ipv4: fix fnhe usage by non-cached routes
[sfrench/cifs-2.6.git] / net / ipv4 / inet_connection_sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Support for INET connection oriented protocols.
7  *
8  * Authors:     See the TCP sources
9  *
10  *              This program is free software; you can redistribute it and/or
11  *              modify it under the terms of the GNU General Public License
12  *              as published by the Free Software Foundation; either version
13  *              2 of the License, or(at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29
30 #ifdef INET_CSK_DEBUG
31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33 #endif
34
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37  *                          only, and any IPv4 addresses if not IPv6 only
38  * match_wildcard == false: addresses must be exactly the same, i.e.
39  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40  *                          and 0.0.0.0 equals to 0.0.0.0 only
41  */
42 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43                                  const struct in6_addr *sk2_rcv_saddr6,
44                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45                                  bool sk1_ipv6only, bool sk2_ipv6only,
46                                  bool match_wildcard)
47 {
48         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50
51         /* if both are mapped, treat as IPv4 */
52         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53                 if (!sk2_ipv6only) {
54                         if (sk1_rcv_saddr == sk2_rcv_saddr)
55                                 return true;
56                         if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57                                 return match_wildcard;
58                 }
59                 return false;
60         }
61
62         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63                 return true;
64
65         if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67                 return true;
68
69         if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71                 return true;
72
73         if (sk2_rcv_saddr6 &&
74             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75                 return true;
76
77         return false;
78 }
79 #endif
80
81 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
82  * match_wildcard == false: addresses must be exactly the same, i.e.
83  *                          0.0.0.0 only equals to 0.0.0.0
84  */
85 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86                                  bool sk2_ipv6only, bool match_wildcard)
87 {
88         if (!sk2_ipv6only) {
89                 if (sk1_rcv_saddr == sk2_rcv_saddr)
90                         return true;
91                 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92                         return match_wildcard;
93         }
94         return false;
95 }
96
97 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98                           bool match_wildcard)
99 {
100 #if IS_ENABLED(CONFIG_IPV6)
101         if (sk->sk_family == AF_INET6)
102                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103                                             inet6_rcv_saddr(sk2),
104                                             sk->sk_rcv_saddr,
105                                             sk2->sk_rcv_saddr,
106                                             ipv6_only_sock(sk),
107                                             ipv6_only_sock(sk2),
108                                             match_wildcard);
109 #endif
110         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111                                     ipv6_only_sock(sk2), match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117         unsigned int seq;
118
119         do {
120                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122                 *low = net->ipv4.ip_local_ports.range[0];
123                 *high = net->ipv4.ip_local_ports.range[1];
124         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
128 static int inet_csk_bind_conflict(const struct sock *sk,
129                                   const struct inet_bind_bucket *tb,
130                                   bool relax, bool reuseport_ok)
131 {
132         struct sock *sk2;
133         bool reuse = sk->sk_reuse;
134         bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135         kuid_t uid = sock_i_uid((struct sock *)sk);
136
137         /*
138          * Unlike other sk lookup places we do not check
139          * for sk_net here, since _all_ the socks listed
140          * in tb->owners list belong to the same net - the
141          * one this bucket belongs to.
142          */
143
144         sk_for_each_bound(sk2, &tb->owners) {
145                 if (sk != sk2 &&
146                     (!sk->sk_bound_dev_if ||
147                      !sk2->sk_bound_dev_if ||
148                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149                         if ((!reuse || !sk2->sk_reuse ||
150                             sk2->sk_state == TCP_LISTEN) &&
151                             (!reuseport || !sk2->sk_reuseport ||
152                              rcu_access_pointer(sk->sk_reuseport_cb) ||
153                              (sk2->sk_state != TCP_TIME_WAIT &&
154                              !uid_eq(uid, sock_i_uid(sk2))))) {
155                                 if (inet_rcv_saddr_equal(sk, sk2, true))
156                                         break;
157                         }
158                         if (!relax && reuse && sk2->sk_reuse &&
159                             sk2->sk_state != TCP_LISTEN) {
160                                 if (inet_rcv_saddr_equal(sk, sk2, true))
161                                         break;
162                         }
163                 }
164         }
165         return sk2 != NULL;
166 }
167
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176         int port = 0;
177         struct inet_bind_hashbucket *head;
178         struct net *net = sock_net(sk);
179         int i, low, high, attempt_half;
180         struct inet_bind_bucket *tb;
181         u32 remaining, offset;
182
183         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184 other_half_scan:
185         inet_get_local_port_range(net, &low, &high);
186         high++; /* [32768, 60999] -> [32768, 61000[ */
187         if (high - low < 4)
188                 attempt_half = 0;
189         if (attempt_half) {
190                 int half = low + (((high - low) >> 2) << 1);
191
192                 if (attempt_half == 1)
193                         high = half;
194                 else
195                         low = half;
196         }
197         remaining = high - low;
198         if (likely(remaining > 1))
199                 remaining &= ~1U;
200
201         offset = prandom_u32() % remaining;
202         /* __inet_hash_connect() favors ports having @low parity
203          * We do the opposite to not pollute connect() users.
204          */
205         offset |= 1U;
206
207 other_parity_scan:
208         port = low + offset;
209         for (i = 0; i < remaining; i += 2, port += 2) {
210                 if (unlikely(port >= high))
211                         port -= remaining;
212                 if (inet_is_local_reserved_port(net, port))
213                         continue;
214                 head = &hinfo->bhash[inet_bhashfn(net, port,
215                                                   hinfo->bhash_size)];
216                 spin_lock_bh(&head->lock);
217                 inet_bind_bucket_for_each(tb, &head->chain)
218                         if (net_eq(ib_net(tb), net) && tb->port == port) {
219                                 if (!inet_csk_bind_conflict(sk, tb, false, false))
220                                         goto success;
221                                 goto next_port;
222                         }
223                 tb = NULL;
224                 goto success;
225 next_port:
226                 spin_unlock_bh(&head->lock);
227                 cond_resched();
228         }
229
230         offset--;
231         if (!(offset & 1))
232                 goto other_parity_scan;
233
234         if (attempt_half == 1) {
235                 /* OK we now try the upper half of the range */
236                 attempt_half = 2;
237                 goto other_half_scan;
238         }
239         return NULL;
240 success:
241         *port_ret = port;
242         *tb_ret = tb;
243         return head;
244 }
245
246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247                                      struct sock *sk)
248 {
249         kuid_t uid = sock_i_uid(sk);
250
251         if (tb->fastreuseport <= 0)
252                 return 0;
253         if (!sk->sk_reuseport)
254                 return 0;
255         if (rcu_access_pointer(sk->sk_reuseport_cb))
256                 return 0;
257         if (!uid_eq(tb->fastuid, uid))
258                 return 0;
259         /* We only need to check the rcv_saddr if this tb was once marked
260          * without fastreuseport and then was reset, as we can only know that
261          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262          * owners list.
263          */
264         if (tb->fastreuseport == FASTREUSEPORT_ANY)
265                 return 1;
266 #if IS_ENABLED(CONFIG_IPV6)
267         if (tb->fast_sk_family == AF_INET6)
268                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269                                             inet6_rcv_saddr(sk),
270                                             tb->fast_rcv_saddr,
271                                             sk->sk_rcv_saddr,
272                                             tb->fast_ipv6_only,
273                                             ipv6_only_sock(sk), true);
274 #endif
275         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276                                     ipv6_only_sock(sk), true);
277 }
278
279 /* Obtain a reference to a local port for the given sock,
280  * if snum is zero it means select any available local port.
281  * We try to allocate an odd port (and leave even ports for connect())
282  */
283 int inet_csk_get_port(struct sock *sk, unsigned short snum)
284 {
285         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287         int ret = 1, port = snum;
288         struct inet_bind_hashbucket *head;
289         struct net *net = sock_net(sk);
290         struct inet_bind_bucket *tb = NULL;
291         kuid_t uid = sock_i_uid(sk);
292
293         if (!port) {
294                 head = inet_csk_find_open_port(sk, &tb, &port);
295                 if (!head)
296                         return ret;
297                 if (!tb)
298                         goto tb_not_found;
299                 goto success;
300         }
301         head = &hinfo->bhash[inet_bhashfn(net, port,
302                                           hinfo->bhash_size)];
303         spin_lock_bh(&head->lock);
304         inet_bind_bucket_for_each(tb, &head->chain)
305                 if (net_eq(ib_net(tb), net) && tb->port == port)
306                         goto tb_found;
307 tb_not_found:
308         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309                                      net, head, port);
310         if (!tb)
311                 goto fail_unlock;
312 tb_found:
313         if (!hlist_empty(&tb->owners)) {
314                 if (sk->sk_reuse == SK_FORCE_REUSE)
315                         goto success;
316
317                 if ((tb->fastreuse > 0 && reuse) ||
318                     sk_reuseport_match(tb, sk))
319                         goto success;
320                 if (inet_csk_bind_conflict(sk, tb, true, true))
321                         goto fail_unlock;
322         }
323 success:
324         if (hlist_empty(&tb->owners)) {
325                 tb->fastreuse = reuse;
326                 if (sk->sk_reuseport) {
327                         tb->fastreuseport = FASTREUSEPORT_ANY;
328                         tb->fastuid = uid;
329                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330                         tb->fast_ipv6_only = ipv6_only_sock(sk);
331                         tb->fast_sk_family = sk->sk_family;
332 #if IS_ENABLED(CONFIG_IPV6)
333                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
334 #endif
335                 } else {
336                         tb->fastreuseport = 0;
337                 }
338         } else {
339                 if (!reuse)
340                         tb->fastreuse = 0;
341                 if (sk->sk_reuseport) {
342                         /* We didn't match or we don't have fastreuseport set on
343                          * the tb, but we have sk_reuseport set on this socket
344                          * and we know that there are no bind conflicts with
345                          * this socket in this tb, so reset our tb's reuseport
346                          * settings so that any subsequent sockets that match
347                          * our current socket will be put on the fast path.
348                          *
349                          * If we reset we need to set FASTREUSEPORT_STRICT so we
350                          * do extra checking for all subsequent sk_reuseport
351                          * socks.
352                          */
353                         if (!sk_reuseport_match(tb, sk)) {
354                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
355                                 tb->fastuid = uid;
356                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
357                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
358                                 tb->fast_sk_family = sk->sk_family;
359 #if IS_ENABLED(CONFIG_IPV6)
360                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
361 #endif
362                         }
363                 } else {
364                         tb->fastreuseport = 0;
365                 }
366         }
367         if (!inet_csk(sk)->icsk_bind_hash)
368                 inet_bind_hash(sk, tb, port);
369         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
370         ret = 0;
371
372 fail_unlock:
373         spin_unlock_bh(&head->lock);
374         return ret;
375 }
376 EXPORT_SYMBOL_GPL(inet_csk_get_port);
377
378 /*
379  * Wait for an incoming connection, avoid race conditions. This must be called
380  * with the socket locked.
381  */
382 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
383 {
384         struct inet_connection_sock *icsk = inet_csk(sk);
385         DEFINE_WAIT(wait);
386         int err;
387
388         /*
389          * True wake-one mechanism for incoming connections: only
390          * one process gets woken up, not the 'whole herd'.
391          * Since we do not 'race & poll' for established sockets
392          * anymore, the common case will execute the loop only once.
393          *
394          * Subtle issue: "add_wait_queue_exclusive()" will be added
395          * after any current non-exclusive waiters, and we know that
396          * it will always _stay_ after any new non-exclusive waiters
397          * because all non-exclusive waiters are added at the
398          * beginning of the wait-queue. As such, it's ok to "drop"
399          * our exclusiveness temporarily when we get woken up without
400          * having to remove and re-insert us on the wait queue.
401          */
402         for (;;) {
403                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
404                                           TASK_INTERRUPTIBLE);
405                 release_sock(sk);
406                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
407                         timeo = schedule_timeout(timeo);
408                 sched_annotate_sleep();
409                 lock_sock(sk);
410                 err = 0;
411                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
412                         break;
413                 err = -EINVAL;
414                 if (sk->sk_state != TCP_LISTEN)
415                         break;
416                 err = sock_intr_errno(timeo);
417                 if (signal_pending(current))
418                         break;
419                 err = -EAGAIN;
420                 if (!timeo)
421                         break;
422         }
423         finish_wait(sk_sleep(sk), &wait);
424         return err;
425 }
426
427 /*
428  * This will accept the next outstanding connection.
429  */
430 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
431 {
432         struct inet_connection_sock *icsk = inet_csk(sk);
433         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
434         struct request_sock *req;
435         struct sock *newsk;
436         int error;
437
438         lock_sock(sk);
439
440         /* We need to make sure that this socket is listening,
441          * and that it has something pending.
442          */
443         error = -EINVAL;
444         if (sk->sk_state != TCP_LISTEN)
445                 goto out_err;
446
447         /* Find already established connection */
448         if (reqsk_queue_empty(queue)) {
449                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
450
451                 /* If this is a non blocking socket don't sleep */
452                 error = -EAGAIN;
453                 if (!timeo)
454                         goto out_err;
455
456                 error = inet_csk_wait_for_connect(sk, timeo);
457                 if (error)
458                         goto out_err;
459         }
460         req = reqsk_queue_remove(queue, sk);
461         newsk = req->sk;
462
463         if (sk->sk_protocol == IPPROTO_TCP &&
464             tcp_rsk(req)->tfo_listener) {
465                 spin_lock_bh(&queue->fastopenq.lock);
466                 if (tcp_rsk(req)->tfo_listener) {
467                         /* We are still waiting for the final ACK from 3WHS
468                          * so can't free req now. Instead, we set req->sk to
469                          * NULL to signify that the child socket is taken
470                          * so reqsk_fastopen_remove() will free the req
471                          * when 3WHS finishes (or is aborted).
472                          */
473                         req->sk = NULL;
474                         req = NULL;
475                 }
476                 spin_unlock_bh(&queue->fastopenq.lock);
477         }
478 out:
479         release_sock(sk);
480         if (req)
481                 reqsk_put(req);
482         return newsk;
483 out_err:
484         newsk = NULL;
485         req = NULL;
486         *err = error;
487         goto out;
488 }
489 EXPORT_SYMBOL(inet_csk_accept);
490
491 /*
492  * Using different timers for retransmit, delayed acks and probes
493  * We may wish use just one timer maintaining a list of expire jiffies
494  * to optimize.
495  */
496 void inet_csk_init_xmit_timers(struct sock *sk,
497                                void (*retransmit_handler)(struct timer_list *t),
498                                void (*delack_handler)(struct timer_list *t),
499                                void (*keepalive_handler)(struct timer_list *t))
500 {
501         struct inet_connection_sock *icsk = inet_csk(sk);
502
503         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
504         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
505         timer_setup(&sk->sk_timer, keepalive_handler, 0);
506         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
507 }
508 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
509
510 void inet_csk_clear_xmit_timers(struct sock *sk)
511 {
512         struct inet_connection_sock *icsk = inet_csk(sk);
513
514         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
515
516         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
517         sk_stop_timer(sk, &icsk->icsk_delack_timer);
518         sk_stop_timer(sk, &sk->sk_timer);
519 }
520 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
521
522 void inet_csk_delete_keepalive_timer(struct sock *sk)
523 {
524         sk_stop_timer(sk, &sk->sk_timer);
525 }
526 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
527
528 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
529 {
530         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
531 }
532 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
533
534 struct dst_entry *inet_csk_route_req(const struct sock *sk,
535                                      struct flowi4 *fl4,
536                                      const struct request_sock *req)
537 {
538         const struct inet_request_sock *ireq = inet_rsk(req);
539         struct net *net = read_pnet(&ireq->ireq_net);
540         struct ip_options_rcu *opt;
541         struct rtable *rt;
542
543         opt = ireq_opt_deref(ireq);
544
545         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
546                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
547                            sk->sk_protocol, inet_sk_flowi_flags(sk),
548                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
549                            ireq->ir_loc_addr, ireq->ir_rmt_port,
550                            htons(ireq->ir_num), sk->sk_uid);
551         security_req_classify_flow(req, flowi4_to_flowi(fl4));
552         rt = ip_route_output_flow(net, fl4, sk);
553         if (IS_ERR(rt))
554                 goto no_route;
555         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
556                 goto route_err;
557         return &rt->dst;
558
559 route_err:
560         ip_rt_put(rt);
561 no_route:
562         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
563         return NULL;
564 }
565 EXPORT_SYMBOL_GPL(inet_csk_route_req);
566
567 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
568                                             struct sock *newsk,
569                                             const struct request_sock *req)
570 {
571         const struct inet_request_sock *ireq = inet_rsk(req);
572         struct net *net = read_pnet(&ireq->ireq_net);
573         struct inet_sock *newinet = inet_sk(newsk);
574         struct ip_options_rcu *opt;
575         struct flowi4 *fl4;
576         struct rtable *rt;
577
578         opt = rcu_dereference(ireq->ireq_opt);
579         fl4 = &newinet->cork.fl.u.ip4;
580
581         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
582                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
583                            sk->sk_protocol, inet_sk_flowi_flags(sk),
584                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
585                            ireq->ir_loc_addr, ireq->ir_rmt_port,
586                            htons(ireq->ir_num), sk->sk_uid);
587         security_req_classify_flow(req, flowi4_to_flowi(fl4));
588         rt = ip_route_output_flow(net, fl4, sk);
589         if (IS_ERR(rt))
590                 goto no_route;
591         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
592                 goto route_err;
593         return &rt->dst;
594
595 route_err:
596         ip_rt_put(rt);
597 no_route:
598         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
599         return NULL;
600 }
601 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
602
603 #if IS_ENABLED(CONFIG_IPV6)
604 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
605 #else
606 #define AF_INET_FAMILY(fam) true
607 #endif
608
609 /* Decide when to expire the request and when to resend SYN-ACK */
610 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
611                                   const int max_retries,
612                                   const u8 rskq_defer_accept,
613                                   int *expire, int *resend)
614 {
615         if (!rskq_defer_accept) {
616                 *expire = req->num_timeout >= thresh;
617                 *resend = 1;
618                 return;
619         }
620         *expire = req->num_timeout >= thresh &&
621                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
622         /*
623          * Do not resend while waiting for data after ACK,
624          * start to resend on end of deferring period to give
625          * last chance for data or ACK to create established socket.
626          */
627         *resend = !inet_rsk(req)->acked ||
628                   req->num_timeout >= rskq_defer_accept - 1;
629 }
630
631 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
632 {
633         int err = req->rsk_ops->rtx_syn_ack(parent, req);
634
635         if (!err)
636                 req->num_retrans++;
637         return err;
638 }
639 EXPORT_SYMBOL(inet_rtx_syn_ack);
640
641 /* return true if req was found in the ehash table */
642 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
643                                struct request_sock *req)
644 {
645         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
646         bool found = false;
647
648         if (sk_hashed(req_to_sk(req))) {
649                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
650
651                 spin_lock(lock);
652                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
653                 spin_unlock(lock);
654         }
655         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
656                 reqsk_put(req);
657         return found;
658 }
659
660 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
661 {
662         if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
663                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
664                 reqsk_put(req);
665         }
666 }
667 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
668
669 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
670 {
671         inet_csk_reqsk_queue_drop(sk, req);
672         reqsk_put(req);
673 }
674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
675
676 static void reqsk_timer_handler(struct timer_list *t)
677 {
678         struct request_sock *req = from_timer(req, t, rsk_timer);
679         struct sock *sk_listener = req->rsk_listener;
680         struct net *net = sock_net(sk_listener);
681         struct inet_connection_sock *icsk = inet_csk(sk_listener);
682         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
683         int qlen, expire = 0, resend = 0;
684         int max_retries, thresh;
685         u8 defer_accept;
686
687         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
688                 goto drop;
689
690         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
691         thresh = max_retries;
692         /* Normally all the openreqs are young and become mature
693          * (i.e. converted to established socket) for first timeout.
694          * If synack was not acknowledged for 1 second, it means
695          * one of the following things: synack was lost, ack was lost,
696          * rtt is high or nobody planned to ack (i.e. synflood).
697          * When server is a bit loaded, queue is populated with old
698          * open requests, reducing effective size of queue.
699          * When server is well loaded, queue size reduces to zero
700          * after several minutes of work. It is not synflood,
701          * it is normal operation. The solution is pruning
702          * too old entries overriding normal timeout, when
703          * situation becomes dangerous.
704          *
705          * Essentially, we reserve half of room for young
706          * embrions; and abort old ones without pity, if old
707          * ones are about to clog our table.
708          */
709         qlen = reqsk_queue_len(queue);
710         if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
711                 int young = reqsk_queue_len_young(queue) << 1;
712
713                 while (thresh > 2) {
714                         if (qlen < young)
715                                 break;
716                         thresh--;
717                         young <<= 1;
718                 }
719         }
720         defer_accept = READ_ONCE(queue->rskq_defer_accept);
721         if (defer_accept)
722                 max_retries = defer_accept;
723         syn_ack_recalc(req, thresh, max_retries, defer_accept,
724                        &expire, &resend);
725         req->rsk_ops->syn_ack_timeout(req);
726         if (!expire &&
727             (!resend ||
728              !inet_rtx_syn_ack(sk_listener, req) ||
729              inet_rsk(req)->acked)) {
730                 unsigned long timeo;
731
732                 if (req->num_timeout++ == 0)
733                         atomic_dec(&queue->young);
734                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
735                 mod_timer(&req->rsk_timer, jiffies + timeo);
736                 return;
737         }
738 drop:
739         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
740 }
741
742 static void reqsk_queue_hash_req(struct request_sock *req,
743                                  unsigned long timeout)
744 {
745         req->num_retrans = 0;
746         req->num_timeout = 0;
747         req->sk = NULL;
748
749         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
750         mod_timer(&req->rsk_timer, jiffies + timeout);
751
752         inet_ehash_insert(req_to_sk(req), NULL);
753         /* before letting lookups find us, make sure all req fields
754          * are committed to memory and refcnt initialized.
755          */
756         smp_wmb();
757         refcount_set(&req->rsk_refcnt, 2 + 1);
758 }
759
760 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
761                                    unsigned long timeout)
762 {
763         reqsk_queue_hash_req(req, timeout);
764         inet_csk_reqsk_queue_added(sk);
765 }
766 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
767
768 /**
769  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
770  *      @sk: the socket to clone
771  *      @req: request_sock
772  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
773  *
774  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
775  */
776 struct sock *inet_csk_clone_lock(const struct sock *sk,
777                                  const struct request_sock *req,
778                                  const gfp_t priority)
779 {
780         struct sock *newsk = sk_clone_lock(sk, priority);
781
782         if (newsk) {
783                 struct inet_connection_sock *newicsk = inet_csk(newsk);
784
785                 inet_sk_set_state(newsk, TCP_SYN_RECV);
786                 newicsk->icsk_bind_hash = NULL;
787
788                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
789                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
790                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
791
792                 /* listeners have SOCK_RCU_FREE, not the children */
793                 sock_reset_flag(newsk, SOCK_RCU_FREE);
794
795                 inet_sk(newsk)->mc_list = NULL;
796
797                 newsk->sk_mark = inet_rsk(req)->ir_mark;
798                 atomic64_set(&newsk->sk_cookie,
799                              atomic64_read(&inet_rsk(req)->ir_cookie));
800
801                 newicsk->icsk_retransmits = 0;
802                 newicsk->icsk_backoff     = 0;
803                 newicsk->icsk_probes_out  = 0;
804
805                 /* Deinitialize accept_queue to trap illegal accesses. */
806                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
807
808                 security_inet_csk_clone(newsk, req);
809         }
810         return newsk;
811 }
812 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
813
814 /*
815  * At this point, there should be no process reference to this
816  * socket, and thus no user references at all.  Therefore we
817  * can assume the socket waitqueue is inactive and nobody will
818  * try to jump onto it.
819  */
820 void inet_csk_destroy_sock(struct sock *sk)
821 {
822         WARN_ON(sk->sk_state != TCP_CLOSE);
823         WARN_ON(!sock_flag(sk, SOCK_DEAD));
824
825         /* It cannot be in hash table! */
826         WARN_ON(!sk_unhashed(sk));
827
828         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
829         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
830
831         sk->sk_prot->destroy(sk);
832
833         sk_stream_kill_queues(sk);
834
835         xfrm_sk_free_policy(sk);
836
837         sk_refcnt_debug_release(sk);
838
839         percpu_counter_dec(sk->sk_prot->orphan_count);
840
841         sock_put(sk);
842 }
843 EXPORT_SYMBOL(inet_csk_destroy_sock);
844
845 /* This function allows to force a closure of a socket after the call to
846  * tcp/dccp_create_openreq_child().
847  */
848 void inet_csk_prepare_forced_close(struct sock *sk)
849         __releases(&sk->sk_lock.slock)
850 {
851         /* sk_clone_lock locked the socket and set refcnt to 2 */
852         bh_unlock_sock(sk);
853         sock_put(sk);
854
855         /* The below has to be done to allow calling inet_csk_destroy_sock */
856         sock_set_flag(sk, SOCK_DEAD);
857         percpu_counter_inc(sk->sk_prot->orphan_count);
858         inet_sk(sk)->inet_num = 0;
859 }
860 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
861
862 int inet_csk_listen_start(struct sock *sk, int backlog)
863 {
864         struct inet_connection_sock *icsk = inet_csk(sk);
865         struct inet_sock *inet = inet_sk(sk);
866         int err = -EADDRINUSE;
867
868         reqsk_queue_alloc(&icsk->icsk_accept_queue);
869
870         sk->sk_max_ack_backlog = backlog;
871         sk->sk_ack_backlog = 0;
872         inet_csk_delack_init(sk);
873
874         /* There is race window here: we announce ourselves listening,
875          * but this transition is still not validated by get_port().
876          * It is OK, because this socket enters to hash table only
877          * after validation is complete.
878          */
879         inet_sk_state_store(sk, TCP_LISTEN);
880         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
881                 inet->inet_sport = htons(inet->inet_num);
882
883                 sk_dst_reset(sk);
884                 err = sk->sk_prot->hash(sk);
885
886                 if (likely(!err))
887                         return 0;
888         }
889
890         inet_sk_set_state(sk, TCP_CLOSE);
891         return err;
892 }
893 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
894
895 static void inet_child_forget(struct sock *sk, struct request_sock *req,
896                               struct sock *child)
897 {
898         sk->sk_prot->disconnect(child, O_NONBLOCK);
899
900         sock_orphan(child);
901
902         percpu_counter_inc(sk->sk_prot->orphan_count);
903
904         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
905                 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
906                 BUG_ON(sk != req->rsk_listener);
907
908                 /* Paranoid, to prevent race condition if
909                  * an inbound pkt destined for child is
910                  * blocked by sock lock in tcp_v4_rcv().
911                  * Also to satisfy an assertion in
912                  * tcp_v4_destroy_sock().
913                  */
914                 tcp_sk(child)->fastopen_rsk = NULL;
915         }
916         inet_csk_destroy_sock(child);
917 }
918
919 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
920                                       struct request_sock *req,
921                                       struct sock *child)
922 {
923         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
924
925         spin_lock(&queue->rskq_lock);
926         if (unlikely(sk->sk_state != TCP_LISTEN)) {
927                 inet_child_forget(sk, req, child);
928                 child = NULL;
929         } else {
930                 req->sk = child;
931                 req->dl_next = NULL;
932                 if (queue->rskq_accept_head == NULL)
933                         queue->rskq_accept_head = req;
934                 else
935                         queue->rskq_accept_tail->dl_next = req;
936                 queue->rskq_accept_tail = req;
937                 sk_acceptq_added(sk);
938         }
939         spin_unlock(&queue->rskq_lock);
940         return child;
941 }
942 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
943
944 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
945                                          struct request_sock *req, bool own_req)
946 {
947         if (own_req) {
948                 inet_csk_reqsk_queue_drop(sk, req);
949                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
950                 if (inet_csk_reqsk_queue_add(sk, req, child))
951                         return child;
952         }
953         /* Too bad, another child took ownership of the request, undo. */
954         bh_unlock_sock(child);
955         sock_put(child);
956         return NULL;
957 }
958 EXPORT_SYMBOL(inet_csk_complete_hashdance);
959
960 /*
961  *      This routine closes sockets which have been at least partially
962  *      opened, but not yet accepted.
963  */
964 void inet_csk_listen_stop(struct sock *sk)
965 {
966         struct inet_connection_sock *icsk = inet_csk(sk);
967         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
968         struct request_sock *next, *req;
969
970         /* Following specs, it would be better either to send FIN
971          * (and enter FIN-WAIT-1, it is normal close)
972          * or to send active reset (abort).
973          * Certainly, it is pretty dangerous while synflood, but it is
974          * bad justification for our negligence 8)
975          * To be honest, we are not able to make either
976          * of the variants now.                 --ANK
977          */
978         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
979                 struct sock *child = req->sk;
980
981                 local_bh_disable();
982                 bh_lock_sock(child);
983                 WARN_ON(sock_owned_by_user(child));
984                 sock_hold(child);
985
986                 inet_child_forget(sk, req, child);
987                 reqsk_put(req);
988                 bh_unlock_sock(child);
989                 local_bh_enable();
990                 sock_put(child);
991
992                 cond_resched();
993         }
994         if (queue->fastopenq.rskq_rst_head) {
995                 /* Free all the reqs queued in rskq_rst_head. */
996                 spin_lock_bh(&queue->fastopenq.lock);
997                 req = queue->fastopenq.rskq_rst_head;
998                 queue->fastopenq.rskq_rst_head = NULL;
999                 spin_unlock_bh(&queue->fastopenq.lock);
1000                 while (req != NULL) {
1001                         next = req->dl_next;
1002                         reqsk_put(req);
1003                         req = next;
1004                 }
1005         }
1006         WARN_ON_ONCE(sk->sk_ack_backlog);
1007 }
1008 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1009
1010 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1011 {
1012         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1013         const struct inet_sock *inet = inet_sk(sk);
1014
1015         sin->sin_family         = AF_INET;
1016         sin->sin_addr.s_addr    = inet->inet_daddr;
1017         sin->sin_port           = inet->inet_dport;
1018 }
1019 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1020
1021 #ifdef CONFIG_COMPAT
1022 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1023                                char __user *optval, int __user *optlen)
1024 {
1025         const struct inet_connection_sock *icsk = inet_csk(sk);
1026
1027         if (icsk->icsk_af_ops->compat_getsockopt)
1028                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1029                                                             optval, optlen);
1030         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1031                                              optval, optlen);
1032 }
1033 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1034
1035 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1036                                char __user *optval, unsigned int optlen)
1037 {
1038         const struct inet_connection_sock *icsk = inet_csk(sk);
1039
1040         if (icsk->icsk_af_ops->compat_setsockopt)
1041                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1042                                                             optval, optlen);
1043         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1044                                              optval, optlen);
1045 }
1046 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1047 #endif
1048
1049 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1050 {
1051         const struct inet_sock *inet = inet_sk(sk);
1052         const struct ip_options_rcu *inet_opt;
1053         __be32 daddr = inet->inet_daddr;
1054         struct flowi4 *fl4;
1055         struct rtable *rt;
1056
1057         rcu_read_lock();
1058         inet_opt = rcu_dereference(inet->inet_opt);
1059         if (inet_opt && inet_opt->opt.srr)
1060                 daddr = inet_opt->opt.faddr;
1061         fl4 = &fl->u.ip4;
1062         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1063                                    inet->inet_saddr, inet->inet_dport,
1064                                    inet->inet_sport, sk->sk_protocol,
1065                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1066         if (IS_ERR(rt))
1067                 rt = NULL;
1068         if (rt)
1069                 sk_setup_caps(sk, &rt->dst);
1070         rcu_read_unlock();
1071
1072         return &rt->dst;
1073 }
1074
1075 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1076 {
1077         struct dst_entry *dst = __sk_dst_check(sk, 0);
1078         struct inet_sock *inet = inet_sk(sk);
1079
1080         if (!dst) {
1081                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1082                 if (!dst)
1083                         goto out;
1084         }
1085         dst->ops->update_pmtu(dst, sk, NULL, mtu);
1086
1087         dst = __sk_dst_check(sk, 0);
1088         if (!dst)
1089                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1090 out:
1091         return dst;
1092 }
1093 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);