdev */
141         l3mdev_update_flow(net, flowi4_to_flowi(flp4));
142
143         err = fib_rules_lookup(net->ipv4.mr_rules_ops,
144                                flowi4_to_flowi(flp4), 0, &arg);
145         if (err < 0)
146                 return err;
147         *mrt = res.mrt;
148         return 0;
149 }
150
151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
152                             int flags, struct fib_lookup_arg *arg)
153 {
154         struct ipmr_result *res = arg->result;
155         struct mr_table *mrt;
156
157         switch (rule->action) {
158         case FR_ACT_TO_TBL:
159                 break;
160         case FR_ACT_UNREACHABLE:
161                 return -ENETUNREACH;
162         case FR_ACT_PROHIBIT:
163                 return -EACCES;
164         case FR_ACT_BLACKHOLE:
165         default:
166                 return -EINVAL;
167         }
168
169         arg->table = fib_rule_get_table(rule, arg);
170
171         mrt = ipmr_get_table(rule->fr_net, arg->table);
172         if (!mrt)
173                 return -EAGAIN;
174         res->mrt = mrt;
175         return 0;
176 }
177
178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
179 {
180         return 1;
181 }
182
183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
184         FRA_GENERIC_POLICY,
185 };
186
187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188                                struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190         return 0;
191 }
192
193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194                              struct nlattr **tb)
195 {
196         return 1;
197 }
198
199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200                           struct fib_rule_hdr *frh)
201 {
202         frh->dst_len = 0;
203         frh->src_len = 0;
204         frh->tos     = 0;
205         return 0;
206 }
207
208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
209         .family         = RTNL_FAMILY_IPMR,
210         .rule_size      = sizeof(struct ipmr_rule),
211         .addr_size      = sizeof(u32),
212         .action         = ipmr_rule_action,
213         .match          = ipmr_rule_match,
214         .configure      = ipmr_rule_configure,
215         .compare        = ipmr_rule_compare,
216         .fill           = ipmr_rule_fill,
217         .nlgroup        = RTNLGRP_IPV4_RULE,
218         .policy         = ipmr_rule_policy,
219         .owner          = THIS_MODULE,
220 };
221
222 static int __net_init ipmr_rules_init(struct net *net)
223 {
224         struct fib_rules_ops *ops;
225         struct mr_table *mrt;
226         int err;
227
228         ops = fib_rules_register(&ipmr_rules_ops_template, net);
229         if (IS_ERR(ops))
230                 return PTR_ERR(ops);
231
232         INIT_LIST_HEAD(&net->ipv4.mr_tables);
233
234         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
235         if (IS_ERR(mrt)) {
236                 err = PTR_ERR(mrt);
237                 goto err1;
238         }
239
240         err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
241         if (err < 0)
242                 goto err2;
243
244         net->ipv4.mr_rules_ops = ops;
245         return 0;
246
247 err2:
248         ipmr_free_table(mrt);
249 err1:
250         fib_rules_unregister(ops);
251         return err;
252 }
253
254 static void __net_exit ipmr_rules_exit(struct net *net)
255 {
256         struct mr_table *mrt, *next;
257
258         rtnl_lock();
259         list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
260                 list_del(&mrt->list);
261                 ipmr_free_table(mrt);
262         }
263         fib_rules_unregister(net->ipv4.mr_rules_ops);
264         rtnl_unlock();
265 }
266 #else
267 #define ipmr_for_each_table(mrt, net) \
268         for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
269
270 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
271 {
272         return net->ipv4.mrt;
273 }
274
275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
276                            struct mr_table **mrt)
277 {
278         *mrt = net->ipv4.mrt;
279         return 0;
280 }
281
282 static int __net_init ipmr_rules_init(struct net *net)
283 {
284         struct mr_table *mrt;
285
286         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
287         if (IS_ERR(mrt))
288                 return PTR_ERR(mrt);
289         net->ipv4.mrt = mrt;
290         return 0;
291 }
292
293 static void __net_exit ipmr_rules_exit(struct net *net)
294 {
295         rtnl_lock();
296         ipmr_free_table(net->ipv4.mrt);
297         net->ipv4.mrt = NULL;
298         rtnl_unlock();
299 }
300 #endif
301
302 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
303                                 const void *ptr)
304 {
305         const struct mfc_cache_cmp_arg *cmparg = arg->key;
306         struct mfc_cache *c = (struct mfc_cache *)ptr;
307
308         return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
309                cmparg->mfc_origin != c->mfc_origin;
310 }
311
312 static const struct rhashtable_params ipmr_rht_params = {
313         .head_offset = offsetof(struct mfc_cache, mnode),
314         .key_offset = offsetof(struct mfc_cache, cmparg),
315         .key_len = sizeof(struct mfc_cache_cmp_arg),
316         .nelem_hint = 3,
317         .locks_mul = 1,
318         .obj_cmpfn = ipmr_hash_cmp,
319         .automatic_shrinking = true,
320 };
321
322 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
323 {
324         struct mr_table *mrt;
325
326         /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
327         if (id != RT_TABLE_DEFAULT && id >= 1000000000)
328                 return ERR_PTR(-EINVAL);
329
330         mrt = ipmr_get_table(net, id);
331         if (mrt)
332                 return mrt;
333
334         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
335         if (!mrt)
336                 return ERR_PTR(-ENOMEM);
337         write_pnet(&mrt->net, net);
338         mrt->id = id;
339
340         rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
341         INIT_LIST_HEAD(&mrt->mfc_cache_list);
342         INIT_LIST_HEAD(&mrt->mfc_unres_queue);
343
344         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
345                     (unsigned long)mrt);
346
347         mrt->mroute_reg_vif_num = -1;
348 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
349         list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
350 #endif
351         return mrt;
352 }
353
354 static void ipmr_free_table(struct mr_table *mrt)
355 {
356         del_timer_sync(&mrt->ipmr_expire_timer);
357         mroute_clean_tables(mrt, true);
358         rhltable_destroy(&mrt->mfc_hash);
359         kfree(mrt);
360 }
361
362 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
363
364 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
365 {
366         struct net *net = dev_net(dev);
367
368         dev_close(dev);
369
370         dev = __dev_get_by_name(net, "tunl0");
371         if (dev) {
372                 const struct net_device_ops *ops = dev->netdev_ops;
373                 struct ifreq ifr;
374                 struct ip_tunnel_parm p;
375
376                 memset(&p, 0, sizeof(p));
377                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
378                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
379                 p.iph.version = 4;
380                 p.iph.ihl = 5;
381                 p.iph.protocol = IPPROTO_IPIP;
382                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
383                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
384
385                 if (ops->ndo_do_ioctl) {
386                         mm_segment_t oldfs = get_fs();
387
388                         set_fs(KERNEL_DS);
389                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
390                         set_fs(oldfs);
391                 }
392         }
393 }
394
395 /* Initialize ipmr pimreg/tunnel in_device */
396 static bool ipmr_init_vif_indev(const struct net_device *dev)
397 {
398         struct in_device *in_dev;
399
400         ASSERT_RTNL();
401
402         in_dev = __in_dev_get_rtnl(dev);
403         if (!in_dev)
404                 return false;
405         ipv4_devconf_setall(in_dev);
406         neigh_parms_data_state_setall(in_dev->arp_parms);
407         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
408
409         return true;
410 }
411
412 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
413 {
414         struct net_device  *dev;
415
416         dev = __dev_get_by_name(net, "tunl0");
417
418         if (dev) {
419                 const struct net_device_ops *ops = dev->netdev_ops;
420                 int err;
421                 struct ifreq ifr;
422                 struct ip_tunnel_parm p;
423
424                 memset(&p, 0, sizeof(p));
425                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
426                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
427                 p.iph.version = 4;
428                 p.iph.ihl = 5;
429                 p.iph.protocol = IPPROTO_IPIP;
430                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
431                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
432
433                 if (ops->ndo_do_ioctl) {
434                         mm_segment_t oldfs = get_fs();
435
436                         set_fs(KERNEL_DS);
437                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
438                         set_fs(oldfs);
439                 } else {
440                         err = -EOPNOTSUPP;
441                 }
442                 dev = NULL;
443
444                 if (err == 0 &&
445                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
446                         dev->flags |= IFF_MULTICAST;
447                         if (!ipmr_init_vif_indev(dev))
448                                 goto failure;
449                         if (dev_open(dev))
450                                 goto failure;
451                         dev_hold(dev);
452                 }
453         }
454         return dev;
455
456 failure:
457         unregister_netdevice(dev);
458         return NULL;
459 }
460
461 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
462 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
463 {
464         struct net *net = dev_net(dev);
465         struct mr_table *mrt;
466         struct flowi4 fl4 = {
467                 .flowi4_oif     = dev->ifindex,
468                 .flowi4_iif     = skb->skb_iif ? : LOOPBACK_IFINDEX,
469                 .flowi4_mark    = skb->mark,
470         };
471         int err;
472
473         err = ipmr_fib_lookup(net, &fl4, &mrt);
474         if (err < 0) {
475                 kfree_skb(skb);
476                 return err;
477         }
478
479         read_lock(&mrt_lock);
480         dev->stats.tx_bytes += skb->len;
481         dev->stats.tx_packets++;
482         ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
483         read_unlock(&mrt_lock);
484         kfree_skb(skb);
485         return NETDEV_TX_OK;
486 }
487
488 static int reg_vif_get_iflink(const struct net_device *dev)
489 {
490         return 0;
491 }
492
493 static const struct net_device_ops reg_vif_netdev_ops = {
494         .ndo_start_xmit = reg_vif_xmit,
495         .ndo_get_iflink = reg_vif_get_iflink,
496 };
497
498 static void reg_vif_setup(struct net_device *dev)
499 {
500         dev->type               = ARPHRD_PIMREG;
501         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
502         dev->flags              = IFF_NOARP;
503         dev->netdev_ops         = &reg_vif_netdev_ops;
504         dev->destructor         = free_netdev;
505         dev->features           |= NETIF_F_NETNS_LOCAL;
506 }
507
508 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
509 {
510         struct net_device *dev;
511         char name[IFNAMSIZ];
512
513         if (mrt->id == RT_TABLE_DEFAULT)
514                 sprintf(name, "pimreg");
515         else
516                 sprintf(name, "pimreg%u", mrt->id);
517
518         dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
519
520         if (!dev)
521                 return NULL;
522
523         dev_net_set(dev, net);
524
525         if (register_netdevice(dev)) {
526                 free_netdev(dev);
527                 return NULL;
528         }
529
530         if (!ipmr_init_vif_indev(dev))
531                 goto failure;
532         if (dev_open(dev))
533                 goto failure;
534
535         dev_hold(dev);
536
537         return dev;
538
539 failure:
540         unregister_netdevice(dev);
541         return NULL;
542 }
543
544 /* called with rcu_read_lock() */
545 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
546                      unsigned int pimlen)
547 {
548         struct net_device *reg_dev = NULL;
549         struct iphdr *encap;
550
551         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
552         /* Check that:
553          * a. packet is really sent to a multicast group
554          * b. packet is not a NULL-REGISTER
555          * c. packet is not truncated
556          */
557         if (!ipv4_is_multicast(encap->daddr) ||
558             encap->tot_len == 0 ||
559             ntohs(encap->tot_len) + pimlen > skb->len)
560                 return 1;
561
562         read_lock(&mrt_lock);
563         if (mrt->mroute_reg_vif_num >= 0)
564                 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
565         read_unlock(&mrt_lock);
566
567         if (!reg_dev)
568                 return 1;
569
570         skb->mac_header = skb->network_header;
571         skb_pull(skb, (u8 *)encap - skb->data);
572         skb_reset_network_header(skb);
573         skb->protocol = htons(ETH_P_IP);
574         skb->ip_summed = CHECKSUM_NONE;
575
576         skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
577
578         netif_rx(skb);
579
580         return NET_RX_SUCCESS;
581 }
582 #else
583 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
584 {
585         return NULL;
586 }
587 #endif
588
589 /**
590  *      vif_delete - Delete a VIF entry
591  *      @notify: Set to 1, if the caller is a notifier_call
592  */
593 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
594                       struct list_head *head)
595 {
596         struct vif_device *v;
597         struct net_device *dev;
598         struct in_device *in_dev;
599
600         if (vifi < 0 || vifi >= mrt->maxvif)
601                 return -EADDRNOTAVAIL;
602
603         v = &mrt->vif_table[vifi];
604
605         write_lock_bh(&mrt_lock);
606         dev = v->dev;
607         v->dev = NULL;
608
609         if (!dev) {
610                 write_unlock_bh(&mrt_lock);
611                 return -EADDRNOTAVAIL;
612         }
613
614         if (vifi == mrt->mroute_reg_vif_num)
615                 mrt->mroute_reg_vif_num = -1;
616
617         if (vifi + 1 == mrt->maxvif) {
618                 int tmp;
619
620                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
621                         if (VIF_EXISTS(mrt, tmp))
622                                 break;
623                 }
624                 mrt->maxvif = tmp+1;
625         }
626
627         write_unlock_bh(&mrt_lock);
628
629         dev_set_allmulti(dev, -1);
630
631         in_dev = __in_dev_get_rtnl(dev);
632         if (in_dev) {
633                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
634                 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
635                                             NETCONFA_MC_FORWARDING,
636                                             dev->ifindex, &in_dev->cnf);
637                 ip_rt_multicast_event(in_dev);
638         }
639
640         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
641                 unregister_netdevice_queue(dev, head);
642
643         dev_put(dev);
644         return 0;
645 }
646
647 static void ipmr_cache_free_rcu(struct rcu_head *head)
648 {
649         struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
650
651         kmem_cache_free(mrt_cachep, c);
652 }
653
654 static inline void ipmr_cache_free(struct mfc_cache *c)
655 {
656         call_rcu(&c->rcu, ipmr_cache_free_rcu);
657 }
658
659 /* Destroy an unresolved cache entry, killing queued skbs
660  * and reporting error to netlink readers.
661  */
662 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
663 {
664         struct net *net = read_pnet(&mrt->net);
665         struct sk_buff *skb;
666         struct nlmsgerr *e;
667
668         atomic_dec(&mrt->cache_resolve_queue_len);
669
670         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
671                 if (ip_hdr(skb)->version == 0) {
672                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
673                         nlh->nlmsg_type = NLMSG_ERROR;
674                         nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
675                         skb_trim(skb, nlh->nlmsg_len);
676                         e = nlmsg_data(nlh);
677                         e->error = -ETIMEDOUT;
678                         memset(&e->msg, 0, sizeof(e->msg));
679
680                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
681                 } else {
682                         kfree_skb(skb);
683                 }
684         }
685
686         ipmr_cache_free(c);
687 }
688
689 /* Timer process for the unresolved queue. */
690 static void ipmr_expire_process(unsigned long arg)
691 {
692         struct mr_table *mrt = (struct mr_table *)arg;
693         unsigned long now;
694         unsigned long expires;
695         struct mfc_cache *c, *next;
696
697         if (!spin_trylock(&mfc_unres_lock)) {
698                 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
699                 return;
700         }
701
702         if (list_empty(&mrt->mfc_unres_queue))
703                 goto out;
704
705         now = jiffies;
706         expires = 10*HZ;
707
708         list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
709                 if (time_after(c->mfc_un.unres.expires, now)) {
710                         unsigned long interval = c->mfc_un.unres.expires - now;
711                         if (interval < expires)
712                                 expires = interval;
713                         continue;
714                 }
715
716                 list_del(&c->list);
717                 mroute_netlink_event(mrt, c, RTM_DELROUTE);
718                 ipmr_destroy_unres(mrt, c);
719         }
720
721         if (!list_empty(&mrt->mfc_unres_queue))
722                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
723
724 out:
725         spin_unlock(&mfc_unres_lock);
726 }
727
728 /* Fill oifs list. It is called under write locked mrt_lock. */
729 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
730                                    unsigned char *ttls)
731 {
732         int vifi;
733
734         cache->mfc_un.res.minvif = MAXVIFS;
735         cache->mfc_un.res.maxvif = 0;
736         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
737
738         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
739                 if (VIF_EXISTS(mrt, vifi) &&
740                     ttls[vifi] && ttls[vifi] < 255) {
741                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
742                         if (cache->mfc_un.res.minvif > vifi)
743                                 cache->mfc_un.res.minvif = vifi;
744                         if (cache->mfc_un.res.maxvif <= vifi)
745                                 cache->mfc_un.res.maxvif = vifi + 1;
746                 }
747         }
748         cache->mfc_un.res.lastuse = jiffies;
749 }
750
751 static int vif_add(struct net *net, struct mr_table *mrt,
752                    struct vifctl *vifc, int mrtsock)
753 {
754         int vifi = vifc->vifc_vifi;
755         struct vif_device *v = &mrt->vif_table[vifi];
756         struct net_device *dev;
757         struct in_device *in_dev;
758         int err;
759
760         /* Is vif busy ? */
761         if (VIF_EXISTS(mrt, vifi))
762                 return -EADDRINUSE;
763
764         switch (vifc->vifc_flags) {
765         case VIFF_REGISTER:
766                 if (!ipmr_pimsm_enabled())
767                         return -EINVAL;
768                 /* Special Purpose VIF in PIM
769                  * All the packets will be sent to the daemon
770                  */
771                 if (mrt->mroute_reg_vif_num >= 0)
772                         return -EADDRINUSE;
773                 dev = ipmr_reg_vif(net, mrt);
774                 if (!dev)
775                         return -ENOBUFS;
776                 err = dev_set_allmulti(dev, 1);
777                 if (err) {
778                         unregister_netdevice(dev);
779                         dev_put(dev);
780                         return err;
781                 }
782                 break;
783         case VIFF_TUNNEL:
784                 dev = ipmr_new_tunnel(net, vifc);
785                 if (!dev)
786                         return -ENOBUFS;
787                 err = dev_set_allmulti(dev, 1);
788                 if (err) {
789                         ipmr_del_tunnel(dev, vifc);
790                         dev_put(dev);
791                         return err;
792                 }
793                 break;
794         case VIFF_USE_IFINDEX:
795         case 0:
796                 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
797                         dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
798                         if (dev && !__in_dev_get_rtnl(dev)) {
799                                 dev_put(dev);
800                                 return -EADDRNOTAVAIL;
801                         }
802                 } else {
803                         dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
804                 }
805                 if (!dev)
806                         return -EADDRNOTAVAIL;
807                 err = dev_set_allmulti(dev, 1);
808                 if (err) {
809                         dev_put(dev);
810                         return err;
811                 }
812                 break;
813         default:
814                 return -EINVAL;
815         }
816
817         in_dev = __in_dev_get_rtnl(dev);
818         if (!in_dev) {
819                 dev_put(dev);
820                 return -EADDRNOTAVAIL;
821         }
822         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
823         inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
824                                     dev->ifindex, &in_dev->cnf);
825         ip_rt_multicast_event(in_dev);
826
827         /* Fill in the VIF structures */
828
829         v->rate_limit = vifc->vifc_rate_limit;
830         v->local = vifc->vifc_lcl_addr.s_addr;
831         v->remote = vifc->vifc_rmt_addr.s_addr;
832         v->flags = vifc->vifc_flags;
833         if (!mrtsock)
834                 v->flags |= VIFF_STATIC;
835         v->threshold = vifc->vifc_threshold;
836         v->bytes_in = 0;
837         v->bytes_out = 0;
838         v->pkt_in = 0;
839         v->pkt_out = 0;
840         v->link = dev->ifindex;
841         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
842                 v->link = dev_get_iflink(dev);
843
844         /* And finish update writing critical data */
845         write_lock_bh(&mrt_lock);
846         v->dev = dev;
847         if (v->flags & VIFF_REGISTER)
848                 mrt->mroute_reg_vif_num = vifi;
849         if (vifi+1 > mrt->maxvif)
850                 mrt->maxvif = vifi+1;
851         write_unlock_bh(&mrt_lock);
852         return 0;
853 }
854
855 /* called with rcu_read_lock() */
856 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
857                                          __be32 origin,
858                                          __be32 mcastgrp)
859 {
860         struct mfc_cache_cmp_arg arg = {
861                         .mfc_mcastgrp = mcastgrp,
862                         .mfc_origin = origin
863         };
864         struct rhlist_head *tmp, *list;
865         struct mfc_cache *c;
866
867         list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
868         rhl_for_each_entry_rcu(c, tmp, list, mnode)
869                 return c;
870
871         return NULL;
872 }
873
874 /* Look for a (*,*,oif) entry */
875 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
876                                                     int vifi)
877 {
878         struct mfc_cache_cmp_arg arg = {
879                         .mfc_mcastgrp = htonl(INADDR_ANY),
880                         .mfc_origin = htonl(INADDR_ANY)
881         };
882         struct rhlist_head *tmp, *list;
883         struct mfc_cache *c;
884
885         list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
886         rhl_for_each_entry_rcu(c, tmp, list, mnode)
887                 if (c->mfc_un.res.ttls[vifi] < 255)
888                         return c;
889
890         return NULL;
891 }
892
893 /* Look for a (*,G) entry */
894 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
895                                              __be32 mcastgrp, int vifi)
896 {
897         struct mfc_cache_cmp_arg arg = {
898                         .mfc_mcastgrp = mcastgrp,
899                         .mfc_origin = htonl(INADDR_ANY)
900         };
901         struct rhlist_head *tmp, *list;
902         struct mfc_cache *c, *proxy;
903
904         if (mcastgrp == htonl(INADDR_ANY))
905                 goto skip;
906
907         list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
908         rhl_for_each_entry_rcu(c, tmp, list, mnode) {
909                 if (c->mfc_un.res.ttls[vifi] < 255)
910                         return c;
911
912                 /* It's ok if the vifi is part of the static tree */
913                 proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
914                 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
915                         return c;
916         }
917
918 skip:
919         return ipmr_cache_find_any_parent(mrt, vifi);
920 }
921
922 /* Look for a (S,G,iif) entry if parent != -1 */
923 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
924                                                 __be32 origin, __be32 mcastgrp,
925                                                 int parent)
926 {
927         struct mfc_cache_cmp_arg arg = {
928                         .mfc_mcastgrp = mcastgrp,
929                         .mfc_origin = origin,
930         };
931         struct rhlist_head *tmp, *list;
932         struct mfc_cache *c;
933
934         list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
935         rhl_for_each_entry_rcu(c, tmp, list, mnode)
936                 if (parent == -1 || parent == c->mfc_parent)
937                         return c;
938
939         return NULL;
940 }
941
942 /* Allocate a multicast cache entry */
943 static struct mfc_cache *ipmr_cache_alloc(void)
944 {
945         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
946
947         if (c) {
948                 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
949                 c->mfc_un.res.minvif = MAXVIFS;
950         }
951         return c;
952 }
953
954 static struct mfc_cache *ipmr_cache_alloc_unres(void)
955 {
956         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
957
958         if (c) {
959                 skb_queue_head_init(&c->mfc_un.unres.unresolved);
960                 c->mfc_un.unres.expires = jiffies + 10*HZ;
961         }
962         return c;
963 }
964
965 /* A cache entry has gone into a resolved state from queued */
966 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
967                                struct mfc_cache *uc, struct mfc_cache *c)
968 {
969         struct sk_buff *skb;
970         struct nlmsgerr *e;
971
972         /* Play the pending entries through our router */
973         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
974                 if (ip_hdr(skb)->version == 0) {
975                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
976
977                         if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
978                                 nlh->nlmsg_len = skb_tail_pointer(skb) -
979                                                  (u8 *)nlh;
980                         } else {
981                                 nlh->nlmsg_type = NLMSG_ERROR;
982                                 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
983                                 skb_trim(skb, nlh->nlmsg_len);
984                                 e = nlmsg_data(nlh);
985                                 e->error = -EMSGSIZE;
986                                 memset(&e->msg, 0, sizeof(e->msg));
987                         }
988
989                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
990                 } else {
991                         ip_mr_forward(net, mrt, skb, c, 0);
992                 }
993         }
994 }
995
996 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
997  * expects the following bizarre scheme.
998  *
999  * Called under mrt_lock.
1000  */
1001 static int ipmr_cache_report(struct mr_table *mrt,
1002                              struct sk_buff *pkt, vifi_t vifi, int assert)
1003 {
1004         const int ihl = ip_hdrlen(pkt);
1005         struct sock *mroute_sk;
1006         struct igmphdr *igmp;
1007         struct igmpmsg *msg;
1008         struct sk_buff *skb;
1009         int ret;
1010
1011         if (assert == IGMPMSG_WHOLEPKT)
1012                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1013         else
1014                 skb = alloc_skb(128, GFP_ATOMIC);
1015
1016         if (!skb)
1017                 return -ENOBUFS;
1018
1019         if (assert == IGMPMSG_WHOLEPKT) {
1020                 /* Ugly, but we have no choice with this interface.
1021                  * Duplicate old header, fix ihl, length etc.
1022                  * And all this only to mangle msg->im_msgtype and
1023                  * to set msg->im_mbz to "mbz" :-)
1024                  */
1025                 skb_push(skb, sizeof(struct iphdr));
1026                 skb_reset_network_header(skb);
1027                 skb_reset_transport_header(skb);
1028                 msg = (struct igmpmsg *)skb_network_header(skb);
1029                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1030                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1031                 msg->im_mbz = 0;
1032                 msg->im_vif = mrt->mroute_reg_vif_num;
1033                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1034                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1035                                              sizeof(struct iphdr));
1036         } else {
1037                 /* Copy the IP header */
1038                 skb_set_network_header(skb, skb->len);
1039                 skb_put(skb, ihl);
1040                 skb_copy_to_linear_data(skb, pkt->data, ihl);
1041                 /* Flag to the kernel this is a route add */
1042                 ip_hdr(skb)->protocol = 0;
1043                 msg = (struct igmpmsg *)skb_network_header(skb);
1044                 msg->im_vif = vifi;
1045                 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1046                 /* Add our header */
1047                 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1048                 igmp->type = assert;
1049                 msg->im_msgtype = assert;
1050                 igmp->code = 0;
1051                 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1052                 skb->transport_header = skb->network_header;
1053         }
1054
1055         rcu_read_lock();
1056         mroute_sk = rcu_dereference(mrt->mroute_sk);
1057         if (!mroute_sk) {
1058                 rcu_read_unlock();
1059                 kfree_skb(skb);
1060                 return -EINVAL;
1061         }
1062
1063         /* Deliver to mrouted */
1064         ret = sock_queue_rcv_skb(mroute_sk, skb);
1065         rcu_read_unlock();
1066         if (ret < 0) {
1067                 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1068                 kfree_skb(skb);
1069         }
1070
1071         return ret;
1072 }
1073
1074 /* Queue a packet for resolution. It gets locked cache entry! */
1075 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1076                                  struct sk_buff *skb)
1077 {
1078         const struct iphdr *iph = ip_hdr(skb);
1079         struct mfc_cache *c;
1080         bool found = false;
1081         int err;
1082
1083         spin_lock_bh(&mfc_unres_lock);
1084         list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1085                 if (c->mfc_mcastgrp == iph->daddr &&
1086                     c->mfc_origin == iph->saddr) {
1087                         found = true;
1088                         break;
1089                 }
1090         }
1091
1092         if (!found) {
1093                 /* Create a new entry if allowable */
1094                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1095                     (c = ipmr_cache_alloc_unres()) == NULL) {
1096                         spin_unlock_bh(&mfc_unres_lock);
1097
1098                         kfree_skb(skb);
1099                         return -ENOBUFS;
1100                 }
1101
1102                 /* Fill in the new cache entry */
1103                 c->mfc_parent   = -1;
1104                 c->mfc_origin   = iph->saddr;
1105                 c->mfc_mcastgrp = iph->daddr;
1106
1107                 /* Reflect first query at mrouted. */
1108                 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1109                 if (err < 0) {
1110                         /* If the report failed throw the cache entry
1111                            out - Brad Parker
1112                          */
1113                         spin_unlock_bh(&mfc_unres_lock);
1114
1115                         ipmr_cache_free(c);
1116                         kfree_skb(skb);
1117                         return err;
1118                 }
1119
1120                 atomic_inc(&mrt->cache_resolve_queue_len);
1121                 list_add(&c->list, &mrt->mfc_unres_queue);
1122                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1123
1124                 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1125                         mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1126         }
1127
1128         /* See if we can append the packet */
1129         if (c->mfc_un.unres.unresolved.qlen > 3) {
1130                 kfree_skb(skb);
1131                 err = -ENOBUFS;
1132         } else {
1133                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1134                 err = 0;
1135         }
1136
1137         spin_unlock_bh(&mfc_unres_lock);
1138         return err;
1139 }
1140
1141 /* MFC cache manipulation by user space mroute daemon */
1142
1143 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1144 {
1145         struct mfc_cache *c;
1146
1147         /* The entries are added/deleted only under RTNL */
1148         rcu_read_lock();
1149         c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1150                                    mfc->mfcc_mcastgrp.s_addr, parent);
1151         rcu_read_unlock();
1152         if (!c)
1153                 return -ENOENT;
1154         rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1155         list_del_rcu(&c->list);
1156         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1157         ipmr_cache_free(c);
1158
1159         return 0;
1160 }
1161
1162 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1163                         struct mfcctl *mfc, int mrtsock, int parent)
1164 {
1165         struct mfc_cache *uc, *c;
1166         bool found;
1167         int ret;
1168
1169         if (mfc->mfcc_parent >= MAXVIFS)
1170                 return -ENFILE;
1171
1172         /* The entries are added/deleted only under RTNL */
1173         rcu_read_lock();
1174         c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1175                                    mfc->mfcc_mcastgrp.s_addr, parent);
1176         rcu_read_unlock();
1177         if (c) {
1178                 write_lock_bh(&mrt_lock);
1179                 c->mfc_parent = mfc->mfcc_parent;
1180                 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1181                 if (!mrtsock)
1182                         c->mfc_flags |= MFC_STATIC;
1183                 write_unlock_bh(&mrt_lock);
1184                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1185                 return 0;
1186         }
1187
1188         if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1189             !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1190                 return -EINVAL;
1191
1192         c = ipmr_cache_alloc();
1193         if (!c)
1194                 return -ENOMEM;
1195
1196         c->mfc_origin = mfc->mfcc_origin.s_addr;
1197         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1198         c->mfc_parent = mfc->mfcc_parent;
1199         ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1200         if (!mrtsock)
1201                 c->mfc_flags |= MFC_STATIC;
1202
1203         ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
1204                                   ipmr_rht_params);
1205         if (ret) {
1206                 pr_err("ipmr: rhtable insert error %d\n", ret);
1207                 ipmr_cache_free(c);
1208                 return ret;
1209         }
1210         list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
1211         /* Check to see if we resolved a queued list. If so we
1212          * need to send on the frames and tidy up.
1213          */
1214         found = false;
1215         spin_lock_bh(&mfc_unres_lock);
1216         list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1217                 if (uc->mfc_origin == c->mfc_origin &&
1218                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1219                         list_del(&uc->list);
1220                         atomic_dec(&mrt->cache_resolve_queue_len);
1221                         found = true;
1222                         break;
1223                 }
1224         }
1225         if (list_empty(&mrt->mfc_unres_queue))
1226                 del_timer(&mrt->ipmr_expire_timer);
1227         spin_unlock_bh(&mfc_unres_lock);
1228
1229         if (found) {
1230                 ipmr_cache_resolve(net, mrt, uc, c);
1231                 ipmr_cache_free(uc);
1232         }
1233         mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1234         return 0;
1235 }
1236
1237 /* Close the multicast socket, and clear the vif tables etc */
1238 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1239 {
1240         struct mfc_cache *c, *tmp;
1241         LIST_HEAD(list);
1242         int i;
1243
1244         /* Shut down all active vif entries */
1245         for (i = 0; i < mrt->maxvif; i++) {
1246                 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1247                         continue;
1248                 vif_delete(mrt, i, 0, &list);
1249         }
1250         unregister_netdevice_many(&list);
1251
1252         /* Wipe the cache */
1253         list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1254                 if (!all && (c->mfc_flags & MFC_STATIC))
1255                         continue;
1256                 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1257                 list_del_rcu(&c->list);
1258                 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1259                 ipmr_cache_free(c);
1260         }
1261
1262         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1263                 spin_lock_bh(&mfc_unres_lock);
1264                 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1265                         list_del(&c->list);
1266                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1267                         ipmr_destroy_unres(mrt, c);
1268                 }
1269                 spin_unlock_bh(&mfc_unres_lock);
1270         }
1271 }
1272
1273 /* called from ip_ra_control(), before an RCU grace period,
1274  * we dont need to call synchronize_rcu() here
1275  */
1276 static void mrtsock_destruct(struct sock *sk)
1277 {
1278         struct net *net = sock_net(sk);
1279         struct mr_table *mrt;
1280
1281         ASSERT_RTNL();
1282         ipmr_for_each_table(mrt, net) {
1283                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1284                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1285                         inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1286                                                     NETCONFA_MC_FORWARDING,
1287                                                     NETCONFA_IFINDEX_ALL,
1288                                                     net->ipv4.devconf_all);
1289                         RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1290                         mroute_clean_tables(mrt, false);
1291                 }
1292         }
1293 }
1294
1295 /* Socket options and virtual interface manipulation. The whole
1296  * virtual interface system is a complete heap, but unfortunately
1297  * that's how BSD mrouted happens to think. Maybe one day with a proper
1298  * MOSPF/PIM router set up we can clean this up.
1299  */
1300
1301 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1302                          unsigned int optlen)
1303 {
1304         struct net *net = sock_net(sk);
1305         int val, ret = 0, parent = 0;
1306         struct mr_table *mrt;
1307         struct vifctl vif;
1308         struct mfcctl mfc;
1309         u32 uval;
1310
1311         /* There's one exception to the lock - MRT_DONE which needs to unlock */
1312         rtnl_lock();
1313         if (sk->sk_type != SOCK_RAW ||
1314             inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1315                 ret = -EOPNOTSUPP;
1316                 goto out_unlock;
1317         }
1318
1319         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1320         if (!mrt) {
1321                 ret = -ENOENT;
1322                 goto out_unlock;
1323         }
1324         if (optname != MRT_INIT) {
1325                 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1326                     !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1327                         ret = -EACCES;
1328                         goto out_unlock;
1329                 }
1330         }
1331
1332         switch (optname) {
1333         case MRT_INIT:
1334                 if (optlen != sizeof(int)) {
1335                         ret = -EINVAL;
1336                         break;
1337                 }
1338                 if (rtnl_dereference(mrt->mroute_sk)) {
1339                         ret = -EADDRINUSE;
1340                         break;
1341                 }
1342
1343                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1344                 if (ret == 0) {
1345                         rcu_assign_pointer(mrt->mroute_sk, sk);
1346                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1347                         inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1348                                                     NETCONFA_MC_FORWARDING,
1349                                                     NETCONFA_IFINDEX_ALL,
1350                                                     net->ipv4.devconf_all);
1351                 }
1352                 break;
1353         case MRT_DONE:
1354                 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1355                         ret = -EACCES;
1356                 } else {
1357                         ret = ip_ra_control(sk, 0, NULL);
1358                         goto out_unlock;
1359                 }
1360                 break;
1361         case MRT_ADD_VIF:
1362         case MRT_DEL_VIF:
1363                 if (optlen != sizeof(vif)) {
1364                         ret = -EINVAL;
1365                         break;
1366                 }
1367                 if (copy_from_user(&vif, optval, sizeof(vif))) {
1368                         ret = -EFAULT;
1369                         break;
1370                 }
1371                 if (vif.vifc_vifi >= MAXVIFS) {
1372                         ret = -ENFILE;
1373                         break;
1374                 }
1375                 if (optname == MRT_ADD_VIF) {
1376                         ret = vif_add(net, mrt, &vif,
1377                                       sk == rtnl_dereference(mrt->mroute_sk));
1378                 } else {
1379                         ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1380                 }
1381                 break;
1382         /* Manipulate the forwarding caches. These live
1383          * in a sort of kernel/user symbiosis.
1384          */
1385         case MRT_ADD_MFC:
1386         case MRT_DEL_MFC:
1387                 parent = -1;
1388         case MRT_ADD_MFC_PROXY:
1389         case MRT_DEL_MFC_PROXY:
1390                 if (optlen != sizeof(mfc)) {
1391                         ret = -EINVAL;
1392                         break;
1393                 }
1394                 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1395                         ret = -EFAULT;
1396                         break;
1397                 }
1398                 if (parent == 0)
1399                         parent = mfc.mfcc_parent;
1400                 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1401                         ret = ipmr_mfc_delete(mrt, &mfc, parent);
1402                 else
1403                         ret = ipmr_mfc_add(net, mrt, &mfc,
1404                                            sk == rtnl_dereference(mrt->mroute_sk),
1405                                            parent);
1406                 break;
1407         /* Control PIM assert. */
1408         case MRT_ASSERT:
1409                 if (optlen != sizeof(val)) {
1410                         ret = -EINVAL;
1411                         break;
1412                 }
1413                 if (get_user(val, (int __user *)optval)) {
1414                         ret = -EFAULT;
1415                         break;
1416                 }
1417                 mrt->mroute_do_assert = val;
1418                 break;
1419         case MRT_PIM:
1420                 if (!ipmr_pimsm_enabled()) {
1421                         ret = -ENOPROTOOPT;
1422                         break;
1423                 }
1424                 if (optlen != sizeof(val)) {
1425                         ret = -EINVAL;
1426                         break;
1427                 }
1428                 if (get_user(val, (int __user *)optval)) {
1429                         ret = -EFAULT;
1430                         break;
1431                 }
1432
1433                 val = !!val;
1434                 if (val != mrt->mroute_do_pim) {
1435                         mrt->mroute_do_pim = val;
1436                         mrt->mroute_do_assert = val;
1437                 }
1438                 break;
1439         case MRT_TABLE:
1440                 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1441                         ret = -ENOPROTOOPT;
1442                         break;
1443                 }
1444                 if (optlen != sizeof(uval)) {
1445                         ret = -EINVAL;
1446                         break;
1447                 }
1448                 if (get_user(uval, (u32 __user *)optval)) {
1449                         ret = -EFAULT;
1450                         break;
1451                 }
1452
1453                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1454                         ret = -EBUSY;
1455                 } else {
1456                         mrt = ipmr_new_table(net, uval);
1457                         if (IS_ERR(mrt))
1458                                 ret = PTR_ERR(mrt);
1459                         else
1460                                 raw_sk(sk)->ipmr_table = uval;
1461                 }
1462                 break;
1463         /* Spurious command, or MRT_VERSION which you cannot set. */
1464         default:
1465                 ret = -ENOPROTOOPT;
1466         }
1467 out_unlock:
1468         rtnl_unlock();
1469         return ret;
1470 }
1471
1472 /* Getsock opt support for the multicast routing system. */
1473 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1474 {
1475         int olr;
1476         int val;
1477         struct net *net = sock_net(sk);
1478         struct mr_table *mrt;
1479
1480         if (sk->sk_type != SOCK_RAW ||
1481             inet_sk(sk)->inet_num != IPPROTO_IGMP)
1482                 return -EOPNOTSUPP;
1483
1484         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1485         if (!mrt)
1486                 return -ENOENT;
1487
1488         switch (optname) {
1489         case MRT_VERSION:
1490                 val = 0x0305;
1491                 break;
1492         case MRT_PIM:
1493                 if (!ipmr_pimsm_enabled())
1494                         return -ENOPROTOOPT;
1495                 val = mrt->mroute_do_pim;
1496                 break;
1497         case MRT_ASSERT:
1498                 val = mrt->mroute_do_assert;
1499                 break;
1500         default:
1501                 return -ENOPROTOOPT;
1502         }
1503
1504         if (get_user(olr, optlen))
1505                 return -EFAULT;
1506         olr = min_t(unsigned int, olr, sizeof(int));
1507         if (olr < 0)
1508                 return -EINVAL;
1509         if (put_user(olr, optlen))
1510                 return -EFAULT;
1511         if (copy_to_user(optval, &val, olr))
1512                 return -EFAULT;
1513         return 0;
1514 }
1515
1516 /* The IP multicast ioctl support routines. */
1517 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1518 {
1519         struct sioc_sg_req sr;
1520         struct sioc_vif_req vr;
1521         struct vif_device *vif;
1522         struct mfc_cache *c;
1523         struct net *net = sock_net(sk);
1524         struct mr_table *mrt;
1525
1526         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1527         if (!mrt)
1528                 return -ENOENT;
1529
1530         switch (cmd) {
1531         case SIOCGETVIFCNT:
1532                 if (copy_from_user(&vr, arg, sizeof(vr)))
1533                         return -EFAULT;
1534                 if (vr.vifi >= mrt->maxvif)
1535                         return -EINVAL;
1536                 read_lock(&mrt_lock);
1537                 vif = &mrt->vif_table[vr.vifi];
1538                 if (VIF_EXISTS(mrt, vr.vifi)) {
1539                         vr.icount = vif->pkt_in;
1540                         vr.ocount = vif->pkt_out;
1541                         vr.ibytes = vif->bytes_in;
1542                         vr.obytes = vif->bytes_out;
1543                         read_unlock(&mrt_lock);
1544
1545                         if (copy_to_user(arg, &vr, sizeof(vr)))
1546                                 return -EFAULT;
1547                         return 0;
1548                 }
1549                 read_unlock(&mrt_lock);
1550                 return -EADDRNOTAVAIL;
1551         case SIOCGETSGCNT:
1552                 if (copy_from_user(&sr, arg, sizeof(sr)))
1553                         return -EFAULT;
1554
1555                 rcu_read_lock();
1556                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1557                 if (c) {
1558                         sr.pktcnt = c->mfc_un.res.pkt;
1559                         sr.bytecnt = c->mfc_un.res.bytes;
1560                         sr.wrong_if = c->mfc_un.res.wrong_if;
1561                         rcu_read_unlock();
1562
1563                         if (copy_to_user(arg, &sr, sizeof(sr)))
1564                                 return -EFAULT;
1565                         return 0;
1566                 }
1567                 rcu_read_unlock();
1568                 return -EADDRNOTAVAIL;
1569         default:
1570                 return -ENOIOCTLCMD;
1571         }
1572 }
1573
1574 #ifdef CONFIG_COMPAT
1575 struct compat_sioc_sg_req {
1576         struct in_addr src;
1577         struct in_addr grp;
1578         compat_ulong_t pktcnt;
1579         compat_ulong_t bytecnt;
1580         compat_ulong_t wrong_if;
1581 };
1582
1583 struct compat_sioc_vif_req {
1584         vifi_t  vifi;           /* Which iface */
1585         compat_ulong_t icount;
1586         compat_ulong_t ocount;
1587         compat_ulong_t ibytes;
1588         compat_ulong_t obytes;
1589 };
1590
1591 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1592 {
1593         struct compat_sioc_sg_req sr;
1594         struct compat_sioc_vif_req vr;
1595         struct vif_device *vif;
1596         struct mfc_cache *c;
1597         struct net *net = sock_net(sk);
1598         struct mr_table *mrt;
1599
1600         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1601         if (!mrt)
1602                 return -ENOENT;
1603
1604         switch (cmd) {
1605         case SIOCGETVIFCNT:
1606                 if (copy_from_user(&vr, arg, sizeof(vr)))
1607                         return -EFAULT;
1608                 if (vr.vifi >= mrt->maxvif)
1609                         return -EINVAL;
1610                 read_lock(&mrt_lock);
1611                 vif = &mrt->vif_table[vr.vifi];
1612                 if (VIF_EXISTS(mrt, vr.vifi)) {
1613                         vr.icount = vif->pkt_in;
1614                         vr.ocount = vif->pkt_out;
1615                         vr.ibytes = vif->bytes_in;
1616                         vr.obytes = vif->bytes_out;
1617                         read_unlock(&mrt_lock);
1618
1619                         if (copy_to_user(arg, &vr, sizeof(vr)))
1620                                 return -EFAULT;
1621                         return 0;
1622                 }
1623                 read_unlock(&mrt_lock);
1624                 return -EADDRNOTAVAIL;
1625         case SIOCGETSGCNT:
1626                 if (copy_from_user(&sr, arg, sizeof(sr)))
1627                         return -EFAULT;
1628
1629                 rcu_read_lock();
1630                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1631                 if (c) {
1632                         sr.pktcnt = c->mfc_un.res.pkt;
1633                         sr.bytecnt = c->mfc_un.res.bytes;
1634                         sr.wrong_if = c->mfc_un.res.wrong_if;
1635                         rcu_read_unlock();
1636
1637                         if (copy_to_user(arg, &sr, sizeof(sr)))
1638                                 return -EFAULT;
1639                         return 0;
1640                 }
1641                 rcu_read_unlock();
1642                 return -EADDRNOTAVAIL;
1643         default:
1644                 return -ENOIOCTLCMD;
1645         }
1646 }
1647 #endif
1648
1649 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1650 {
1651         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1652         struct net *net = dev_net(dev);
1653         struct mr_table *mrt;
1654         struct vif_device *v;
1655         int ct;
1656
1657         if (event != NETDEV_UNREGISTER)
1658                 return NOTIFY_DONE;
1659
1660         ipmr_for_each_table(mrt, net) {
1661                 v = &mrt->vif_table[0];
1662                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1663                         if (v->dev == dev)
1664                                 vif_delete(mrt, ct, 1, NULL);
1665                 }
1666         }
1667         return NOTIFY_DONE;
1668 }
1669
1670 static struct notifier_block ip_mr_notifier = {
1671         .notifier_call = ipmr_device_event,
1672 };
1673
1674 /* Encapsulate a packet by attaching a valid IPIP header to it.
1675  * This avoids tunnel drivers and other mess and gives us the speed so
1676  * important for multicast video.
1677  */
1678 static void ip_encap(struct net *net, struct sk_buff *skb,
1679                      __be32 saddr, __be32 daddr)
1680 {
1681         struct iphdr *iph;
1682         const struct iphdr *old_iph = ip_hdr(skb);
1683
1684         skb_push(skb, sizeof(struct iphdr));
1685         skb->transport_header = skb->network_header;
1686         skb_reset_network_header(skb);
1687         iph = ip_hdr(skb);
1688
1689         iph->version    =       4;
1690         iph->tos        =       old_iph->tos;
1691         iph->ttl        =       old_iph->ttl;
1692         iph->frag_off   =       0;
1693         iph->daddr      =       daddr;
1694         iph->saddr      =       saddr;
1695         iph->protocol   =       IPPROTO_IPIP;
1696         iph->ihl        =       5;
1697         iph->tot_len    =       htons(skb->len);
1698         ip_select_ident(net, skb, NULL);
1699         ip_send_check(iph);
1700
1701         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1702         nf_reset(skb);
1703 }
1704
1705 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1706                                       struct sk_buff *skb)
1707 {
1708         struct ip_options *opt = &(IPCB(skb)->opt);
1709
1710         IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1711         IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1712
1713         if (unlikely(opt->optlen))
1714                 ip_forward_options(skb);
1715
1716         return dst_output(net, sk, skb);
1717 }
1718
1719 /* Processing handlers for ipmr_forward */
1720
1721 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1722                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
1723 {
1724         const struct iphdr *iph = ip_hdr(skb);
1725         struct vif_device *vif = &mrt->vif_table[vifi];
1726         struct net_device *dev;
1727         struct rtable *rt;
1728         struct flowi4 fl4;
1729         int    encap = 0;
1730
1731         if (!vif->dev)
1732                 goto out_free;
1733
1734         if (vif->flags & VIFF_REGISTER) {
1735                 vif->pkt_out++;
1736                 vif->bytes_out += skb->len;
1737                 vif->dev->stats.tx_bytes += skb->len;
1738                 vif->dev->stats.tx_packets++;
1739                 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1740                 goto out_free;
1741         }
1742
1743         if (vif->flags & VIFF_TUNNEL) {
1744                 rt = ip_route_output_ports(net, &fl4, NULL,
1745                                            vif->remote, vif->local,
1746                                            0, 0,
1747                                            IPPROTO_IPIP,
1748                                            RT_TOS(iph->tos), vif->link);
1749                 if (IS_ERR(rt))
1750                         goto out_free;
1751                 encap = sizeof(struct iphdr);
1752         } else {
1753                 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1754                                            0, 0,
1755                                            IPPROTO_IPIP,
1756                                            RT_TOS(iph->tos), vif->link);
1757                 if (IS_ERR(rt))
1758                         goto out_free;
1759         }
1760
1761         dev = rt->dst.dev;
1762
1763         if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1764                 /* Do not fragment multicasts. Alas, IPv4 does not
1765                  * allow to send ICMP, so that packets will disappear
1766                  * to blackhole.
1767                  */
1768                 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1769                 ip_rt_put(rt);
1770                 goto out_free;
1771         }
1772
1773         encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1774
1775         if (skb_cow(skb, encap)) {
1776                 ip_rt_put(rt);
1777                 goto out_free;
1778         }
1779
1780         vif->pkt_out++;
1781         vif->bytes_out += skb->len;
1782
1783         skb_dst_drop(skb);
1784         skb_dst_set(skb, &rt->dst);
1785         ip_decrease_ttl(ip_hdr(skb));
1786
1787         /* FIXME: forward and output firewalls used to be called here.
1788          * What do we do with netfilter? -- RR
1789          */
1790         if (vif->flags & VIFF_TUNNEL) {
1791                 ip_encap(net, skb, vif->local, vif->remote);
1792                 /* FIXME: extra output firewall step used to be here. --RR */
1793                 vif->dev->stats.tx_packets++;
1794                 vif->dev->stats.tx_bytes += skb->len;
1795         }
1796
1797         IPCB(skb)->flags |= IPSKB_FORWARDED;
1798
1799         /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1800          * not only before forwarding, but after forwarding on all output
1801          * interfaces. It is clear, if mrouter runs a multicasting
1802          * program, it should receive packets not depending to what interface
1803          * program is joined.
1804          * If we will not make it, the program will have to join on all
1805          * interfaces. On the other hand, multihoming host (or router, but
1806          * not mrouter) cannot join to more than one interface - it will
1807          * result in receiving multiple packets.
1808          */
1809         NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1810                 net, NULL, skb, skb->dev, dev,
1811                 ipmr_forward_finish);
1812         return;
1813
1814 out_free:
1815         kfree_skb(skb);
1816 }
1817
1818 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1819 {
1820         int ct;
1821
1822         for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1823                 if (mrt->vif_table[ct].dev == dev)
1824                         break;
1825         }
1826         return ct;
1827 }
1828
1829 /* "local" means that we should preserve one skb (for local delivery) */
1830 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1831                           struct sk_buff *skb, struct mfc_cache *cache,
1832                           int local)
1833 {
1834         int true_vifi = ipmr_find_vif(mrt, skb->dev);
1835         int psend = -1;
1836         int vif, ct;
1837
1838         vif = cache->mfc_parent;
1839         cache->mfc_un.res.pkt++;
1840         cache->mfc_un.res.bytes += skb->len;
1841         cache->mfc_un.res.lastuse = jiffies;
1842
1843         if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1844                 struct mfc_cache *cache_proxy;
1845
1846                 /* For an (*,G) entry, we only check that the incomming
1847                  * interface is part of the static tree.
1848                  */
1849                 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1850                 if (cache_proxy &&
1851                     cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1852                         goto forward;
1853         }
1854
1855         /* Wrong interface: drop packet and (maybe) send PIM assert. */
1856         if (mrt->vif_table[vif].dev != skb->dev) {
1857                 struct net_device *mdev;
1858
1859                 mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
1860                 if (mdev == skb->dev)
1861                         goto forward;
1862
1863                 if (rt_is_output_route(skb_rtable(skb))) {
1864                         /* It is our own packet, looped back.
1865                          * Very complicated situation...
1866                          *
1867                          * The best workaround until routing daemons will be
1868                          * fixed is not to redistribute packet, if it was
1869                          * send through wrong interface. It means, that
1870                          * multicast applications WILL NOT work for
1871                          * (S,G), which have default multicast route pointing
1872                          * to wrong oif. In any case, it is not a good
1873                          * idea to use multicasting applications on router.
1874                          */
1875                         goto dont_forward;
1876                 }
1877
1878                 cache->mfc_un.res.wrong_if++;
1879
1880                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1881                     /* pimsm uses asserts, when switching from RPT to SPT,
1882                      * so that we cannot check that packet arrived on an oif.
1883                      * It is bad, but otherwise we would need to move pretty
1884                      * large chunk of pimd to kernel. Ough... --ANK
1885                      */
1886                     (mrt->mroute_do_pim ||
1887                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1888                     time_after(jiffies,
1889                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1890                         cache->mfc_un.res.last_assert = jiffies;
1891                         ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1892                 }
1893                 goto dont_forward;
1894         }
1895
1896 forward:
1897         mrt->vif_table[vif].pkt_in++;
1898         mrt->vif_table[vif].bytes_in += skb->len;
1899
1900         /* Forward the frame */
1901         if (cache->mfc_origin == htonl(INADDR_ANY) &&
1902             cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1903                 if (true_vifi >= 0 &&
1904                     true_vifi != cache->mfc_parent &&
1905                     ip_hdr(skb)->ttl >
1906                                 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1907                         /* It's an (*,*) entry and the packet is not coming from
1908                          * the upstream: forward the packet to the upstream
1909                          * only.
1910                          */
1911                         psend = cache->mfc_parent;
1912                         goto last_forward;
1913                 }
1914                 goto dont_forward;
1915         }
1916         for (ct = cache->mfc_un.res.maxvif - 1;
1917              ct >= cache->mfc_un.res.minvif; ct--) {
1918                 /* For (*,G) entry, don't forward to the incoming interface */
1919                 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1920                      ct != true_vifi) &&
1921                     ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1922                         if (psend != -1) {
1923                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1924
1925                                 if (skb2)
1926                                         ipmr_queue_xmit(net, mrt, skb2, cache,
1927                                                         psend);
1928                         }
1929                         psend = ct;
1930                 }
1931         }
1932 last_forward:
1933         if (psend != -1) {
1934                 if (local) {
1935                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1936
1937                         if (skb2)
1938                                 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1939                 } else {
1940                         ipmr_queue_xmit(net, mrt, skb, cache, psend);
1941                         return;
1942                 }
1943         }
1944
1945 dont_forward:
1946         if (!local)
1947                 kfree_skb(skb);
1948 }
1949
1950 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1951 {
1952         struct rtable *rt = skb_rtable(skb);
1953         struct iphdr *iph = ip_hdr(skb);
1954         struct flowi4 fl4 = {
1955                 .daddr = iph->daddr,
1956                 .saddr = iph->saddr,
1957                 .flowi4_tos = RT_TOS(iph->tos),
1958                 .flowi4_oif = (rt_is_output_route(rt) ?
1959                                skb->dev->ifindex : 0),
1960                 .flowi4_iif = (rt_is_output_route(rt) ?
1961                                LOOPBACK_IFINDEX :
1962                                skb->dev->ifindex),
1963                 .flowi4_mark = skb->mark,
1964         };
1965         struct mr_table *mrt;
1966         int err;
1967
1968         err = ipmr_fib_lookup(net, &fl4, &mrt);
1969         if (err)
1970                 return ERR_PTR(err);
1971         return mrt;
1972 }
1973
1974 /* Multicast packets for forwarding arrive here
1975  * Called with rcu_read_lock();
1976  */
1977 int ip_mr_input(struct sk_buff *skb)
1978 {
1979         struct mfc_cache *cache;
1980         struct net *net = dev_net(skb->dev);
1981         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1982         struct mr_table *mrt;
1983
1984         /* Packet is looped back after forward, it should not be
1985          * forwarded second time, but still can be delivered locally.
1986          */
1987         if (IPCB(skb)->flags & IPSKB_FORWARDED)
1988                 goto dont_forward;
1989
1990         mrt = ipmr_rt_fib_lookup(net, skb);
1991         if (IS_ERR(mrt)) {
1992                 kfree_skb(skb);
1993                 return PTR_ERR(mrt);
1994         }
1995         if (!local) {
1996                 if (IPCB(skb)->opt.router_alert) {
1997                         if (ip_call_ra_chain(skb))
1998                                 return 0;
1999                 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2000                         /* IGMPv1 (and broken IGMPv2 implementations sort of
2001                          * Cisco IOS <= 11.2(8)) do not put router alert
2002                          * option to IGMP packets destined to routable
2003                          * groups. It is very bad, because it means
2004                          * that we can forward NO IGMP messages.
2005                          */
2006                         struct sock *mroute_sk;
2007
2008                         mroute_sk = rcu_dereference(mrt->mroute_sk);
2009                         if (mroute_sk) {
2010                                 nf_reset(skb);
2011                                 raw_rcv(mroute_sk, skb);
2012                                 return 0;
2013                         }
2014                     }
2015         }
2016
2017         /* already under rcu_read_lock() */
2018         cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2019         if (!cache) {
2020                 int vif = ipmr_find_vif(mrt, skb->dev);
2021
2022                 if (vif >= 0)
2023                         cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2024                                                     vif);
2025         }
2026
2027         /* No usable cache entry */
2028         if (!cache) {
2029                 int vif;
2030
2031                 if (local) {
2032                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2033                         ip_local_deliver(skb);
2034                         if (!skb2)
2035                                 return -ENOBUFS;
2036                         skb = skb2;
2037                 }
2038
2039                 read_lock(&mrt_lock);
2040                 vif = ipmr_find_vif(mrt, skb->dev);
2041                 if (vif >= 0) {
2042                         int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2043                         read_unlock(&mrt_lock);
2044
2045                         return err2;
2046                 }
2047                 read_unlock(&mrt_lock);
2048                 kfree_skb(skb);
2049                 return -ENODEV;
2050         }
2051
2052         read_lock(&mrt_lock);
2053         ip_mr_forward(net, mrt, skb, cache, local);
2054         read_unlock(&mrt_lock);
2055
2056         if (local)
2057                 return ip_local_deliver(skb);
2058
2059         return 0;
2060
2061 dont_forward:
2062         if (local)
2063                 return ip_local_deliver(skb);
2064         kfree_skb(skb);
2065         return 0;
2066 }
2067
2068 #ifdef CONFIG_IP_PIMSM_V1
2069 /* Handle IGMP messages of PIMv1 */
2070 int pim_rcv_v1(struct sk_buff *skb)
2071 {
2072         struct igmphdr *pim;
2073         struct net *net = dev_net(skb->dev);
2074         struct mr_table *mrt;
2075
2076         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2077                 goto drop;
2078
2079         pim = igmp_hdr(skb);
2080
2081         mrt = ipmr_rt_fib_lookup(net, skb);
2082         if (IS_ERR(mrt))
2083                 goto drop;
2084         if (!mrt->mroute_do_pim ||
2085             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2086                 goto drop;
2087
2088         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2089 drop:
2090                 kfree_skb(skb);
2091         }
2092         return 0;
2093 }
2094 #endif
2095
2096 #ifdef CONFIG_IP_PIMSM_V2
2097 static int pim_rcv(struct sk_buff *skb)
2098 {
2099         struct pimreghdr *pim;
2100         struct net *net = dev_net(skb->dev);
2101         struct mr_table *mrt;
2102
2103         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2104                 goto drop;
2105
2106         pim = (struct pimreghdr *)skb_transport_header(skb);
2107         if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2108             (pim->flags & PIM_NULL_REGISTER) ||
2109             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2110              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2111                 goto drop;
2112
2113         mrt = ipmr_rt_fib_lookup(net, skb);
2114         if (IS_ERR(mrt))
2115                 goto drop;
2116         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2117 drop:
2118                 kfree_skb(skb);
2119         }
2120         return 0;
2121 }
2122 #endif
2123
2124 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2125                               struct mfc_cache *c, struct rtmsg *rtm)
2126 {
2127         struct rta_mfc_stats mfcs;
2128         struct nlattr *mp_attr;
2129         struct rtnexthop *nhp;
2130         unsigned long lastuse;
2131         int ct;
2132
2133         /* If cache is unresolved, don't try to parse IIF and OIF */
2134         if (c->mfc_parent >= MAXVIFS) {
2135                 rtm->rtm_flags |= RTNH_F_UNRESOLVED;
2136                 return -ENOENT;
2137         }
2138
2139         if (VIF_EXISTS(mrt, c->mfc_parent) &&
2140             nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2141                 return -EMSGSIZE;
2142
2143         if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2144                 return -EMSGSIZE;
2145
2146         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2147                 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2148                         if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2149                                 nla_nest_cancel(skb, mp_attr);
2150                                 return -EMSGSIZE;
2151                         }
2152
2153                         nhp->rtnh_flags = 0;
2154                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2155                         nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2156                         nhp->rtnh_len = sizeof(*nhp);
2157                 }
2158         }
2159
2160         nla_nest_end(skb, mp_attr);
2161
2162         lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2163         lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2164
2165         mfcs.mfcs_packets = c->mfc_un.res.pkt;
2166         mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2167         mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2168         if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2169             nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2170                               RTA_PAD))
2171                 return -EMSGSIZE;
2172
2173         rtm->rtm_type = RTN_MULTICAST;
2174         return 1;
2175 }
2176
2177 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2178                    __be32 saddr, __be32 daddr,
2179                    struct rtmsg *rtm, u32 portid)
2180 {
2181         struct mfc_cache *cache;
2182         struct mr_table *mrt;
2183         int err;
2184
2185         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2186         if (!mrt)
2187                 return -ENOENT;
2188
2189         rcu_read_lock();
2190         cache = ipmr_cache_find(mrt, saddr, daddr);
2191         if (!cache && skb->dev) {
2192                 int vif = ipmr_find_vif(mrt, skb->dev);
2193
2194                 if (vif >= 0)
2195                         cache = ipmr_cache_find_any(mrt, daddr, vif);
2196         }
2197         if (!cache) {
2198                 struct sk_buff *skb2;
2199                 struct iphdr *iph;
2200                 struct net_device *dev;
2201                 int vif = -1;
2202
2203                 dev = skb->dev;
2204                 read_lock(&mrt_lock);
2205                 if (dev)
2206                         vif = ipmr_find_vif(mrt, dev);
2207                 if (vif < 0) {
2208                         read_unlock(&mrt_lock);
2209                         rcu_read_unlock();
2210                         return -ENODEV;
2211                 }
2212                 skb2 = skb_clone(skb, GFP_ATOMIC);
2213                 if (!skb2) {
2214                         read_unlock(&mrt_lock);
2215                         rcu_read_unlock();
2216                         return -ENOMEM;
2217                 }
2218
2219                 NETLINK_CB(skb2).portid = portid;
2220                 skb_push(skb2, sizeof(struct iphdr));
2221                 skb_reset_network_header(skb2);
2222                 iph = ip_hdr(skb2);
2223                 iph->ihl = sizeof(struct iphdr) >> 2;
2224                 iph->saddr = saddr;
2225                 iph->daddr = daddr;
2226                 iph->version = 0;
2227                 err = ipmr_cache_unresolved(mrt, vif, skb2);
2228                 read_unlock(&mrt_lock);
2229                 rcu_read_unlock();
2230                 return err;
2231         }
2232
2233         read_lock(&mrt_lock);
2234         err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2235         read_unlock(&mrt_lock);
2236         rcu_read_unlock();
2237         return err;
2238 }
2239
2240 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2241                             u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2242                             int flags)
2243 {
2244         struct nlmsghdr *nlh;
2245         struct rtmsg *rtm;
2246         int err;
2247
2248         nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2249         if (!nlh)
2250                 return -EMSGSIZE;
2251
2252         rtm = nlmsg_data(nlh);
2253         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2254         rtm->rtm_dst_len  = 32;
2255         rtm->rtm_src_len  = 32;
2256         rtm->rtm_tos      = 0;
2257         rtm->rtm_table    = mrt->id;
2258         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2259                 goto nla_put_failure;
2260         rtm->rtm_type     = RTN_MULTICAST;
2261         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2262         if (c->mfc_flags & MFC_STATIC)
2263                 rtm->rtm_protocol = RTPROT_STATIC;
2264         else
2265                 rtm->rtm_protocol = RTPROT_MROUTED;
2266         rtm->rtm_flags    = 0;
2267
2268         if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2269             nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2270                 goto nla_put_failure;
2271         err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2272         /* do not break the dump if cache is unresolved */
2273         if (err < 0 && err != -ENOENT)
2274                 goto nla_put_failure;
2275
2276         nlmsg_end(skb, nlh);
2277         return 0;
2278
2279 nla_put_failure:
2280         nlmsg_cancel(skb, nlh);
2281         return -EMSGSIZE;
2282 }
2283
2284 static size_t mroute_msgsize(bool unresolved, int maxvif)
2285 {
2286         size_t len =
2287                 NLMSG_ALIGN(sizeof(struct rtmsg))
2288                 + nla_total_size(4)     /* RTA_TABLE */
2289                 + nla_total_size(4)     /* RTA_SRC */
2290                 + nla_total_size(4)     /* RTA_DST */
2291                 ;
2292
2293         if (!unresolved)
2294                 len = len
2295                       + nla_total_size(4)       /* RTA_IIF */
2296                       + nla_total_size(0)       /* RTA_MULTIPATH */
2297                       + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2298                                                 /* RTA_MFC_STATS */
2299                       + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2300                 ;
2301
2302         return len;
2303 }
2304
2305 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2306                                  int cmd)
2307 {
2308         struct net *net = read_pnet(&mrt->net);
2309         struct sk_buff *skb;
2310         int err = -ENOBUFS;
2311
2312         skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2313                         GFP_ATOMIC);
2314         if (!skb)
2315                 goto errout;
2316
2317         err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2318         if (err < 0)
2319                 goto errout;
2320
2321         rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2322         return;
2323
2324 errout:
2325         kfree_skb(skb);
2326         if (err < 0)
2327                 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2328 }
2329
2330 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2331 {
2332         struct net *net = sock_net(skb->sk);
2333         struct mr_table *mrt;
2334         struct mfc_cache *mfc;
2335         unsigned int t = 0, s_t;
2336         unsigned int e = 0, s_e;
2337
2338         s_t = cb->args[0];
2339         s_e = cb->args[1];
2340
2341         rcu_read_lock();
2342         ipmr_for_each_table(mrt, net) {
2343                 if (t < s_t)
2344                         goto next_table;
2345                 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
2346                         if (e < s_e)
2347                                 goto next_entry;
2348                         if (ipmr_fill_mroute(mrt, skb,
2349                                              NETLINK_CB(cb->skb).portid,
2350                                              cb->nlh->nlmsg_seq,
2351                                              mfc, RTM_NEWROUTE,
2352                                              NLM_F_MULTI) < 0)
2353                                 goto done;
2354 next_entry:
2355                         e++;
2356                 }
2357                 e = 0;
2358                 s_e = 0;
2359
2360                 spin_lock_bh(&mfc_unres_lock);
2361                 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2362                         if (e < s_e)
2363                                 goto next_entry2;
2364                         if (ipmr_fill_mroute(mrt, skb,
2365                                              NETLINK_CB(cb->skb).portid,
2366                                              cb->nlh->nlmsg_seq,
2367                                              mfc, RTM_NEWROUTE,
2368                                              NLM_F_MULTI) < 0) {
2369                                 spin_unlock_bh(&mfc_unres_lock);
2370                                 goto done;
2371                         }
2372 next_entry2:
2373                         e++;
2374                 }
2375                 spin_unlock_bh(&mfc_unres_lock);
2376                 e = 0;
2377                 s_e = 0;
2378 next_table:
2379                 t++;
2380         }
2381 done:
2382         rcu_read_unlock();
2383
2384         cb->args[1] = e;
2385         cb->args[0] = t;
2386
2387         return skb->len;
2388 }
2389
2390 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2391         [RTA_SRC]       = { .type = NLA_U32 },
2392         [RTA_DST]       = { .type = NLA_U32 },
2393         [RTA_IIF]       = { .type = NLA_U32 },
2394         [RTA_TABLE]     = { .type = NLA_U32 },
2395         [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2396 };
2397
2398 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2399 {
2400         switch (rtm_protocol) {
2401         case RTPROT_STATIC:
2402         case RTPROT_MROUTED:
2403                 return true;
2404         }
2405         return false;
2406 }
2407
2408 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2409 {
2410         struct rtnexthop *rtnh = nla_data(nla);
2411         int remaining = nla_len(nla), vifi = 0;
2412
2413         while (rtnh_ok(rtnh, remaining)) {
2414                 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2415                 if (++vifi == MAXVIFS)
2416                         break;
2417                 rtnh = rtnh_next(rtnh, &remaining);
2418         }
2419
2420         return remaining > 0 ? -EINVAL : vifi;
2421 }
2422
2423 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2424 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2425                             struct mfcctl *mfcc, int *mrtsock,
2426                             struct mr_table **mrtret,
2427                             struct netlink_ext_ack *extack)
2428 {
2429         struct net_device *dev = NULL;
2430         u32 tblid = RT_TABLE_DEFAULT;
2431         struct mr_table *mrt;
2432         struct nlattr *attr;
2433         struct rtmsg *rtm;
2434         int ret, rem;
2435
2436         ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2437                              extack);
2438         if (ret < 0)
2439                 goto out;
2440         rtm = nlmsg_data(nlh);
2441
2442         ret = -EINVAL;
2443         if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2444             rtm->rtm_type != RTN_MULTICAST ||
2445             rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2446             !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2447                 goto out;
2448
2449         memset(mfcc, 0, sizeof(*mfcc));
2450         mfcc->mfcc_parent = -1;
2451         ret = 0;
2452         nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2453                 switch (nla_type(attr)) {
2454                 case RTA_SRC:
2455                         mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2456                         break;
2457                 case RTA_DST:
2458                         mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2459                         break;
2460                 case RTA_IIF:
2461                         dev = __dev_get_by_index(net, nla_get_u32(attr));
2462                         if (!dev) {
2463                                 ret = -ENODEV;
2464                                 goto out;
2465                         }
2466                         break;
2467                 case RTA_MULTIPATH:
2468                         if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2469                                 ret = -EINVAL;
2470                                 goto out;
2471                         }
2472                         break;
2473                 case RTA_PREFSRC:
2474                         ret = 1;
2475                         break;
2476                 case RTA_TABLE:
2477                         tblid = nla_get_u32(attr);
2478                         break;
2479                 }
2480         }
2481         mrt = ipmr_get_table(net, tblid);
2482         if (!mrt) {
2483                 ret = -ENOENT;
2484                 goto out;
2485         }
2486         *mrtret = mrt;
2487         *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2488         if (dev)
2489                 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2490
2491 out:
2492         return ret;
2493 }
2494
2495 /* takes care of both newroute and delroute */
2496 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2497                           struct netlink_ext_ack *extack)
2498 {
2499         struct net *net = sock_net(skb->sk);
2500         int ret, mrtsock, parent;
2501         struct mr_table *tbl;
2502         struct mfcctl mfcc;
2503
2504         mrtsock = 0;
2505         tbl = NULL;
2506         ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2507         if (ret < 0)
2508                 return ret;
2509
2510         parent = ret ? mfcc.mfcc_parent : -1;
2511         if (nlh->nlmsg_type == RTM_NEWROUTE)
2512                 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2513         else
2514                 return ipmr_mfc_delete(tbl, &mfcc, parent);
2515 }
2516
2517 #ifdef CONFIG_PROC_FS
2518 /* The /proc interfaces to multicast routing :
2519  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2520  */
2521 struct ipmr_vif_iter {
2522         struct seq_net_private p;
2523         struct mr_table *mrt;
2524         int ct;
2525 };
2526
2527 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2528                                            struct ipmr_vif_iter *iter,
2529                                            loff_t pos)
2530 {
2531         struct mr_table *mrt = iter->mrt;
2532
2533         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2534                 if (!VIF_EXISTS(mrt, iter->ct))
2535                         continue;
2536                 if (pos-- == 0)
2537                         return &mrt->vif_table[iter->ct];
2538         }
2539         return NULL;
2540 }
2541
2542 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2543         __acquires(mrt_lock)
2544 {
2545         struct ipmr_vif_iter *iter = seq->private;
2546         struct net *net = seq_file_net(seq);
2547         struct mr_table *mrt;
2548
2549         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2550         if (!mrt)
2551                 return ERR_PTR(-ENOENT);
2552
2553         iter->mrt = mrt;
2554
2555         read_lock(&mrt_lock);
2556         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2557                 : SEQ_START_TOKEN;
2558 }
2559
2560 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2561 {
2562         struct ipmr_vif_iter *iter = seq->private;
2563         struct net *net = seq_file_net(seq);
2564         struct mr_table *mrt = iter->mrt;
2565
2566         ++*pos;
2567         if (v == SEQ_START_TOKEN)
2568                 return ipmr_vif_seq_idx(net, iter, 0);
2569
2570         while (++iter->ct < mrt->maxvif) {
2571                 if (!VIF_EXISTS(mrt, iter->ct))
2572                         continue;
2573                 return &mrt->vif_table[iter->ct];
2574         }
2575         return NULL;
2576 }
2577
2578 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2579         __releases(mrt_lock)
2580 {
2581         read_unlock(&mrt_lock);
2582 }
2583
2584 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2585 {
2586         struct ipmr_vif_iter *iter = seq->private;
2587         struct mr_table *mrt = iter->mrt;
2588
2589         if (v == SEQ_START_TOKEN) {
2590                 seq_puts(seq,
2591                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2592         } else {
2593                 const struct vif_device *vif = v;
2594                 const char *name =  vif->dev ? vif->dev->name : "none";
2595
2596                 seq_printf(seq,
2597                            "%2zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2598                            vif - mrt->vif_table,
2599                            name, vif->bytes_in, vif->pkt_in,
2600                            vif->bytes_out, vif->pkt_out,
2601                            vif->flags, vif->local, vif->remote);
2602         }
2603         return 0;
2604 }
2605
2606 static const struct seq_operations ipmr_vif_seq_ops = {
2607         .start = ipmr_vif_seq_start,
2608         .next  = ipmr_vif_seq_next,
2609         .stop  = ipmr_vif_seq_stop,
2610         .show  = ipmr_vif_seq_show,
2611 };
2612
2613 static int ipmr_vif_open(struct inode *inode, struct file *file)
2614 {
2615         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2616                             sizeof(struct ipmr_vif_iter));
2617 }
2618
2619 static const struct file_operations ipmr_vif_fops = {
2620         .owner   = THIS_MODULE,
2621         .open    = ipmr_vif_open,
2622         .read    = seq_read,
2623         .llseek  = seq_lseek,
2624         .release = seq_release_net,
2625 };
2626
2627 struct ipmr_mfc_iter {
2628         struct seq_net_private p;
2629         struct mr_table *mrt;
2630         struct list_head *cache;
2631 };
2632
2633 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2634                                           struct ipmr_mfc_iter *it, loff_t pos)
2635 {
2636         struct mr_table *mrt = it->mrt;
2637         struct mfc_cache *mfc;
2638
2639         rcu_read_lock();
2640         it->cache = &mrt->mfc_cache_list;
2641         list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
2642                 if (pos-- == 0)
2643                         return mfc;
2644         rcu_read_unlock();
2645
2646         spin_lock_bh(&mfc_unres_lock);
2647         it->cache = &mrt->mfc_unres_queue;
2648         list_for_each_entry(mfc, it->cache, list)
2649                 if (pos-- == 0)
2650                         return mfc;
2651         spin_unlock_bh(&mfc_unres_lock);
2652
2653         it->cache = NULL;
2654         return NULL;
2655 }
2656
2657
2658 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2659 {
2660         struct ipmr_mfc_iter *it = seq->private;
2661         struct net *net = seq_file_net(seq);
2662         struct mr_table *mrt;
2663
2664         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2665         if (!mrt)
2666                 return ERR_PTR(-ENOENT);
2667
2668         it->mrt = mrt;
2669         it->cache = NULL;
2670         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2671                 : SEQ_START_TOKEN;
2672 }
2673
2674 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2675 {
2676         struct ipmr_mfc_iter *it = seq->private;
2677         struct net *net = seq_file_net(seq);
2678         struct mr_table *mrt = it->mrt;
2679         struct mfc_cache *mfc = v;
2680
2681         ++*pos;
2682
2683         if (v == SEQ_START_TOKEN)
2684                 return ipmr_mfc_seq_idx(net, seq->private, 0);
2685
2686         if (mfc->list.next != it->cache)
2687                 return list_entry(mfc->list.next, struct mfc_cache, list);
2688
2689         if (it->cache == &mrt->mfc_unres_queue)
2690                 goto end_of_list;
2691
2692         /* exhausted cache_array, show unresolved */
2693         rcu_read_unlock();
2694         it->cache = &mrt->mfc_unres_queue;
2695
2696         spin_lock_bh(&mfc_unres_lock);
2697         if (!list_empty(it->cache))
2698                 return list_first_entry(it->cache, struct mfc_cache, list);
2699
2700 end_of_list:
2701         spin_unlock_bh(&mfc_unres_lock);
2702         it->cache = NULL;
2703
2704         return NULL;
2705 }
2706
2707 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2708 {
2709         struct ipmr_mfc_iter *it = seq->private;
2710         struct mr_table *mrt = it->mrt;
2711
2712         if (it->cache == &mrt->mfc_unres_queue)
2713                 spin_unlock_bh(&mfc_unres_lock);
2714         else if (it->cache == &mrt->mfc_cache_list)
2715                 rcu_read_unlock();
2716 }
2717
2718 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2719 {
2720         int n;
2721
2722         if (v == SEQ_START_TOKEN) {
2723                 seq_puts(seq,
2724                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2725         } else {
2726                 const struct mfc_cache *mfc = v;
2727                 const struct ipmr_mfc_iter *it = seq->private;
2728                 const struct mr_table *mrt = it->mrt;
2729
2730                 seq_printf(seq, "%08X %08X %-3hd",
2731                            (__force u32) mfc->mfc_mcastgrp,
2732                            (__force u32) mfc->mfc_origin,
2733                            mfc->mfc_parent);
2734
2735                 if (it->cache != &mrt->mfc_unres_queue) {
2736                         seq_printf(seq, " %8lu %8lu %8lu",
2737                                    mfc->mfc_un.res.pkt,
2738                                    mfc->mfc_un.res.bytes,
2739                                    mfc->mfc_un.res.wrong_if);
2740                         for (n = mfc->mfc_un.res.minvif;
2741                              n < mfc->mfc_un.res.maxvif; n++) {
2742                                 if (VIF_EXISTS(mrt, n) &&
2743                                     mfc->mfc_un.res.ttls[n] < 255)
2744                                         seq_printf(seq,
2745                                            " %2d:%-3d",
2746                                            n, mfc->mfc_un.res.ttls[n]);
2747                         }
2748                 } else {
2749                         /* unresolved mfc_caches don't contain
2750                          * pkt, bytes and wrong_if values
2751                          */
2752                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2753                 }
2754                 seq_putc(seq, '\n');
2755         }
2756         return 0;
2757 }
2758
2759 static const struct seq_operations ipmr_mfc_seq_ops = {
2760         .start = ipmr_mfc_seq_start,
2761         .next  = ipmr_mfc_seq_next,
2762         .stop  = ipmr_mfc_seq_stop,
2763         .show  = ipmr_mfc_seq_show,
2764 };
2765
2766 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2767 {
2768         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2769                             sizeof(struct ipmr_mfc_iter));
2770 }
2771
2772 static const struct file_operations ipmr_mfc_fops = {
2773         .owner   = THIS_MODULE,
2774         .open    = ipmr_mfc_open,
2775         .read    = seq_read,
2776         .llseek  = seq_lseek,
2777         .release = seq_release_net,
2778 };
2779 #endif
2780
2781 #ifdef CONFIG_IP_PIMSM_V2
2782 static const struct net_protocol pim_protocol = {
2783         .handler        =       pim_rcv,
2784         .netns_ok       =       1,
2785 };
2786 #endif
2787
2788 /* Setup for IP multicast routing */
2789 static int __net_init ipmr_net_init(struct net *net)
2790 {
2791         int err;
2792
2793         err = ipmr_rules_init(net);
2794         if (err < 0)
2795                 goto fail;
2796
2797 #ifdef CONFIG_PROC_FS
2798         err = -ENOMEM;
2799         if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2800                 goto proc_vif_fail;
2801         if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2802                 goto proc_cache_fail;
2803 #endif
2804         return 0;
2805
2806 #ifdef CONFIG_PROC_FS
2807 proc_cache_fail:
2808         remove_proc_entry("ip_mr_vif", net->proc_net);
2809 proc_vif_fail:
2810         ipmr_rules_exit(net);
2811 #endif
2812 fail:
2813         return err;
2814 }
2815
2816 static void __net_exit ipmr_net_exit(struct net *net)
2817 {
2818 #ifdef CONFIG_PROC_FS
2819         remove_proc_entry("ip_mr_cache", net->proc_net);
2820         remove_proc_entry("ip_mr_vif", net->proc_net);
2821 #endif
2822         ipmr_rules_exit(net);
2823 }
2824
2825 static struct pernet_operations ipmr_net_ops = {
2826         .init = ipmr_net_init,
2827         .exit = ipmr_net_exit,
2828 };
2829
2830 int __init ip_mr_init(void)
2831 {
2832         int err;
2833
2834         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2835                                        sizeof(struct mfc_cache),
2836                                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2837                                        NULL);
2838
2839         err = register_pernet_subsys(&ipmr_net_ops);
2840         if (err)
2841                 goto reg_pernet_fail;
2842
2843         err = register_netdevice_notifier(&ip_mr_notifier);
2844         if (err)
2845                 goto reg_notif_fail;
2846 #ifdef CONFIG_IP_PIMSM_V2
2847         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2848                 pr_err("%s: can't add PIM protocol\n", __func__);
2849                 err = -EAGAIN;
2850                 goto add_proto_fail;
2851         }
2852 #endif
2853         rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2854                       NULL, ipmr_rtm_dumproute, NULL);
2855         rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2856                       ipmr_rtm_route, NULL, NULL);
2857         rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2858                       ipmr_rtm_route, NULL, NULL);
2859         return 0;
2860
2861 #ifdef CONFIG_IP_PIMSM_V2
2862 add_proto_fail:
2863         unregister_netdevice_notifier(&ip_mr_notifier);
2864 #endif
2865 reg_notif_fail:
2866         unregister_pernet_subsys(&ipmr_net_ops);
2867 reg_pernet_fail:
2868         kmem_cache_destroy(mrt_cachep);
2869         return err;
2870 }