Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
28  *                          only, and any IPv4 addresses if not IPv6 only
29  * match_wildcard == false: addresses must be exactly the same, i.e.
30  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
31  *                          and 0.0.0.0 equals to 0.0.0.0 only
32  */
33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
34                                  const struct in6_addr *sk2_rcv_saddr6,
35                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
36                                  bool sk1_ipv6only, bool sk2_ipv6only,
37                                  bool match_wildcard)
38 {
39         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
40         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
41
42         /* if both are mapped, treat as IPv4 */
43         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
44                 if (!sk2_ipv6only) {
45                         if (sk1_rcv_saddr == sk2_rcv_saddr)
46                                 return true;
47                         if (!sk1_rcv_saddr || !sk2_rcv_saddr)
48                                 return match_wildcard;
49                 }
50                 return false;
51         }
52
53         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
54                 return true;
55
56         if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
57             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
58                 return true;
59
60         if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
61             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
62                 return true;
63
64         if (sk2_rcv_saddr6 &&
65             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
66                 return true;
67
68         return false;
69 }
70 #endif
71
72 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
73  * match_wildcard == false: addresses must be exactly the same, i.e.
74  *                          0.0.0.0 only equals to 0.0.0.0
75  */
76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
77                                  bool sk2_ipv6only, bool match_wildcard)
78 {
79         if (!sk2_ipv6only) {
80                 if (sk1_rcv_saddr == sk2_rcv_saddr)
81                         return true;
82                 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
83                         return match_wildcard;
84         }
85         return false;
86 }
87
88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
89                           bool match_wildcard)
90 {
91 #if IS_ENABLED(CONFIG_IPV6)
92         if (sk->sk_family == AF_INET6)
93                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
94                                             inet6_rcv_saddr(sk2),
95                                             sk->sk_rcv_saddr,
96                                             sk2->sk_rcv_saddr,
97                                             ipv6_only_sock(sk),
98                                             ipv6_only_sock(sk2),
99                                             match_wildcard);
100 #endif
101         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
102                                     ipv6_only_sock(sk2), match_wildcard);
103 }
104 EXPORT_SYMBOL(inet_rcv_saddr_equal);
105
106 bool inet_rcv_saddr_any(const struct sock *sk)
107 {
108 #if IS_ENABLED(CONFIG_IPV6)
109         if (sk->sk_family == AF_INET6)
110                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
111 #endif
112         return !sk->sk_rcv_saddr;
113 }
114
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117         unsigned int seq;
118
119         do {
120                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122                 *low = net->ipv4.ip_local_ports.range[0];
123                 *high = net->ipv4.ip_local_ports.range[1];
124         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
128 static int inet_csk_bind_conflict(const struct sock *sk,
129                                   const struct inet_bind_bucket *tb,
130                                   bool relax, bool reuseport_ok)
131 {
132         struct sock *sk2;
133         bool reuse = sk->sk_reuse;
134         bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135         kuid_t uid = sock_i_uid((struct sock *)sk);
136
137         /*
138          * Unlike other sk lookup places we do not check
139          * for sk_net here, since _all_ the socks listed
140          * in tb->owners list belong to the same net - the
141          * one this bucket belongs to.
142          */
143
144         sk_for_each_bound(sk2, &tb->owners) {
145                 if (sk != sk2 &&
146                     (!sk->sk_bound_dev_if ||
147                      !sk2->sk_bound_dev_if ||
148                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149                         if ((!reuse || !sk2->sk_reuse ||
150                             sk2->sk_state == TCP_LISTEN) &&
151                             (!reuseport || !sk2->sk_reuseport ||
152                              rcu_access_pointer(sk->sk_reuseport_cb) ||
153                              (sk2->sk_state != TCP_TIME_WAIT &&
154                              !uid_eq(uid, sock_i_uid(sk2))))) {
155                                 if (inet_rcv_saddr_equal(sk, sk2, true))
156                                         break;
157                         }
158                         if (!relax && reuse && sk2->sk_reuse &&
159                             sk2->sk_state != TCP_LISTEN) {
160                                 if (inet_rcv_saddr_equal(sk, sk2, true))
161                                         break;
162                         }
163                 }
164         }
165         return sk2 != NULL;
166 }
167
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176         int port = 0;
177         struct inet_bind_hashbucket *head;
178         struct net *net = sock_net(sk);
179         int i, low, high, attempt_half;
180         struct inet_bind_bucket *tb;
181         u32 remaining, offset;
182         int l3mdev;
183
184         l3mdev = inet_sk_bound_l3mdev(sk);
185         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
186 other_half_scan:
187         inet_get_local_port_range(net, &low, &high);
188         high++; /* [32768, 60999] -> [32768, 61000[ */
189         if (high - low < 4)
190                 attempt_half = 0;
191         if (attempt_half) {
192                 int half = low + (((high - low) >> 2) << 1);
193
194                 if (attempt_half == 1)
195                         high = half;
196                 else
197                         low = half;
198         }
199         remaining = high - low;
200         if (likely(remaining > 1))
201                 remaining &= ~1U;
202
203         offset = prandom_u32() % remaining;
204         /* __inet_hash_connect() favors ports having @low parity
205          * We do the opposite to not pollute connect() users.
206          */
207         offset |= 1U;
208
209 other_parity_scan:
210         port = low + offset;
211         for (i = 0; i < remaining; i += 2, port += 2) {
212                 if (unlikely(port >= high))
213                         port -= remaining;
214                 if (inet_is_local_reserved_port(net, port))
215                         continue;
216                 head = &hinfo->bhash[inet_bhashfn(net, port,
217                                                   hinfo->bhash_size)];
218                 spin_lock_bh(&head->lock);
219                 inet_bind_bucket_for_each(tb, &head->chain)
220                         if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
221                             tb->port == port) {
222                                 if (!inet_csk_bind_conflict(sk, tb, false, false))
223                                         goto success;
224                                 goto next_port;
225                         }
226                 tb = NULL;
227                 goto success;
228 next_port:
229                 spin_unlock_bh(&head->lock);
230                 cond_resched();
231         }
232
233         offset--;
234         if (!(offset & 1))
235                 goto other_parity_scan;
236
237         if (attempt_half == 1) {
238                 /* OK we now try the upper half of the range */
239                 attempt_half = 2;
240                 goto other_half_scan;
241         }
242         return NULL;
243 success:
244         *port_ret = port;
245         *tb_ret = tb;
246         return head;
247 }
248
249 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
250                                      struct sock *sk)
251 {
252         kuid_t uid = sock_i_uid(sk);
253
254         if (tb->fastreuseport <= 0)
255                 return 0;
256         if (!sk->sk_reuseport)
257                 return 0;
258         if (rcu_access_pointer(sk->sk_reuseport_cb))
259                 return 0;
260         if (!uid_eq(tb->fastuid, uid))
261                 return 0;
262         /* We only need to check the rcv_saddr if this tb was once marked
263          * without fastreuseport and then was reset, as we can only know that
264          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
265          * owners list.
266          */
267         if (tb->fastreuseport == FASTREUSEPORT_ANY)
268                 return 1;
269 #if IS_ENABLED(CONFIG_IPV6)
270         if (tb->fast_sk_family == AF_INET6)
271                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
272                                             inet6_rcv_saddr(sk),
273                                             tb->fast_rcv_saddr,
274                                             sk->sk_rcv_saddr,
275                                             tb->fast_ipv6_only,
276                                             ipv6_only_sock(sk), true);
277 #endif
278         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
279                                     ipv6_only_sock(sk), true);
280 }
281
282 /* Obtain a reference to a local port for the given sock,
283  * if snum is zero it means select any available local port.
284  * We try to allocate an odd port (and leave even ports for connect())
285  */
286 int inet_csk_get_port(struct sock *sk, unsigned short snum)
287 {
288         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
289         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
290         int ret = 1, port = snum;
291         struct inet_bind_hashbucket *head;
292         struct net *net = sock_net(sk);
293         struct inet_bind_bucket *tb = NULL;
294         kuid_t uid = sock_i_uid(sk);
295         int l3mdev;
296
297         l3mdev = inet_sk_bound_l3mdev(sk);
298
299         if (!port) {
300                 head = inet_csk_find_open_port(sk, &tb, &port);
301                 if (!head)
302                         return ret;
303                 if (!tb)
304                         goto tb_not_found;
305                 goto success;
306         }
307         head = &hinfo->bhash[inet_bhashfn(net, port,
308                                           hinfo->bhash_size)];
309         spin_lock_bh(&head->lock);
310         inet_bind_bucket_for_each(tb, &head->chain)
311                 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
312                     tb->port == port)
313                         goto tb_found;
314 tb_not_found:
315         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
316                                      net, head, port, l3mdev);
317         if (!tb)
318                 goto fail_unlock;
319 tb_found:
320         if (!hlist_empty(&tb->owners)) {
321                 if (sk->sk_reuse == SK_FORCE_REUSE)
322                         goto success;
323
324                 if ((tb->fastreuse > 0 && reuse) ||
325                     sk_reuseport_match(tb, sk))
326                         goto success;
327                 if (inet_csk_bind_conflict(sk, tb, true, true))
328                         goto fail_unlock;
329         }
330 success:
331         if (hlist_empty(&tb->owners)) {
332                 tb->fastreuse = reuse;
333                 if (sk->sk_reuseport) {
334                         tb->fastreuseport = FASTREUSEPORT_ANY;
335                         tb->fastuid = uid;
336                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
337                         tb->fast_ipv6_only = ipv6_only_sock(sk);
338                         tb->fast_sk_family = sk->sk_family;
339 #if IS_ENABLED(CONFIG_IPV6)
340                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
341 #endif
342                 } else {
343                         tb->fastreuseport = 0;
344                 }
345         } else {
346                 if (!reuse)
347                         tb->fastreuse = 0;
348                 if (sk->sk_reuseport) {
349                         /* We didn't match or we don't have fastreuseport set on
350                          * the tb, but we have sk_reuseport set on this socket
351                          * and we know that there are no bind conflicts with
352                          * this socket in this tb, so reset our tb's reuseport
353                          * settings so that any subsequent sockets that match
354                          * our current socket will be put on the fast path.
355                          *
356                          * If we reset we need to set FASTREUSEPORT_STRICT so we
357                          * do extra checking for all subsequent sk_reuseport
358                          * socks.
359                          */
360                         if (!sk_reuseport_match(tb, sk)) {
361                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
362                                 tb->fastuid = uid;
363                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
364                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
365                                 tb->fast_sk_family = sk->sk_family;
366 #if IS_ENABLED(CONFIG_IPV6)
367                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
368 #endif
369                         }
370                 } else {
371                         tb->fastreuseport = 0;
372                 }
373         }
374         if (!inet_csk(sk)->icsk_bind_hash)
375                 inet_bind_hash(sk, tb, port);
376         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
377         ret = 0;
378
379 fail_unlock:
380         spin_unlock_bh(&head->lock);
381         return ret;
382 }
383 EXPORT_SYMBOL_GPL(inet_csk_get_port);
384
385 /*
386  * Wait for an incoming connection, avoid race conditions. This must be called
387  * with the socket locked.
388  */
389 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
390 {
391         struct inet_connection_sock *icsk = inet_csk(sk);
392         DEFINE_WAIT(wait);
393         int err;
394
395         /*
396          * True wake-one mechanism for incoming connections: only
397          * one process gets woken up, not the 'whole herd'.
398          * Since we do not 'race & poll' for established sockets
399          * anymore, the common case will execute the loop only once.
400          *
401          * Subtle issue: "add_wait_queue_exclusive()" will be added
402          * after any current non-exclusive waiters, and we know that
403          * it will always _stay_ after any new non-exclusive waiters
404          * because all non-exclusive waiters are added at the
405          * beginning of the wait-queue. As such, it's ok to "drop"
406          * our exclusiveness temporarily when we get woken up without
407          * having to remove and re-insert us on the wait queue.
408          */
409         for (;;) {
410                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
411                                           TASK_INTERRUPTIBLE);
412                 release_sock(sk);
413                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
414                         timeo = schedule_timeout(timeo);
415                 sched_annotate_sleep();
416                 lock_sock(sk);
417                 err = 0;
418                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
419                         break;
420                 err = -EINVAL;
421                 if (sk->sk_state != TCP_LISTEN)
422                         break;
423                 err = sock_intr_errno(timeo);
424                 if (signal_pending(current))
425                         break;
426                 err = -EAGAIN;
427                 if (!timeo)
428                         break;
429         }
430         finish_wait(sk_sleep(sk), &wait);
431         return err;
432 }
433
434 /*
435  * This will accept the next outstanding connection.
436  */
437 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
438 {
439         struct inet_connection_sock *icsk = inet_csk(sk);
440         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
441         struct request_sock *req;
442         struct sock *newsk;
443         int error;
444
445         lock_sock(sk);
446
447         /* We need to make sure that this socket is listening,
448          * and that it has something pending.
449          */
450         error = -EINVAL;
451         if (sk->sk_state != TCP_LISTEN)
452                 goto out_err;
453
454         /* Find already established connection */
455         if (reqsk_queue_empty(queue)) {
456                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
457
458                 /* If this is a non blocking socket don't sleep */
459                 error = -EAGAIN;
460                 if (!timeo)
461                         goto out_err;
462
463                 error = inet_csk_wait_for_connect(sk, timeo);
464                 if (error)
465                         goto out_err;
466         }
467         req = reqsk_queue_remove(queue, sk);
468         newsk = req->sk;
469
470         if (sk->sk_protocol == IPPROTO_TCP &&
471             tcp_rsk(req)->tfo_listener) {
472                 spin_lock_bh(&queue->fastopenq.lock);
473                 if (tcp_rsk(req)->tfo_listener) {
474                         /* We are still waiting for the final ACK from 3WHS
475                          * so can't free req now. Instead, we set req->sk to
476                          * NULL to signify that the child socket is taken
477                          * so reqsk_fastopen_remove() will free the req
478                          * when 3WHS finishes (or is aborted).
479                          */
480                         req->sk = NULL;
481                         req = NULL;
482                 }
483                 spin_unlock_bh(&queue->fastopenq.lock);
484         }
485 out:
486         release_sock(sk);
487         if (req)
488                 reqsk_put(req);
489         return newsk;
490 out_err:
491         newsk = NULL;
492         req = NULL;
493         *err = error;
494         goto out;
495 }
496 EXPORT_SYMBOL(inet_csk_accept);
497
498 /*
499  * Using different timers for retransmit, delayed acks and probes
500  * We may wish use just one timer maintaining a list of expire jiffies
501  * to optimize.
502  */
503 void inet_csk_init_xmit_timers(struct sock *sk,
504                                void (*retransmit_handler)(struct timer_list *t),
505                                void (*delack_handler)(struct timer_list *t),
506                                void (*keepalive_handler)(struct timer_list *t))
507 {
508         struct inet_connection_sock *icsk = inet_csk(sk);
509
510         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
511         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
512         timer_setup(&sk->sk_timer, keepalive_handler, 0);
513         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
514 }
515 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
516
517 void inet_csk_clear_xmit_timers(struct sock *sk)
518 {
519         struct inet_connection_sock *icsk = inet_csk(sk);
520
521         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
522
523         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
524         sk_stop_timer(sk, &icsk->icsk_delack_timer);
525         sk_stop_timer(sk, &sk->sk_timer);
526 }
527 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
528
529 void inet_csk_delete_keepalive_timer(struct sock *sk)
530 {
531         sk_stop_timer(sk, &sk->sk_timer);
532 }
533 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
534
535 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
536 {
537         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
538 }
539 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
540
541 struct dst_entry *inet_csk_route_req(const struct sock *sk,
542                                      struct flowi4 *fl4,
543                                      const struct request_sock *req)
544 {
545         const struct inet_request_sock *ireq = inet_rsk(req);
546         struct net *net = read_pnet(&ireq->ireq_net);
547         struct ip_options_rcu *opt;
548         struct rtable *rt;
549
550         rcu_read_lock();
551         opt = rcu_dereference(ireq->ireq_opt);
552
553         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
554                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
555                            sk->sk_protocol, inet_sk_flowi_flags(sk),
556                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
557                            ireq->ir_loc_addr, ireq->ir_rmt_port,
558                            htons(ireq->ir_num), sk->sk_uid);
559         security_req_classify_flow(req, flowi4_to_flowi(fl4));
560         rt = ip_route_output_flow(net, fl4, sk);
561         if (IS_ERR(rt))
562                 goto no_route;
563         if (opt && opt->opt.is_strictroute && rt->rt_gw_family)
564                 goto route_err;
565         rcu_read_unlock();
566         return &rt->dst;
567
568 route_err:
569         ip_rt_put(rt);
570 no_route:
571         rcu_read_unlock();
572         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
573         return NULL;
574 }
575 EXPORT_SYMBOL_GPL(inet_csk_route_req);
576
577 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
578                                             struct sock *newsk,
579                                             const struct request_sock *req)
580 {
581         const struct inet_request_sock *ireq = inet_rsk(req);
582         struct net *net = read_pnet(&ireq->ireq_net);
583         struct inet_sock *newinet = inet_sk(newsk);
584         struct ip_options_rcu *opt;
585         struct flowi4 *fl4;
586         struct rtable *rt;
587
588         opt = rcu_dereference(ireq->ireq_opt);
589         fl4 = &newinet->cork.fl.u.ip4;
590
591         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
592                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
593                            sk->sk_protocol, inet_sk_flowi_flags(sk),
594                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
595                            ireq->ir_loc_addr, ireq->ir_rmt_port,
596                            htons(ireq->ir_num), sk->sk_uid);
597         security_req_classify_flow(req, flowi4_to_flowi(fl4));
598         rt = ip_route_output_flow(net, fl4, sk);
599         if (IS_ERR(rt))
600                 goto no_route;
601         if (opt && opt->opt.is_strictroute && rt->rt_gw_family)
602                 goto route_err;
603         return &rt->dst;
604
605 route_err:
606         ip_rt_put(rt);
607 no_route:
608         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
609         return NULL;
610 }
611 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
612
613 #if IS_ENABLED(CONFIG_IPV6)
614 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
615 #else
616 #define AF_INET_FAMILY(fam) true
617 #endif
618
619 /* Decide when to expire the request and when to resend SYN-ACK */
620 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
621                                   const int max_retries,
622                                   const u8 rskq_defer_accept,
623                                   int *expire, int *resend)
624 {
625         if (!rskq_defer_accept) {
626                 *expire = req->num_timeout >= thresh;
627                 *resend = 1;
628                 return;
629         }
630         *expire = req->num_timeout >= thresh &&
631                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
632         /*
633          * Do not resend while waiting for data after ACK,
634          * start to resend on end of deferring period to give
635          * last chance for data or ACK to create established socket.
636          */
637         *resend = !inet_rsk(req)->acked ||
638                   req->num_timeout >= rskq_defer_accept - 1;
639 }
640
641 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
642 {
643         int err = req->rsk_ops->rtx_syn_ack(parent, req);
644
645         if (!err)
646                 req->num_retrans++;
647         return err;
648 }
649 EXPORT_SYMBOL(inet_rtx_syn_ack);
650
651 /* return true if req was found in the ehash table */
652 static bool reqsk_queue_unlink(struct request_sock *req)
653 {
654         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
655         bool found = false;
656
657         if (sk_hashed(req_to_sk(req))) {
658                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
659
660                 spin_lock(lock);
661                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
662                 spin_unlock(lock);
663         }
664         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
665                 reqsk_put(req);
666         return found;
667 }
668
669 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
670 {
671         if (reqsk_queue_unlink(req)) {
672                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
673                 reqsk_put(req);
674         }
675 }
676 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
677
678 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
679 {
680         inet_csk_reqsk_queue_drop(sk, req);
681         reqsk_put(req);
682 }
683 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
684
685 static void reqsk_timer_handler(struct timer_list *t)
686 {
687         struct request_sock *req = from_timer(req, t, rsk_timer);
688         struct sock *sk_listener = req->rsk_listener;
689         struct net *net = sock_net(sk_listener);
690         struct inet_connection_sock *icsk = inet_csk(sk_listener);
691         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
692         int qlen, expire = 0, resend = 0;
693         int max_retries, thresh;
694         u8 defer_accept;
695
696         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
697                 goto drop;
698
699         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
700         thresh = max_retries;
701         /* Normally all the openreqs are young and become mature
702          * (i.e. converted to established socket) for first timeout.
703          * If synack was not acknowledged for 1 second, it means
704          * one of the following things: synack was lost, ack was lost,
705          * rtt is high or nobody planned to ack (i.e. synflood).
706          * When server is a bit loaded, queue is populated with old
707          * open requests, reducing effective size of queue.
708          * When server is well loaded, queue size reduces to zero
709          * after several minutes of work. It is not synflood,
710          * it is normal operation. The solution is pruning
711          * too old entries overriding normal timeout, when
712          * situation becomes dangerous.
713          *
714          * Essentially, we reserve half of room for young
715          * embrions; and abort old ones without pity, if old
716          * ones are about to clog our table.
717          */
718         qlen = reqsk_queue_len(queue);
719         if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
720                 int young = reqsk_queue_len_young(queue) << 1;
721
722                 while (thresh > 2) {
723                         if (qlen < young)
724                                 break;
725                         thresh--;
726                         young <<= 1;
727                 }
728         }
729         defer_accept = READ_ONCE(queue->rskq_defer_accept);
730         if (defer_accept)
731                 max_retries = defer_accept;
732         syn_ack_recalc(req, thresh, max_retries, defer_accept,
733                        &expire, &resend);
734         req->rsk_ops->syn_ack_timeout(req);
735         if (!expire &&
736             (!resend ||
737              !inet_rtx_syn_ack(sk_listener, req) ||
738              inet_rsk(req)->acked)) {
739                 unsigned long timeo;
740
741                 if (req->num_timeout++ == 0)
742                         atomic_dec(&queue->young);
743                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
744                 mod_timer(&req->rsk_timer, jiffies + timeo);
745                 return;
746         }
747 drop:
748         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
749 }
750
751 static void reqsk_queue_hash_req(struct request_sock *req,
752                                  unsigned long timeout)
753 {
754         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
755         mod_timer(&req->rsk_timer, jiffies + timeout);
756
757         inet_ehash_insert(req_to_sk(req), NULL);
758         /* before letting lookups find us, make sure all req fields
759          * are committed to memory and refcnt initialized.
760          */
761         smp_wmb();
762         refcount_set(&req->rsk_refcnt, 2 + 1);
763 }
764
765 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
766                                    unsigned long timeout)
767 {
768         reqsk_queue_hash_req(req, timeout);
769         inet_csk_reqsk_queue_added(sk);
770 }
771 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
772
773 /**
774  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
775  *      @sk: the socket to clone
776  *      @req: request_sock
777  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
778  *
779  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
780  */
781 struct sock *inet_csk_clone_lock(const struct sock *sk,
782                                  const struct request_sock *req,
783                                  const gfp_t priority)
784 {
785         struct sock *newsk = sk_clone_lock(sk, priority);
786
787         if (newsk) {
788                 struct inet_connection_sock *newicsk = inet_csk(newsk);
789
790                 inet_sk_set_state(newsk, TCP_SYN_RECV);
791                 newicsk->icsk_bind_hash = NULL;
792
793                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
794                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
795                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
796
797                 /* listeners have SOCK_RCU_FREE, not the children */
798                 sock_reset_flag(newsk, SOCK_RCU_FREE);
799
800                 inet_sk(newsk)->mc_list = NULL;
801
802                 newsk->sk_mark = inet_rsk(req)->ir_mark;
803                 atomic64_set(&newsk->sk_cookie,
804                              atomic64_read(&inet_rsk(req)->ir_cookie));
805
806                 newicsk->icsk_retransmits = 0;
807                 newicsk->icsk_backoff     = 0;
808                 newicsk->icsk_probes_out  = 0;
809
810                 /* Deinitialize accept_queue to trap illegal accesses. */
811                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
812
813                 security_inet_csk_clone(newsk, req);
814         }
815         return newsk;
816 }
817 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
818
819 /*
820  * At this point, there should be no process reference to this
821  * socket, and thus no user references at all.  Therefore we
822  * can assume the socket waitqueue is inactive and nobody will
823  * try to jump onto it.
824  */
825 void inet_csk_destroy_sock(struct sock *sk)
826 {
827         WARN_ON(sk->sk_state != TCP_CLOSE);
828         WARN_ON(!sock_flag(sk, SOCK_DEAD));
829
830         /* It cannot be in hash table! */
831         WARN_ON(!sk_unhashed(sk));
832
833         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
834         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
835
836         sk->sk_prot->destroy(sk);
837
838         sk_stream_kill_queues(sk);
839
840         xfrm_sk_free_policy(sk);
841
842         sk_refcnt_debug_release(sk);
843
844         percpu_counter_dec(sk->sk_prot->orphan_count);
845
846         sock_put(sk);
847 }
848 EXPORT_SYMBOL(inet_csk_destroy_sock);
849
850 /* This function allows to force a closure of a socket after the call to
851  * tcp/dccp_create_openreq_child().
852  */
853 void inet_csk_prepare_forced_close(struct sock *sk)
854         __releases(&sk->sk_lock.slock)
855 {
856         /* sk_clone_lock locked the socket and set refcnt to 2 */
857         bh_unlock_sock(sk);
858         sock_put(sk);
859
860         /* The below has to be done to allow calling inet_csk_destroy_sock */
861         sock_set_flag(sk, SOCK_DEAD);
862         percpu_counter_inc(sk->sk_prot->orphan_count);
863         inet_sk(sk)->inet_num = 0;
864 }
865 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
866
867 int inet_csk_listen_start(struct sock *sk, int backlog)
868 {
869         struct inet_connection_sock *icsk = inet_csk(sk);
870         struct inet_sock *inet = inet_sk(sk);
871         int err = -EADDRINUSE;
872
873         reqsk_queue_alloc(&icsk->icsk_accept_queue);
874
875         sk->sk_ack_backlog = 0;
876         inet_csk_delack_init(sk);
877
878         /* There is race window here: we announce ourselves listening,
879          * but this transition is still not validated by get_port().
880          * It is OK, because this socket enters to hash table only
881          * after validation is complete.
882          */
883         inet_sk_state_store(sk, TCP_LISTEN);
884         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
885                 inet->inet_sport = htons(inet->inet_num);
886
887                 sk_dst_reset(sk);
888                 err = sk->sk_prot->hash(sk);
889
890                 if (likely(!err))
891                         return 0;
892         }
893
894         inet_sk_set_state(sk, TCP_CLOSE);
895         return err;
896 }
897 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
898
899 static void inet_child_forget(struct sock *sk, struct request_sock *req,
900                               struct sock *child)
901 {
902         sk->sk_prot->disconnect(child, O_NONBLOCK);
903
904         sock_orphan(child);
905
906         percpu_counter_inc(sk->sk_prot->orphan_count);
907
908         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
909                 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
910                 BUG_ON(sk != req->rsk_listener);
911
912                 /* Paranoid, to prevent race condition if
913                  * an inbound pkt destined for child is
914                  * blocked by sock lock in tcp_v4_rcv().
915                  * Also to satisfy an assertion in
916                  * tcp_v4_destroy_sock().
917                  */
918                 tcp_sk(child)->fastopen_rsk = NULL;
919         }
920         inet_csk_destroy_sock(child);
921 }
922
923 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
924                                       struct request_sock *req,
925                                       struct sock *child)
926 {
927         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
928
929         spin_lock(&queue->rskq_lock);
930         if (unlikely(sk->sk_state != TCP_LISTEN)) {
931                 inet_child_forget(sk, req, child);
932                 child = NULL;
933         } else {
934                 req->sk = child;
935                 req->dl_next = NULL;
936                 if (queue->rskq_accept_head == NULL)
937                         queue->rskq_accept_head = req;
938                 else
939                         queue->rskq_accept_tail->dl_next = req;
940                 queue->rskq_accept_tail = req;
941                 sk_acceptq_added(sk);
942         }
943         spin_unlock(&queue->rskq_lock);
944         return child;
945 }
946 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
947
948 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
949                                          struct request_sock *req, bool own_req)
950 {
951         if (own_req) {
952                 inet_csk_reqsk_queue_drop(sk, req);
953                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
954                 if (inet_csk_reqsk_queue_add(sk, req, child))
955                         return child;
956         }
957         /* Too bad, another child took ownership of the request, undo. */
958         bh_unlock_sock(child);
959         sock_put(child);
960         return NULL;
961 }
962 EXPORT_SYMBOL(inet_csk_complete_hashdance);
963
964 /*
965  *      This routine closes sockets which have been at least partially
966  *      opened, but not yet accepted.
967  */
968 void inet_csk_listen_stop(struct sock *sk)
969 {
970         struct inet_connection_sock *icsk = inet_csk(sk);
971         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
972         struct request_sock *next, *req;
973
974         /* Following specs, it would be better either to send FIN
975          * (and enter FIN-WAIT-1, it is normal close)
976          * or to send active reset (abort).
977          * Certainly, it is pretty dangerous while synflood, but it is
978          * bad justification for our negligence 8)
979          * To be honest, we are not able to make either
980          * of the variants now.                 --ANK
981          */
982         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
983                 struct sock *child = req->sk;
984
985                 local_bh_disable();
986                 bh_lock_sock(child);
987                 WARN_ON(sock_owned_by_user(child));
988                 sock_hold(child);
989
990                 inet_child_forget(sk, req, child);
991                 reqsk_put(req);
992                 bh_unlock_sock(child);
993                 local_bh_enable();
994                 sock_put(child);
995
996                 cond_resched();
997         }
998         if (queue->fastopenq.rskq_rst_head) {
999                 /* Free all the reqs queued in rskq_rst_head. */
1000                 spin_lock_bh(&queue->fastopenq.lock);
1001                 req = queue->fastopenq.rskq_rst_head;
1002                 queue->fastopenq.rskq_rst_head = NULL;
1003                 spin_unlock_bh(&queue->fastopenq.lock);
1004                 while (req != NULL) {
1005                         next = req->dl_next;
1006                         reqsk_put(req);
1007                         req = next;
1008                 }
1009         }
1010         WARN_ON_ONCE(sk->sk_ack_backlog);
1011 }
1012 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1013
1014 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1015 {
1016         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1017         const struct inet_sock *inet = inet_sk(sk);
1018
1019         sin->sin_family         = AF_INET;
1020         sin->sin_addr.s_addr    = inet->inet_daddr;
1021         sin->sin_port           = inet->inet_dport;
1022 }
1023 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1024
1025 #ifdef CONFIG_COMPAT
1026 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1027                                char __user *optval, int __user *optlen)
1028 {
1029         const struct inet_connection_sock *icsk = inet_csk(sk);
1030
1031         if (icsk->icsk_af_ops->compat_getsockopt)
1032                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1033                                                             optval, optlen);
1034         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1035                                              optval, optlen);
1036 }
1037 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1038
1039 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1040                                char __user *optval, unsigned int optlen)
1041 {
1042         const struct inet_connection_sock *icsk = inet_csk(sk);
1043
1044         if (icsk->icsk_af_ops->compat_setsockopt)
1045                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1046                                                             optval, optlen);
1047         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1048                                              optval, optlen);
1049 }
1050 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1051 #endif
1052
1053 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1054 {
1055         const struct inet_sock *inet = inet_sk(sk);
1056         const struct ip_options_rcu *inet_opt;
1057         __be32 daddr = inet->inet_daddr;
1058         struct flowi4 *fl4;
1059         struct rtable *rt;
1060
1061         rcu_read_lock();
1062         inet_opt = rcu_dereference(inet->inet_opt);
1063         if (inet_opt && inet_opt->opt.srr)
1064                 daddr = inet_opt->opt.faddr;
1065         fl4 = &fl->u.ip4;
1066         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1067                                    inet->inet_saddr, inet->inet_dport,
1068                                    inet->inet_sport, sk->sk_protocol,
1069                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1070         if (IS_ERR(rt))
1071                 rt = NULL;
1072         if (rt)
1073                 sk_setup_caps(sk, &rt->dst);
1074         rcu_read_unlock();
1075
1076         return &rt->dst;
1077 }
1078
1079 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1080 {
1081         struct dst_entry *dst = __sk_dst_check(sk, 0);
1082         struct inet_sock *inet = inet_sk(sk);
1083
1084         if (!dst) {
1085                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1086                 if (!dst)
1087                         goto out;
1088         }
1089         dst->ops->update_pmtu(dst, sk, NULL, mtu);
1090
1091         dst = __sk_dst_check(sk, 0);
1092         if (!dst)
1093                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1094 out:
1095         return dst;
1096 }
1097 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);