usb: dwc3: Allow building USB_DWC3_QCOM without EXTCON
[sfrench/cifs-2.6.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <linux/skmsg.h>
42 #include <net/sock.h>
43 #include <net/flow_dissector.h>
44 #include <linux/errno.h>
45 #include <linux/timer.h>
46 #include <linux/uaccess.h>
47 #include <asm/unaligned.h>
48 #include <asm/cmpxchg.h>
49 #include <linux/filter.h>
50 #include <linux/ratelimit.h>
51 #include <linux/seccomp.h>
52 #include <linux/if_vlan.h>
53 #include <linux/bpf.h>
54 #include <net/sch_generic.h>
55 #include <net/cls_cgroup.h>
56 #include <net/dst_metadata.h>
57 #include <net/dst.h>
58 #include <net/sock_reuseport.h>
59 #include <net/busy_poll.h>
60 #include <net/tcp.h>
61 #include <net/xfrm.h>
62 #include <net/udp.h>
63 #include <linux/bpf_trace.h>
64 #include <net/xdp_sock.h>
65 #include <linux/inetdevice.h>
66 #include <net/inet_hashtables.h>
67 #include <net/inet6_hashtables.h>
68 #include <net/ip_fib.h>
69 #include <net/flow.h>
70 #include <net/arp.h>
71 #include <net/ipv6.h>
72 #include <net/net_namespace.h>
73 #include <linux/seg6_local.h>
74 #include <net/seg6.h>
75 #include <net/seg6_local.h>
76 #include <net/lwtunnel.h>
77
78 /**
79  *      sk_filter_trim_cap - run a packet through a socket filter
80  *      @sk: sock associated with &sk_buff
81  *      @skb: buffer to filter
82  *      @cap: limit on how short the eBPF program may trim the packet
83  *
84  * Run the eBPF program and then cut skb->data to correct size returned by
85  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
86  * than pkt_len we keep whole skb->data. This is the socket level
87  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
88  * be accepted or -EPERM if the packet should be tossed.
89  *
90  */
91 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
92 {
93         int err;
94         struct sk_filter *filter;
95
96         /*
97          * If the skb was allocated from pfmemalloc reserves, only
98          * allow SOCK_MEMALLOC sockets to use it as this socket is
99          * helping free memory
100          */
101         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
102                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
103                 return -ENOMEM;
104         }
105         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
106         if (err)
107                 return err;
108
109         err = security_sock_rcv_skb(sk, skb);
110         if (err)
111                 return err;
112
113         rcu_read_lock();
114         filter = rcu_dereference(sk->sk_filter);
115         if (filter) {
116                 struct sock *save_sk = skb->sk;
117                 unsigned int pkt_len;
118
119                 skb->sk = sk;
120                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
121                 skb->sk = save_sk;
122                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
123         }
124         rcu_read_unlock();
125
126         return err;
127 }
128 EXPORT_SYMBOL(sk_filter_trim_cap);
129
130 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
131 {
132         return skb_get_poff(skb);
133 }
134
135 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
136 {
137         struct nlattr *nla;
138
139         if (skb_is_nonlinear(skb))
140                 return 0;
141
142         if (skb->len < sizeof(struct nlattr))
143                 return 0;
144
145         if (a > skb->len - sizeof(struct nlattr))
146                 return 0;
147
148         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
149         if (nla)
150                 return (void *) nla - (void *) skb->data;
151
152         return 0;
153 }
154
155 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
156 {
157         struct nlattr *nla;
158
159         if (skb_is_nonlinear(skb))
160                 return 0;
161
162         if (skb->len < sizeof(struct nlattr))
163                 return 0;
164
165         if (a > skb->len - sizeof(struct nlattr))
166                 return 0;
167
168         nla = (struct nlattr *) &skb->data[a];
169         if (nla->nla_len > skb->len - a)
170                 return 0;
171
172         nla = nla_find_nested(nla, x);
173         if (nla)
174                 return (void *) nla - (void *) skb->data;
175
176         return 0;
177 }
178
179 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
180            data, int, headlen, int, offset)
181 {
182         u8 tmp, *ptr;
183         const int len = sizeof(tmp);
184
185         if (offset >= 0) {
186                 if (headlen - offset >= len)
187                         return *(u8 *)(data + offset);
188                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
189                         return tmp;
190         } else {
191                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
192                 if (likely(ptr))
193                         return *(u8 *)ptr;
194         }
195
196         return -EFAULT;
197 }
198
199 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
200            int, offset)
201 {
202         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
203                                          offset);
204 }
205
206 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
207            data, int, headlen, int, offset)
208 {
209         u16 tmp, *ptr;
210         const int len = sizeof(tmp);
211
212         if (offset >= 0) {
213                 if (headlen - offset >= len)
214                         return get_unaligned_be16(data + offset);
215                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
216                         return be16_to_cpu(tmp);
217         } else {
218                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
219                 if (likely(ptr))
220                         return get_unaligned_be16(ptr);
221         }
222
223         return -EFAULT;
224 }
225
226 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
227            int, offset)
228 {
229         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
230                                           offset);
231 }
232
233 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
234            data, int, headlen, int, offset)
235 {
236         u32 tmp, *ptr;
237         const int len = sizeof(tmp);
238
239         if (likely(offset >= 0)) {
240                 if (headlen - offset >= len)
241                         return get_unaligned_be32(data + offset);
242                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
243                         return be32_to_cpu(tmp);
244         } else {
245                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
246                 if (likely(ptr))
247                         return get_unaligned_be32(ptr);
248         }
249
250         return -EFAULT;
251 }
252
253 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
254            int, offset)
255 {
256         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
257                                           offset);
258 }
259
260 BPF_CALL_0(bpf_get_raw_cpu_id)
261 {
262         return raw_smp_processor_id();
263 }
264
265 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
266         .func           = bpf_get_raw_cpu_id,
267         .gpl_only       = false,
268         .ret_type       = RET_INTEGER,
269 };
270
271 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
272                               struct bpf_insn *insn_buf)
273 {
274         struct bpf_insn *insn = insn_buf;
275
276         switch (skb_field) {
277         case SKF_AD_MARK:
278                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
279
280                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
281                                       offsetof(struct sk_buff, mark));
282                 break;
283
284         case SKF_AD_PKTTYPE:
285                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
286                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
287 #ifdef __BIG_ENDIAN_BITFIELD
288                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
289 #endif
290                 break;
291
292         case SKF_AD_QUEUE:
293                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
294
295                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
296                                       offsetof(struct sk_buff, queue_mapping));
297                 break;
298
299         case SKF_AD_VLAN_TAG:
300                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
301
302                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
303                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
304                                       offsetof(struct sk_buff, vlan_tci));
305                 break;
306         case SKF_AD_VLAN_TAG_PRESENT:
307                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
308                 if (PKT_VLAN_PRESENT_BIT)
309                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
310                 if (PKT_VLAN_PRESENT_BIT < 7)
311                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
312                 break;
313         }
314
315         return insn - insn_buf;
316 }
317
318 static bool convert_bpf_extensions(struct sock_filter *fp,
319                                    struct bpf_insn **insnp)
320 {
321         struct bpf_insn *insn = *insnp;
322         u32 cnt;
323
324         switch (fp->k) {
325         case SKF_AD_OFF + SKF_AD_PROTOCOL:
326                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
327
328                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
329                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
330                                       offsetof(struct sk_buff, protocol));
331                 /* A = ntohs(A) [emitting a nop or swap16] */
332                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
333                 break;
334
335         case SKF_AD_OFF + SKF_AD_PKTTYPE:
336                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
337                 insn += cnt - 1;
338                 break;
339
340         case SKF_AD_OFF + SKF_AD_IFINDEX:
341         case SKF_AD_OFF + SKF_AD_HATYPE:
342                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
343                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
344
345                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
346                                       BPF_REG_TMP, BPF_REG_CTX,
347                                       offsetof(struct sk_buff, dev));
348                 /* if (tmp != 0) goto pc + 1 */
349                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
350                 *insn++ = BPF_EXIT_INSN();
351                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
352                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
353                                             offsetof(struct net_device, ifindex));
354                 else
355                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
356                                             offsetof(struct net_device, type));
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_MARK:
360                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
361                 insn += cnt - 1;
362                 break;
363
364         case SKF_AD_OFF + SKF_AD_RXHASH:
365                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
366
367                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
368                                     offsetof(struct sk_buff, hash));
369                 break;
370
371         case SKF_AD_OFF + SKF_AD_QUEUE:
372                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
373                 insn += cnt - 1;
374                 break;
375
376         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
377                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
378                                          BPF_REG_A, BPF_REG_CTX, insn);
379                 insn += cnt - 1;
380                 break;
381
382         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
383                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
384                                          BPF_REG_A, BPF_REG_CTX, insn);
385                 insn += cnt - 1;
386                 break;
387
388         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
389                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
390
391                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
392                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
393                                       offsetof(struct sk_buff, vlan_proto));
394                 /* A = ntohs(A) [emitting a nop or swap16] */
395                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
396                 break;
397
398         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
399         case SKF_AD_OFF + SKF_AD_NLATTR:
400         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
401         case SKF_AD_OFF + SKF_AD_CPU:
402         case SKF_AD_OFF + SKF_AD_RANDOM:
403                 /* arg1 = CTX */
404                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
405                 /* arg2 = A */
406                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
407                 /* arg3 = X */
408                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
409                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
410                 switch (fp->k) {
411                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
412                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
413                         break;
414                 case SKF_AD_OFF + SKF_AD_NLATTR:
415                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
416                         break;
417                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
418                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
419                         break;
420                 case SKF_AD_OFF + SKF_AD_CPU:
421                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
422                         break;
423                 case SKF_AD_OFF + SKF_AD_RANDOM:
424                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
425                         bpf_user_rnd_init_once();
426                         break;
427                 }
428                 break;
429
430         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
431                 /* A ^= X */
432                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
433                 break;
434
435         default:
436                 /* This is just a dummy call to avoid letting the compiler
437                  * evict __bpf_call_base() as an optimization. Placed here
438                  * where no-one bothers.
439                  */
440                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
441                 return false;
442         }
443
444         *insnp = insn;
445         return true;
446 }
447
448 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
449 {
450         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
451         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
452         bool endian = BPF_SIZE(fp->code) == BPF_H ||
453                       BPF_SIZE(fp->code) == BPF_W;
454         bool indirect = BPF_MODE(fp->code) == BPF_IND;
455         const int ip_align = NET_IP_ALIGN;
456         struct bpf_insn *insn = *insnp;
457         int offset = fp->k;
458
459         if (!indirect &&
460             ((unaligned_ok && offset >= 0) ||
461              (!unaligned_ok && offset >= 0 &&
462               offset + ip_align >= 0 &&
463               offset + ip_align % size == 0))) {
464                 bool ldx_off_ok = offset <= S16_MAX;
465
466                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
467                 if (offset)
468                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
469                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
470                                       size, 2 + endian + (!ldx_off_ok * 2));
471                 if (ldx_off_ok) {
472                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
473                                               BPF_REG_D, offset);
474                 } else {
475                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
476                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
477                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
478                                               BPF_REG_TMP, 0);
479                 }
480                 if (endian)
481                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
482                 *insn++ = BPF_JMP_A(8);
483         }
484
485         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
486         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
487         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
488         if (!indirect) {
489                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
490         } else {
491                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
492                 if (fp->k)
493                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
494         }
495
496         switch (BPF_SIZE(fp->code)) {
497         case BPF_B:
498                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
499                 break;
500         case BPF_H:
501                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
502                 break;
503         case BPF_W:
504                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
505                 break;
506         default:
507                 return false;
508         }
509
510         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
511         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
512         *insn   = BPF_EXIT_INSN();
513
514         *insnp = insn;
515         return true;
516 }
517
518 /**
519  *      bpf_convert_filter - convert filter program
520  *      @prog: the user passed filter program
521  *      @len: the length of the user passed filter program
522  *      @new_prog: allocated 'struct bpf_prog' or NULL
523  *      @new_len: pointer to store length of converted program
524  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
525  *
526  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
527  * style extended BPF (eBPF).
528  * Conversion workflow:
529  *
530  * 1) First pass for calculating the new program length:
531  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
532  *
533  * 2) 2nd pass to remap in two passes: 1st pass finds new
534  *    jump offsets, 2nd pass remapping:
535  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
536  */
537 static int bpf_convert_filter(struct sock_filter *prog, int len,
538                               struct bpf_prog *new_prog, int *new_len,
539                               bool *seen_ld_abs)
540 {
541         int new_flen = 0, pass = 0, target, i, stack_off;
542         struct bpf_insn *new_insn, *first_insn = NULL;
543         struct sock_filter *fp;
544         int *addrs = NULL;
545         u8 bpf_src;
546
547         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
548         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
549
550         if (len <= 0 || len > BPF_MAXINSNS)
551                 return -EINVAL;
552
553         if (new_prog) {
554                 first_insn = new_prog->insnsi;
555                 addrs = kcalloc(len, sizeof(*addrs),
556                                 GFP_KERNEL | __GFP_NOWARN);
557                 if (!addrs)
558                         return -ENOMEM;
559         }
560
561 do_pass:
562         new_insn = first_insn;
563         fp = prog;
564
565         /* Classic BPF related prologue emission. */
566         if (new_prog) {
567                 /* Classic BPF expects A and X to be reset first. These need
568                  * to be guaranteed to be the first two instructions.
569                  */
570                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
571                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
572
573                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
574                  * In eBPF case it's done by the compiler, here we need to
575                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
576                  */
577                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
578                 if (*seen_ld_abs) {
579                         /* For packet access in classic BPF, cache skb->data
580                          * in callee-saved BPF R8 and skb->len - skb->data_len
581                          * (headlen) in BPF R9. Since classic BPF is read-only
582                          * on CTX, we only need to cache it once.
583                          */
584                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
585                                                   BPF_REG_D, BPF_REG_CTX,
586                                                   offsetof(struct sk_buff, data));
587                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
588                                                   offsetof(struct sk_buff, len));
589                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
590                                                   offsetof(struct sk_buff, data_len));
591                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
592                 }
593         } else {
594                 new_insn += 3;
595         }
596
597         for (i = 0; i < len; fp++, i++) {
598                 struct bpf_insn tmp_insns[32] = { };
599                 struct bpf_insn *insn = tmp_insns;
600
601                 if (addrs)
602                         addrs[i] = new_insn - first_insn;
603
604                 switch (fp->code) {
605                 /* All arithmetic insns and skb loads map as-is. */
606                 case BPF_ALU | BPF_ADD | BPF_X:
607                 case BPF_ALU | BPF_ADD | BPF_K:
608                 case BPF_ALU | BPF_SUB | BPF_X:
609                 case BPF_ALU | BPF_SUB | BPF_K:
610                 case BPF_ALU | BPF_AND | BPF_X:
611                 case BPF_ALU | BPF_AND | BPF_K:
612                 case BPF_ALU | BPF_OR | BPF_X:
613                 case BPF_ALU | BPF_OR | BPF_K:
614                 case BPF_ALU | BPF_LSH | BPF_X:
615                 case BPF_ALU | BPF_LSH | BPF_K:
616                 case BPF_ALU | BPF_RSH | BPF_X:
617                 case BPF_ALU | BPF_RSH | BPF_K:
618                 case BPF_ALU | BPF_XOR | BPF_X:
619                 case BPF_ALU | BPF_XOR | BPF_K:
620                 case BPF_ALU | BPF_MUL | BPF_X:
621                 case BPF_ALU | BPF_MUL | BPF_K:
622                 case BPF_ALU | BPF_DIV | BPF_X:
623                 case BPF_ALU | BPF_DIV | BPF_K:
624                 case BPF_ALU | BPF_MOD | BPF_X:
625                 case BPF_ALU | BPF_MOD | BPF_K:
626                 case BPF_ALU | BPF_NEG:
627                 case BPF_LD | BPF_ABS | BPF_W:
628                 case BPF_LD | BPF_ABS | BPF_H:
629                 case BPF_LD | BPF_ABS | BPF_B:
630                 case BPF_LD | BPF_IND | BPF_W:
631                 case BPF_LD | BPF_IND | BPF_H:
632                 case BPF_LD | BPF_IND | BPF_B:
633                         /* Check for overloaded BPF extension and
634                          * directly convert it if found, otherwise
635                          * just move on with mapping.
636                          */
637                         if (BPF_CLASS(fp->code) == BPF_LD &&
638                             BPF_MODE(fp->code) == BPF_ABS &&
639                             convert_bpf_extensions(fp, &insn))
640                                 break;
641                         if (BPF_CLASS(fp->code) == BPF_LD &&
642                             convert_bpf_ld_abs(fp, &insn)) {
643                                 *seen_ld_abs = true;
644                                 break;
645                         }
646
647                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
648                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
649                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
650                                 /* Error with exception code on div/mod by 0.
651                                  * For cBPF programs, this was always return 0.
652                                  */
653                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
654                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
655                                 *insn++ = BPF_EXIT_INSN();
656                         }
657
658                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
659                         break;
660
661                 /* Jump transformation cannot use BPF block macros
662                  * everywhere as offset calculation and target updates
663                  * require a bit more work than the rest, i.e. jump
664                  * opcodes map as-is, but offsets need adjustment.
665                  */
666
667 #define BPF_EMIT_JMP                                                    \
668         do {                                                            \
669                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
670                 s32 off;                                                \
671                                                                         \
672                 if (target >= len || target < 0)                        \
673                         goto err;                                       \
674                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
675                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
676                 off -= insn - tmp_insns;                                \
677                 /* Reject anything not fitting into insn->off. */       \
678                 if (off < off_min || off > off_max)                     \
679                         goto err;                                       \
680                 insn->off = off;                                        \
681         } while (0)
682
683                 case BPF_JMP | BPF_JA:
684                         target = i + fp->k + 1;
685                         insn->code = fp->code;
686                         BPF_EMIT_JMP;
687                         break;
688
689                 case BPF_JMP | BPF_JEQ | BPF_K:
690                 case BPF_JMP | BPF_JEQ | BPF_X:
691                 case BPF_JMP | BPF_JSET | BPF_K:
692                 case BPF_JMP | BPF_JSET | BPF_X:
693                 case BPF_JMP | BPF_JGT | BPF_K:
694                 case BPF_JMP | BPF_JGT | BPF_X:
695                 case BPF_JMP | BPF_JGE | BPF_K:
696                 case BPF_JMP | BPF_JGE | BPF_X:
697                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
698                                 /* BPF immediates are signed, zero extend
699                                  * immediate into tmp register and use it
700                                  * in compare insn.
701                                  */
702                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
703
704                                 insn->dst_reg = BPF_REG_A;
705                                 insn->src_reg = BPF_REG_TMP;
706                                 bpf_src = BPF_X;
707                         } else {
708                                 insn->dst_reg = BPF_REG_A;
709                                 insn->imm = fp->k;
710                                 bpf_src = BPF_SRC(fp->code);
711                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
712                         }
713
714                         /* Common case where 'jump_false' is next insn. */
715                         if (fp->jf == 0) {
716                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
717                                 target = i + fp->jt + 1;
718                                 BPF_EMIT_JMP;
719                                 break;
720                         }
721
722                         /* Convert some jumps when 'jump_true' is next insn. */
723                         if (fp->jt == 0) {
724                                 switch (BPF_OP(fp->code)) {
725                                 case BPF_JEQ:
726                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
727                                         break;
728                                 case BPF_JGT:
729                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
730                                         break;
731                                 case BPF_JGE:
732                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
733                                         break;
734                                 default:
735                                         goto jmp_rest;
736                                 }
737
738                                 target = i + fp->jf + 1;
739                                 BPF_EMIT_JMP;
740                                 break;
741                         }
742 jmp_rest:
743                         /* Other jumps are mapped into two insns: Jxx and JA. */
744                         target = i + fp->jt + 1;
745                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
746                         BPF_EMIT_JMP;
747                         insn++;
748
749                         insn->code = BPF_JMP | BPF_JA;
750                         target = i + fp->jf + 1;
751                         BPF_EMIT_JMP;
752                         break;
753
754                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
755                 case BPF_LDX | BPF_MSH | BPF_B: {
756                         struct sock_filter tmp = {
757                                 .code   = BPF_LD | BPF_ABS | BPF_B,
758                                 .k      = fp->k,
759                         };
760
761                         *seen_ld_abs = true;
762
763                         /* X = A */
764                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
765                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
766                         convert_bpf_ld_abs(&tmp, &insn);
767                         insn++;
768                         /* A &= 0xf */
769                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
770                         /* A <<= 2 */
771                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
772                         /* tmp = X */
773                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
774                         /* X = A */
775                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
776                         /* A = tmp */
777                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
778                         break;
779                 }
780                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
781                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
782                  */
783                 case BPF_RET | BPF_A:
784                 case BPF_RET | BPF_K:
785                         if (BPF_RVAL(fp->code) == BPF_K)
786                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
787                                                         0, fp->k);
788                         *insn = BPF_EXIT_INSN();
789                         break;
790
791                 /* Store to stack. */
792                 case BPF_ST:
793                 case BPF_STX:
794                         stack_off = fp->k * 4  + 4;
795                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
796                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
797                                             -stack_off);
798                         /* check_load_and_stores() verifies that classic BPF can
799                          * load from stack only after write, so tracking
800                          * stack_depth for ST|STX insns is enough
801                          */
802                         if (new_prog && new_prog->aux->stack_depth < stack_off)
803                                 new_prog->aux->stack_depth = stack_off;
804                         break;
805
806                 /* Load from stack. */
807                 case BPF_LD | BPF_MEM:
808                 case BPF_LDX | BPF_MEM:
809                         stack_off = fp->k * 4  + 4;
810                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
811                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
812                                             -stack_off);
813                         break;
814
815                 /* A = K or X = K */
816                 case BPF_LD | BPF_IMM:
817                 case BPF_LDX | BPF_IMM:
818                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
819                                               BPF_REG_A : BPF_REG_X, fp->k);
820                         break;
821
822                 /* X = A */
823                 case BPF_MISC | BPF_TAX:
824                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
825                         break;
826
827                 /* A = X */
828                 case BPF_MISC | BPF_TXA:
829                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
830                         break;
831
832                 /* A = skb->len or X = skb->len */
833                 case BPF_LD | BPF_W | BPF_LEN:
834                 case BPF_LDX | BPF_W | BPF_LEN:
835                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
836                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
837                                             offsetof(struct sk_buff, len));
838                         break;
839
840                 /* Access seccomp_data fields. */
841                 case BPF_LDX | BPF_ABS | BPF_W:
842                         /* A = *(u32 *) (ctx + K) */
843                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
844                         break;
845
846                 /* Unknown instruction. */
847                 default:
848                         goto err;
849                 }
850
851                 insn++;
852                 if (new_prog)
853                         memcpy(new_insn, tmp_insns,
854                                sizeof(*insn) * (insn - tmp_insns));
855                 new_insn += insn - tmp_insns;
856         }
857
858         if (!new_prog) {
859                 /* Only calculating new length. */
860                 *new_len = new_insn - first_insn;
861                 if (*seen_ld_abs)
862                         *new_len += 4; /* Prologue bits. */
863                 return 0;
864         }
865
866         pass++;
867         if (new_flen != new_insn - first_insn) {
868                 new_flen = new_insn - first_insn;
869                 if (pass > 2)
870                         goto err;
871                 goto do_pass;
872         }
873
874         kfree(addrs);
875         BUG_ON(*new_len != new_flen);
876         return 0;
877 err:
878         kfree(addrs);
879         return -EINVAL;
880 }
881
882 /* Security:
883  *
884  * As we dont want to clear mem[] array for each packet going through
885  * __bpf_prog_run(), we check that filter loaded by user never try to read
886  * a cell if not previously written, and we check all branches to be sure
887  * a malicious user doesn't try to abuse us.
888  */
889 static int check_load_and_stores(const struct sock_filter *filter, int flen)
890 {
891         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
892         int pc, ret = 0;
893
894         BUILD_BUG_ON(BPF_MEMWORDS > 16);
895
896         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
897         if (!masks)
898                 return -ENOMEM;
899
900         memset(masks, 0xff, flen * sizeof(*masks));
901
902         for (pc = 0; pc < flen; pc++) {
903                 memvalid &= masks[pc];
904
905                 switch (filter[pc].code) {
906                 case BPF_ST:
907                 case BPF_STX:
908                         memvalid |= (1 << filter[pc].k);
909                         break;
910                 case BPF_LD | BPF_MEM:
911                 case BPF_LDX | BPF_MEM:
912                         if (!(memvalid & (1 << filter[pc].k))) {
913                                 ret = -EINVAL;
914                                 goto error;
915                         }
916                         break;
917                 case BPF_JMP | BPF_JA:
918                         /* A jump must set masks on target */
919                         masks[pc + 1 + filter[pc].k] &= memvalid;
920                         memvalid = ~0;
921                         break;
922                 case BPF_JMP | BPF_JEQ | BPF_K:
923                 case BPF_JMP | BPF_JEQ | BPF_X:
924                 case BPF_JMP | BPF_JGE | BPF_K:
925                 case BPF_JMP | BPF_JGE | BPF_X:
926                 case BPF_JMP | BPF_JGT | BPF_K:
927                 case BPF_JMP | BPF_JGT | BPF_X:
928                 case BPF_JMP | BPF_JSET | BPF_K:
929                 case BPF_JMP | BPF_JSET | BPF_X:
930                         /* A jump must set masks on targets */
931                         masks[pc + 1 + filter[pc].jt] &= memvalid;
932                         masks[pc + 1 + filter[pc].jf] &= memvalid;
933                         memvalid = ~0;
934                         break;
935                 }
936         }
937 error:
938         kfree(masks);
939         return ret;
940 }
941
942 static bool chk_code_allowed(u16 code_to_probe)
943 {
944         static const bool codes[] = {
945                 /* 32 bit ALU operations */
946                 [BPF_ALU | BPF_ADD | BPF_K] = true,
947                 [BPF_ALU | BPF_ADD | BPF_X] = true,
948                 [BPF_ALU | BPF_SUB | BPF_K] = true,
949                 [BPF_ALU | BPF_SUB | BPF_X] = true,
950                 [BPF_ALU | BPF_MUL | BPF_K] = true,
951                 [BPF_ALU | BPF_MUL | BPF_X] = true,
952                 [BPF_ALU | BPF_DIV | BPF_K] = true,
953                 [BPF_ALU | BPF_DIV | BPF_X] = true,
954                 [BPF_ALU | BPF_MOD | BPF_K] = true,
955                 [BPF_ALU | BPF_MOD | BPF_X] = true,
956                 [BPF_ALU | BPF_AND | BPF_K] = true,
957                 [BPF_ALU | BPF_AND | BPF_X] = true,
958                 [BPF_ALU | BPF_OR | BPF_K] = true,
959                 [BPF_ALU | BPF_OR | BPF_X] = true,
960                 [BPF_ALU | BPF_XOR | BPF_K] = true,
961                 [BPF_ALU | BPF_XOR | BPF_X] = true,
962                 [BPF_ALU | BPF_LSH | BPF_K] = true,
963                 [BPF_ALU | BPF_LSH | BPF_X] = true,
964                 [BPF_ALU | BPF_RSH | BPF_K] = true,
965                 [BPF_ALU | BPF_RSH | BPF_X] = true,
966                 [BPF_ALU | BPF_NEG] = true,
967                 /* Load instructions */
968                 [BPF_LD | BPF_W | BPF_ABS] = true,
969                 [BPF_LD | BPF_H | BPF_ABS] = true,
970                 [BPF_LD | BPF_B | BPF_ABS] = true,
971                 [BPF_LD | BPF_W | BPF_LEN] = true,
972                 [BPF_LD | BPF_W | BPF_IND] = true,
973                 [BPF_LD | BPF_H | BPF_IND] = true,
974                 [BPF_LD | BPF_B | BPF_IND] = true,
975                 [BPF_LD | BPF_IMM] = true,
976                 [BPF_LD | BPF_MEM] = true,
977                 [BPF_LDX | BPF_W | BPF_LEN] = true,
978                 [BPF_LDX | BPF_B | BPF_MSH] = true,
979                 [BPF_LDX | BPF_IMM] = true,
980                 [BPF_LDX | BPF_MEM] = true,
981                 /* Store instructions */
982                 [BPF_ST] = true,
983                 [BPF_STX] = true,
984                 /* Misc instructions */
985                 [BPF_MISC | BPF_TAX] = true,
986                 [BPF_MISC | BPF_TXA] = true,
987                 /* Return instructions */
988                 [BPF_RET | BPF_K] = true,
989                 [BPF_RET | BPF_A] = true,
990                 /* Jump instructions */
991                 [BPF_JMP | BPF_JA] = true,
992                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
993                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
994                 [BPF_JMP | BPF_JGE | BPF_K] = true,
995                 [BPF_JMP | BPF_JGE | BPF_X] = true,
996                 [BPF_JMP | BPF_JGT | BPF_K] = true,
997                 [BPF_JMP | BPF_JGT | BPF_X] = true,
998                 [BPF_JMP | BPF_JSET | BPF_K] = true,
999                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1000         };
1001
1002         if (code_to_probe >= ARRAY_SIZE(codes))
1003                 return false;
1004
1005         return codes[code_to_probe];
1006 }
1007
1008 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1009                                 unsigned int flen)
1010 {
1011         if (filter == NULL)
1012                 return false;
1013         if (flen == 0 || flen > BPF_MAXINSNS)
1014                 return false;
1015
1016         return true;
1017 }
1018
1019 /**
1020  *      bpf_check_classic - verify socket filter code
1021  *      @filter: filter to verify
1022  *      @flen: length of filter
1023  *
1024  * Check the user's filter code. If we let some ugly
1025  * filter code slip through kaboom! The filter must contain
1026  * no references or jumps that are out of range, no illegal
1027  * instructions, and must end with a RET instruction.
1028  *
1029  * All jumps are forward as they are not signed.
1030  *
1031  * Returns 0 if the rule set is legal or -EINVAL if not.
1032  */
1033 static int bpf_check_classic(const struct sock_filter *filter,
1034                              unsigned int flen)
1035 {
1036         bool anc_found;
1037         int pc;
1038
1039         /* Check the filter code now */
1040         for (pc = 0; pc < flen; pc++) {
1041                 const struct sock_filter *ftest = &filter[pc];
1042
1043                 /* May we actually operate on this code? */
1044                 if (!chk_code_allowed(ftest->code))
1045                         return -EINVAL;
1046
1047                 /* Some instructions need special checks */
1048                 switch (ftest->code) {
1049                 case BPF_ALU | BPF_DIV | BPF_K:
1050                 case BPF_ALU | BPF_MOD | BPF_K:
1051                         /* Check for division by zero */
1052                         if (ftest->k == 0)
1053                                 return -EINVAL;
1054                         break;
1055                 case BPF_ALU | BPF_LSH | BPF_K:
1056                 case BPF_ALU | BPF_RSH | BPF_K:
1057                         if (ftest->k >= 32)
1058                                 return -EINVAL;
1059                         break;
1060                 case BPF_LD | BPF_MEM:
1061                 case BPF_LDX | BPF_MEM:
1062                 case BPF_ST:
1063                 case BPF_STX:
1064                         /* Check for invalid memory addresses */
1065                         if (ftest->k >= BPF_MEMWORDS)
1066                                 return -EINVAL;
1067                         break;
1068                 case BPF_JMP | BPF_JA:
1069                         /* Note, the large ftest->k might cause loops.
1070                          * Compare this with conditional jumps below,
1071                          * where offsets are limited. --ANK (981016)
1072                          */
1073                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1074                                 return -EINVAL;
1075                         break;
1076                 case BPF_JMP | BPF_JEQ | BPF_K:
1077                 case BPF_JMP | BPF_JEQ | BPF_X:
1078                 case BPF_JMP | BPF_JGE | BPF_K:
1079                 case BPF_JMP | BPF_JGE | BPF_X:
1080                 case BPF_JMP | BPF_JGT | BPF_K:
1081                 case BPF_JMP | BPF_JGT | BPF_X:
1082                 case BPF_JMP | BPF_JSET | BPF_K:
1083                 case BPF_JMP | BPF_JSET | BPF_X:
1084                         /* Both conditionals must be safe */
1085                         if (pc + ftest->jt + 1 >= flen ||
1086                             pc + ftest->jf + 1 >= flen)
1087                                 return -EINVAL;
1088                         break;
1089                 case BPF_LD | BPF_W | BPF_ABS:
1090                 case BPF_LD | BPF_H | BPF_ABS:
1091                 case BPF_LD | BPF_B | BPF_ABS:
1092                         anc_found = false;
1093                         if (bpf_anc_helper(ftest) & BPF_ANC)
1094                                 anc_found = true;
1095                         /* Ancillary operation unknown or unsupported */
1096                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1097                                 return -EINVAL;
1098                 }
1099         }
1100
1101         /* Last instruction must be a RET code */
1102         switch (filter[flen - 1].code) {
1103         case BPF_RET | BPF_K:
1104         case BPF_RET | BPF_A:
1105                 return check_load_and_stores(filter, flen);
1106         }
1107
1108         return -EINVAL;
1109 }
1110
1111 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1112                                       const struct sock_fprog *fprog)
1113 {
1114         unsigned int fsize = bpf_classic_proglen(fprog);
1115         struct sock_fprog_kern *fkprog;
1116
1117         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1118         if (!fp->orig_prog)
1119                 return -ENOMEM;
1120
1121         fkprog = fp->orig_prog;
1122         fkprog->len = fprog->len;
1123
1124         fkprog->filter = kmemdup(fp->insns, fsize,
1125                                  GFP_KERNEL | __GFP_NOWARN);
1126         if (!fkprog->filter) {
1127                 kfree(fp->orig_prog);
1128                 return -ENOMEM;
1129         }
1130
1131         return 0;
1132 }
1133
1134 static void bpf_release_orig_filter(struct bpf_prog *fp)
1135 {
1136         struct sock_fprog_kern *fprog = fp->orig_prog;
1137
1138         if (fprog) {
1139                 kfree(fprog->filter);
1140                 kfree(fprog);
1141         }
1142 }
1143
1144 static void __bpf_prog_release(struct bpf_prog *prog)
1145 {
1146         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1147                 bpf_prog_put(prog);
1148         } else {
1149                 bpf_release_orig_filter(prog);
1150                 bpf_prog_free(prog);
1151         }
1152 }
1153
1154 static void __sk_filter_release(struct sk_filter *fp)
1155 {
1156         __bpf_prog_release(fp->prog);
1157         kfree(fp);
1158 }
1159
1160 /**
1161  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1162  *      @rcu: rcu_head that contains the sk_filter to free
1163  */
1164 static void sk_filter_release_rcu(struct rcu_head *rcu)
1165 {
1166         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1167
1168         __sk_filter_release(fp);
1169 }
1170
1171 /**
1172  *      sk_filter_release - release a socket filter
1173  *      @fp: filter to remove
1174  *
1175  *      Remove a filter from a socket and release its resources.
1176  */
1177 static void sk_filter_release(struct sk_filter *fp)
1178 {
1179         if (refcount_dec_and_test(&fp->refcnt))
1180                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1181 }
1182
1183 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1184 {
1185         u32 filter_size = bpf_prog_size(fp->prog->len);
1186
1187         atomic_sub(filter_size, &sk->sk_omem_alloc);
1188         sk_filter_release(fp);
1189 }
1190
1191 /* try to charge the socket memory if there is space available
1192  * return true on success
1193  */
1194 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1195 {
1196         u32 filter_size = bpf_prog_size(fp->prog->len);
1197
1198         /* same check as in sock_kmalloc() */
1199         if (filter_size <= sysctl_optmem_max &&
1200             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1201                 atomic_add(filter_size, &sk->sk_omem_alloc);
1202                 return true;
1203         }
1204         return false;
1205 }
1206
1207 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1208 {
1209         if (!refcount_inc_not_zero(&fp->refcnt))
1210                 return false;
1211
1212         if (!__sk_filter_charge(sk, fp)) {
1213                 sk_filter_release(fp);
1214                 return false;
1215         }
1216         return true;
1217 }
1218
1219 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1220 {
1221         struct sock_filter *old_prog;
1222         struct bpf_prog *old_fp;
1223         int err, new_len, old_len = fp->len;
1224         bool seen_ld_abs = false;
1225
1226         /* We are free to overwrite insns et al right here as it
1227          * won't be used at this point in time anymore internally
1228          * after the migration to the internal BPF instruction
1229          * representation.
1230          */
1231         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1232                      sizeof(struct bpf_insn));
1233
1234         /* Conversion cannot happen on overlapping memory areas,
1235          * so we need to keep the user BPF around until the 2nd
1236          * pass. At this time, the user BPF is stored in fp->insns.
1237          */
1238         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1239                            GFP_KERNEL | __GFP_NOWARN);
1240         if (!old_prog) {
1241                 err = -ENOMEM;
1242                 goto out_err;
1243         }
1244
1245         /* 1st pass: calculate the new program length. */
1246         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1247                                  &seen_ld_abs);
1248         if (err)
1249                 goto out_err_free;
1250
1251         /* Expand fp for appending the new filter representation. */
1252         old_fp = fp;
1253         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1254         if (!fp) {
1255                 /* The old_fp is still around in case we couldn't
1256                  * allocate new memory, so uncharge on that one.
1257                  */
1258                 fp = old_fp;
1259                 err = -ENOMEM;
1260                 goto out_err_free;
1261         }
1262
1263         fp->len = new_len;
1264
1265         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1266         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1267                                  &seen_ld_abs);
1268         if (err)
1269                 /* 2nd bpf_convert_filter() can fail only if it fails
1270                  * to allocate memory, remapping must succeed. Note,
1271                  * that at this time old_fp has already been released
1272                  * by krealloc().
1273                  */
1274                 goto out_err_free;
1275
1276         fp = bpf_prog_select_runtime(fp, &err);
1277         if (err)
1278                 goto out_err_free;
1279
1280         kfree(old_prog);
1281         return fp;
1282
1283 out_err_free:
1284         kfree(old_prog);
1285 out_err:
1286         __bpf_prog_release(fp);
1287         return ERR_PTR(err);
1288 }
1289
1290 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1291                                            bpf_aux_classic_check_t trans)
1292 {
1293         int err;
1294
1295         fp->bpf_func = NULL;
1296         fp->jited = 0;
1297
1298         err = bpf_check_classic(fp->insns, fp->len);
1299         if (err) {
1300                 __bpf_prog_release(fp);
1301                 return ERR_PTR(err);
1302         }
1303
1304         /* There might be additional checks and transformations
1305          * needed on classic filters, f.e. in case of seccomp.
1306          */
1307         if (trans) {
1308                 err = trans(fp->insns, fp->len);
1309                 if (err) {
1310                         __bpf_prog_release(fp);
1311                         return ERR_PTR(err);
1312                 }
1313         }
1314
1315         /* Probe if we can JIT compile the filter and if so, do
1316          * the compilation of the filter.
1317          */
1318         bpf_jit_compile(fp);
1319
1320         /* JIT compiler couldn't process this filter, so do the
1321          * internal BPF translation for the optimized interpreter.
1322          */
1323         if (!fp->jited)
1324                 fp = bpf_migrate_filter(fp);
1325
1326         return fp;
1327 }
1328
1329 /**
1330  *      bpf_prog_create - create an unattached filter
1331  *      @pfp: the unattached filter that is created
1332  *      @fprog: the filter program
1333  *
1334  * Create a filter independent of any socket. We first run some
1335  * sanity checks on it to make sure it does not explode on us later.
1336  * If an error occurs or there is insufficient memory for the filter
1337  * a negative errno code is returned. On success the return is zero.
1338  */
1339 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1340 {
1341         unsigned int fsize = bpf_classic_proglen(fprog);
1342         struct bpf_prog *fp;
1343
1344         /* Make sure new filter is there and in the right amounts. */
1345         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1346                 return -EINVAL;
1347
1348         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1349         if (!fp)
1350                 return -ENOMEM;
1351
1352         memcpy(fp->insns, fprog->filter, fsize);
1353
1354         fp->len = fprog->len;
1355         /* Since unattached filters are not copied back to user
1356          * space through sk_get_filter(), we do not need to hold
1357          * a copy here, and can spare us the work.
1358          */
1359         fp->orig_prog = NULL;
1360
1361         /* bpf_prepare_filter() already takes care of freeing
1362          * memory in case something goes wrong.
1363          */
1364         fp = bpf_prepare_filter(fp, NULL);
1365         if (IS_ERR(fp))
1366                 return PTR_ERR(fp);
1367
1368         *pfp = fp;
1369         return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(bpf_prog_create);
1372
1373 /**
1374  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1375  *      @pfp: the unattached filter that is created
1376  *      @fprog: the filter program
1377  *      @trans: post-classic verifier transformation handler
1378  *      @save_orig: save classic BPF program
1379  *
1380  * This function effectively does the same as bpf_prog_create(), only
1381  * that it builds up its insns buffer from user space provided buffer.
1382  * It also allows for passing a bpf_aux_classic_check_t handler.
1383  */
1384 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1385                               bpf_aux_classic_check_t trans, bool save_orig)
1386 {
1387         unsigned int fsize = bpf_classic_proglen(fprog);
1388         struct bpf_prog *fp;
1389         int err;
1390
1391         /* Make sure new filter is there and in the right amounts. */
1392         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1393                 return -EINVAL;
1394
1395         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1396         if (!fp)
1397                 return -ENOMEM;
1398
1399         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1400                 __bpf_prog_free(fp);
1401                 return -EFAULT;
1402         }
1403
1404         fp->len = fprog->len;
1405         fp->orig_prog = NULL;
1406
1407         if (save_orig) {
1408                 err = bpf_prog_store_orig_filter(fp, fprog);
1409                 if (err) {
1410                         __bpf_prog_free(fp);
1411                         return -ENOMEM;
1412                 }
1413         }
1414
1415         /* bpf_prepare_filter() already takes care of freeing
1416          * memory in case something goes wrong.
1417          */
1418         fp = bpf_prepare_filter(fp, trans);
1419         if (IS_ERR(fp))
1420                 return PTR_ERR(fp);
1421
1422         *pfp = fp;
1423         return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1426
1427 void bpf_prog_destroy(struct bpf_prog *fp)
1428 {
1429         __bpf_prog_release(fp);
1430 }
1431 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1432
1433 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1434 {
1435         struct sk_filter *fp, *old_fp;
1436
1437         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1438         if (!fp)
1439                 return -ENOMEM;
1440
1441         fp->prog = prog;
1442
1443         if (!__sk_filter_charge(sk, fp)) {
1444                 kfree(fp);
1445                 return -ENOMEM;
1446         }
1447         refcount_set(&fp->refcnt, 1);
1448
1449         old_fp = rcu_dereference_protected(sk->sk_filter,
1450                                            lockdep_sock_is_held(sk));
1451         rcu_assign_pointer(sk->sk_filter, fp);
1452
1453         if (old_fp)
1454                 sk_filter_uncharge(sk, old_fp);
1455
1456         return 0;
1457 }
1458
1459 static
1460 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1461 {
1462         unsigned int fsize = bpf_classic_proglen(fprog);
1463         struct bpf_prog *prog;
1464         int err;
1465
1466         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1467                 return ERR_PTR(-EPERM);
1468
1469         /* Make sure new filter is there and in the right amounts. */
1470         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1471                 return ERR_PTR(-EINVAL);
1472
1473         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1474         if (!prog)
1475                 return ERR_PTR(-ENOMEM);
1476
1477         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1478                 __bpf_prog_free(prog);
1479                 return ERR_PTR(-EFAULT);
1480         }
1481
1482         prog->len = fprog->len;
1483
1484         err = bpf_prog_store_orig_filter(prog, fprog);
1485         if (err) {
1486                 __bpf_prog_free(prog);
1487                 return ERR_PTR(-ENOMEM);
1488         }
1489
1490         /* bpf_prepare_filter() already takes care of freeing
1491          * memory in case something goes wrong.
1492          */
1493         return bpf_prepare_filter(prog, NULL);
1494 }
1495
1496 /**
1497  *      sk_attach_filter - attach a socket filter
1498  *      @fprog: the filter program
1499  *      @sk: the socket to use
1500  *
1501  * Attach the user's filter code. We first run some sanity checks on
1502  * it to make sure it does not explode on us later. If an error
1503  * occurs or there is insufficient memory for the filter a negative
1504  * errno code is returned. On success the return is zero.
1505  */
1506 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1507 {
1508         struct bpf_prog *prog = __get_filter(fprog, sk);
1509         int err;
1510
1511         if (IS_ERR(prog))
1512                 return PTR_ERR(prog);
1513
1514         err = __sk_attach_prog(prog, sk);
1515         if (err < 0) {
1516                 __bpf_prog_release(prog);
1517                 return err;
1518         }
1519
1520         return 0;
1521 }
1522 EXPORT_SYMBOL_GPL(sk_attach_filter);
1523
1524 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526         struct bpf_prog *prog = __get_filter(fprog, sk);
1527         int err;
1528
1529         if (IS_ERR(prog))
1530                 return PTR_ERR(prog);
1531
1532         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1533                 err = -ENOMEM;
1534         else
1535                 err = reuseport_attach_prog(sk, prog);
1536
1537         if (err)
1538                 __bpf_prog_release(prog);
1539
1540         return err;
1541 }
1542
1543 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1544 {
1545         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1546                 return ERR_PTR(-EPERM);
1547
1548         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1549 }
1550
1551 int sk_attach_bpf(u32 ufd, struct sock *sk)
1552 {
1553         struct bpf_prog *prog = __get_bpf(ufd, sk);
1554         int err;
1555
1556         if (IS_ERR(prog))
1557                 return PTR_ERR(prog);
1558
1559         err = __sk_attach_prog(prog, sk);
1560         if (err < 0) {
1561                 bpf_prog_put(prog);
1562                 return err;
1563         }
1564
1565         return 0;
1566 }
1567
1568 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1569 {
1570         struct bpf_prog *prog;
1571         int err;
1572
1573         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1574                 return -EPERM;
1575
1576         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1577         if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1578                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1579         if (IS_ERR(prog))
1580                 return PTR_ERR(prog);
1581
1582         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1583                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1584                  * bpf prog (e.g. sockmap).  It depends on the
1585                  * limitation imposed by bpf_prog_load().
1586                  * Hence, sysctl_optmem_max is not checked.
1587                  */
1588                 if ((sk->sk_type != SOCK_STREAM &&
1589                      sk->sk_type != SOCK_DGRAM) ||
1590                     (sk->sk_protocol != IPPROTO_UDP &&
1591                      sk->sk_protocol != IPPROTO_TCP) ||
1592                     (sk->sk_family != AF_INET &&
1593                      sk->sk_family != AF_INET6)) {
1594                         err = -ENOTSUPP;
1595                         goto err_prog_put;
1596                 }
1597         } else {
1598                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1599                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1600                         err = -ENOMEM;
1601                         goto err_prog_put;
1602                 }
1603         }
1604
1605         err = reuseport_attach_prog(sk, prog);
1606 err_prog_put:
1607         if (err)
1608                 bpf_prog_put(prog);
1609
1610         return err;
1611 }
1612
1613 void sk_reuseport_prog_free(struct bpf_prog *prog)
1614 {
1615         if (!prog)
1616                 return;
1617
1618         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1619                 bpf_prog_put(prog);
1620         else
1621                 bpf_prog_destroy(prog);
1622 }
1623
1624 struct bpf_scratchpad {
1625         union {
1626                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1627                 u8     buff[MAX_BPF_STACK];
1628         };
1629 };
1630
1631 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1632
1633 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1634                                           unsigned int write_len)
1635 {
1636         return skb_ensure_writable(skb, write_len);
1637 }
1638
1639 static inline int bpf_try_make_writable(struct sk_buff *skb,
1640                                         unsigned int write_len)
1641 {
1642         int err = __bpf_try_make_writable(skb, write_len);
1643
1644         bpf_compute_data_pointers(skb);
1645         return err;
1646 }
1647
1648 static int bpf_try_make_head_writable(struct sk_buff *skb)
1649 {
1650         return bpf_try_make_writable(skb, skb_headlen(skb));
1651 }
1652
1653 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1654 {
1655         if (skb_at_tc_ingress(skb))
1656                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1657 }
1658
1659 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1660 {
1661         if (skb_at_tc_ingress(skb))
1662                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1663 }
1664
1665 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1666            const void *, from, u32, len, u64, flags)
1667 {
1668         void *ptr;
1669
1670         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1671                 return -EINVAL;
1672         if (unlikely(offset > 0xffff))
1673                 return -EFAULT;
1674         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1675                 return -EFAULT;
1676
1677         ptr = skb->data + offset;
1678         if (flags & BPF_F_RECOMPUTE_CSUM)
1679                 __skb_postpull_rcsum(skb, ptr, len, offset);
1680
1681         memcpy(ptr, from, len);
1682
1683         if (flags & BPF_F_RECOMPUTE_CSUM)
1684                 __skb_postpush_rcsum(skb, ptr, len, offset);
1685         if (flags & BPF_F_INVALIDATE_HASH)
1686                 skb_clear_hash(skb);
1687
1688         return 0;
1689 }
1690
1691 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1692         .func           = bpf_skb_store_bytes,
1693         .gpl_only       = false,
1694         .ret_type       = RET_INTEGER,
1695         .arg1_type      = ARG_PTR_TO_CTX,
1696         .arg2_type      = ARG_ANYTHING,
1697         .arg3_type      = ARG_PTR_TO_MEM,
1698         .arg4_type      = ARG_CONST_SIZE,
1699         .arg5_type      = ARG_ANYTHING,
1700 };
1701
1702 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1703            void *, to, u32, len)
1704 {
1705         void *ptr;
1706
1707         if (unlikely(offset > 0xffff))
1708                 goto err_clear;
1709
1710         ptr = skb_header_pointer(skb, offset, len, to);
1711         if (unlikely(!ptr))
1712                 goto err_clear;
1713         if (ptr != to)
1714                 memcpy(to, ptr, len);
1715
1716         return 0;
1717 err_clear:
1718         memset(to, 0, len);
1719         return -EFAULT;
1720 }
1721
1722 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1723         .func           = bpf_skb_load_bytes,
1724         .gpl_only       = false,
1725         .ret_type       = RET_INTEGER,
1726         .arg1_type      = ARG_PTR_TO_CTX,
1727         .arg2_type      = ARG_ANYTHING,
1728         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1729         .arg4_type      = ARG_CONST_SIZE,
1730 };
1731
1732 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1733            u32, offset, void *, to, u32, len, u32, start_header)
1734 {
1735         u8 *end = skb_tail_pointer(skb);
1736         u8 *net = skb_network_header(skb);
1737         u8 *mac = skb_mac_header(skb);
1738         u8 *ptr;
1739
1740         if (unlikely(offset > 0xffff || len > (end - mac)))
1741                 goto err_clear;
1742
1743         switch (start_header) {
1744         case BPF_HDR_START_MAC:
1745                 ptr = mac + offset;
1746                 break;
1747         case BPF_HDR_START_NET:
1748                 ptr = net + offset;
1749                 break;
1750         default:
1751                 goto err_clear;
1752         }
1753
1754         if (likely(ptr >= mac && ptr + len <= end)) {
1755                 memcpy(to, ptr, len);
1756                 return 0;
1757         }
1758
1759 err_clear:
1760         memset(to, 0, len);
1761         return -EFAULT;
1762 }
1763
1764 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1765         .func           = bpf_skb_load_bytes_relative,
1766         .gpl_only       = false,
1767         .ret_type       = RET_INTEGER,
1768         .arg1_type      = ARG_PTR_TO_CTX,
1769         .arg2_type      = ARG_ANYTHING,
1770         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1771         .arg4_type      = ARG_CONST_SIZE,
1772         .arg5_type      = ARG_ANYTHING,
1773 };
1774
1775 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1776 {
1777         /* Idea is the following: should the needed direct read/write
1778          * test fail during runtime, we can pull in more data and redo
1779          * again, since implicitly, we invalidate previous checks here.
1780          *
1781          * Or, since we know how much we need to make read/writeable,
1782          * this can be done once at the program beginning for direct
1783          * access case. By this we overcome limitations of only current
1784          * headroom being accessible.
1785          */
1786         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1787 }
1788
1789 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1790         .func           = bpf_skb_pull_data,
1791         .gpl_only       = false,
1792         .ret_type       = RET_INTEGER,
1793         .arg1_type      = ARG_PTR_TO_CTX,
1794         .arg2_type      = ARG_ANYTHING,
1795 };
1796
1797 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1798 {
1799         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1800 }
1801
1802 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1803         .func           = bpf_sk_fullsock,
1804         .gpl_only       = false,
1805         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1806         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1807 };
1808
1809 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1810                                            unsigned int write_len)
1811 {
1812         int err = __bpf_try_make_writable(skb, write_len);
1813
1814         bpf_compute_data_end_sk_skb(skb);
1815         return err;
1816 }
1817
1818 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1819 {
1820         /* Idea is the following: should the needed direct read/write
1821          * test fail during runtime, we can pull in more data and redo
1822          * again, since implicitly, we invalidate previous checks here.
1823          *
1824          * Or, since we know how much we need to make read/writeable,
1825          * this can be done once at the program beginning for direct
1826          * access case. By this we overcome limitations of only current
1827          * headroom being accessible.
1828          */
1829         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1830 }
1831
1832 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1833         .func           = sk_skb_pull_data,
1834         .gpl_only       = false,
1835         .ret_type       = RET_INTEGER,
1836         .arg1_type      = ARG_PTR_TO_CTX,
1837         .arg2_type      = ARG_ANYTHING,
1838 };
1839
1840 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1841            u64, from, u64, to, u64, flags)
1842 {
1843         __sum16 *ptr;
1844
1845         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1846                 return -EINVAL;
1847         if (unlikely(offset > 0xffff || offset & 1))
1848                 return -EFAULT;
1849         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1850                 return -EFAULT;
1851
1852         ptr = (__sum16 *)(skb->data + offset);
1853         switch (flags & BPF_F_HDR_FIELD_MASK) {
1854         case 0:
1855                 if (unlikely(from != 0))
1856                         return -EINVAL;
1857
1858                 csum_replace_by_diff(ptr, to);
1859                 break;
1860         case 2:
1861                 csum_replace2(ptr, from, to);
1862                 break;
1863         case 4:
1864                 csum_replace4(ptr, from, to);
1865                 break;
1866         default:
1867                 return -EINVAL;
1868         }
1869
1870         return 0;
1871 }
1872
1873 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1874         .func           = bpf_l3_csum_replace,
1875         .gpl_only       = false,
1876         .ret_type       = RET_INTEGER,
1877         .arg1_type      = ARG_PTR_TO_CTX,
1878         .arg2_type      = ARG_ANYTHING,
1879         .arg3_type      = ARG_ANYTHING,
1880         .arg4_type      = ARG_ANYTHING,
1881         .arg5_type      = ARG_ANYTHING,
1882 };
1883
1884 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1885            u64, from, u64, to, u64, flags)
1886 {
1887         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1888         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1889         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1890         __sum16 *ptr;
1891
1892         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1893                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1894                 return -EINVAL;
1895         if (unlikely(offset > 0xffff || offset & 1))
1896                 return -EFAULT;
1897         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1898                 return -EFAULT;
1899
1900         ptr = (__sum16 *)(skb->data + offset);
1901         if (is_mmzero && !do_mforce && !*ptr)
1902                 return 0;
1903
1904         switch (flags & BPF_F_HDR_FIELD_MASK) {
1905         case 0:
1906                 if (unlikely(from != 0))
1907                         return -EINVAL;
1908
1909                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1910                 break;
1911         case 2:
1912                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1913                 break;
1914         case 4:
1915                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1916                 break;
1917         default:
1918                 return -EINVAL;
1919         }
1920
1921         if (is_mmzero && !*ptr)
1922                 *ptr = CSUM_MANGLED_0;
1923         return 0;
1924 }
1925
1926 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1927         .func           = bpf_l4_csum_replace,
1928         .gpl_only       = false,
1929         .ret_type       = RET_INTEGER,
1930         .arg1_type      = ARG_PTR_TO_CTX,
1931         .arg2_type      = ARG_ANYTHING,
1932         .arg3_type      = ARG_ANYTHING,
1933         .arg4_type      = ARG_ANYTHING,
1934         .arg5_type      = ARG_ANYTHING,
1935 };
1936
1937 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1938            __be32 *, to, u32, to_size, __wsum, seed)
1939 {
1940         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1941         u32 diff_size = from_size + to_size;
1942         int i, j = 0;
1943
1944         /* This is quite flexible, some examples:
1945          *
1946          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1947          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1948          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1949          *
1950          * Even for diffing, from_size and to_size don't need to be equal.
1951          */
1952         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1953                      diff_size > sizeof(sp->diff)))
1954                 return -EINVAL;
1955
1956         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1957                 sp->diff[j] = ~from[i];
1958         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1959                 sp->diff[j] = to[i];
1960
1961         return csum_partial(sp->diff, diff_size, seed);
1962 }
1963
1964 static const struct bpf_func_proto bpf_csum_diff_proto = {
1965         .func           = bpf_csum_diff,
1966         .gpl_only       = false,
1967         .pkt_access     = true,
1968         .ret_type       = RET_INTEGER,
1969         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1970         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1971         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1972         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1973         .arg5_type      = ARG_ANYTHING,
1974 };
1975
1976 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1977 {
1978         /* The interface is to be used in combination with bpf_csum_diff()
1979          * for direct packet writes. csum rotation for alignment as well
1980          * as emulating csum_sub() can be done from the eBPF program.
1981          */
1982         if (skb->ip_summed == CHECKSUM_COMPLETE)
1983                 return (skb->csum = csum_add(skb->csum, csum));
1984
1985         return -ENOTSUPP;
1986 }
1987
1988 static const struct bpf_func_proto bpf_csum_update_proto = {
1989         .func           = bpf_csum_update,
1990         .gpl_only       = false,
1991         .ret_type       = RET_INTEGER,
1992         .arg1_type      = ARG_PTR_TO_CTX,
1993         .arg2_type      = ARG_ANYTHING,
1994 };
1995
1996 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1997 {
1998         return dev_forward_skb(dev, skb);
1999 }
2000
2001 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2002                                       struct sk_buff *skb)
2003 {
2004         int ret = ____dev_forward_skb(dev, skb);
2005
2006         if (likely(!ret)) {
2007                 skb->dev = dev;
2008                 ret = netif_rx(skb);
2009         }
2010
2011         return ret;
2012 }
2013
2014 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2015 {
2016         int ret;
2017
2018         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2019                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2020                 kfree_skb(skb);
2021                 return -ENETDOWN;
2022         }
2023
2024         skb->dev = dev;
2025
2026         __this_cpu_inc(xmit_recursion);
2027         ret = dev_queue_xmit(skb);
2028         __this_cpu_dec(xmit_recursion);
2029
2030         return ret;
2031 }
2032
2033 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2034                                  u32 flags)
2035 {
2036         unsigned int mlen = skb_network_offset(skb);
2037
2038         if (mlen) {
2039                 __skb_pull(skb, mlen);
2040
2041                 /* At ingress, the mac header has already been pulled once.
2042                  * At egress, skb_pospull_rcsum has to be done in case that
2043                  * the skb is originated from ingress (i.e. a forwarded skb)
2044                  * to ensure that rcsum starts at net header.
2045                  */
2046                 if (!skb_at_tc_ingress(skb))
2047                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2048         }
2049         skb_pop_mac_header(skb);
2050         skb_reset_mac_len(skb);
2051         return flags & BPF_F_INGRESS ?
2052                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2053 }
2054
2055 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2056                                  u32 flags)
2057 {
2058         /* Verify that a link layer header is carried */
2059         if (unlikely(skb->mac_header >= skb->network_header)) {
2060                 kfree_skb(skb);
2061                 return -ERANGE;
2062         }
2063
2064         bpf_push_mac_rcsum(skb);
2065         return flags & BPF_F_INGRESS ?
2066                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2067 }
2068
2069 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2070                           u32 flags)
2071 {
2072         if (dev_is_mac_header_xmit(dev))
2073                 return __bpf_redirect_common(skb, dev, flags);
2074         else
2075                 return __bpf_redirect_no_mac(skb, dev, flags);
2076 }
2077
2078 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2079 {
2080         struct net_device *dev;
2081         struct sk_buff *clone;
2082         int ret;
2083
2084         if (unlikely(flags & ~(BPF_F_INGRESS)))
2085                 return -EINVAL;
2086
2087         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2088         if (unlikely(!dev))
2089                 return -EINVAL;
2090
2091         clone = skb_clone(skb, GFP_ATOMIC);
2092         if (unlikely(!clone))
2093                 return -ENOMEM;
2094
2095         /* For direct write, we need to keep the invariant that the skbs
2096          * we're dealing with need to be uncloned. Should uncloning fail
2097          * here, we need to free the just generated clone to unclone once
2098          * again.
2099          */
2100         ret = bpf_try_make_head_writable(skb);
2101         if (unlikely(ret)) {
2102                 kfree_skb(clone);
2103                 return -ENOMEM;
2104         }
2105
2106         return __bpf_redirect(clone, dev, flags);
2107 }
2108
2109 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2110         .func           = bpf_clone_redirect,
2111         .gpl_only       = false,
2112         .ret_type       = RET_INTEGER,
2113         .arg1_type      = ARG_PTR_TO_CTX,
2114         .arg2_type      = ARG_ANYTHING,
2115         .arg3_type      = ARG_ANYTHING,
2116 };
2117
2118 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2119 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2120
2121 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2122 {
2123         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2124
2125         if (unlikely(flags & ~(BPF_F_INGRESS)))
2126                 return TC_ACT_SHOT;
2127
2128         ri->ifindex = ifindex;
2129         ri->flags = flags;
2130
2131         return TC_ACT_REDIRECT;
2132 }
2133
2134 int skb_do_redirect(struct sk_buff *skb)
2135 {
2136         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2137         struct net_device *dev;
2138
2139         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2140         ri->ifindex = 0;
2141         if (unlikely(!dev)) {
2142                 kfree_skb(skb);
2143                 return -EINVAL;
2144         }
2145
2146         return __bpf_redirect(skb, dev, ri->flags);
2147 }
2148
2149 static const struct bpf_func_proto bpf_redirect_proto = {
2150         .func           = bpf_redirect,
2151         .gpl_only       = false,
2152         .ret_type       = RET_INTEGER,
2153         .arg1_type      = ARG_ANYTHING,
2154         .arg2_type      = ARG_ANYTHING,
2155 };
2156
2157 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2158 {
2159         msg->apply_bytes = bytes;
2160         return 0;
2161 }
2162
2163 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2164         .func           = bpf_msg_apply_bytes,
2165         .gpl_only       = false,
2166         .ret_type       = RET_INTEGER,
2167         .arg1_type      = ARG_PTR_TO_CTX,
2168         .arg2_type      = ARG_ANYTHING,
2169 };
2170
2171 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2172 {
2173         msg->cork_bytes = bytes;
2174         return 0;
2175 }
2176
2177 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2178         .func           = bpf_msg_cork_bytes,
2179         .gpl_only       = false,
2180         .ret_type       = RET_INTEGER,
2181         .arg1_type      = ARG_PTR_TO_CTX,
2182         .arg2_type      = ARG_ANYTHING,
2183 };
2184
2185 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2186            u32, end, u64, flags)
2187 {
2188         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2189         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2190         struct scatterlist *sge;
2191         u8 *raw, *to, *from;
2192         struct page *page;
2193
2194         if (unlikely(flags || end <= start))
2195                 return -EINVAL;
2196
2197         /* First find the starting scatterlist element */
2198         i = msg->sg.start;
2199         do {
2200                 len = sk_msg_elem(msg, i)->length;
2201                 if (start < offset + len)
2202                         break;
2203                 offset += len;
2204                 sk_msg_iter_var_next(i);
2205         } while (i != msg->sg.end);
2206
2207         if (unlikely(start >= offset + len))
2208                 return -EINVAL;
2209
2210         first_sge = i;
2211         /* The start may point into the sg element so we need to also
2212          * account for the headroom.
2213          */
2214         bytes_sg_total = start - offset + bytes;
2215         if (!msg->sg.copy[i] && bytes_sg_total <= len)
2216                 goto out;
2217
2218         /* At this point we need to linearize multiple scatterlist
2219          * elements or a single shared page. Either way we need to
2220          * copy into a linear buffer exclusively owned by BPF. Then
2221          * place the buffer in the scatterlist and fixup the original
2222          * entries by removing the entries now in the linear buffer
2223          * and shifting the remaining entries. For now we do not try
2224          * to copy partial entries to avoid complexity of running out
2225          * of sg_entry slots. The downside is reading a single byte
2226          * will copy the entire sg entry.
2227          */
2228         do {
2229                 copy += sk_msg_elem(msg, i)->length;
2230                 sk_msg_iter_var_next(i);
2231                 if (bytes_sg_total <= copy)
2232                         break;
2233         } while (i != msg->sg.end);
2234         last_sge = i;
2235
2236         if (unlikely(bytes_sg_total > copy))
2237                 return -EINVAL;
2238
2239         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2240                            get_order(copy));
2241         if (unlikely(!page))
2242                 return -ENOMEM;
2243
2244         raw = page_address(page);
2245         i = first_sge;
2246         do {
2247                 sge = sk_msg_elem(msg, i);
2248                 from = sg_virt(sge);
2249                 len = sge->length;
2250                 to = raw + poffset;
2251
2252                 memcpy(to, from, len);
2253                 poffset += len;
2254                 sge->length = 0;
2255                 put_page(sg_page(sge));
2256
2257                 sk_msg_iter_var_next(i);
2258         } while (i != last_sge);
2259
2260         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2261
2262         /* To repair sg ring we need to shift entries. If we only
2263          * had a single entry though we can just replace it and
2264          * be done. Otherwise walk the ring and shift the entries.
2265          */
2266         WARN_ON_ONCE(last_sge == first_sge);
2267         shift = last_sge > first_sge ?
2268                 last_sge - first_sge - 1 :
2269                 MAX_SKB_FRAGS - first_sge + last_sge - 1;
2270         if (!shift)
2271                 goto out;
2272
2273         i = first_sge;
2274         sk_msg_iter_var_next(i);
2275         do {
2276                 u32 move_from;
2277
2278                 if (i + shift >= MAX_MSG_FRAGS)
2279                         move_from = i + shift - MAX_MSG_FRAGS;
2280                 else
2281                         move_from = i + shift;
2282                 if (move_from == msg->sg.end)
2283                         break;
2284
2285                 msg->sg.data[i] = msg->sg.data[move_from];
2286                 msg->sg.data[move_from].length = 0;
2287                 msg->sg.data[move_from].page_link = 0;
2288                 msg->sg.data[move_from].offset = 0;
2289                 sk_msg_iter_var_next(i);
2290         } while (1);
2291
2292         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2293                       msg->sg.end - shift + MAX_MSG_FRAGS :
2294                       msg->sg.end - shift;
2295 out:
2296         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2297         msg->data_end = msg->data + bytes;
2298         return 0;
2299 }
2300
2301 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2302         .func           = bpf_msg_pull_data,
2303         .gpl_only       = false,
2304         .ret_type       = RET_INTEGER,
2305         .arg1_type      = ARG_PTR_TO_CTX,
2306         .arg2_type      = ARG_ANYTHING,
2307         .arg3_type      = ARG_ANYTHING,
2308         .arg4_type      = ARG_ANYTHING,
2309 };
2310
2311 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2312            u32, len, u64, flags)
2313 {
2314         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2315         u32 new, i = 0, l, space, copy = 0, offset = 0;
2316         u8 *raw, *to, *from;
2317         struct page *page;
2318
2319         if (unlikely(flags))
2320                 return -EINVAL;
2321
2322         /* First find the starting scatterlist element */
2323         i = msg->sg.start;
2324         do {
2325                 l = sk_msg_elem(msg, i)->length;
2326
2327                 if (start < offset + l)
2328                         break;
2329                 offset += l;
2330                 sk_msg_iter_var_next(i);
2331         } while (i != msg->sg.end);
2332
2333         if (start >= offset + l)
2334                 return -EINVAL;
2335
2336         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2337
2338         /* If no space available will fallback to copy, we need at
2339          * least one scatterlist elem available to push data into
2340          * when start aligns to the beginning of an element or two
2341          * when it falls inside an element. We handle the start equals
2342          * offset case because its the common case for inserting a
2343          * header.
2344          */
2345         if (!space || (space == 1 && start != offset))
2346                 copy = msg->sg.data[i].length;
2347
2348         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2349                            get_order(copy + len));
2350         if (unlikely(!page))
2351                 return -ENOMEM;
2352
2353         if (copy) {
2354                 int front, back;
2355
2356                 raw = page_address(page);
2357
2358                 psge = sk_msg_elem(msg, i);
2359                 front = start - offset;
2360                 back = psge->length - front;
2361                 from = sg_virt(psge);
2362
2363                 if (front)
2364                         memcpy(raw, from, front);
2365
2366                 if (back) {
2367                         from += front;
2368                         to = raw + front + len;
2369
2370                         memcpy(to, from, back);
2371                 }
2372
2373                 put_page(sg_page(psge));
2374         } else if (start - offset) {
2375                 psge = sk_msg_elem(msg, i);
2376                 rsge = sk_msg_elem_cpy(msg, i);
2377
2378                 psge->length = start - offset;
2379                 rsge.length -= psge->length;
2380                 rsge.offset += start;
2381
2382                 sk_msg_iter_var_next(i);
2383                 sg_unmark_end(psge);
2384                 sk_msg_iter_next(msg, end);
2385         }
2386
2387         /* Slot(s) to place newly allocated data */
2388         new = i;
2389
2390         /* Shift one or two slots as needed */
2391         if (!copy) {
2392                 sge = sk_msg_elem_cpy(msg, i);
2393
2394                 sk_msg_iter_var_next(i);
2395                 sg_unmark_end(&sge);
2396                 sk_msg_iter_next(msg, end);
2397
2398                 nsge = sk_msg_elem_cpy(msg, i);
2399                 if (rsge.length) {
2400                         sk_msg_iter_var_next(i);
2401                         nnsge = sk_msg_elem_cpy(msg, i);
2402                 }
2403
2404                 while (i != msg->sg.end) {
2405                         msg->sg.data[i] = sge;
2406                         sge = nsge;
2407                         sk_msg_iter_var_next(i);
2408                         if (rsge.length) {
2409                                 nsge = nnsge;
2410                                 nnsge = sk_msg_elem_cpy(msg, i);
2411                         } else {
2412                                 nsge = sk_msg_elem_cpy(msg, i);
2413                         }
2414                 }
2415         }
2416
2417         /* Place newly allocated data buffer */
2418         sk_mem_charge(msg->sk, len);
2419         msg->sg.size += len;
2420         msg->sg.copy[new] = false;
2421         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2422         if (rsge.length) {
2423                 get_page(sg_page(&rsge));
2424                 sk_msg_iter_var_next(new);
2425                 msg->sg.data[new] = rsge;
2426         }
2427
2428         sk_msg_compute_data_pointers(msg);
2429         return 0;
2430 }
2431
2432 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2433         .func           = bpf_msg_push_data,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437         .arg2_type      = ARG_ANYTHING,
2438         .arg3_type      = ARG_ANYTHING,
2439         .arg4_type      = ARG_ANYTHING,
2440 };
2441
2442 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2443 {
2444         int prev;
2445
2446         do {
2447                 prev = i;
2448                 sk_msg_iter_var_next(i);
2449                 msg->sg.data[prev] = msg->sg.data[i];
2450         } while (i != msg->sg.end);
2451
2452         sk_msg_iter_prev(msg, end);
2453 }
2454
2455 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2456 {
2457         struct scatterlist tmp, sge;
2458
2459         sk_msg_iter_next(msg, end);
2460         sge = sk_msg_elem_cpy(msg, i);
2461         sk_msg_iter_var_next(i);
2462         tmp = sk_msg_elem_cpy(msg, i);
2463
2464         while (i != msg->sg.end) {
2465                 msg->sg.data[i] = sge;
2466                 sk_msg_iter_var_next(i);
2467                 sge = tmp;
2468                 tmp = sk_msg_elem_cpy(msg, i);
2469         }
2470 }
2471
2472 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2473            u32, len, u64, flags)
2474 {
2475         u32 i = 0, l, space, offset = 0;
2476         u64 last = start + len;
2477         int pop;
2478
2479         if (unlikely(flags))
2480                 return -EINVAL;
2481
2482         /* First find the starting scatterlist element */
2483         i = msg->sg.start;
2484         do {
2485                 l = sk_msg_elem(msg, i)->length;
2486
2487                 if (start < offset + l)
2488                         break;
2489                 offset += l;
2490                 sk_msg_iter_var_next(i);
2491         } while (i != msg->sg.end);
2492
2493         /* Bounds checks: start and pop must be inside message */
2494         if (start >= offset + l || last >= msg->sg.size)
2495                 return -EINVAL;
2496
2497         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2498
2499         pop = len;
2500         /* --------------| offset
2501          * -| start      |-------- len -------|
2502          *
2503          *  |----- a ----|-------- pop -------|----- b ----|
2504          *  |______________________________________________| length
2505          *
2506          *
2507          * a:   region at front of scatter element to save
2508          * b:   region at back of scatter element to save when length > A + pop
2509          * pop: region to pop from element, same as input 'pop' here will be
2510          *      decremented below per iteration.
2511          *
2512          * Two top-level cases to handle when start != offset, first B is non
2513          * zero and second B is zero corresponding to when a pop includes more
2514          * than one element.
2515          *
2516          * Then if B is non-zero AND there is no space allocate space and
2517          * compact A, B regions into page. If there is space shift ring to
2518          * the rigth free'ing the next element in ring to place B, leaving
2519          * A untouched except to reduce length.
2520          */
2521         if (start != offset) {
2522                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2523                 int a = start;
2524                 int b = sge->length - pop - a;
2525
2526                 sk_msg_iter_var_next(i);
2527
2528                 if (pop < sge->length - a) {
2529                         if (space) {
2530                                 sge->length = a;
2531                                 sk_msg_shift_right(msg, i);
2532                                 nsge = sk_msg_elem(msg, i);
2533                                 get_page(sg_page(sge));
2534                                 sg_set_page(nsge,
2535                                             sg_page(sge),
2536                                             b, sge->offset + pop + a);
2537                         } else {
2538                                 struct page *page, *orig;
2539                                 u8 *to, *from;
2540
2541                                 page = alloc_pages(__GFP_NOWARN |
2542                                                    __GFP_COMP   | GFP_ATOMIC,
2543                                                    get_order(a + b));
2544                                 if (unlikely(!page))
2545                                         return -ENOMEM;
2546
2547                                 sge->length = a;
2548                                 orig = sg_page(sge);
2549                                 from = sg_virt(sge);
2550                                 to = page_address(page);
2551                                 memcpy(to, from, a);
2552                                 memcpy(to + a, from + a + pop, b);
2553                                 sg_set_page(sge, page, a + b, 0);
2554                                 put_page(orig);
2555                         }
2556                         pop = 0;
2557                 } else if (pop >= sge->length - a) {
2558                         sge->length = a;
2559                         pop -= (sge->length - a);
2560                 }
2561         }
2562
2563         /* From above the current layout _must_ be as follows,
2564          *
2565          * -| offset
2566          * -| start
2567          *
2568          *  |---- pop ---|---------------- b ------------|
2569          *  |____________________________________________| length
2570          *
2571          * Offset and start of the current msg elem are equal because in the
2572          * previous case we handled offset != start and either consumed the
2573          * entire element and advanced to the next element OR pop == 0.
2574          *
2575          * Two cases to handle here are first pop is less than the length
2576          * leaving some remainder b above. Simply adjust the element's layout
2577          * in this case. Or pop >= length of the element so that b = 0. In this
2578          * case advance to next element decrementing pop.
2579          */
2580         while (pop) {
2581                 struct scatterlist *sge = sk_msg_elem(msg, i);
2582
2583                 if (pop < sge->length) {
2584                         sge->length -= pop;
2585                         sge->offset += pop;
2586                         pop = 0;
2587                 } else {
2588                         pop -= sge->length;
2589                         sk_msg_shift_left(msg, i);
2590                 }
2591                 sk_msg_iter_var_next(i);
2592         }
2593
2594         sk_mem_uncharge(msg->sk, len - pop);
2595         msg->sg.size -= (len - pop);
2596         sk_msg_compute_data_pointers(msg);
2597         return 0;
2598 }
2599
2600 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2601         .func           = bpf_msg_pop_data,
2602         .gpl_only       = false,
2603         .ret_type       = RET_INTEGER,
2604         .arg1_type      = ARG_PTR_TO_CTX,
2605         .arg2_type      = ARG_ANYTHING,
2606         .arg3_type      = ARG_ANYTHING,
2607         .arg4_type      = ARG_ANYTHING,
2608 };
2609
2610 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2611 {
2612         return task_get_classid(skb);
2613 }
2614
2615 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2616         .func           = bpf_get_cgroup_classid,
2617         .gpl_only       = false,
2618         .ret_type       = RET_INTEGER,
2619         .arg1_type      = ARG_PTR_TO_CTX,
2620 };
2621
2622 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2623 {
2624         return dst_tclassid(skb);
2625 }
2626
2627 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2628         .func           = bpf_get_route_realm,
2629         .gpl_only       = false,
2630         .ret_type       = RET_INTEGER,
2631         .arg1_type      = ARG_PTR_TO_CTX,
2632 };
2633
2634 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2635 {
2636         /* If skb_clear_hash() was called due to mangling, we can
2637          * trigger SW recalculation here. Later access to hash
2638          * can then use the inline skb->hash via context directly
2639          * instead of calling this helper again.
2640          */
2641         return skb_get_hash(skb);
2642 }
2643
2644 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2645         .func           = bpf_get_hash_recalc,
2646         .gpl_only       = false,
2647         .ret_type       = RET_INTEGER,
2648         .arg1_type      = ARG_PTR_TO_CTX,
2649 };
2650
2651 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2652 {
2653         /* After all direct packet write, this can be used once for
2654          * triggering a lazy recalc on next skb_get_hash() invocation.
2655          */
2656         skb_clear_hash(skb);
2657         return 0;
2658 }
2659
2660 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2661         .func           = bpf_set_hash_invalid,
2662         .gpl_only       = false,
2663         .ret_type       = RET_INTEGER,
2664         .arg1_type      = ARG_PTR_TO_CTX,
2665 };
2666
2667 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2668 {
2669         /* Set user specified hash as L4(+), so that it gets returned
2670          * on skb_get_hash() call unless BPF prog later on triggers a
2671          * skb_clear_hash().
2672          */
2673         __skb_set_sw_hash(skb, hash, true);
2674         return 0;
2675 }
2676
2677 static const struct bpf_func_proto bpf_set_hash_proto = {
2678         .func           = bpf_set_hash,
2679         .gpl_only       = false,
2680         .ret_type       = RET_INTEGER,
2681         .arg1_type      = ARG_PTR_TO_CTX,
2682         .arg2_type      = ARG_ANYTHING,
2683 };
2684
2685 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2686            u16, vlan_tci)
2687 {
2688         int ret;
2689
2690         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2691                      vlan_proto != htons(ETH_P_8021AD)))
2692                 vlan_proto = htons(ETH_P_8021Q);
2693
2694         bpf_push_mac_rcsum(skb);
2695         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2696         bpf_pull_mac_rcsum(skb);
2697
2698         bpf_compute_data_pointers(skb);
2699         return ret;
2700 }
2701
2702 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2703         .func           = bpf_skb_vlan_push,
2704         .gpl_only       = false,
2705         .ret_type       = RET_INTEGER,
2706         .arg1_type      = ARG_PTR_TO_CTX,
2707         .arg2_type      = ARG_ANYTHING,
2708         .arg3_type      = ARG_ANYTHING,
2709 };
2710
2711 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2712 {
2713         int ret;
2714
2715         bpf_push_mac_rcsum(skb);
2716         ret = skb_vlan_pop(skb);
2717         bpf_pull_mac_rcsum(skb);
2718
2719         bpf_compute_data_pointers(skb);
2720         return ret;
2721 }
2722
2723 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2724         .func           = bpf_skb_vlan_pop,
2725         .gpl_only       = false,
2726         .ret_type       = RET_INTEGER,
2727         .arg1_type      = ARG_PTR_TO_CTX,
2728 };
2729
2730 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2731 {
2732         /* Caller already did skb_cow() with len as headroom,
2733          * so no need to do it here.
2734          */
2735         skb_push(skb, len);
2736         memmove(skb->data, skb->data + len, off);
2737         memset(skb->data + off, 0, len);
2738
2739         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2740          * needed here as it does not change the skb->csum
2741          * result for checksum complete when summing over
2742          * zeroed blocks.
2743          */
2744         return 0;
2745 }
2746
2747 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2748 {
2749         /* skb_ensure_writable() is not needed here, as we're
2750          * already working on an uncloned skb.
2751          */
2752         if (unlikely(!pskb_may_pull(skb, off + len)))
2753                 return -ENOMEM;
2754
2755         skb_postpull_rcsum(skb, skb->data + off, len);
2756         memmove(skb->data + len, skb->data, off);
2757         __skb_pull(skb, len);
2758
2759         return 0;
2760 }
2761
2762 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2763 {
2764         bool trans_same = skb->transport_header == skb->network_header;
2765         int ret;
2766
2767         /* There's no need for __skb_push()/__skb_pull() pair to
2768          * get to the start of the mac header as we're guaranteed
2769          * to always start from here under eBPF.
2770          */
2771         ret = bpf_skb_generic_push(skb, off, len);
2772         if (likely(!ret)) {
2773                 skb->mac_header -= len;
2774                 skb->network_header -= len;
2775                 if (trans_same)
2776                         skb->transport_header = skb->network_header;
2777         }
2778
2779         return ret;
2780 }
2781
2782 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2783 {
2784         bool trans_same = skb->transport_header == skb->network_header;
2785         int ret;
2786
2787         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2788         ret = bpf_skb_generic_pop(skb, off, len);
2789         if (likely(!ret)) {
2790                 skb->mac_header += len;
2791                 skb->network_header += len;
2792                 if (trans_same)
2793                         skb->transport_header = skb->network_header;
2794         }
2795
2796         return ret;
2797 }
2798
2799 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2800 {
2801         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2802         u32 off = skb_mac_header_len(skb);
2803         int ret;
2804
2805         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2806                 return -ENOTSUPP;
2807
2808         ret = skb_cow(skb, len_diff);
2809         if (unlikely(ret < 0))
2810                 return ret;
2811
2812         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2813         if (unlikely(ret < 0))
2814                 return ret;
2815
2816         if (skb_is_gso(skb)) {
2817                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2818
2819                 /* SKB_GSO_TCPV4 needs to be changed into
2820                  * SKB_GSO_TCPV6.
2821                  */
2822                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2823                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2824                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2825                 }
2826
2827                 /* Due to IPv6 header, MSS needs to be downgraded. */
2828                 skb_decrease_gso_size(shinfo, len_diff);
2829                 /* Header must be checked, and gso_segs recomputed. */
2830                 shinfo->gso_type |= SKB_GSO_DODGY;
2831                 shinfo->gso_segs = 0;
2832         }
2833
2834         skb->protocol = htons(ETH_P_IPV6);
2835         skb_clear_hash(skb);
2836
2837         return 0;
2838 }
2839
2840 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2841 {
2842         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2843         u32 off = skb_mac_header_len(skb);
2844         int ret;
2845
2846         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2847                 return -ENOTSUPP;
2848
2849         ret = skb_unclone(skb, GFP_ATOMIC);
2850         if (unlikely(ret < 0))
2851                 return ret;
2852
2853         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2854         if (unlikely(ret < 0))
2855                 return ret;
2856
2857         if (skb_is_gso(skb)) {
2858                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2859
2860                 /* SKB_GSO_TCPV6 needs to be changed into
2861                  * SKB_GSO_TCPV4.
2862                  */
2863                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2864                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2865                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2866                 }
2867
2868                 /* Due to IPv4 header, MSS can be upgraded. */
2869                 skb_increase_gso_size(shinfo, len_diff);
2870                 /* Header must be checked, and gso_segs recomputed. */
2871                 shinfo->gso_type |= SKB_GSO_DODGY;
2872                 shinfo->gso_segs = 0;
2873         }
2874
2875         skb->protocol = htons(ETH_P_IP);
2876         skb_clear_hash(skb);
2877
2878         return 0;
2879 }
2880
2881 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2882 {
2883         __be16 from_proto = skb->protocol;
2884
2885         if (from_proto == htons(ETH_P_IP) &&
2886               to_proto == htons(ETH_P_IPV6))
2887                 return bpf_skb_proto_4_to_6(skb);
2888
2889         if (from_proto == htons(ETH_P_IPV6) &&
2890               to_proto == htons(ETH_P_IP))
2891                 return bpf_skb_proto_6_to_4(skb);
2892
2893         return -ENOTSUPP;
2894 }
2895
2896 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2897            u64, flags)
2898 {
2899         int ret;
2900
2901         if (unlikely(flags))
2902                 return -EINVAL;
2903
2904         /* General idea is that this helper does the basic groundwork
2905          * needed for changing the protocol, and eBPF program fills the
2906          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2907          * and other helpers, rather than passing a raw buffer here.
2908          *
2909          * The rationale is to keep this minimal and without a need to
2910          * deal with raw packet data. F.e. even if we would pass buffers
2911          * here, the program still needs to call the bpf_lX_csum_replace()
2912          * helpers anyway. Plus, this way we keep also separation of
2913          * concerns, since f.e. bpf_skb_store_bytes() should only take
2914          * care of stores.
2915          *
2916          * Currently, additional options and extension header space are
2917          * not supported, but flags register is reserved so we can adapt
2918          * that. For offloads, we mark packet as dodgy, so that headers
2919          * need to be verified first.
2920          */
2921         ret = bpf_skb_proto_xlat(skb, proto);
2922         bpf_compute_data_pointers(skb);
2923         return ret;
2924 }
2925
2926 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2927         .func           = bpf_skb_change_proto,
2928         .gpl_only       = false,
2929         .ret_type       = RET_INTEGER,
2930         .arg1_type      = ARG_PTR_TO_CTX,
2931         .arg2_type      = ARG_ANYTHING,
2932         .arg3_type      = ARG_ANYTHING,
2933 };
2934
2935 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2936 {
2937         /* We only allow a restricted subset to be changed for now. */
2938         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2939                      !skb_pkt_type_ok(pkt_type)))
2940                 return -EINVAL;
2941
2942         skb->pkt_type = pkt_type;
2943         return 0;
2944 }
2945
2946 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2947         .func           = bpf_skb_change_type,
2948         .gpl_only       = false,
2949         .ret_type       = RET_INTEGER,
2950         .arg1_type      = ARG_PTR_TO_CTX,
2951         .arg2_type      = ARG_ANYTHING,
2952 };
2953
2954 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2955 {
2956         switch (skb->protocol) {
2957         case htons(ETH_P_IP):
2958                 return sizeof(struct iphdr);
2959         case htons(ETH_P_IPV6):
2960                 return sizeof(struct ipv6hdr);
2961         default:
2962                 return ~0U;
2963         }
2964 }
2965
2966 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2967 {
2968         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2969         int ret;
2970
2971         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2972                 return -ENOTSUPP;
2973
2974         ret = skb_cow(skb, len_diff);
2975         if (unlikely(ret < 0))
2976                 return ret;
2977
2978         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2979         if (unlikely(ret < 0))
2980                 return ret;
2981
2982         if (skb_is_gso(skb)) {
2983                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2984
2985                 /* Due to header grow, MSS needs to be downgraded. */
2986                 skb_decrease_gso_size(shinfo, len_diff);
2987                 /* Header must be checked, and gso_segs recomputed. */
2988                 shinfo->gso_type |= SKB_GSO_DODGY;
2989                 shinfo->gso_segs = 0;
2990         }
2991
2992         return 0;
2993 }
2994
2995 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2996 {
2997         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2998         int ret;
2999
3000         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3001                 return -ENOTSUPP;
3002
3003         ret = skb_unclone(skb, GFP_ATOMIC);
3004         if (unlikely(ret < 0))
3005                 return ret;
3006
3007         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3008         if (unlikely(ret < 0))
3009                 return ret;
3010
3011         if (skb_is_gso(skb)) {
3012                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3013
3014                 /* Due to header shrink, MSS can be upgraded. */
3015                 skb_increase_gso_size(shinfo, len_diff);
3016                 /* Header must be checked, and gso_segs recomputed. */
3017                 shinfo->gso_type |= SKB_GSO_DODGY;
3018                 shinfo->gso_segs = 0;
3019         }
3020
3021         return 0;
3022 }
3023
3024 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3025 {
3026         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3027                           SKB_MAX_ALLOC;
3028 }
3029
3030 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
3031 {
3032         bool trans_same = skb->transport_header == skb->network_header;
3033         u32 len_cur, len_diff_abs = abs(len_diff);
3034         u32 len_min = bpf_skb_net_base_len(skb);
3035         u32 len_max = __bpf_skb_max_len(skb);
3036         __be16 proto = skb->protocol;
3037         bool shrink = len_diff < 0;
3038         int ret;
3039
3040         if (unlikely(len_diff_abs > 0xfffU))
3041                 return -EFAULT;
3042         if (unlikely(proto != htons(ETH_P_IP) &&
3043                      proto != htons(ETH_P_IPV6)))
3044                 return -ENOTSUPP;
3045
3046         len_cur = skb->len - skb_network_offset(skb);
3047         if (skb_transport_header_was_set(skb) && !trans_same)
3048                 len_cur = skb_network_header_len(skb);
3049         if ((shrink && (len_diff_abs >= len_cur ||
3050                         len_cur - len_diff_abs < len_min)) ||
3051             (!shrink && (skb->len + len_diff_abs > len_max &&
3052                          !skb_is_gso(skb))))
3053                 return -ENOTSUPP;
3054
3055         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
3056                        bpf_skb_net_grow(skb, len_diff_abs);
3057
3058         bpf_compute_data_pointers(skb);
3059         return ret;
3060 }
3061
3062 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3063            u32, mode, u64, flags)
3064 {
3065         if (unlikely(flags))
3066                 return -EINVAL;
3067         if (likely(mode == BPF_ADJ_ROOM_NET))
3068                 return bpf_skb_adjust_net(skb, len_diff);
3069
3070         return -ENOTSUPP;
3071 }
3072
3073 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3074         .func           = bpf_skb_adjust_room,
3075         .gpl_only       = false,
3076         .ret_type       = RET_INTEGER,
3077         .arg1_type      = ARG_PTR_TO_CTX,
3078         .arg2_type      = ARG_ANYTHING,
3079         .arg3_type      = ARG_ANYTHING,
3080         .arg4_type      = ARG_ANYTHING,
3081 };
3082
3083 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3084 {
3085         u32 min_len = skb_network_offset(skb);
3086
3087         if (skb_transport_header_was_set(skb))
3088                 min_len = skb_transport_offset(skb);
3089         if (skb->ip_summed == CHECKSUM_PARTIAL)
3090                 min_len = skb_checksum_start_offset(skb) +
3091                           skb->csum_offset + sizeof(__sum16);
3092         return min_len;
3093 }
3094
3095 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3096 {
3097         unsigned int old_len = skb->len;
3098         int ret;
3099
3100         ret = __skb_grow_rcsum(skb, new_len);
3101         if (!ret)
3102                 memset(skb->data + old_len, 0, new_len - old_len);
3103         return ret;
3104 }
3105
3106 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3107 {
3108         return __skb_trim_rcsum(skb, new_len);
3109 }
3110
3111 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3112                                         u64 flags)
3113 {
3114         u32 max_len = __bpf_skb_max_len(skb);
3115         u32 min_len = __bpf_skb_min_len(skb);
3116         int ret;
3117
3118         if (unlikely(flags || new_len > max_len || new_len < min_len))
3119                 return -EINVAL;
3120         if (skb->encapsulation)
3121                 return -ENOTSUPP;
3122
3123         /* The basic idea of this helper is that it's performing the
3124          * needed work to either grow or trim an skb, and eBPF program
3125          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3126          * bpf_lX_csum_replace() and others rather than passing a raw
3127          * buffer here. This one is a slow path helper and intended
3128          * for replies with control messages.
3129          *
3130          * Like in bpf_skb_change_proto(), we want to keep this rather
3131          * minimal and without protocol specifics so that we are able
3132          * to separate concerns as in bpf_skb_store_bytes() should only
3133          * be the one responsible for writing buffers.
3134          *
3135          * It's really expected to be a slow path operation here for
3136          * control message replies, so we're implicitly linearizing,
3137          * uncloning and drop offloads from the skb by this.
3138          */
3139         ret = __bpf_try_make_writable(skb, skb->len);
3140         if (!ret) {
3141                 if (new_len > skb->len)
3142                         ret = bpf_skb_grow_rcsum(skb, new_len);
3143                 else if (new_len < skb->len)
3144                         ret = bpf_skb_trim_rcsum(skb, new_len);
3145                 if (!ret && skb_is_gso(skb))
3146                         skb_gso_reset(skb);
3147         }
3148         return ret;
3149 }
3150
3151 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3152            u64, flags)
3153 {
3154         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3155
3156         bpf_compute_data_pointers(skb);
3157         return ret;
3158 }
3159
3160 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3161         .func           = bpf_skb_change_tail,
3162         .gpl_only       = false,
3163         .ret_type       = RET_INTEGER,
3164         .arg1_type      = ARG_PTR_TO_CTX,
3165         .arg2_type      = ARG_ANYTHING,
3166         .arg3_type      = ARG_ANYTHING,
3167 };
3168
3169 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3170            u64, flags)
3171 {
3172         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3173
3174         bpf_compute_data_end_sk_skb(skb);
3175         return ret;
3176 }
3177
3178 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3179         .func           = sk_skb_change_tail,
3180         .gpl_only       = false,
3181         .ret_type       = RET_INTEGER,
3182         .arg1_type      = ARG_PTR_TO_CTX,
3183         .arg2_type      = ARG_ANYTHING,
3184         .arg3_type      = ARG_ANYTHING,
3185 };
3186
3187 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3188                                         u64 flags)
3189 {
3190         u32 max_len = __bpf_skb_max_len(skb);
3191         u32 new_len = skb->len + head_room;
3192         int ret;
3193
3194         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3195                      new_len < skb->len))
3196                 return -EINVAL;
3197
3198         ret = skb_cow(skb, head_room);
3199         if (likely(!ret)) {
3200                 /* Idea for this helper is that we currently only
3201                  * allow to expand on mac header. This means that
3202                  * skb->protocol network header, etc, stay as is.
3203                  * Compared to bpf_skb_change_tail(), we're more
3204                  * flexible due to not needing to linearize or
3205                  * reset GSO. Intention for this helper is to be
3206                  * used by an L3 skb that needs to push mac header
3207                  * for redirection into L2 device.
3208                  */
3209                 __skb_push(skb, head_room);
3210                 memset(skb->data, 0, head_room);
3211                 skb_reset_mac_header(skb);
3212         }
3213
3214         return ret;
3215 }
3216
3217 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3218            u64, flags)
3219 {
3220         int ret = __bpf_skb_change_head(skb, head_room, flags);
3221
3222         bpf_compute_data_pointers(skb);
3223         return ret;
3224 }
3225
3226 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3227         .func           = bpf_skb_change_head,
3228         .gpl_only       = false,
3229         .ret_type       = RET_INTEGER,
3230         .arg1_type      = ARG_PTR_TO_CTX,
3231         .arg2_type      = ARG_ANYTHING,
3232         .arg3_type      = ARG_ANYTHING,
3233 };
3234
3235 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3236            u64, flags)
3237 {
3238         int ret = __bpf_skb_change_head(skb, head_room, flags);
3239
3240         bpf_compute_data_end_sk_skb(skb);
3241         return ret;
3242 }
3243
3244 static const struct bpf_func_proto sk_skb_change_head_proto = {
3245         .func           = sk_skb_change_head,
3246         .gpl_only       = false,
3247         .ret_type       = RET_INTEGER,
3248         .arg1_type      = ARG_PTR_TO_CTX,
3249         .arg2_type      = ARG_ANYTHING,
3250         .arg3_type      = ARG_ANYTHING,
3251 };
3252 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3253 {
3254         return xdp_data_meta_unsupported(xdp) ? 0 :
3255                xdp->data - xdp->data_meta;
3256 }
3257
3258 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3259 {
3260         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3261         unsigned long metalen = xdp_get_metalen(xdp);
3262         void *data_start = xdp_frame_end + metalen;
3263         void *data = xdp->data + offset;
3264
3265         if (unlikely(data < data_start ||
3266                      data > xdp->data_end - ETH_HLEN))
3267                 return -EINVAL;
3268
3269         if (metalen)
3270                 memmove(xdp->data_meta + offset,
3271                         xdp->data_meta, metalen);
3272         xdp->data_meta += offset;
3273         xdp->data = data;
3274
3275         return 0;
3276 }
3277
3278 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3279         .func           = bpf_xdp_adjust_head,
3280         .gpl_only       = false,
3281         .ret_type       = RET_INTEGER,
3282         .arg1_type      = ARG_PTR_TO_CTX,
3283         .arg2_type      = ARG_ANYTHING,
3284 };
3285
3286 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3287 {
3288         void *data_end = xdp->data_end + offset;
3289
3290         /* only shrinking is allowed for now. */
3291         if (unlikely(offset >= 0))
3292                 return -EINVAL;
3293
3294         if (unlikely(data_end < xdp->data + ETH_HLEN))
3295                 return -EINVAL;
3296
3297         xdp->data_end = data_end;
3298
3299         return 0;
3300 }
3301
3302 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3303         .func           = bpf_xdp_adjust_tail,
3304         .gpl_only       = false,
3305         .ret_type       = RET_INTEGER,
3306         .arg1_type      = ARG_PTR_TO_CTX,
3307         .arg2_type      = ARG_ANYTHING,
3308 };
3309
3310 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3311 {
3312         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3313         void *meta = xdp->data_meta + offset;
3314         unsigned long metalen = xdp->data - meta;
3315
3316         if (xdp_data_meta_unsupported(xdp))
3317                 return -ENOTSUPP;
3318         if (unlikely(meta < xdp_frame_end ||
3319                      meta > xdp->data))
3320                 return -EINVAL;
3321         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3322                      (metalen > 32)))
3323                 return -EACCES;
3324
3325         xdp->data_meta = meta;
3326
3327         return 0;
3328 }
3329
3330 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3331         .func           = bpf_xdp_adjust_meta,
3332         .gpl_only       = false,
3333         .ret_type       = RET_INTEGER,
3334         .arg1_type      = ARG_PTR_TO_CTX,
3335         .arg2_type      = ARG_ANYTHING,
3336 };
3337
3338 static int __bpf_tx_xdp(struct net_device *dev,
3339                         struct bpf_map *map,
3340                         struct xdp_buff *xdp,
3341                         u32 index)
3342 {
3343         struct xdp_frame *xdpf;
3344         int err, sent;
3345
3346         if (!dev->netdev_ops->ndo_xdp_xmit) {
3347                 return -EOPNOTSUPP;
3348         }
3349
3350         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3351         if (unlikely(err))
3352                 return err;
3353
3354         xdpf = convert_to_xdp_frame(xdp);
3355         if (unlikely(!xdpf))
3356                 return -EOVERFLOW;
3357
3358         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3359         if (sent <= 0)
3360                 return sent;
3361         return 0;
3362 }
3363
3364 static noinline int
3365 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3366                      struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3367 {
3368         struct net_device *fwd;
3369         u32 index = ri->ifindex;
3370         int err;
3371
3372         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3373         ri->ifindex = 0;
3374         if (unlikely(!fwd)) {
3375                 err = -EINVAL;
3376                 goto err;
3377         }
3378
3379         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3380         if (unlikely(err))
3381                 goto err;
3382
3383         _trace_xdp_redirect(dev, xdp_prog, index);
3384         return 0;
3385 err:
3386         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3387         return err;
3388 }
3389
3390 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3391                             struct bpf_map *map,
3392                             struct xdp_buff *xdp,
3393                             u32 index)
3394 {
3395         int err;
3396
3397         switch (map->map_type) {
3398         case BPF_MAP_TYPE_DEVMAP: {
3399                 struct bpf_dtab_netdev *dst = fwd;
3400
3401                 err = dev_map_enqueue(dst, xdp, dev_rx);
3402                 if (unlikely(err))
3403                         return err;
3404                 __dev_map_insert_ctx(map, index);
3405                 break;
3406         }
3407         case BPF_MAP_TYPE_CPUMAP: {
3408                 struct bpf_cpu_map_entry *rcpu = fwd;
3409
3410                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3411                 if (unlikely(err))
3412                         return err;
3413                 __cpu_map_insert_ctx(map, index);
3414                 break;
3415         }
3416         case BPF_MAP_TYPE_XSKMAP: {
3417                 struct xdp_sock *xs = fwd;
3418
3419                 err = __xsk_map_redirect(map, xdp, xs);
3420                 return err;
3421         }
3422         default:
3423                 break;
3424         }
3425         return 0;
3426 }
3427
3428 void xdp_do_flush_map(void)
3429 {
3430         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3431         struct bpf_map *map = ri->map_to_flush;
3432
3433         ri->map_to_flush = NULL;
3434         if (map) {
3435                 switch (map->map_type) {
3436                 case BPF_MAP_TYPE_DEVMAP:
3437                         __dev_map_flush(map);
3438                         break;
3439                 case BPF_MAP_TYPE_CPUMAP:
3440                         __cpu_map_flush(map);
3441                         break;
3442                 case BPF_MAP_TYPE_XSKMAP:
3443                         __xsk_map_flush(map);
3444                         break;
3445                 default:
3446                         break;
3447                 }
3448         }
3449 }
3450 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3451
3452 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3453 {
3454         switch (map->map_type) {
3455         case BPF_MAP_TYPE_DEVMAP:
3456                 return __dev_map_lookup_elem(map, index);
3457         case BPF_MAP_TYPE_CPUMAP:
3458                 return __cpu_map_lookup_elem(map, index);
3459         case BPF_MAP_TYPE_XSKMAP:
3460                 return __xsk_map_lookup_elem(map, index);
3461         default:
3462                 return NULL;
3463         }
3464 }
3465
3466 void bpf_clear_redirect_map(struct bpf_map *map)
3467 {
3468         struct bpf_redirect_info *ri;
3469         int cpu;
3470
3471         for_each_possible_cpu(cpu) {
3472                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3473                 /* Avoid polluting remote cacheline due to writes if
3474                  * not needed. Once we pass this test, we need the
3475                  * cmpxchg() to make sure it hasn't been changed in
3476                  * the meantime by remote CPU.
3477                  */
3478                 if (unlikely(READ_ONCE(ri->map) == map))
3479                         cmpxchg(&ri->map, map, NULL);
3480         }
3481 }
3482
3483 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3484                                struct bpf_prog *xdp_prog, struct bpf_map *map,
3485                                struct bpf_redirect_info *ri)
3486 {
3487         u32 index = ri->ifindex;
3488         void *fwd = NULL;
3489         int err;
3490
3491         ri->ifindex = 0;
3492         WRITE_ONCE(ri->map, NULL);
3493
3494         fwd = __xdp_map_lookup_elem(map, index);
3495         if (unlikely(!fwd)) {
3496                 err = -EINVAL;
3497                 goto err;
3498         }
3499         if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3500                 xdp_do_flush_map();
3501
3502         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3503         if (unlikely(err))
3504                 goto err;
3505
3506         ri->map_to_flush = map;
3507         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3508         return 0;
3509 err:
3510         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3511         return err;
3512 }
3513
3514 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3515                     struct bpf_prog *xdp_prog)
3516 {
3517         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3518         struct bpf_map *map = READ_ONCE(ri->map);
3519
3520         if (likely(map))
3521                 return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3522
3523         return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3524 }
3525 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3526
3527 static int xdp_do_generic_redirect_map(struct net_device *dev,
3528                                        struct sk_buff *skb,
3529                                        struct xdp_buff *xdp,
3530                                        struct bpf_prog *xdp_prog,
3531                                        struct bpf_map *map)
3532 {
3533         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3534         u32 index = ri->ifindex;
3535         void *fwd = NULL;
3536         int err = 0;
3537
3538         ri->ifindex = 0;
3539         WRITE_ONCE(ri->map, NULL);
3540
3541         fwd = __xdp_map_lookup_elem(map, index);
3542         if (unlikely(!fwd)) {
3543                 err = -EINVAL;
3544                 goto err;
3545         }
3546
3547         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3548                 struct bpf_dtab_netdev *dst = fwd;
3549
3550                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3551                 if (unlikely(err))
3552                         goto err;
3553         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3554                 struct xdp_sock *xs = fwd;
3555
3556                 err = xsk_generic_rcv(xs, xdp);
3557                 if (err)
3558                         goto err;
3559                 consume_skb(skb);
3560         } else {
3561                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3562                 err = -EBADRQC;
3563                 goto err;
3564         }
3565
3566         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3567         return 0;
3568 err:
3569         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3570         return err;
3571 }
3572
3573 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3574                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3575 {
3576         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3577         struct bpf_map *map = READ_ONCE(ri->map);
3578         u32 index = ri->ifindex;
3579         struct net_device *fwd;
3580         int err = 0;
3581
3582         if (map)
3583                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3584                                                    map);
3585         ri->ifindex = 0;
3586         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3587         if (unlikely(!fwd)) {
3588                 err = -EINVAL;
3589                 goto err;
3590         }
3591
3592         err = xdp_ok_fwd_dev(fwd, skb->len);
3593         if (unlikely(err))
3594                 goto err;
3595
3596         skb->dev = fwd;
3597         _trace_xdp_redirect(dev, xdp_prog, index);
3598         generic_xdp_tx(skb, xdp_prog);
3599         return 0;
3600 err:
3601         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3602         return err;
3603 }
3604 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3605
3606 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3607 {
3608         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3609
3610         if (unlikely(flags))
3611                 return XDP_ABORTED;
3612
3613         ri->ifindex = ifindex;
3614         ri->flags = flags;
3615         WRITE_ONCE(ri->map, NULL);
3616
3617         return XDP_REDIRECT;
3618 }
3619
3620 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3621         .func           = bpf_xdp_redirect,
3622         .gpl_only       = false,
3623         .ret_type       = RET_INTEGER,
3624         .arg1_type      = ARG_ANYTHING,
3625         .arg2_type      = ARG_ANYTHING,
3626 };
3627
3628 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3629            u64, flags)
3630 {
3631         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3632
3633         if (unlikely(flags))
3634                 return XDP_ABORTED;
3635
3636         ri->ifindex = ifindex;
3637         ri->flags = flags;
3638         WRITE_ONCE(ri->map, map);
3639
3640         return XDP_REDIRECT;
3641 }
3642
3643 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3644         .func           = bpf_xdp_redirect_map,
3645         .gpl_only       = false,
3646         .ret_type       = RET_INTEGER,
3647         .arg1_type      = ARG_CONST_MAP_PTR,
3648         .arg2_type      = ARG_ANYTHING,
3649         .arg3_type      = ARG_ANYTHING,
3650 };
3651
3652 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3653                                   unsigned long off, unsigned long len)
3654 {
3655         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3656
3657         if (unlikely(!ptr))
3658                 return len;
3659         if (ptr != dst_buff)
3660                 memcpy(dst_buff, ptr, len);
3661
3662         return 0;
3663 }
3664
3665 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3666            u64, flags, void *, meta, u64, meta_size)
3667 {
3668         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3669
3670         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3671                 return -EINVAL;
3672         if (unlikely(skb_size > skb->len))
3673                 return -EFAULT;
3674
3675         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3676                                 bpf_skb_copy);
3677 }
3678
3679 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3680         .func           = bpf_skb_event_output,
3681         .gpl_only       = true,
3682         .ret_type       = RET_INTEGER,
3683         .arg1_type      = ARG_PTR_TO_CTX,
3684         .arg2_type      = ARG_CONST_MAP_PTR,
3685         .arg3_type      = ARG_ANYTHING,
3686         .arg4_type      = ARG_PTR_TO_MEM,
3687         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3688 };
3689
3690 static unsigned short bpf_tunnel_key_af(u64 flags)
3691 {
3692         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3693 }
3694
3695 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3696            u32, size, u64, flags)
3697 {
3698         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3699         u8 compat[sizeof(struct bpf_tunnel_key)];
3700         void *to_orig = to;
3701         int err;
3702
3703         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3704                 err = -EINVAL;
3705                 goto err_clear;
3706         }
3707         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3708                 err = -EPROTO;
3709                 goto err_clear;
3710         }
3711         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3712                 err = -EINVAL;
3713                 switch (size) {
3714                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3715                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3716                         goto set_compat;
3717                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3718                         /* Fixup deprecated structure layouts here, so we have
3719                          * a common path later on.
3720                          */
3721                         if (ip_tunnel_info_af(info) != AF_INET)
3722                                 goto err_clear;
3723 set_compat:
3724                         to = (struct bpf_tunnel_key *)compat;
3725                         break;
3726                 default:
3727                         goto err_clear;
3728                 }
3729         }
3730
3731         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3732         to->tunnel_tos = info->key.tos;
3733         to->tunnel_ttl = info->key.ttl;
3734         to->tunnel_ext = 0;
3735
3736         if (flags & BPF_F_TUNINFO_IPV6) {
3737                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3738                        sizeof(to->remote_ipv6));
3739                 to->tunnel_label = be32_to_cpu(info->key.label);
3740         } else {
3741                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3742                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3743                 to->tunnel_label = 0;
3744         }
3745
3746         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3747                 memcpy(to_orig, to, size);
3748
3749         return 0;
3750 err_clear:
3751         memset(to_orig, 0, size);
3752         return err;
3753 }
3754
3755 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3756         .func           = bpf_skb_get_tunnel_key,
3757         .gpl_only       = false,
3758         .ret_type       = RET_INTEGER,
3759         .arg1_type      = ARG_PTR_TO_CTX,
3760         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3761         .arg3_type      = ARG_CONST_SIZE,
3762         .arg4_type      = ARG_ANYTHING,
3763 };
3764
3765 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3766 {
3767         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3768         int err;
3769
3770         if (unlikely(!info ||
3771                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3772                 err = -ENOENT;
3773                 goto err_clear;
3774         }
3775         if (unlikely(size < info->options_len)) {
3776                 err = -ENOMEM;
3777                 goto err_clear;
3778         }
3779
3780         ip_tunnel_info_opts_get(to, info);
3781         if (size > info->options_len)
3782                 memset(to + info->options_len, 0, size - info->options_len);
3783
3784         return info->options_len;
3785 err_clear:
3786         memset(to, 0, size);
3787         return err;
3788 }
3789
3790 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3791         .func           = bpf_skb_get_tunnel_opt,
3792         .gpl_only       = false,
3793         .ret_type       = RET_INTEGER,
3794         .arg1_type      = ARG_PTR_TO_CTX,
3795         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3796         .arg3_type      = ARG_CONST_SIZE,
3797 };
3798
3799 static struct metadata_dst __percpu *md_dst;
3800
3801 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3802            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3803 {
3804         struct metadata_dst *md = this_cpu_ptr(md_dst);
3805         u8 compat[sizeof(struct bpf_tunnel_key)];
3806         struct ip_tunnel_info *info;
3807
3808         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3809                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3810                 return -EINVAL;
3811         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3812                 switch (size) {
3813                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3814                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3815                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3816                         /* Fixup deprecated structure layouts here, so we have
3817                          * a common path later on.
3818                          */
3819                         memcpy(compat, from, size);
3820                         memset(compat + size, 0, sizeof(compat) - size);
3821                         from = (const struct bpf_tunnel_key *) compat;
3822                         break;
3823                 default:
3824                         return -EINVAL;
3825                 }
3826         }
3827         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3828                      from->tunnel_ext))
3829                 return -EINVAL;
3830
3831         skb_dst_drop(skb);
3832         dst_hold((struct dst_entry *) md);
3833         skb_dst_set(skb, (struct dst_entry *) md);
3834
3835         info = &md->u.tun_info;
3836         memset(info, 0, sizeof(*info));
3837         info->mode = IP_TUNNEL_INFO_TX;
3838
3839         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3840         if (flags & BPF_F_DONT_FRAGMENT)
3841                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3842         if (flags & BPF_F_ZERO_CSUM_TX)
3843                 info->key.tun_flags &= ~TUNNEL_CSUM;
3844         if (flags & BPF_F_SEQ_NUMBER)
3845                 info->key.tun_flags |= TUNNEL_SEQ;
3846
3847         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3848         info->key.tos = from->tunnel_tos;
3849         info->key.ttl = from->tunnel_ttl;
3850
3851         if (flags & BPF_F_TUNINFO_IPV6) {
3852                 info->mode |= IP_TUNNEL_INFO_IPV6;
3853                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3854                        sizeof(from->remote_ipv6));
3855                 info->key.label = cpu_to_be32(from->tunnel_label) &
3856                                   IPV6_FLOWLABEL_MASK;
3857         } else {
3858                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3859         }
3860
3861         return 0;
3862 }
3863
3864 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3865         .func           = bpf_skb_set_tunnel_key,
3866         .gpl_only       = false,
3867         .ret_type       = RET_INTEGER,
3868         .arg1_type      = ARG_PTR_TO_CTX,
3869         .arg2_type      = ARG_PTR_TO_MEM,
3870         .arg3_type      = ARG_CONST_SIZE,
3871         .arg4_type      = ARG_ANYTHING,
3872 };
3873
3874 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3875            const u8 *, from, u32, size)
3876 {
3877         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3878         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3879
3880         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3881                 return -EINVAL;
3882         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3883                 return -ENOMEM;
3884
3885         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3886
3887         return 0;
3888 }
3889
3890 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3891         .func           = bpf_skb_set_tunnel_opt,
3892         .gpl_only       = false,
3893         .ret_type       = RET_INTEGER,
3894         .arg1_type      = ARG_PTR_TO_CTX,
3895         .arg2_type      = ARG_PTR_TO_MEM,
3896         .arg3_type      = ARG_CONST_SIZE,
3897 };
3898
3899 static const struct bpf_func_proto *
3900 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3901 {
3902         if (!md_dst) {
3903                 struct metadata_dst __percpu *tmp;
3904
3905                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3906                                                 METADATA_IP_TUNNEL,
3907                                                 GFP_KERNEL);
3908                 if (!tmp)
3909                         return NULL;
3910                 if (cmpxchg(&md_dst, NULL, tmp))
3911                         metadata_dst_free_percpu(tmp);
3912         }
3913
3914         switch (which) {
3915         case BPF_FUNC_skb_set_tunnel_key:
3916                 return &bpf_skb_set_tunnel_key_proto;
3917         case BPF_FUNC_skb_set_tunnel_opt:
3918                 return &bpf_skb_set_tunnel_opt_proto;
3919         default:
3920                 return NULL;
3921         }
3922 }
3923
3924 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3925            u32, idx)
3926 {
3927         struct bpf_array *array = container_of(map, struct bpf_array, map);
3928         struct cgroup *cgrp;
3929         struct sock *sk;
3930
3931         sk = skb_to_full_sk(skb);
3932         if (!sk || !sk_fullsock(sk))
3933                 return -ENOENT;
3934         if (unlikely(idx >= array->map.max_entries))
3935                 return -E2BIG;
3936
3937         cgrp = READ_ONCE(array->ptrs[idx]);
3938         if (unlikely(!cgrp))
3939                 return -EAGAIN;
3940
3941         return sk_under_cgroup_hierarchy(sk, cgrp);
3942 }
3943
3944 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3945         .func           = bpf_skb_under_cgroup,
3946         .gpl_only       = false,
3947         .ret_type       = RET_INTEGER,
3948         .arg1_type      = ARG_PTR_TO_CTX,
3949         .arg2_type      = ARG_CONST_MAP_PTR,
3950         .arg3_type      = ARG_ANYTHING,
3951 };
3952
3953 #ifdef CONFIG_SOCK_CGROUP_DATA
3954 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3955 {
3956         struct sock *sk = skb_to_full_sk(skb);
3957         struct cgroup *cgrp;
3958
3959         if (!sk || !sk_fullsock(sk))
3960                 return 0;
3961
3962         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3963         return cgrp->kn->id.id;
3964 }
3965
3966 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3967         .func           = bpf_skb_cgroup_id,
3968         .gpl_only       = false,
3969         .ret_type       = RET_INTEGER,
3970         .arg1_type      = ARG_PTR_TO_CTX,
3971 };
3972
3973 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3974            ancestor_level)
3975 {
3976         struct sock *sk = skb_to_full_sk(skb);
3977         struct cgroup *ancestor;
3978         struct cgroup *cgrp;
3979
3980         if (!sk || !sk_fullsock(sk))
3981                 return 0;
3982
3983         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3984         ancestor = cgroup_ancestor(cgrp, ancestor_level);
3985         if (!ancestor)
3986                 return 0;
3987
3988         return ancestor->kn->id.id;
3989 }
3990
3991 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3992         .func           = bpf_skb_ancestor_cgroup_id,
3993         .gpl_only       = false,
3994         .ret_type       = RET_INTEGER,
3995         .arg1_type      = ARG_PTR_TO_CTX,
3996         .arg2_type      = ARG_ANYTHING,
3997 };
3998 #endif
3999
4000 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4001                                   unsigned long off, unsigned long len)
4002 {
4003         memcpy(dst_buff, src_buff + off, len);
4004         return 0;
4005 }
4006
4007 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4008            u64, flags, void *, meta, u64, meta_size)
4009 {
4010         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4011
4012         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4013                 return -EINVAL;
4014         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4015                 return -EFAULT;
4016
4017         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4018                                 xdp_size, bpf_xdp_copy);
4019 }
4020
4021 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4022         .func           = bpf_xdp_event_output,
4023         .gpl_only       = true,
4024         .ret_type       = RET_INTEGER,
4025         .arg1_type      = ARG_PTR_TO_CTX,
4026         .arg2_type      = ARG_CONST_MAP_PTR,
4027         .arg3_type      = ARG_ANYTHING,
4028         .arg4_type      = ARG_PTR_TO_MEM,
4029         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4030 };
4031
4032 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4033 {
4034         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4035 }
4036
4037 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4038         .func           = bpf_get_socket_cookie,
4039         .gpl_only       = false,
4040         .ret_type       = RET_INTEGER,
4041         .arg1_type      = ARG_PTR_TO_CTX,
4042 };
4043
4044 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4045 {
4046         return sock_gen_cookie(ctx->sk);
4047 }
4048
4049 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4050         .func           = bpf_get_socket_cookie_sock_addr,
4051         .gpl_only       = false,
4052         .ret_type       = RET_INTEGER,
4053         .arg1_type      = ARG_PTR_TO_CTX,
4054 };
4055
4056 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4057 {
4058         return sock_gen_cookie(ctx->sk);
4059 }
4060
4061 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4062         .func           = bpf_get_socket_cookie_sock_ops,
4063         .gpl_only       = false,
4064         .ret_type       = RET_INTEGER,
4065         .arg1_type      = ARG_PTR_TO_CTX,
4066 };
4067
4068 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4069 {
4070         struct sock *sk = sk_to_full_sk(skb->sk);
4071         kuid_t kuid;
4072
4073         if (!sk || !sk_fullsock(sk))
4074                 return overflowuid;
4075         kuid = sock_net_uid(sock_net(sk), sk);
4076         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4077 }
4078
4079 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4080         .func           = bpf_get_socket_uid,
4081         .gpl_only       = false,
4082         .ret_type       = RET_INTEGER,
4083         .arg1_type      = ARG_PTR_TO_CTX,
4084 };
4085
4086 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4087            struct bpf_map *, map, u64, flags, void *, data, u64, size)
4088 {
4089         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4090                 return -EINVAL;
4091
4092         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4093 }
4094
4095 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4096         .func           = bpf_sockopt_event_output,
4097         .gpl_only       = true,
4098         .ret_type       = RET_INTEGER,
4099         .arg1_type      = ARG_PTR_TO_CTX,
4100         .arg2_type      = ARG_CONST_MAP_PTR,
4101         .arg3_type      = ARG_ANYTHING,
4102         .arg4_type      = ARG_PTR_TO_MEM,
4103         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4104 };
4105
4106 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4107            int, level, int, optname, char *, optval, int, optlen)
4108 {
4109         struct sock *sk = bpf_sock->sk;
4110         int ret = 0;
4111         int val;
4112
4113         if (!sk_fullsock(sk))
4114                 return -EINVAL;
4115
4116         if (level == SOL_SOCKET) {
4117                 if (optlen != sizeof(int))
4118                         return -EINVAL;
4119                 val = *((int *)optval);
4120
4121                 /* Only some socketops are supported */
4122                 switch (optname) {
4123                 case SO_RCVBUF:
4124                         val = min_t(u32, val, sysctl_rmem_max);
4125                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4126                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
4127                         break;
4128                 case SO_SNDBUF:
4129                         val = min_t(u32, val, sysctl_wmem_max);
4130                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4131                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
4132                         break;
4133                 case SO_MAX_PACING_RATE: /* 32bit version */
4134                         if (val != ~0U)
4135                                 cmpxchg(&sk->sk_pacing_status,
4136                                         SK_PACING_NONE,
4137                                         SK_PACING_NEEDED);
4138                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4139                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4140                                                  sk->sk_max_pacing_rate);
4141                         break;
4142                 case SO_PRIORITY:
4143                         sk->sk_priority = val;
4144                         break;
4145                 case SO_RCVLOWAT:
4146                         if (val < 0)
4147                                 val = INT_MAX;
4148                         sk->sk_rcvlowat = val ? : 1;
4149                         break;
4150                 case SO_MARK:
4151                         if (sk->sk_mark != val) {
4152                                 sk->sk_mark = val;
4153                                 sk_dst_reset(sk);
4154                         }
4155                         break;
4156                 default:
4157                         ret = -EINVAL;
4158                 }
4159 #ifdef CONFIG_INET
4160         } else if (level == SOL_IP) {
4161                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4162                         return -EINVAL;
4163
4164                 val = *((int *)optval);
4165                 /* Only some options are supported */
4166                 switch (optname) {
4167                 case IP_TOS:
4168                         if (val < -1 || val > 0xff) {
4169                                 ret = -EINVAL;
4170                         } else {
4171                                 struct inet_sock *inet = inet_sk(sk);
4172
4173                                 if (val == -1)
4174                                         val = 0;
4175                                 inet->tos = val;
4176                         }
4177                         break;
4178                 default:
4179                         ret = -EINVAL;
4180                 }
4181 #if IS_ENABLED(CONFIG_IPV6)
4182         } else if (level == SOL_IPV6) {
4183                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4184                         return -EINVAL;
4185
4186                 val = *((int *)optval);
4187                 /* Only some options are supported */
4188                 switch (optname) {
4189                 case IPV6_TCLASS:
4190                         if (val < -1 || val > 0xff) {
4191                                 ret = -EINVAL;
4192                         } else {
4193                                 struct ipv6_pinfo *np = inet6_sk(sk);
4194
4195                                 if (val == -1)
4196                                         val = 0;
4197                                 np->tclass = val;
4198                         }
4199                         break;
4200                 default:
4201                         ret = -EINVAL;
4202                 }
4203 #endif
4204         } else if (level == SOL_TCP &&
4205                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4206                 if (optname == TCP_CONGESTION) {
4207                         char name[TCP_CA_NAME_MAX];
4208                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4209
4210                         strncpy(name, optval, min_t(long, optlen,
4211                                                     TCP_CA_NAME_MAX-1));
4212                         name[TCP_CA_NAME_MAX-1] = 0;
4213                         ret = tcp_set_congestion_control(sk, name, false,
4214                                                          reinit);
4215                 } else {
4216                         struct tcp_sock *tp = tcp_sk(sk);
4217
4218                         if (optlen != sizeof(int))
4219                                 return -EINVAL;
4220
4221                         val = *((int *)optval);
4222                         /* Only some options are supported */
4223                         switch (optname) {
4224                         case TCP_BPF_IW:
4225                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4226                                         ret = -EINVAL;
4227                                 else
4228                                         tp->snd_cwnd = val;
4229                                 break;
4230                         case TCP_BPF_SNDCWND_CLAMP:
4231                                 if (val <= 0) {
4232                                         ret = -EINVAL;
4233                                 } else {
4234                                         tp->snd_cwnd_clamp = val;
4235                                         tp->snd_ssthresh = val;
4236                                 }
4237                                 break;
4238                         case TCP_SAVE_SYN:
4239                                 if (val < 0 || val > 1)
4240                                         ret = -EINVAL;
4241                                 else
4242                                         tp->save_syn = val;
4243                                 break;
4244                         default:
4245                                 ret = -EINVAL;
4246                         }
4247                 }
4248 #endif
4249         } else {
4250                 ret = -EINVAL;
4251         }
4252         return ret;
4253 }
4254
4255 static const struct bpf_func_proto bpf_setsockopt_proto = {
4256         .func           = bpf_setsockopt,
4257         .gpl_only       = false,
4258         .ret_type       = RET_INTEGER,
4259         .arg1_type      = ARG_PTR_TO_CTX,
4260         .arg2_type      = ARG_ANYTHING,
4261         .arg3_type      = ARG_ANYTHING,
4262         .arg4_type      = ARG_PTR_TO_MEM,
4263         .arg5_type      = ARG_CONST_SIZE,
4264 };
4265
4266 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4267            int, level, int, optname, char *, optval, int, optlen)
4268 {
4269         struct sock *sk = bpf_sock->sk;
4270
4271         if (!sk_fullsock(sk))
4272                 goto err_clear;
4273 #ifdef CONFIG_INET
4274         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4275                 struct inet_connection_sock *icsk;
4276                 struct tcp_sock *tp;
4277
4278                 switch (optname) {
4279                 case TCP_CONGESTION:
4280                         icsk = inet_csk(sk);
4281
4282                         if (!icsk->icsk_ca_ops || optlen <= 1)
4283                                 goto err_clear;
4284                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4285                         optval[optlen - 1] = 0;
4286                         break;
4287                 case TCP_SAVED_SYN:
4288                         tp = tcp_sk(sk);
4289
4290                         if (optlen <= 0 || !tp->saved_syn ||
4291                             optlen > tp->saved_syn[0])
4292                                 goto err_clear;
4293                         memcpy(optval, tp->saved_syn + 1, optlen);
4294                         break;
4295                 default:
4296                         goto err_clear;
4297                 }
4298         } else if (level == SOL_IP) {
4299                 struct inet_sock *inet = inet_sk(sk);
4300
4301                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4302                         goto err_clear;
4303
4304                 /* Only some options are supported */
4305                 switch (optname) {
4306                 case IP_TOS:
4307                         *((int *)optval) = (int)inet->tos;
4308                         break;
4309                 default:
4310                         goto err_clear;
4311                 }
4312 #if IS_ENABLED(CONFIG_IPV6)
4313         } else if (level == SOL_IPV6) {
4314                 struct ipv6_pinfo *np = inet6_sk(sk);
4315
4316                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4317                         goto err_clear;
4318
4319                 /* Only some options are supported */
4320                 switch (optname) {
4321                 case IPV6_TCLASS:
4322                         *((int *)optval) = (int)np->tclass;
4323                         break;
4324                 default:
4325                         goto err_clear;
4326                 }
4327 #endif
4328         } else {
4329                 goto err_clear;
4330         }
4331         return 0;
4332 #endif
4333 err_clear:
4334         memset(optval, 0, optlen);
4335         return -EINVAL;
4336 }
4337
4338 static const struct bpf_func_proto bpf_getsockopt_proto = {
4339         .func           = bpf_getsockopt,
4340         .gpl_only       = false,
4341         .ret_type       = RET_INTEGER,
4342         .arg1_type      = ARG_PTR_TO_CTX,
4343         .arg2_type      = ARG_ANYTHING,
4344         .arg3_type      = ARG_ANYTHING,
4345         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4346         .arg5_type      = ARG_CONST_SIZE,
4347 };
4348
4349 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4350            int, argval)
4351 {
4352         struct sock *sk = bpf_sock->sk;
4353         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4354
4355         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4356                 return -EINVAL;
4357
4358         if (val)
4359                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4360
4361         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4362 }
4363
4364 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4365         .func           = bpf_sock_ops_cb_flags_set,
4366         .gpl_only       = false,
4367         .ret_type       = RET_INTEGER,
4368         .arg1_type      = ARG_PTR_TO_CTX,
4369         .arg2_type      = ARG_ANYTHING,
4370 };
4371
4372 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4373 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4374
4375 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4376            int, addr_len)
4377 {
4378 #ifdef CONFIG_INET
4379         struct sock *sk = ctx->sk;
4380         int err;
4381
4382         /* Binding to port can be expensive so it's prohibited in the helper.
4383          * Only binding to IP is supported.
4384          */
4385         err = -EINVAL;
4386         if (addr_len < offsetofend(struct sockaddr, sa_family))
4387                 return err;
4388         if (addr->sa_family == AF_INET) {
4389                 if (addr_len < sizeof(struct sockaddr_in))
4390                         return err;
4391                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4392                         return err;
4393                 return __inet_bind(sk, addr, addr_len, true, false);
4394 #if IS_ENABLED(CONFIG_IPV6)
4395         } else if (addr->sa_family == AF_INET6) {
4396                 if (addr_len < SIN6_LEN_RFC2133)
4397                         return err;
4398                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4399                         return err;
4400                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4401                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4402                  */
4403                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4404 #endif /* CONFIG_IPV6 */
4405         }
4406 #endif /* CONFIG_INET */
4407
4408         return -EAFNOSUPPORT;
4409 }
4410
4411 static const struct bpf_func_proto bpf_bind_proto = {
4412         .func           = bpf_bind,
4413         .gpl_only       = false,
4414         .ret_type       = RET_INTEGER,
4415         .arg1_type      = ARG_PTR_TO_CTX,
4416         .arg2_type      = ARG_PTR_TO_MEM,
4417         .arg3_type      = ARG_CONST_SIZE,
4418 };
4419
4420 #ifdef CONFIG_XFRM
4421 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4422            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4423 {
4424         const struct sec_path *sp = skb_sec_path(skb);
4425         const struct xfrm_state *x;
4426
4427         if (!sp || unlikely(index >= sp->len || flags))
4428                 goto err_clear;
4429
4430         x = sp->xvec[index];
4431
4432         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4433                 goto err_clear;
4434
4435         to->reqid = x->props.reqid;
4436         to->spi = x->id.spi;
4437         to->family = x->props.family;
4438         to->ext = 0;
4439
4440         if (to->family == AF_INET6) {
4441                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4442                        sizeof(to->remote_ipv6));
4443         } else {
4444                 to->remote_ipv4 = x->props.saddr.a4;
4445                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4446         }
4447
4448         return 0;
4449 err_clear:
4450         memset(to, 0, size);
4451         return -EINVAL;
4452 }
4453
4454 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4455         .func           = bpf_skb_get_xfrm_state,
4456         .gpl_only       = false,
4457         .ret_type       = RET_INTEGER,
4458         .arg1_type      = ARG_PTR_TO_CTX,
4459         .arg2_type      = ARG_ANYTHING,
4460         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4461         .arg4_type      = ARG_CONST_SIZE,
4462         .arg5_type      = ARG_ANYTHING,
4463 };
4464 #endif
4465
4466 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4467 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4468                                   const struct neighbour *neigh,
4469                                   const struct net_device *dev)
4470 {
4471         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4472         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4473         params->h_vlan_TCI = 0;
4474         params->h_vlan_proto = 0;
4475         params->ifindex = dev->ifindex;
4476
4477         return 0;
4478 }
4479 #endif
4480
4481 #if IS_ENABLED(CONFIG_INET)
4482 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4483                                u32 flags, bool check_mtu)
4484 {
4485         struct in_device *in_dev;
4486         struct neighbour *neigh;
4487         struct net_device *dev;
4488         struct fib_result res;
4489         struct fib_nh *nh;
4490         struct flowi4 fl4;
4491         int err;
4492         u32 mtu;
4493
4494         dev = dev_get_by_index_rcu(net, params->ifindex);
4495         if (unlikely(!dev))
4496                 return -ENODEV;
4497
4498         /* verify forwarding is enabled on this interface */
4499         in_dev = __in_dev_get_rcu(dev);
4500         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4501                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4502
4503         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4504                 fl4.flowi4_iif = 1;
4505                 fl4.flowi4_oif = params->ifindex;
4506         } else {
4507                 fl4.flowi4_iif = params->ifindex;
4508                 fl4.flowi4_oif = 0;
4509         }
4510         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4511         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4512         fl4.flowi4_flags = 0;
4513
4514         fl4.flowi4_proto = params->l4_protocol;
4515         fl4.daddr = params->ipv4_dst;
4516         fl4.saddr = params->ipv4_src;
4517         fl4.fl4_sport = params->sport;
4518         fl4.fl4_dport = params->dport;
4519
4520         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4521                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4522                 struct fib_table *tb;
4523
4524                 tb = fib_get_table(net, tbid);
4525                 if (unlikely(!tb))
4526                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4527
4528                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4529         } else {
4530                 fl4.flowi4_mark = 0;
4531                 fl4.flowi4_secid = 0;
4532                 fl4.flowi4_tun_key.tun_id = 0;
4533                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4534
4535                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4536         }
4537
4538         if (err) {
4539                 /* map fib lookup errors to RTN_ type */
4540                 if (err == -EINVAL)
4541                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4542                 if (err == -EHOSTUNREACH)
4543                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4544                 if (err == -EACCES)
4545                         return BPF_FIB_LKUP_RET_PROHIBIT;
4546
4547                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4548         }
4549
4550         if (res.type != RTN_UNICAST)
4551                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4552
4553         if (res.fi->fib_nhs > 1)
4554                 fib_select_path(net, &res, &fl4, NULL);
4555
4556         if (check_mtu) {
4557                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4558                 if (params->tot_len > mtu)
4559                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4560         }
4561
4562         nh = &res.fi->fib_nh[res.nh_sel];
4563
4564         /* do not handle lwt encaps right now */
4565         if (nh->nh_lwtstate)
4566                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4567
4568         dev = nh->nh_dev;
4569         if (nh->nh_gw)
4570                 params->ipv4_dst = nh->nh_gw;
4571
4572         params->rt_metric = res.fi->fib_priority;
4573
4574         /* xdp and cls_bpf programs are run in RCU-bh so
4575          * rcu_read_lock_bh is not needed here
4576          */
4577         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4578         if (!neigh)
4579                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4580
4581         return bpf_fib_set_fwd_params(params, neigh, dev);
4582 }
4583 #endif
4584
4585 #if IS_ENABLED(CONFIG_IPV6)
4586 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4587                                u32 flags, bool check_mtu)
4588 {
4589         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4590         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4591         struct neighbour *neigh;
4592         struct net_device *dev;
4593         struct inet6_dev *idev;
4594         struct fib6_info *f6i;
4595         struct flowi6 fl6;
4596         int strict = 0;
4597         int oif;
4598         u32 mtu;
4599
4600         /* link local addresses are never forwarded */
4601         if (rt6_need_strict(dst) || rt6_need_strict(src))
4602                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4603
4604         dev = dev_get_by_index_rcu(net, params->ifindex);
4605         if (unlikely(!dev))
4606                 return -ENODEV;
4607
4608         idev = __in6_dev_get_safely(dev);
4609         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4610                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4611
4612         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4613                 fl6.flowi6_iif = 1;
4614                 oif = fl6.flowi6_oif = params->ifindex;
4615         } else {
4616                 oif = fl6.flowi6_iif = params->ifindex;
4617                 fl6.flowi6_oif = 0;
4618                 strict = RT6_LOOKUP_F_HAS_SADDR;
4619         }
4620         fl6.flowlabel = params->flowinfo;
4621         fl6.flowi6_scope = 0;
4622         fl6.flowi6_flags = 0;
4623         fl6.mp_hash = 0;
4624
4625         fl6.flowi6_proto = params->l4_protocol;
4626         fl6.daddr = *dst;
4627         fl6.saddr = *src;
4628         fl6.fl6_sport = params->sport;
4629         fl6.fl6_dport = params->dport;
4630
4631         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4632                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4633                 struct fib6_table *tb;
4634
4635                 tb = ipv6_stub->fib6_get_table(net, tbid);
4636                 if (unlikely(!tb))
4637                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4638
4639                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4640         } else {
4641                 fl6.flowi6_mark = 0;
4642                 fl6.flowi6_secid = 0;
4643                 fl6.flowi6_tun_key.tun_id = 0;
4644                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4645
4646                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4647         }
4648
4649         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4650                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4651
4652         if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4653                 switch (f6i->fib6_type) {
4654                 case RTN_BLACKHOLE:
4655                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4656                 case RTN_UNREACHABLE:
4657                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4658                 case RTN_PROHIBIT:
4659                         return BPF_FIB_LKUP_RET_PROHIBIT;
4660                 default:
4661                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4662                 }
4663         }
4664
4665         if (f6i->fib6_type != RTN_UNICAST)
4666                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4667
4668         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4669                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4670                                                        fl6.flowi6_oif, NULL,
4671                                                        strict);
4672
4673         if (check_mtu) {
4674                 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4675                 if (params->tot_len > mtu)
4676                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4677         }
4678
4679         if (f6i->fib6_nh.nh_lwtstate)
4680                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4681
4682         if (f6i->fib6_flags & RTF_GATEWAY)
4683                 *dst = f6i->fib6_nh.nh_gw;
4684
4685         dev = f6i->fib6_nh.nh_dev;
4686         params->rt_metric = f6i->fib6_metric;
4687
4688         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4689          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4690          * because we need to get nd_tbl via the stub
4691          */
4692         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4693                                       ndisc_hashfn, dst, dev);
4694         if (!neigh)
4695                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4696
4697         return bpf_fib_set_fwd_params(params, neigh, dev);
4698 }
4699 #endif
4700
4701 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4702            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4703 {
4704         if (plen < sizeof(*params))
4705                 return -EINVAL;
4706
4707         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4708                 return -EINVAL;
4709
4710         switch (params->family) {
4711 #if IS_ENABLED(CONFIG_INET)
4712         case AF_INET:
4713                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4714                                            flags, true);
4715 #endif
4716 #if IS_ENABLED(CONFIG_IPV6)
4717         case AF_INET6:
4718                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4719                                            flags, true);
4720 #endif
4721         }
4722         return -EAFNOSUPPORT;
4723 }
4724
4725 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4726         .func           = bpf_xdp_fib_lookup,
4727         .gpl_only       = true,
4728         .ret_type       = RET_INTEGER,
4729         .arg1_type      = ARG_PTR_TO_CTX,
4730         .arg2_type      = ARG_PTR_TO_MEM,
4731         .arg3_type      = ARG_CONST_SIZE,
4732         .arg4_type      = ARG_ANYTHING,
4733 };
4734
4735 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4736            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4737 {
4738         struct net *net = dev_net(skb->dev);
4739         int rc = -EAFNOSUPPORT;
4740
4741         if (plen < sizeof(*params))
4742                 return -EINVAL;
4743
4744         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4745                 return -EINVAL;
4746
4747         switch (params->family) {
4748 #if IS_ENABLED(CONFIG_INET)
4749         case AF_INET:
4750                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4751                 break;
4752 #endif
4753 #if IS_ENABLED(CONFIG_IPV6)
4754         case AF_INET6:
4755                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4756                 break;
4757 #endif
4758         }
4759
4760         if (!rc) {
4761                 struct net_device *dev;
4762
4763                 dev = dev_get_by_index_rcu(net, params->ifindex);
4764                 if (!is_skb_forwardable(dev, skb))
4765                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4766         }
4767
4768         return rc;
4769 }
4770
4771 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4772         .func           = bpf_skb_fib_lookup,
4773         .gpl_only       = true,
4774         .ret_type       = RET_INTEGER,
4775         .arg1_type      = ARG_PTR_TO_CTX,
4776         .arg2_type      = ARG_PTR_TO_MEM,
4777         .arg3_type      = ARG_CONST_SIZE,
4778         .arg4_type      = ARG_ANYTHING,
4779 };
4780
4781 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4782 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4783 {
4784         int err;
4785         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4786
4787         if (!seg6_validate_srh(srh, len))
4788                 return -EINVAL;
4789
4790         switch (type) {
4791         case BPF_LWT_ENCAP_SEG6_INLINE:
4792                 if (skb->protocol != htons(ETH_P_IPV6))
4793                         return -EBADMSG;
4794
4795                 err = seg6_do_srh_inline(skb, srh);
4796                 break;
4797         case BPF_LWT_ENCAP_SEG6:
4798                 skb_reset_inner_headers(skb);
4799                 skb->encapsulation = 1;
4800                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4801                 break;
4802         default:
4803                 return -EINVAL;
4804         }
4805
4806         bpf_compute_data_pointers(skb);
4807         if (err)
4808                 return err;
4809
4810         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4811         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4812
4813         return seg6_lookup_nexthop(skb, NULL, 0);
4814 }
4815 #endif /* CONFIG_IPV6_SEG6_BPF */
4816
4817 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4818 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4819                              bool ingress)
4820 {
4821         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4822 }
4823 #endif
4824
4825 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4826            u32, len)
4827 {
4828         switch (type) {
4829 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4830         case BPF_LWT_ENCAP_SEG6:
4831         case BPF_LWT_ENCAP_SEG6_INLINE:
4832                 return bpf_push_seg6_encap(skb, type, hdr, len);
4833 #endif
4834 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4835         case BPF_LWT_ENCAP_IP:
4836                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4837 #endif
4838         default:
4839                 return -EINVAL;
4840         }
4841 }
4842
4843 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4844            void *, hdr, u32, len)
4845 {
4846         switch (type) {
4847 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4848         case BPF_LWT_ENCAP_IP:
4849                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4850 #endif
4851         default:
4852                 return -EINVAL;
4853         }
4854 }
4855
4856 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4857         .func           = bpf_lwt_in_push_encap,
4858         .gpl_only       = false,
4859         .ret_type       = RET_INTEGER,
4860         .arg1_type      = ARG_PTR_TO_CTX,
4861         .arg2_type      = ARG_ANYTHING,
4862         .arg3_type      = ARG_PTR_TO_MEM,
4863         .arg4_type      = ARG_CONST_SIZE
4864 };
4865
4866 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4867         .func           = bpf_lwt_xmit_push_encap,
4868         .gpl_only       = false,
4869         .ret_type       = RET_INTEGER,
4870         .arg1_type      = ARG_PTR_TO_CTX,
4871         .arg2_type      = ARG_ANYTHING,
4872         .arg3_type      = ARG_PTR_TO_MEM,
4873         .arg4_type      = ARG_CONST_SIZE
4874 };
4875
4876 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4877 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4878            const void *, from, u32, len)
4879 {
4880         struct seg6_bpf_srh_state *srh_state =
4881                 this_cpu_ptr(&seg6_bpf_srh_states);
4882         struct ipv6_sr_hdr *srh = srh_state->srh;
4883         void *srh_tlvs, *srh_end, *ptr;
4884         int srhoff = 0;
4885
4886         if (srh == NULL)
4887                 return -EINVAL;
4888
4889         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4890         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4891
4892         ptr = skb->data + offset;
4893         if (ptr >= srh_tlvs && ptr + len <= srh_end)
4894                 srh_state->valid = false;
4895         else if (ptr < (void *)&srh->flags ||
4896                  ptr + len > (void *)&srh->segments)
4897                 return -EFAULT;
4898
4899         if (unlikely(bpf_try_make_writable(skb, offset + len)))
4900                 return -EFAULT;
4901         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4902                 return -EINVAL;
4903         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4904
4905         memcpy(skb->data + offset, from, len);
4906         return 0;
4907 }
4908
4909 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4910         .func           = bpf_lwt_seg6_store_bytes,
4911         .gpl_only       = false,
4912         .ret_type       = RET_INTEGER,
4913         .arg1_type      = ARG_PTR_TO_CTX,
4914         .arg2_type      = ARG_ANYTHING,
4915         .arg3_type      = ARG_PTR_TO_MEM,
4916         .arg4_type      = ARG_CONST_SIZE
4917 };
4918
4919 static void bpf_update_srh_state(struct sk_buff *skb)
4920 {
4921         struct seg6_bpf_srh_state *srh_state =
4922                 this_cpu_ptr(&seg6_bpf_srh_states);
4923         int srhoff = 0;
4924
4925         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4926                 srh_state->srh = NULL;
4927         } else {
4928                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4929                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4930                 srh_state->valid = true;
4931         }
4932 }
4933
4934 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4935            u32, action, void *, param, u32, param_len)
4936 {
4937         struct seg6_bpf_srh_state *srh_state =
4938                 this_cpu_ptr(&seg6_bpf_srh_states);
4939         int hdroff = 0;
4940         int err;
4941
4942         switch (action) {
4943         case SEG6_LOCAL_ACTION_END_X:
4944                 if (!seg6_bpf_has_valid_srh(skb))
4945                         return -EBADMSG;
4946                 if (param_len != sizeof(struct in6_addr))
4947                         return -EINVAL;
4948                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4949         case SEG6_LOCAL_ACTION_END_T:
4950                 if (!seg6_bpf_has_valid_srh(skb))
4951                         return -EBADMSG;
4952                 if (param_len != sizeof(int))
4953                         return -EINVAL;
4954                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4955         case SEG6_LOCAL_ACTION_END_DT6:
4956                 if (!seg6_bpf_has_valid_srh(skb))
4957                         return -EBADMSG;
4958                 if (param_len != sizeof(int))
4959                         return -EINVAL;
4960
4961                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4962                         return -EBADMSG;
4963                 if (!pskb_pull(skb, hdroff))
4964                         return -EBADMSG;
4965
4966                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4967                 skb_reset_network_header(skb);
4968                 skb_reset_transport_header(skb);
4969                 skb->encapsulation = 0;
4970
4971                 bpf_compute_data_pointers(skb);
4972                 bpf_update_srh_state(skb);
4973                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4974         case SEG6_LOCAL_ACTION_END_B6:
4975                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4976                         return -EBADMSG;
4977                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4978                                           param, param_len);
4979                 if (!err)
4980                         bpf_update_srh_state(skb);
4981
4982                 return err;
4983         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4984                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4985                         return -EBADMSG;
4986                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4987                                           param, param_len);
4988                 if (!err)
4989                         bpf_update_srh_state(skb);
4990
4991                 return err;
4992         default:
4993                 return -EINVAL;
4994         }
4995 }
4996
4997 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4998         .func           = bpf_lwt_seg6_action,
4999         .gpl_only       = false,
5000         .ret_type       = RET_INTEGER,
5001         .arg1_type      = ARG_PTR_TO_CTX,
5002         .arg2_type      = ARG_ANYTHING,
5003         .arg3_type      = ARG_PTR_TO_MEM,
5004         .arg4_type      = ARG_CONST_SIZE
5005 };
5006
5007 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5008            s32, len)
5009 {
5010         struct seg6_bpf_srh_state *srh_state =
5011                 this_cpu_ptr(&seg6_bpf_srh_states);
5012         struct ipv6_sr_hdr *srh = srh_state->srh;
5013         void *srh_end, *srh_tlvs, *ptr;
5014         struct ipv6hdr *hdr;
5015         int srhoff = 0;
5016         int ret;
5017
5018         if (unlikely(srh == NULL))
5019                 return -EINVAL;
5020
5021         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5022                         ((srh->first_segment + 1) << 4));
5023         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5024                         srh_state->hdrlen);
5025         ptr = skb->data + offset;
5026
5027         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5028                 return -EFAULT;
5029         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5030                 return -EFAULT;
5031
5032         if (len > 0) {
5033                 ret = skb_cow_head(skb, len);
5034                 if (unlikely(ret < 0))
5035                         return ret;
5036
5037                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5038         } else {
5039                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5040         }
5041
5042         bpf_compute_data_pointers(skb);
5043         if (unlikely(ret < 0))
5044                 return ret;
5045
5046         hdr = (struct ipv6hdr *)skb->data;
5047         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5048
5049         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5050                 return -EINVAL;
5051         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5052         srh_state->hdrlen += len;
5053         srh_state->valid = false;
5054         return 0;
5055 }
5056
5057 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5058         .func           = bpf_lwt_seg6_adjust_srh,
5059         .gpl_only       = false,
5060         .ret_type       = RET_INTEGER,
5061         .arg1_type      = ARG_PTR_TO_CTX,
5062         .arg2_type      = ARG_ANYTHING,
5063         .arg3_type      = ARG_ANYTHING,
5064 };
5065 #endif /* CONFIG_IPV6_SEG6_BPF */
5066
5067 #define CONVERT_COMMON_TCP_SOCK_FIELDS(md_type, CONVERT)                \
5068 do {                                                                    \
5069         switch (si->off) {                                              \
5070         case offsetof(md_type, snd_cwnd):                               \
5071                 CONVERT(snd_cwnd); break;                               \
5072         case offsetof(md_type, srtt_us):                                \
5073                 CONVERT(srtt_us); break;                                \
5074         case offsetof(md_type, snd_ssthresh):                           \
5075                 CONVERT(snd_ssthresh); break;                           \
5076         case offsetof(md_type, rcv_nxt):                                \
5077                 CONVERT(rcv_nxt); break;                                \
5078         case offsetof(md_type, snd_nxt):                                \
5079                 CONVERT(snd_nxt); break;                                \
5080         case offsetof(md_type, snd_una):                                \
5081                 CONVERT(snd_una); break;                                \
5082         case offsetof(md_type, mss_cache):                              \
5083                 CONVERT(mss_cache); break;                              \
5084         case offsetof(md_type, ecn_flags):                              \
5085                 CONVERT(ecn_flags); break;                              \
5086         case offsetof(md_type, rate_delivered):                         \
5087                 CONVERT(rate_delivered); break;                         \
5088         case offsetof(md_type, rate_interval_us):                       \
5089                 CONVERT(rate_interval_us); break;                       \
5090         case offsetof(md_type, packets_out):                            \
5091                 CONVERT(packets_out); break;                            \
5092         case offsetof(md_type, retrans_out):                            \
5093                 CONVERT(retrans_out); break;                            \
5094         case offsetof(md_type, total_retrans):                          \
5095                 CONVERT(total_retrans); break;                          \
5096         case offsetof(md_type, segs_in):                                \
5097                 CONVERT(segs_in); break;                                \
5098         case offsetof(md_type, data_segs_in):                           \
5099                 CONVERT(data_segs_in); break;                           \
5100         case offsetof(md_type, segs_out):                               \
5101                 CONVERT(segs_out); break;                               \
5102         case offsetof(md_type, data_segs_out):                          \
5103                 CONVERT(data_segs_out); break;                          \
5104         case offsetof(md_type, lost_out):                               \
5105                 CONVERT(lost_out); break;                               \
5106         case offsetof(md_type, sacked_out):                             \
5107                 CONVERT(sacked_out); break;                             \
5108         case offsetof(md_type, bytes_received):                         \
5109                 CONVERT(bytes_received); break;                         \
5110         case offsetof(md_type, bytes_acked):                            \
5111                 CONVERT(bytes_acked); break;                            \
5112         }                                                               \
5113 } while (0)
5114
5115 #ifdef CONFIG_INET
5116 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5117                               int dif, int sdif, u8 family, u8 proto)
5118 {
5119         bool refcounted = false;
5120         struct sock *sk = NULL;
5121
5122         if (family == AF_INET) {
5123                 __be32 src4 = tuple->ipv4.saddr;
5124                 __be32 dst4 = tuple->ipv4.daddr;
5125
5126                 if (proto == IPPROTO_TCP)
5127                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5128                                            src4, tuple->ipv4.sport,
5129                                            dst4, tuple->ipv4.dport,
5130                                            dif, sdif, &refcounted);
5131                 else
5132                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5133                                                dst4, tuple->ipv4.dport,
5134                                                dif, sdif, &udp_table, NULL);
5135 #if IS_ENABLED(CONFIG_IPV6)
5136         } else {
5137                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5138                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5139
5140                 if (proto == IPPROTO_TCP)
5141                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5142                                             src6, tuple->ipv6.sport,
5143                                             dst6, ntohs(tuple->ipv6.dport),
5144                                             dif, sdif, &refcounted);
5145                 else if (likely(ipv6_bpf_stub))
5146                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5147                                                             src6, tuple->ipv6.sport,
5148                                                             dst6, tuple->ipv6.dport,
5149                                                             dif, sdif,
5150                                                             &udp_table, NULL);
5151 #endif
5152         }
5153
5154         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5155                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5156                 sk = NULL;
5157         }
5158         return sk;
5159 }
5160
5161 /* bpf_sk_lookup performs the core lookup for different types of sockets,
5162  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5163  * Returns the socket as an 'unsigned long' to simplify the casting in the
5164  * callers to satisfy BPF_CALL declarations.
5165  */
5166 static unsigned long
5167 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5168                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5169                 u64 flags)
5170 {
5171         struct sock *sk = NULL;
5172         u8 family = AF_UNSPEC;
5173         struct net *net;
5174         int sdif;
5175
5176         family = len == sizeof(tuple->ipv4) ? AF_INET : AF_INET6;
5177         if (unlikely(family == AF_UNSPEC || flags ||
5178                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5179                 goto out;
5180
5181         if (family == AF_INET)
5182                 sdif = inet_sdif(skb);
5183         else
5184                 sdif = inet6_sdif(skb);
5185
5186         if ((s32)netns_id < 0) {
5187                 net = caller_net;
5188                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5189         } else {
5190                 net = get_net_ns_by_id(caller_net, netns_id);
5191                 if (unlikely(!net))
5192                         goto out;
5193                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5194                 put_net(net);
5195         }
5196
5197         if (sk)
5198                 sk = sk_to_full_sk(sk);
5199 out:
5200         return (unsigned long) sk;
5201 }
5202
5203 static unsigned long
5204 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5205               u8 proto, u64 netns_id, u64 flags)
5206 {
5207         struct net *caller_net;
5208         int ifindex;
5209
5210         if (skb->dev) {
5211                 caller_net = dev_net(skb->dev);
5212                 ifindex = skb->dev->ifindex;
5213         } else {
5214                 caller_net = sock_net(skb->sk);
5215                 ifindex = 0;
5216         }
5217
5218         return __bpf_sk_lookup(skb, tuple, len, caller_net, ifindex,
5219                               proto, netns_id, flags);
5220 }
5221
5222 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5223            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5224 {
5225         return bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags);
5226 }
5227
5228 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5229         .func           = bpf_sk_lookup_tcp,
5230         .gpl_only       = false,
5231         .pkt_access     = true,
5232         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5233         .arg1_type      = ARG_PTR_TO_CTX,
5234         .arg2_type      = ARG_PTR_TO_MEM,
5235         .arg3_type      = ARG_CONST_SIZE,
5236         .arg4_type      = ARG_ANYTHING,
5237         .arg5_type      = ARG_ANYTHING,
5238 };
5239
5240 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5241            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5242 {
5243         return bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, netns_id, flags);
5244 }
5245
5246 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5247         .func           = bpf_sk_lookup_udp,
5248         .gpl_only       = false,
5249         .pkt_access     = true,
5250         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5251         .arg1_type      = ARG_PTR_TO_CTX,
5252         .arg2_type      = ARG_PTR_TO_MEM,
5253         .arg3_type      = ARG_CONST_SIZE,
5254         .arg4_type      = ARG_ANYTHING,
5255         .arg5_type      = ARG_ANYTHING,
5256 };
5257
5258 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5259 {
5260         if (!sock_flag(sk, SOCK_RCU_FREE))
5261                 sock_gen_put(sk);
5262         return 0;
5263 }
5264
5265 static const struct bpf_func_proto bpf_sk_release_proto = {
5266         .func           = bpf_sk_release,
5267         .gpl_only       = false,
5268         .ret_type       = RET_INTEGER,
5269         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5270 };
5271
5272 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5273            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5274 {
5275         struct net *caller_net = dev_net(ctx->rxq->dev);
5276         int ifindex = ctx->rxq->dev->ifindex;
5277
5278         return __bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex,
5279                               IPPROTO_UDP, netns_id, flags);
5280 }
5281
5282 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5283         .func           = bpf_xdp_sk_lookup_udp,
5284         .gpl_only       = false,
5285         .pkt_access     = true,
5286         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5287         .arg1_type      = ARG_PTR_TO_CTX,
5288         .arg2_type      = ARG_PTR_TO_MEM,
5289         .arg3_type      = ARG_CONST_SIZE,
5290         .arg4_type      = ARG_ANYTHING,
5291         .arg5_type      = ARG_ANYTHING,
5292 };
5293
5294 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5295            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5296 {
5297         struct net *caller_net = dev_net(ctx->rxq->dev);
5298         int ifindex = ctx->rxq->dev->ifindex;
5299
5300         return __bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex,
5301                               IPPROTO_TCP, netns_id, flags);
5302 }
5303
5304 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5305         .func           = bpf_xdp_sk_lookup_tcp,
5306         .gpl_only       = false,
5307         .pkt_access     = true,
5308         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5309         .arg1_type      = ARG_PTR_TO_CTX,
5310         .arg2_type      = ARG_PTR_TO_MEM,
5311         .arg3_type      = ARG_CONST_SIZE,
5312         .arg4_type      = ARG_ANYTHING,
5313         .arg5_type      = ARG_ANYTHING,
5314 };
5315
5316 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5317            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5318 {
5319         return __bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0,
5320                                IPPROTO_TCP, netns_id, flags);
5321 }
5322
5323 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5324         .func           = bpf_sock_addr_sk_lookup_tcp,
5325         .gpl_only       = false,
5326         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5327         .arg1_type      = ARG_PTR_TO_CTX,
5328         .arg2_type      = ARG_PTR_TO_MEM,
5329         .arg3_type      = ARG_CONST_SIZE,
5330         .arg4_type      = ARG_ANYTHING,
5331         .arg5_type      = ARG_ANYTHING,
5332 };
5333
5334 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5335            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5336 {
5337         return __bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0,
5338                                IPPROTO_UDP, netns_id, flags);
5339 }
5340
5341 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5342         .func           = bpf_sock_addr_sk_lookup_udp,
5343         .gpl_only       = false,
5344         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5345         .arg1_type      = ARG_PTR_TO_CTX,
5346         .arg2_type      = ARG_PTR_TO_MEM,
5347         .arg3_type      = ARG_CONST_SIZE,
5348         .arg4_type      = ARG_ANYTHING,
5349         .arg5_type      = ARG_ANYTHING,
5350 };
5351
5352 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5353                                   struct bpf_insn_access_aux *info)
5354 {
5355         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock, bytes_acked))
5356                 return false;
5357
5358         if (off % size != 0)
5359                 return false;
5360
5361         switch (off) {
5362         case offsetof(struct bpf_tcp_sock, bytes_received):
5363         case offsetof(struct bpf_tcp_sock, bytes_acked):
5364                 return size == sizeof(__u64);
5365         default:
5366                 return size == sizeof(__u32);
5367         }
5368 }
5369
5370 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5371                                     const struct bpf_insn *si,
5372                                     struct bpf_insn *insn_buf,
5373                                     struct bpf_prog *prog, u32 *target_size)
5374 {
5375         struct bpf_insn *insn = insn_buf;
5376
5377 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5378         do {                                                            \
5379                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, FIELD) >     \
5380                              FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5381                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5382                                       si->dst_reg, si->src_reg,         \
5383                                       offsetof(struct tcp_sock, FIELD)); \
5384         } while (0)
5385
5386         CONVERT_COMMON_TCP_SOCK_FIELDS(struct bpf_tcp_sock,
5387                                        BPF_TCP_SOCK_GET_COMMON);
5388
5389         if (insn > insn_buf)
5390                 return insn - insn_buf;
5391
5392         switch (si->off) {
5393         case offsetof(struct bpf_tcp_sock, rtt_min):
5394                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5395                              sizeof(struct minmax));
5396                 BUILD_BUG_ON(sizeof(struct minmax) <
5397                              sizeof(struct minmax_sample));
5398
5399                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5400                                       offsetof(struct tcp_sock, rtt_min) +
5401                                       offsetof(struct minmax_sample, v));
5402                 break;
5403         }
5404
5405         return insn - insn_buf;
5406 }
5407
5408 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5409 {
5410         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5411                 return (unsigned long)sk;
5412
5413         return (unsigned long)NULL;
5414 }
5415
5416 static const struct bpf_func_proto bpf_tcp_sock_proto = {
5417         .func           = bpf_tcp_sock,
5418         .gpl_only       = false,
5419         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5420         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5421 };
5422
5423 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5424 {
5425         sk = sk_to_full_sk(sk);
5426
5427         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5428                 return (unsigned long)sk;
5429
5430         return (unsigned long)NULL;
5431 }
5432
5433 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5434         .func           = bpf_get_listener_sock,
5435         .gpl_only       = false,
5436         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5437         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5438 };
5439
5440 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5441 {
5442         unsigned int iphdr_len;
5443
5444         if (skb->protocol == cpu_to_be16(ETH_P_IP))
5445                 iphdr_len = sizeof(struct iphdr);
5446         else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5447                 iphdr_len = sizeof(struct ipv6hdr);
5448         else
5449                 return 0;
5450
5451         if (skb_headlen(skb) < iphdr_len)
5452                 return 0;
5453
5454         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5455                 return 0;
5456
5457         return INET_ECN_set_ce(skb);
5458 }
5459
5460 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5461         .func           = bpf_skb_ecn_set_ce,
5462         .gpl_only       = false,
5463         .ret_type       = RET_INTEGER,
5464         .arg1_type      = ARG_PTR_TO_CTX,
5465 };
5466 #endif /* CONFIG_INET */
5467
5468 bool bpf_helper_changes_pkt_data(void *func)
5469 {
5470         if (func == bpf_skb_vlan_push ||
5471             func == bpf_skb_vlan_pop ||
5472             func == bpf_skb_store_bytes ||
5473             func == bpf_skb_change_proto ||
5474             func == bpf_skb_change_head ||
5475             func == sk_skb_change_head ||
5476             func == bpf_skb_change_tail ||
5477             func == sk_skb_change_tail ||
5478             func == bpf_skb_adjust_room ||
5479             func == bpf_skb_pull_data ||
5480             func == sk_skb_pull_data ||
5481             func == bpf_clone_redirect ||
5482             func == bpf_l3_csum_replace ||
5483             func == bpf_l4_csum_replace ||
5484             func == bpf_xdp_adjust_head ||
5485             func == bpf_xdp_adjust_meta ||
5486             func == bpf_msg_pull_data ||
5487             func == bpf_msg_push_data ||
5488             func == bpf_msg_pop_data ||
5489             func == bpf_xdp_adjust_tail ||
5490 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5491             func == bpf_lwt_seg6_store_bytes ||
5492             func == bpf_lwt_seg6_adjust_srh ||
5493             func == bpf_lwt_seg6_action ||
5494 #endif
5495             func == bpf_lwt_in_push_encap ||
5496             func == bpf_lwt_xmit_push_encap)
5497                 return true;
5498
5499         return false;
5500 }
5501
5502 static const struct bpf_func_proto *
5503 bpf_base_func_proto(enum bpf_func_id func_id)
5504 {
5505         switch (func_id) {
5506         case BPF_FUNC_map_lookup_elem:
5507                 return &bpf_map_lookup_elem_proto;
5508         case BPF_FUNC_map_update_elem:
5509                 return &bpf_map_update_elem_proto;
5510         case BPF_FUNC_map_delete_elem:
5511                 return &bpf_map_delete_elem_proto;
5512         case BPF_FUNC_map_push_elem:
5513                 return &bpf_map_push_elem_proto;
5514         case BPF_FUNC_map_pop_elem:
5515                 return &bpf_map_pop_elem_proto;
5516         case BPF_FUNC_map_peek_elem:
5517                 return &bpf_map_peek_elem_proto;
5518         case BPF_FUNC_get_prandom_u32:
5519                 return &bpf_get_prandom_u32_proto;
5520         case BPF_FUNC_get_smp_processor_id:
5521                 return &bpf_get_raw_smp_processor_id_proto;
5522         case BPF_FUNC_get_numa_node_id:
5523                 return &bpf_get_numa_node_id_proto;
5524         case BPF_FUNC_tail_call:
5525                 return &bpf_tail_call_proto;
5526         case BPF_FUNC_ktime_get_ns:
5527                 return &bpf_ktime_get_ns_proto;
5528         default:
5529                 break;
5530         }
5531
5532         if (!capable(CAP_SYS_ADMIN))
5533                 return NULL;
5534
5535         switch (func_id) {
5536         case BPF_FUNC_spin_lock:
5537                 return &bpf_spin_lock_proto;
5538         case BPF_FUNC_spin_unlock:
5539                 return &bpf_spin_unlock_proto;
5540         case BPF_FUNC_trace_printk:
5541                 return bpf_get_trace_printk_proto();
5542         default:
5543                 return NULL;
5544         }
5545 }
5546
5547 static const struct bpf_func_proto *
5548 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5549 {
5550         switch (func_id) {
5551         /* inet and inet6 sockets are created in a process
5552          * context so there is always a valid uid/gid
5553          */
5554         case BPF_FUNC_get_current_uid_gid:
5555                 return &bpf_get_current_uid_gid_proto;
5556         case BPF_FUNC_get_local_storage:
5557                 return &bpf_get_local_storage_proto;
5558         default:
5559                 return bpf_base_func_proto(func_id);
5560         }
5561 }
5562
5563 static const struct bpf_func_proto *
5564 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5565 {
5566         switch (func_id) {
5567         /* inet and inet6 sockets are created in a process
5568          * context so there is always a valid uid/gid
5569          */
5570         case BPF_FUNC_get_current_uid_gid:
5571                 return &bpf_get_current_uid_gid_proto;
5572         case BPF_FUNC_bind:
5573                 switch (prog->expected_attach_type) {
5574                 case BPF_CGROUP_INET4_CONNECT:
5575                 case BPF_CGROUP_INET6_CONNECT:
5576                         return &bpf_bind_proto;
5577                 default:
5578                         return NULL;
5579                 }
5580         case BPF_FUNC_get_socket_cookie:
5581                 return &bpf_get_socket_cookie_sock_addr_proto;
5582         case BPF_FUNC_get_local_storage:
5583                 return &bpf_get_local_storage_proto;
5584 #ifdef CONFIG_INET
5585         case BPF_FUNC_sk_lookup_tcp:
5586                 return &bpf_sock_addr_sk_lookup_tcp_proto;
5587         case BPF_FUNC_sk_lookup_udp:
5588                 return &bpf_sock_addr_sk_lookup_udp_proto;
5589         case BPF_FUNC_sk_release:
5590                 return &bpf_sk_release_proto;
5591 #endif /* CONFIG_INET */
5592         default:
5593                 return bpf_base_func_proto(func_id);
5594         }
5595 }
5596
5597 static const struct bpf_func_proto *
5598 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5599 {
5600         switch (func_id) {
5601         case BPF_FUNC_skb_load_bytes:
5602                 return &bpf_skb_load_bytes_proto;
5603         case BPF_FUNC_skb_load_bytes_relative:
5604                 return &bpf_skb_load_bytes_relative_proto;
5605         case BPF_FUNC_get_socket_cookie:
5606                 return &bpf_get_socket_cookie_proto;
5607         case BPF_FUNC_get_socket_uid:
5608                 return &bpf_get_socket_uid_proto;
5609         default:
5610                 return bpf_base_func_proto(func_id);
5611         }
5612 }
5613
5614 static const struct bpf_func_proto *
5615 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5616 {
5617         switch (func_id) {
5618         case BPF_FUNC_get_local_storage:
5619                 return &bpf_get_local_storage_proto;
5620         case BPF_FUNC_sk_fullsock:
5621                 return &bpf_sk_fullsock_proto;
5622 #ifdef CONFIG_INET
5623         case BPF_FUNC_tcp_sock:
5624                 return &bpf_tcp_sock_proto;
5625         case BPF_FUNC_get_listener_sock:
5626                 return &bpf_get_listener_sock_proto;
5627         case BPF_FUNC_skb_ecn_set_ce:
5628                 return &bpf_skb_ecn_set_ce_proto;
5629 #endif
5630         default:
5631                 return sk_filter_func_proto(func_id, prog);
5632         }
5633 }
5634
5635 static const struct bpf_func_proto *
5636 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5637 {
5638         switch (func_id) {
5639         case BPF_FUNC_skb_store_bytes:
5640                 return &bpf_skb_store_bytes_proto;
5641         case BPF_FUNC_skb_load_bytes:
5642                 return &bpf_skb_load_bytes_proto;
5643         case BPF_FUNC_skb_load_bytes_relative:
5644                 return &bpf_skb_load_bytes_relative_proto;
5645         case BPF_FUNC_skb_pull_data:
5646                 return &bpf_skb_pull_data_proto;
5647         case BPF_FUNC_csum_diff:
5648                 return &bpf_csum_diff_proto;
5649         case BPF_FUNC_csum_update:
5650                 return &bpf_csum_update_proto;
5651         case BPF_FUNC_l3_csum_replace:
5652                 return &bpf_l3_csum_replace_proto;
5653         case BPF_FUNC_l4_csum_replace:
5654                 return &bpf_l4_csum_replace_proto;
5655         case BPF_FUNC_clone_redirect:
5656                 return &bpf_clone_redirect_proto;
5657         case BPF_FUNC_get_cgroup_classid:
5658                 return &bpf_get_cgroup_classid_proto;
5659         case BPF_FUNC_skb_vlan_push:
5660                 return &bpf_skb_vlan_push_proto;
5661         case BPF_FUNC_skb_vlan_pop:
5662                 return &bpf_skb_vlan_pop_proto;
5663         case BPF_FUNC_skb_change_proto:
5664                 return &bpf_skb_change_proto_proto;
5665         case BPF_FUNC_skb_change_type:
5666                 return &bpf_skb_change_type_proto;
5667         case BPF_FUNC_skb_adjust_room:
5668                 return &bpf_skb_adjust_room_proto;
5669         case BPF_FUNC_skb_change_tail:
5670                 return &bpf_skb_change_tail_proto;
5671         case BPF_FUNC_skb_get_tunnel_key:
5672                 return &bpf_skb_get_tunnel_key_proto;
5673         case BPF_FUNC_skb_set_tunnel_key:
5674                 return bpf_get_skb_set_tunnel_proto(func_id);
5675         case BPF_FUNC_skb_get_tunnel_opt:
5676                 return &bpf_skb_get_tunnel_opt_proto;
5677         case BPF_FUNC_skb_set_tunnel_opt:
5678                 return bpf_get_skb_set_tunnel_proto(func_id);
5679         case BPF_FUNC_redirect:
5680                 return &bpf_redirect_proto;
5681         case BPF_FUNC_get_route_realm:
5682                 return &bpf_get_route_realm_proto;
5683         case BPF_FUNC_get_hash_recalc:
5684                 return &bpf_get_hash_recalc_proto;
5685         case BPF_FUNC_set_hash_invalid:
5686                 return &bpf_set_hash_invalid_proto;
5687         case BPF_FUNC_set_hash:
5688                 return &bpf_set_hash_proto;
5689         case BPF_FUNC_perf_event_output:
5690                 return &bpf_skb_event_output_proto;
5691         case BPF_FUNC_get_smp_processor_id:
5692                 return &bpf_get_smp_processor_id_proto;
5693         case BPF_FUNC_skb_under_cgroup:
5694                 return &bpf_skb_under_cgroup_proto;
5695         case BPF_FUNC_get_socket_cookie:
5696                 return &bpf_get_socket_cookie_proto;
5697         case BPF_FUNC_get_socket_uid:
5698                 return &bpf_get_socket_uid_proto;
5699         case BPF_FUNC_fib_lookup:
5700                 return &bpf_skb_fib_lookup_proto;
5701         case BPF_FUNC_sk_fullsock:
5702                 return &bpf_sk_fullsock_proto;
5703 #ifdef CONFIG_XFRM
5704         case BPF_FUNC_skb_get_xfrm_state:
5705                 return &bpf_skb_get_xfrm_state_proto;
5706 #endif
5707 #ifdef CONFIG_SOCK_CGROUP_DATA
5708         case BPF_FUNC_skb_cgroup_id:
5709                 return &bpf_skb_cgroup_id_proto;
5710         case BPF_FUNC_skb_ancestor_cgroup_id:
5711                 return &bpf_skb_ancestor_cgroup_id_proto;
5712 #endif
5713 #ifdef CONFIG_INET
5714         case BPF_FUNC_sk_lookup_tcp:
5715                 return &bpf_sk_lookup_tcp_proto;
5716         case BPF_FUNC_sk_lookup_udp:
5717                 return &bpf_sk_lookup_udp_proto;
5718         case BPF_FUNC_sk_release:
5719                 return &bpf_sk_release_proto;
5720         case BPF_FUNC_tcp_sock:
5721                 return &bpf_tcp_sock_proto;
5722         case BPF_FUNC_get_listener_sock:
5723                 return &bpf_get_listener_sock_proto;
5724 #endif
5725         default:
5726                 return bpf_base_func_proto(func_id);
5727         }
5728 }
5729
5730 static const struct bpf_func_proto *
5731 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5732 {
5733         switch (func_id) {
5734         case BPF_FUNC_perf_event_output:
5735                 return &bpf_xdp_event_output_proto;
5736         case BPF_FUNC_get_smp_processor_id:
5737                 return &bpf_get_smp_processor_id_proto;
5738         case BPF_FUNC_csum_diff:
5739                 return &bpf_csum_diff_proto;
5740         case BPF_FUNC_xdp_adjust_head:
5741                 return &bpf_xdp_adjust_head_proto;
5742         case BPF_FUNC_xdp_adjust_meta:
5743                 return &bpf_xdp_adjust_meta_proto;
5744         case BPF_FUNC_redirect:
5745                 return &bpf_xdp_redirect_proto;
5746         case BPF_FUNC_redirect_map:
5747                 return &bpf_xdp_redirect_map_proto;
5748         case BPF_FUNC_xdp_adjust_tail:
5749                 return &bpf_xdp_adjust_tail_proto;
5750         case BPF_FUNC_fib_lookup:
5751                 return &bpf_xdp_fib_lookup_proto;
5752 #ifdef CONFIG_INET
5753         case BPF_FUNC_sk_lookup_udp:
5754                 return &bpf_xdp_sk_lookup_udp_proto;
5755         case BPF_FUNC_sk_lookup_tcp:
5756                 return &bpf_xdp_sk_lookup_tcp_proto;
5757         case BPF_FUNC_sk_release:
5758                 return &bpf_sk_release_proto;
5759 #endif
5760         default:
5761                 return bpf_base_func_proto(func_id);
5762         }
5763 }
5764
5765 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
5766 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
5767
5768 static const struct bpf_func_proto *
5769 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5770 {
5771         switch (func_id) {
5772         case BPF_FUNC_setsockopt:
5773                 return &bpf_setsockopt_proto;
5774         case BPF_FUNC_getsockopt:
5775                 return &bpf_getsockopt_proto;
5776         case BPF_FUNC_sock_ops_cb_flags_set:
5777                 return &bpf_sock_ops_cb_flags_set_proto;
5778         case BPF_FUNC_sock_map_update:
5779                 return &bpf_sock_map_update_proto;
5780         case BPF_FUNC_sock_hash_update:
5781                 return &bpf_sock_hash_update_proto;
5782         case BPF_FUNC_get_socket_cookie:
5783                 return &bpf_get_socket_cookie_sock_ops_proto;
5784         case BPF_FUNC_get_local_storage:
5785                 return &bpf_get_local_storage_proto;
5786         case BPF_FUNC_perf_event_output:
5787                 return &bpf_sockopt_event_output_proto;
5788         default:
5789                 return bpf_base_func_proto(func_id);
5790         }
5791 }
5792
5793 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
5794 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
5795
5796 static const struct bpf_func_proto *
5797 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5798 {
5799         switch (func_id) {
5800         case BPF_FUNC_msg_redirect_map:
5801                 return &bpf_msg_redirect_map_proto;
5802         case BPF_FUNC_msg_redirect_hash:
5803                 return &bpf_msg_redirect_hash_proto;
5804         case BPF_FUNC_msg_apply_bytes:
5805                 return &bpf_msg_apply_bytes_proto;
5806         case BPF_FUNC_msg_cork_bytes:
5807                 return &bpf_msg_cork_bytes_proto;
5808         case BPF_FUNC_msg_pull_data:
5809                 return &bpf_msg_pull_data_proto;
5810         case BPF_FUNC_msg_push_data:
5811                 return &bpf_msg_push_data_proto;
5812         case BPF_FUNC_msg_pop_data:
5813                 return &bpf_msg_pop_data_proto;
5814         default:
5815                 return bpf_base_func_proto(func_id);
5816         }
5817 }
5818
5819 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
5820 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
5821
5822 static const struct bpf_func_proto *
5823 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5824 {
5825         switch (func_id) {
5826         case BPF_FUNC_skb_store_bytes:
5827                 return &bpf_skb_store_bytes_proto;
5828         case BPF_FUNC_skb_load_bytes:
5829                 return &bpf_skb_load_bytes_proto;
5830         case BPF_FUNC_skb_pull_data:
5831                 return &sk_skb_pull_data_proto;
5832         case BPF_FUNC_skb_change_tail:
5833                 return &sk_skb_change_tail_proto;
5834         case BPF_FUNC_skb_change_head:
5835                 return &sk_skb_change_head_proto;
5836         case BPF_FUNC_get_socket_cookie:
5837                 return &bpf_get_socket_cookie_proto;
5838         case BPF_FUNC_get_socket_uid:
5839                 return &bpf_get_socket_uid_proto;
5840         case BPF_FUNC_sk_redirect_map:
5841                 return &bpf_sk_redirect_map_proto;
5842         case BPF_FUNC_sk_redirect_hash:
5843                 return &bpf_sk_redirect_hash_proto;
5844 #ifdef CONFIG_INET
5845         case BPF_FUNC_sk_lookup_tcp:
5846                 return &bpf_sk_lookup_tcp_proto;
5847         case BPF_FUNC_sk_lookup_udp:
5848                 return &bpf_sk_lookup_udp_proto;
5849         case BPF_FUNC_sk_release:
5850                 return &bpf_sk_release_proto;
5851 #endif
5852         default:
5853                 return bpf_base_func_proto(func_id);
5854         }
5855 }
5856
5857 static const struct bpf_func_proto *
5858 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5859 {
5860         switch (func_id) {
5861         case BPF_FUNC_skb_load_bytes:
5862                 return &bpf_skb_load_bytes_proto;
5863         default:
5864                 return bpf_base_func_proto(func_id);
5865         }
5866 }
5867
5868 static const struct bpf_func_proto *
5869 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5870 {
5871         switch (func_id) {
5872         case BPF_FUNC_skb_load_bytes:
5873                 return &bpf_skb_load_bytes_proto;
5874         case BPF_FUNC_skb_pull_data:
5875                 return &bpf_skb_pull_data_proto;
5876         case BPF_FUNC_csum_diff:
5877                 return &bpf_csum_diff_proto;
5878         case BPF_FUNC_get_cgroup_classid:
5879                 return &bpf_get_cgroup_classid_proto;
5880         case BPF_FUNC_get_route_realm:
5881                 return &bpf_get_route_realm_proto;
5882         case BPF_FUNC_get_hash_recalc:
5883                 return &bpf_get_hash_recalc_proto;
5884         case BPF_FUNC_perf_event_output:
5885                 return &bpf_skb_event_output_proto;
5886         case BPF_FUNC_get_smp_processor_id:
5887                 return &bpf_get_smp_processor_id_proto;
5888         case BPF_FUNC_skb_under_cgroup:
5889                 return &bpf_skb_under_cgroup_proto;
5890         default:
5891                 return bpf_base_func_proto(func_id);
5892         }
5893 }
5894
5895 static const struct bpf_func_proto *
5896 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5897 {
5898         switch (func_id) {
5899         case BPF_FUNC_lwt_push_encap:
5900                 return &bpf_lwt_in_push_encap_proto;
5901         default:
5902                 return lwt_out_func_proto(func_id, prog);
5903         }
5904 }
5905
5906 static const struct bpf_func_proto *
5907 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5908 {
5909         switch (func_id) {
5910         case BPF_FUNC_skb_get_tunnel_key:
5911                 return &bpf_skb_get_tunnel_key_proto;
5912         case BPF_FUNC_skb_set_tunnel_key:
5913                 return bpf_get_skb_set_tunnel_proto(func_id);
5914         case BPF_FUNC_skb_get_tunnel_opt:
5915                 return &bpf_skb_get_tunnel_opt_proto;
5916         case BPF_FUNC_skb_set_tunnel_opt:
5917                 return bpf_get_skb_set_tunnel_proto(func_id);
5918         case BPF_FUNC_redirect:
5919                 return &bpf_redirect_proto;
5920         case BPF_FUNC_clone_redirect:
5921                 return &bpf_clone_redirect_proto;
5922         case BPF_FUNC_skb_change_tail:
5923                 return &bpf_skb_change_tail_proto;
5924         case BPF_FUNC_skb_change_head:
5925                 return &bpf_skb_change_head_proto;
5926         case BPF_FUNC_skb_store_bytes:
5927                 return &bpf_skb_store_bytes_proto;
5928         case BPF_FUNC_csum_update:
5929                 return &bpf_csum_update_proto;
5930         case BPF_FUNC_l3_csum_replace:
5931                 return &bpf_l3_csum_replace_proto;
5932         case BPF_FUNC_l4_csum_replace:
5933                 return &bpf_l4_csum_replace_proto;
5934         case BPF_FUNC_set_hash_invalid:
5935                 return &bpf_set_hash_invalid_proto;
5936         case BPF_FUNC_lwt_push_encap:
5937                 return &bpf_lwt_xmit_push_encap_proto;
5938         default:
5939                 return lwt_out_func_proto(func_id, prog);
5940         }
5941 }
5942
5943 static const struct bpf_func_proto *
5944 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5945 {
5946         switch (func_id) {
5947 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5948         case BPF_FUNC_lwt_seg6_store_bytes:
5949                 return &bpf_lwt_seg6_store_bytes_proto;
5950         case BPF_FUNC_lwt_seg6_action:
5951                 return &bpf_lwt_seg6_action_proto;
5952         case BPF_FUNC_lwt_seg6_adjust_srh:
5953                 return &bpf_lwt_seg6_adjust_srh_proto;
5954 #endif
5955         default:
5956                 return lwt_out_func_proto(func_id, prog);
5957         }
5958 }
5959
5960 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5961                                     const struct bpf_prog *prog,
5962                                     struct bpf_insn_access_aux *info)
5963 {
5964         const int size_default = sizeof(__u32);
5965
5966         if (off < 0 || off >= sizeof(struct __sk_buff))
5967                 return false;
5968
5969         /* The verifier guarantees that size > 0. */
5970         if (off % size != 0)
5971                 return false;
5972
5973         switch (off) {
5974         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5975                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5976                         return false;
5977                 break;
5978         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5979         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5980         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5981         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5982         case bpf_ctx_range(struct __sk_buff, data):
5983         case bpf_ctx_range(struct __sk_buff, data_meta):
5984         case bpf_ctx_range(struct __sk_buff, data_end):
5985                 if (size != size_default)
5986                         return false;
5987                 break;
5988         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5989                 if (size != sizeof(__u64))
5990                         return false;
5991                 break;
5992         case bpf_ctx_range(struct __sk_buff, tstamp):
5993                 if (size != sizeof(__u64))
5994                         return false;
5995                 break;
5996         case offsetof(struct __sk_buff, sk):
5997                 if (type == BPF_WRITE || size != sizeof(__u64))
5998                         return false;
5999                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6000                 break;
6001         default:
6002                 /* Only narrow read access allowed for now. */
6003                 if (type == BPF_WRITE) {
6004                         if (size != size_default)
6005                                 return false;
6006                 } else {
6007                         bpf_ctx_record_field_size(info, size_default);
6008                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6009                                 return false;
6010                 }
6011         }
6012
6013         return true;
6014 }
6015
6016 static bool sk_filter_is_valid_access(int off, int size,
6017                                       enum bpf_access_type type,
6018                                       const struct bpf_prog *prog,
6019                                       struct bpf_insn_access_aux *info)
6020 {
6021         switch (off) {
6022         case bpf_ctx_range(struct __sk_buff, tc_classid):
6023         case bpf_ctx_range(struct __sk_buff, data):
6024         case bpf_ctx_range(struct __sk_buff, data_meta):
6025         case bpf_ctx_range(struct __sk_buff, data_end):
6026         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6027         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6028         case bpf_ctx_range(struct __sk_buff, tstamp):
6029         case bpf_ctx_range(struct __sk_buff, wire_len):
6030                 return false;
6031         }
6032
6033         if (type == BPF_WRITE) {
6034                 switch (off) {
6035                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6036                         break;
6037                 default:
6038                         return false;
6039                 }
6040         }
6041
6042         return bpf_skb_is_valid_access(off, size, type, prog, info);
6043 }
6044
6045 static bool cg_skb_is_valid_access(int off, int size,
6046                                    enum bpf_access_type type,
6047                                    const struct bpf_prog *prog,
6048                                    struct bpf_insn_access_aux *info)
6049 {
6050         switch (off) {
6051         case bpf_ctx_range(struct __sk_buff, tc_classid):
6052         case bpf_ctx_range(struct __sk_buff, data_meta):
6053         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6054         case bpf_ctx_range(struct __sk_buff, wire_len):
6055                 return false;
6056         case bpf_ctx_range(struct __sk_buff, data):
6057         case bpf_ctx_range(struct __sk_buff, data_end):
6058                 if (!capable(CAP_SYS_ADMIN))
6059                         return false;
6060                 break;
6061         }
6062
6063         if (type == BPF_WRITE) {
6064                 switch (off) {
6065                 case bpf_ctx_range(struct __sk_buff, mark):
6066                 case bpf_ctx_range(struct __sk_buff, priority):
6067                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6068                         break;
6069                 case bpf_ctx_range(struct __sk_buff, tstamp):
6070                         if (!capable(CAP_SYS_ADMIN))
6071                                 return false;
6072                         break;
6073                 default:
6074                         return false;
6075                 }
6076         }
6077
6078         switch (off) {
6079         case bpf_ctx_range(struct __sk_buff, data):
6080                 info->reg_type = PTR_TO_PACKET;
6081                 break;
6082         case bpf_ctx_range(struct __sk_buff, data_end):
6083                 info->reg_type = PTR_TO_PACKET_END;
6084                 break;
6085         }
6086
6087         return bpf_skb_is_valid_access(off, size, type, prog, info);
6088 }
6089
6090 static bool lwt_is_valid_access(int off, int size,
6091                                 enum bpf_access_type type,
6092                                 const struct bpf_prog *prog,
6093                                 struct bpf_insn_access_aux *info)
6094 {
6095         switch (off) {
6096         case bpf_ctx_range(struct __sk_buff, tc_classid):
6097         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6098         case bpf_ctx_range(struct __sk_buff, data_meta):
6099         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6100         case bpf_ctx_range(struct __sk_buff, tstamp):
6101         case bpf_ctx_range(struct __sk_buff, wire_len):
6102                 return false;
6103         }
6104
6105         if (type == BPF_WRITE) {
6106                 switch (off) {
6107                 case bpf_ctx_range(struct __sk_buff, mark):
6108                 case bpf_ctx_range(struct __sk_buff, priority):
6109                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6110                         break;
6111                 default:
6112                         return false;
6113                 }
6114         }
6115
6116         switch (off) {
6117         case bpf_ctx_range(struct __sk_buff, data):
6118                 info->reg_type = PTR_TO_PACKET;
6119                 break;
6120         case bpf_ctx_range(struct __sk_buff, data_end):
6121                 info->reg_type = PTR_TO_PACKET_END;
6122                 break;
6123         }
6124
6125         return bpf_skb_is_valid_access(off, size, type, prog, info);
6126 }
6127
6128 /* Attach type specific accesses */
6129 static bool __sock_filter_check_attach_type(int off,
6130                                             enum bpf_access_type access_type,
6131                                             enum bpf_attach_type attach_type)
6132 {
6133         switch (off) {
6134         case offsetof(struct bpf_sock, bound_dev_if):
6135         case offsetof(struct bpf_sock, mark):
6136         case offsetof(struct bpf_sock, priority):
6137                 switch (attach_type) {
6138                 case BPF_CGROUP_INET_SOCK_CREATE:
6139                         goto full_access;
6140                 default:
6141                         return false;
6142                 }
6143         case bpf_ctx_range(struct bpf_sock, src_ip4):
6144                 switch (attach_type) {
6145                 case BPF_CGROUP_INET4_POST_BIND:
6146                         goto read_only;
6147                 default:
6148                         return false;
6149                 }
6150         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6151                 switch (attach_type) {
6152                 case BPF_CGROUP_INET6_POST_BIND:
6153                         goto read_only;
6154                 default:
6155                         return false;
6156                 }
6157         case bpf_ctx_range(struct bpf_sock, src_port):
6158                 switch (attach_type) {
6159                 case BPF_CGROUP_INET4_POST_BIND:
6160                 case BPF_CGROUP_INET6_POST_BIND:
6161                         goto read_only;
6162                 default:
6163                         return false;
6164                 }
6165         }
6166 read_only:
6167         return access_type == BPF_READ;
6168 full_access:
6169         return true;
6170 }
6171
6172 bool bpf_sock_common_is_valid_access(int off, int size,
6173                                      enum bpf_access_type type,
6174                                      struct bpf_insn_access_aux *info)
6175 {
6176         switch (off) {
6177         case bpf_ctx_range_till(struct bpf_sock, type, priority):
6178                 return false;
6179         default:
6180                 return bpf_sock_is_valid_access(off, size, type, info);
6181         }
6182 }
6183
6184 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6185                               struct bpf_insn_access_aux *info)
6186 {
6187         const int size_default = sizeof(__u32);
6188
6189         if (off < 0 || off >= sizeof(struct bpf_sock))
6190                 return false;
6191         if (off % size != 0)
6192                 return false;
6193
6194         switch (off) {
6195         case offsetof(struct bpf_sock, state):
6196         case offsetof(struct bpf_sock, family):
6197         case offsetof(struct bpf_sock, type):
6198         case offsetof(struct bpf_sock, protocol):
6199         case offsetof(struct bpf_sock, dst_port):
6200         case offsetof(struct bpf_sock, src_port):
6201         case bpf_ctx_range(struct bpf_sock, src_ip4):
6202         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6203         case bpf_ctx_range(struct bpf_sock, dst_ip4):
6204         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6205                 bpf_ctx_record_field_size(info, size_default);
6206                 return bpf_ctx_narrow_access_ok(off, size, size_default);
6207         }
6208
6209         return size == size_default;
6210 }
6211
6212 static bool sock_filter_is_valid_access(int off, int size,
6213                                         enum bpf_access_type type,
6214                                         const struct bpf_prog *prog,
6215                                         struct bpf_insn_access_aux *info)
6216 {
6217         if (!bpf_sock_is_valid_access(off, size, type, info))
6218                 return false;
6219         return __sock_filter_check_attach_type(off, type,
6220                                                prog->expected_attach_type);
6221 }
6222
6223 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6224                              const struct bpf_prog *prog)
6225 {
6226         /* Neither direct read nor direct write requires any preliminary
6227          * action.
6228          */
6229         return 0;
6230 }
6231
6232 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6233                                 const struct bpf_prog *prog, int drop_verdict)
6234 {
6235         struct bpf_insn *insn = insn_buf;
6236
6237         if (!direct_write)
6238                 return 0;
6239
6240         /* if (!skb->cloned)
6241          *       goto start;
6242          *
6243          * (Fast-path, otherwise approximation that we might be
6244          *  a clone, do the rest in helper.)
6245          */
6246         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6247         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6248         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6249
6250         /* ret = bpf_skb_pull_data(skb, 0); */
6251         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6252         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6253         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6254                                BPF_FUNC_skb_pull_data);
6255         /* if (!ret)
6256          *      goto restore;
6257          * return TC_ACT_SHOT;
6258          */
6259         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6260         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6261         *insn++ = BPF_EXIT_INSN();
6262
6263         /* restore: */
6264         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6265         /* start: */
6266         *insn++ = prog->insnsi[0];
6267
6268         return insn - insn_buf;
6269 }
6270
6271 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6272                           struct bpf_insn *insn_buf)
6273 {
6274         bool indirect = BPF_MODE(orig->code) == BPF_IND;
6275         struct bpf_insn *insn = insn_buf;
6276
6277         /* We're guaranteed here that CTX is in R6. */
6278         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6279         if (!indirect) {
6280                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6281         } else {
6282                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6283                 if (orig->imm)
6284                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6285         }
6286
6287         switch (BPF_SIZE(orig->code)) {
6288         case BPF_B:
6289                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6290                 break;
6291         case BPF_H:
6292                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6293                 break;
6294         case BPF_W:
6295                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6296                 break;
6297         }
6298
6299         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6300         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6301         *insn++ = BPF_EXIT_INSN();
6302
6303         return insn - insn_buf;
6304 }
6305
6306 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6307                                const struct bpf_prog *prog)
6308 {
6309         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6310 }
6311
6312 static bool tc_cls_act_is_valid_access(int off, int size,
6313                                        enum bpf_access_type type,
6314                                        const struct bpf_prog *prog,
6315                                        struct bpf_insn_access_aux *info)
6316 {
6317         if (type == BPF_WRITE) {
6318                 switch (off) {
6319                 case bpf_ctx_range(struct __sk_buff, mark):
6320                 case bpf_ctx_range(struct __sk_buff, tc_index):
6321                 case bpf_ctx_range(struct __sk_buff, priority):
6322                 case bpf_ctx_range(struct __sk_buff, tc_classid):
6323                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6324                 case bpf_ctx_range(struct __sk_buff, tstamp):
6325                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
6326                         break;
6327                 default:
6328                         return false;
6329                 }
6330         }
6331
6332         switch (off) {
6333         case bpf_ctx_range(struct __sk_buff, data):
6334                 info->reg_type = PTR_TO_PACKET;
6335                 break;
6336         case bpf_ctx_range(struct __sk_buff, data_meta):
6337                 info->reg_type = PTR_TO_PACKET_META;
6338                 break;
6339         case bpf_ctx_range(struct __sk_buff, data_end):
6340                 info->reg_type = PTR_TO_PACKET_END;
6341                 break;
6342         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6343         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6344                 return false;
6345         }
6346
6347         return bpf_skb_is_valid_access(off, size, type, prog, info);
6348 }
6349
6350 static bool __is_valid_xdp_access(int off, int size)
6351 {
6352         if (off < 0 || off >= sizeof(struct xdp_md))
6353                 return false;
6354         if (off % size != 0)
6355                 return false;
6356         if (size != sizeof(__u32))
6357                 return false;
6358
6359         return true;
6360 }
6361
6362 static bool xdp_is_valid_access(int off, int size,
6363                                 enum bpf_access_type type,
6364                                 const struct bpf_prog *prog,
6365                                 struct bpf_insn_access_aux *info)
6366 {
6367         if (type == BPF_WRITE) {
6368                 if (bpf_prog_is_dev_bound(prog->aux)) {
6369                         switch (off) {
6370                         case offsetof(struct xdp_md, rx_queue_index):
6371                                 return __is_valid_xdp_access(off, size);
6372                         }
6373                 }
6374                 return false;
6375         }
6376
6377         switch (off) {
6378         case offsetof(struct xdp_md, data):
6379                 info->reg_type = PTR_TO_PACKET;
6380                 break;
6381         case offsetof(struct xdp_md, data_meta):
6382                 info->reg_type = PTR_TO_PACKET_META;
6383                 break;
6384         case offsetof(struct xdp_md, data_end):
6385                 info->reg_type = PTR_TO_PACKET_END;
6386                 break;
6387         }
6388
6389         return __is_valid_xdp_access(off, size);
6390 }
6391
6392 void bpf_warn_invalid_xdp_action(u32 act)
6393 {
6394         const u32 act_max = XDP_REDIRECT;
6395
6396         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6397                   act > act_max ? "Illegal" : "Driver unsupported",
6398                   act);
6399 }
6400 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6401
6402 static bool sock_addr_is_valid_access(int off, int size,
6403                                       enum bpf_access_type type,
6404                                       const struct bpf_prog *prog,
6405                                       struct bpf_insn_access_aux *info)
6406 {
6407         const int size_default = sizeof(__u32);
6408
6409         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6410                 return false;
6411         if (off % size != 0)
6412                 return false;
6413
6414         /* Disallow access to IPv6 fields from IPv4 contex and vise
6415          * versa.
6416          */
6417         switch (off) {
6418         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6419                 switch (prog->expected_attach_type) {
6420                 case BPF_CGROUP_INET4_BIND:
6421                 case BPF_CGROUP_INET4_CONNECT:
6422                 case BPF_CGROUP_UDP4_SENDMSG:
6423                         break;
6424                 default:
6425                         return false;
6426                 }
6427                 break;
6428         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6429                 switch (prog->expected_attach_type) {
6430                 case BPF_CGROUP_INET6_BIND:
6431                 case BPF_CGROUP_INET6_CONNECT:
6432                 case BPF_CGROUP_UDP6_SENDMSG:
6433                         break;
6434                 default:
6435                         return false;
6436                 }
6437                 break;
6438         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6439                 switch (prog->expected_attach_type) {
6440                 case BPF_CGROUP_UDP4_SENDMSG:
6441                         break;
6442                 default:
6443                         return false;
6444                 }
6445                 break;
6446         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6447                                 msg_src_ip6[3]):
6448                 switch (prog->expected_attach_type) {
6449                 case BPF_CGROUP_UDP6_SENDMSG:
6450                         break;
6451                 default:
6452                         return false;
6453                 }
6454                 break;
6455         }
6456
6457         switch (off) {
6458         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6459         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6460         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6461         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6462                                 msg_src_ip6[3]):
6463                 /* Only narrow read access allowed for now. */
6464                 if (type == BPF_READ) {
6465                         bpf_ctx_record_field_size(info, size_default);
6466                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6467                                 return false;
6468                 } else {
6469                         if (size != size_default)
6470                                 return false;
6471                 }
6472                 break;
6473         case bpf_ctx_range(struct bpf_sock_addr, user_port):
6474                 if (size != size_default)
6475                         return false;
6476                 break;
6477         default:
6478                 if (type == BPF_READ) {
6479                         if (size != size_default)
6480                                 return false;
6481                 } else {
6482                         return false;
6483                 }
6484         }
6485
6486         return true;
6487 }
6488
6489 static bool sock_ops_is_valid_access(int off, int size,
6490                                      enum bpf_access_type type,
6491                                      const struct bpf_prog *prog,
6492                                      struct bpf_insn_access_aux *info)
6493 {
6494         const int size_default = sizeof(__u32);
6495
6496         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
6497                 return false;
6498
6499         /* The verifier guarantees that size > 0. */
6500         if (off % size != 0)
6501                 return false;
6502
6503         if (type == BPF_WRITE) {
6504                 switch (off) {
6505                 case offsetof(struct bpf_sock_ops, reply):
6506                 case offsetof(struct bpf_sock_ops, sk_txhash):
6507                         if (size != size_default)
6508                                 return false;
6509                         break;
6510                 default:
6511                         return false;
6512                 }
6513         } else {
6514                 switch (off) {
6515                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
6516                                         bytes_acked):
6517                         if (size != sizeof(__u64))
6518                                 return false;
6519                         break;
6520                 default:
6521                         if (size != size_default)
6522                                 return false;
6523                         break;
6524                 }
6525         }
6526
6527         return true;
6528 }
6529
6530 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
6531                            const struct bpf_prog *prog)
6532 {
6533         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
6534 }
6535
6536 static bool sk_skb_is_valid_access(int off, int size,
6537                                    enum bpf_access_type type,
6538                                    const struct bpf_prog *prog,
6539                                    struct bpf_insn_access_aux *info)
6540 {
6541         switch (off) {
6542         case bpf_ctx_range(struct __sk_buff, tc_classid):
6543         case bpf_ctx_range(struct __sk_buff, data_meta):
6544         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6545         case bpf_ctx_range(struct __sk_buff, tstamp):
6546         case bpf_ctx_range(struct __sk_buff, wire_len):
6547                 return false;
6548         }
6549
6550         if (type == BPF_WRITE) {
6551                 switch (off) {
6552                 case bpf_ctx_range(struct __sk_buff, tc_index):
6553                 case bpf_ctx_range(struct __sk_buff, priority):
6554                         break;
6555                 default:
6556                         return false;
6557                 }
6558         }
6559
6560         switch (off) {
6561         case bpf_ctx_range(struct __sk_buff, mark):
6562                 return false;
6563         case bpf_ctx_range(struct __sk_buff, data):
6564                 info->reg_type = PTR_TO_PACKET;
6565                 break;
6566         case bpf_ctx_range(struct __sk_buff, data_end):
6567                 info->reg_type = PTR_TO_PACKET_END;
6568                 break;
6569         }
6570
6571         return bpf_skb_is_valid_access(off, size, type, prog, info);
6572 }
6573
6574 static bool sk_msg_is_valid_access(int off, int size,
6575                                    enum bpf_access_type type,
6576                                    const struct bpf_prog *prog,
6577                                    struct bpf_insn_access_aux *info)
6578 {
6579         if (type == BPF_WRITE)
6580                 return false;
6581
6582         if (off % size != 0)
6583                 return false;
6584
6585         switch (off) {
6586         case offsetof(struct sk_msg_md, data):
6587                 info->reg_type = PTR_TO_PACKET;
6588                 if (size != sizeof(__u64))
6589                         return false;
6590                 break;
6591         case offsetof(struct sk_msg_md, data_end):
6592                 info->reg_type = PTR_TO_PACKET_END;
6593                 if (size != sizeof(__u64))
6594                         return false;
6595                 break;
6596         case bpf_ctx_range(struct sk_msg_md, family):
6597         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
6598         case bpf_ctx_range(struct sk_msg_md, local_ip4):
6599         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
6600         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
6601         case bpf_ctx_range(struct sk_msg_md, remote_port):
6602         case bpf_ctx_range(struct sk_msg_md, local_port):
6603         case bpf_ctx_range(struct sk_msg_md, size):
6604                 if (size != sizeof(__u32))
6605                         return false;
6606                 break;
6607         default:
6608                 return false;
6609         }
6610         return true;
6611 }
6612
6613 static bool flow_dissector_is_valid_access(int off, int size,
6614                                            enum bpf_access_type type,
6615                                            const struct bpf_prog *prog,
6616                                            struct bpf_insn_access_aux *info)
6617 {
6618         if (type == BPF_WRITE)
6619                 return false;
6620
6621         switch (off) {
6622         case bpf_ctx_range(struct __sk_buff, data):
6623                 info->reg_type = PTR_TO_PACKET;
6624                 break;
6625         case bpf_ctx_range(struct __sk_buff, data_end):
6626                 info->reg_type = PTR_TO_PACKET_END;
6627                 break;
6628         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6629                 info->reg_type = PTR_TO_FLOW_KEYS;
6630                 break;
6631         default:
6632                 return false;
6633         }
6634
6635         return bpf_skb_is_valid_access(off, size, type, prog, info);
6636 }
6637
6638 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
6639                                   const struct bpf_insn *si,
6640                                   struct bpf_insn *insn_buf,
6641                                   struct bpf_prog *prog, u32 *target_size)
6642 {
6643         struct bpf_insn *insn = insn_buf;
6644         int off;
6645
6646         switch (si->off) {
6647         case offsetof(struct __sk_buff, len):
6648                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6649                                       bpf_target_off(struct sk_buff, len, 4,
6650                                                      target_size));
6651                 break;
6652
6653         case offsetof(struct __sk_buff, protocol):
6654                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6655                                       bpf_target_off(struct sk_buff, protocol, 2,
6656                                                      target_size));
6657                 break;
6658
6659         case offsetof(struct __sk_buff, vlan_proto):
6660                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6661                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
6662                                                      target_size));
6663                 break;
6664
6665         case offsetof(struct __sk_buff, priority):
6666                 if (type == BPF_WRITE)
6667                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6668                                               bpf_target_off(struct sk_buff, priority, 4,
6669                                                              target_size));
6670                 else
6671                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6672                                               bpf_target_off(struct sk_buff, priority, 4,
6673                                                              target_size));
6674                 break;
6675
6676         case offsetof(struct __sk_buff, ingress_ifindex):
6677                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6678                                       bpf_target_off(struct sk_buff, skb_iif, 4,
6679                                                      target_size));
6680                 break;
6681
6682         case offsetof(struct __sk_buff, ifindex):
6683                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6684                                       si->dst_reg, si->src_reg,
6685                                       offsetof(struct sk_buff, dev));
6686                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
6687                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6688                                       bpf_target_off(struct net_device, ifindex, 4,
6689                                                      target_size));
6690                 break;
6691
6692         case offsetof(struct __sk_buff, hash):
6693                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6694                                       bpf_target_off(struct sk_buff, hash, 4,
6695                                                      target_size));
6696                 break;
6697
6698         case offsetof(struct __sk_buff, mark):
6699                 if (type == BPF_WRITE)
6700                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6701                                               bpf_target_off(struct sk_buff, mark, 4,
6702                                                              target_size));
6703                 else
6704                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6705                                               bpf_target_off(struct sk_buff, mark, 4,
6706                                                              target_size));
6707                 break;
6708
6709         case offsetof(struct __sk_buff, pkt_type):
6710                 *target_size = 1;
6711                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
6712                                       PKT_TYPE_OFFSET());
6713                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
6714 #ifdef __BIG_ENDIAN_BITFIELD
6715                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
6716 #endif
6717                 break;
6718
6719         case offsetof(struct __sk_buff, queue_mapping):
6720                 if (type == BPF_WRITE) {
6721                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
6722                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
6723                                               bpf_target_off(struct sk_buff,
6724                                                              queue_mapping,
6725                                                              2, target_size));
6726                 } else {
6727                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6728                                               bpf_target_off(struct sk_buff,
6729                                                              queue_mapping,
6730                                                              2, target_size));
6731                 }
6732                 break;
6733
6734         case offsetof(struct __sk_buff, vlan_present):
6735                 *target_size = 1;
6736                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
6737                                       PKT_VLAN_PRESENT_OFFSET());
6738                 if (PKT_VLAN_PRESENT_BIT)
6739                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
6740                 if (PKT_VLAN_PRESENT_BIT < 7)
6741                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
6742                 break;
6743
6744         case offsetof(struct __sk_buff, vlan_tci):
6745                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6746                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
6747                                                      target_size));
6748                 break;
6749
6750         case offsetof(struct __sk_buff, cb[0]) ...
6751              offsetofend(struct __sk_buff, cb[4]) - 1:
6752                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
6753                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
6754                               offsetof(struct qdisc_skb_cb, data)) %
6755                              sizeof(__u64));
6756
6757                 prog->cb_access = 1;
6758                 off  = si->off;
6759                 off -= offsetof(struct __sk_buff, cb[0]);
6760                 off += offsetof(struct sk_buff, cb);
6761                 off += offsetof(struct qdisc_skb_cb, data);
6762                 if (type == BPF_WRITE)
6763                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
6764                                               si->src_reg, off);
6765                 else
6766                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
6767                                               si->src_reg, off);
6768                 break;
6769
6770         case offsetof(struct __sk_buff, tc_classid):
6771                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
6772
6773                 off  = si->off;
6774                 off -= offsetof(struct __sk_buff, tc_classid);
6775                 off += offsetof(struct sk_buff, cb);
6776                 off += offsetof(struct qdisc_skb_cb, tc_classid);
6777                 *target_size = 2;
6778                 if (type == BPF_WRITE)
6779                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
6780                                               si->src_reg, off);
6781                 else
6782                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
6783                                               si->src_reg, off);
6784                 break;
6785
6786         case offsetof(struct __sk_buff, data):
6787                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
6788                                       si->dst_reg, si->src_reg,
6789                                       offsetof(struct sk_buff, data));
6790                 break;
6791
6792         case offsetof(struct __sk_buff, data_meta):
6793                 off  = si->off;
6794                 off -= offsetof(struct __sk_buff, data_meta);
6795                 off += offsetof(struct sk_buff, cb);
6796                 off += offsetof(struct bpf_skb_data_end, data_meta);
6797                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6798                                       si->src_reg, off);
6799                 break;
6800
6801         case offsetof(struct __sk_buff, data_end):
6802                 off  = si->off;
6803                 off -= offsetof(struct __sk_buff, data_end);
6804                 off += offsetof(struct sk_buff, cb);
6805                 off += offsetof(struct bpf_skb_data_end, data_end);
6806                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6807                                       si->src_reg, off);
6808                 break;
6809
6810         case offsetof(struct __sk_buff, tc_index):
6811 #ifdef CONFIG_NET_SCHED
6812                 if (type == BPF_WRITE)
6813                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
6814                                               bpf_target_off(struct sk_buff, tc_index, 2,
6815                                                              target_size));
6816                 else
6817                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6818                                               bpf_target_off(struct sk_buff, tc_index, 2,
6819                                                              target_size));
6820 #else
6821                 *target_size = 2;
6822                 if (type == BPF_WRITE)
6823                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
6824                 else
6825                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6826 #endif
6827                 break;
6828
6829         case offsetof(struct __sk_buff, napi_id):
6830 #if defined(CONFIG_NET_RX_BUSY_POLL)
6831                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6832                                       bpf_target_off(struct sk_buff, napi_id, 4,
6833                                                      target_size));
6834                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
6835                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6836 #else
6837                 *target_size = 4;
6838                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6839 #endif
6840                 break;
6841         case offsetof(struct __sk_buff, family):
6842                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6843
6844                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6845                                       si->dst_reg, si->src_reg,
6846                                       offsetof(struct sk_buff, sk));
6847                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6848                                       bpf_target_off(struct sock_common,
6849                                                      skc_family,
6850                                                      2, target_size));
6851                 break;
6852         case offsetof(struct __sk_buff, remote_ip4):
6853                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6854
6855                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6856                                       si->dst_reg, si->src_reg,
6857                                       offsetof(struct sk_buff, sk));
6858                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6859                                       bpf_target_off(struct sock_common,
6860                                                      skc_daddr,
6861                                                      4, target_size));
6862                 break;
6863         case offsetof(struct __sk_buff, local_ip4):
6864                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6865                                           skc_rcv_saddr) != 4);
6866
6867                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6868                                       si->dst_reg, si->src_reg,
6869                                       offsetof(struct sk_buff, sk));
6870                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6871                                       bpf_target_off(struct sock_common,
6872                                                      skc_rcv_saddr,
6873                                                      4, target_size));
6874                 break;
6875         case offsetof(struct __sk_buff, remote_ip6[0]) ...
6876              offsetof(struct __sk_buff, remote_ip6[3]):
6877 #if IS_ENABLED(CONFIG_IPV6)
6878                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6879                                           skc_v6_daddr.s6_addr32[0]) != 4);
6880
6881                 off = si->off;
6882                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
6883
6884                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6885                                       si->dst_reg, si->src_reg,
6886                                       offsetof(struct sk_buff, sk));
6887                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6888                                       offsetof(struct sock_common,
6889                                                skc_v6_daddr.s6_addr32[0]) +
6890                                       off);
6891 #else
6892                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6893 #endif
6894                 break;
6895         case offsetof(struct __sk_buff, local_ip6[0]) ...
6896              offsetof(struct __sk_buff, local_ip6[3]):
6897 #if IS_ENABLED(CONFIG_IPV6)
6898                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6899                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6900
6901                 off = si->off;
6902                 off -= offsetof(struct __sk_buff, local_ip6[0]);
6903
6904                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6905                                       si->dst_reg, si->src_reg,
6906                                       offsetof(struct sk_buff, sk));
6907                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6908                                       offsetof(struct sock_common,
6909                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6910                                       off);
6911 #else
6912                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6913 #endif
6914                 break;
6915
6916         case offsetof(struct __sk_buff, remote_port):
6917                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6918
6919                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6920                                       si->dst_reg, si->src_reg,
6921                                       offsetof(struct sk_buff, sk));
6922                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6923                                       bpf_target_off(struct sock_common,
6924                                                      skc_dport,
6925                                                      2, target_size));
6926 #ifndef __BIG_ENDIAN_BITFIELD
6927                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6928 #endif
6929                 break;
6930
6931         case offsetof(struct __sk_buff, local_port):
6932                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6933
6934                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6935                                       si->dst_reg, si->src_reg,
6936                                       offsetof(struct sk_buff, sk));
6937                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6938                                       bpf_target_off(struct sock_common,
6939                                                      skc_num, 2, target_size));
6940                 break;
6941
6942         case offsetof(struct __sk_buff, flow_keys):
6943                 off  = si->off;
6944                 off -= offsetof(struct __sk_buff, flow_keys);
6945                 off += offsetof(struct sk_buff, cb);
6946                 off += offsetof(struct qdisc_skb_cb, flow_keys);
6947                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6948                                       si->src_reg, off);
6949                 break;
6950
6951         case offsetof(struct __sk_buff, tstamp):
6952                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
6953
6954                 if (type == BPF_WRITE)
6955                         *insn++ = BPF_STX_MEM(BPF_DW,
6956                                               si->dst_reg, si->src_reg,
6957                                               bpf_target_off(struct sk_buff,
6958                                                              tstamp, 8,
6959                                                              target_size));
6960                 else
6961                         *insn++ = BPF_LDX_MEM(BPF_DW,
6962                                               si->dst_reg, si->src_reg,
6963                                               bpf_target_off(struct sk_buff,
6964                                                              tstamp, 8,
6965                                                              target_size));
6966                 break;
6967
6968         case offsetof(struct __sk_buff, gso_segs):
6969                 /* si->dst_reg = skb_shinfo(SKB); */
6970 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6971                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
6972                                       si->dst_reg, si->src_reg,
6973                                       offsetof(struct sk_buff, head));
6974                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
6975                                       BPF_REG_AX, si->src_reg,
6976                                       offsetof(struct sk_buff, end));
6977                 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
6978 #else
6979                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
6980                                       si->dst_reg, si->src_reg,
6981                                       offsetof(struct sk_buff, end));
6982 #endif
6983                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
6984                                       si->dst_reg, si->dst_reg,
6985                                       bpf_target_off(struct skb_shared_info,
6986                                                      gso_segs, 2,
6987                                                      target_size));
6988                 break;
6989         case offsetof(struct __sk_buff, wire_len):
6990                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
6991
6992                 off = si->off;
6993                 off -= offsetof(struct __sk_buff, wire_len);
6994                 off += offsetof(struct sk_buff, cb);
6995                 off += offsetof(struct qdisc_skb_cb, pkt_len);
6996                 *target_size = 4;
6997                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
6998                 break;
6999
7000         case offsetof(struct __sk_buff, sk):
7001                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7002                                       si->dst_reg, si->src_reg,
7003                                       offsetof(struct sk_buff, sk));
7004                 break;
7005         }
7006
7007         return insn - insn_buf;
7008 }
7009
7010 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7011                                 const struct bpf_insn *si,
7012                                 struct bpf_insn *insn_buf,
7013                                 struct bpf_prog *prog, u32 *target_size)
7014 {
7015         struct bpf_insn *insn = insn_buf;
7016         int off;
7017
7018         switch (si->off) {
7019         case offsetof(struct bpf_sock, bound_dev_if):
7020                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
7021
7022                 if (type == BPF_WRITE)
7023                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7024                                         offsetof(struct sock, sk_bound_dev_if));
7025                 else
7026                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7027                                       offsetof(struct sock, sk_bound_dev_if));
7028                 break;
7029
7030         case offsetof(struct bpf_sock, mark):
7031                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
7032
7033                 if (type == BPF_WRITE)
7034                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7035                                         offsetof(struct sock, sk_mark));
7036                 else
7037                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7038                                       offsetof(struct sock, sk_mark));
7039                 break;
7040
7041         case offsetof(struct bpf_sock, priority):
7042                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
7043
7044                 if (type == BPF_WRITE)
7045                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7046                                         offsetof(struct sock, sk_priority));
7047                 else
7048                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7049                                       offsetof(struct sock, sk_priority));
7050                 break;
7051
7052         case offsetof(struct bpf_sock, family):
7053                 *insn++ = BPF_LDX_MEM(
7054                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7055                         si->dst_reg, si->src_reg,
7056                         bpf_target_off(struct sock_common,
7057                                        skc_family,
7058                                        FIELD_SIZEOF(struct sock_common,
7059                                                     skc_family),
7060                                        target_size));
7061                 break;
7062
7063         case offsetof(struct bpf_sock, type):
7064                 BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7065                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7066                                       offsetof(struct sock, __sk_flags_offset));
7067                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7068                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7069                 *target_size = 2;
7070                 break;
7071
7072         case offsetof(struct bpf_sock, protocol):
7073                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7074                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7075                                       offsetof(struct sock, __sk_flags_offset));
7076                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7077                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7078                 *target_size = 1;
7079                 break;
7080
7081         case offsetof(struct bpf_sock, src_ip4):
7082                 *insn++ = BPF_LDX_MEM(
7083                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7084                         bpf_target_off(struct sock_common, skc_rcv_saddr,
7085                                        FIELD_SIZEOF(struct sock_common,
7086                                                     skc_rcv_saddr),
7087                                        target_size));
7088                 break;
7089
7090         case offsetof(struct bpf_sock, dst_ip4):
7091                 *insn++ = BPF_LDX_MEM(
7092                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7093                         bpf_target_off(struct sock_common, skc_daddr,
7094                                        FIELD_SIZEOF(struct sock_common,
7095                                                     skc_daddr),
7096                                        target_size));
7097                 break;
7098
7099         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7100 #if IS_ENABLED(CONFIG_IPV6)
7101                 off = si->off;
7102                 off -= offsetof(struct bpf_sock, src_ip6[0]);
7103                 *insn++ = BPF_LDX_MEM(
7104                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7105                         bpf_target_off(
7106                                 struct sock_common,
7107                                 skc_v6_rcv_saddr.s6_addr32[0],
7108                                 FIELD_SIZEOF(struct sock_common,
7109                                              skc_v6_rcv_saddr.s6_addr32[0]),
7110                                 target_size) + off);
7111 #else
7112                 (void)off;
7113                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7114 #endif
7115                 break;
7116
7117         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7118 #if IS_ENABLED(CONFIG_IPV6)
7119                 off = si->off;
7120                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
7121                 *insn++ = BPF_LDX_MEM(
7122                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7123                         bpf_target_off(struct sock_common,
7124                                        skc_v6_daddr.s6_addr32[0],
7125                                        FIELD_SIZEOF(struct sock_common,
7126                                                     skc_v6_daddr.s6_addr32[0]),
7127                                        target_size) + off);
7128 #else
7129                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7130                 *target_size = 4;
7131 #endif
7132                 break;
7133
7134         case offsetof(struct bpf_sock, src_port):
7135                 *insn++ = BPF_LDX_MEM(
7136                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7137                         si->dst_reg, si->src_reg,
7138                         bpf_target_off(struct sock_common, skc_num,
7139                                        FIELD_SIZEOF(struct sock_common,
7140                                                     skc_num),
7141                                        target_size));
7142                 break;
7143
7144         case offsetof(struct bpf_sock, dst_port):
7145                 *insn++ = BPF_LDX_MEM(
7146                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7147                         si->dst_reg, si->src_reg,
7148                         bpf_target_off(struct sock_common, skc_dport,
7149                                        FIELD_SIZEOF(struct sock_common,
7150                                                     skc_dport),
7151                                        target_size));
7152                 break;
7153
7154         case offsetof(struct bpf_sock, state):
7155                 *insn++ = BPF_LDX_MEM(
7156                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7157                         si->dst_reg, si->src_reg,
7158                         bpf_target_off(struct sock_common, skc_state,
7159                                        FIELD_SIZEOF(struct sock_common,
7160                                                     skc_state),
7161                                        target_size));
7162                 break;
7163         }
7164
7165         return insn - insn_buf;
7166 }
7167
7168 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7169                                          const struct bpf_insn *si,
7170                                          struct bpf_insn *insn_buf,
7171                                          struct bpf_prog *prog, u32 *target_size)
7172 {
7173         struct bpf_insn *insn = insn_buf;
7174
7175         switch (si->off) {
7176         case offsetof(struct __sk_buff, ifindex):
7177                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7178                                       si->dst_reg, si->src_reg,
7179                                       offsetof(struct sk_buff, dev));
7180                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7181                                       bpf_target_off(struct net_device, ifindex, 4,
7182                                                      target_size));
7183                 break;
7184         default:
7185                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7186                                               target_size);
7187         }
7188
7189         return insn - insn_buf;
7190 }
7191
7192 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7193                                   const struct bpf_insn *si,
7194                                   struct bpf_insn *insn_buf,
7195                                   struct bpf_prog *prog, u32 *target_size)
7196 {
7197         struct bpf_insn *insn = insn_buf;
7198
7199         switch (si->off) {
7200         case offsetof(struct xdp_md, data):
7201                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7202                                       si->dst_reg, si->src_reg,
7203                                       offsetof(struct xdp_buff, data));
7204                 break;
7205         case offsetof(struct xdp_md, data_meta):
7206                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7207                                       si->dst_reg, si->src_reg,
7208                                       offsetof(struct xdp_buff, data_meta));
7209                 break;
7210         case offsetof(struct xdp_md, data_end):
7211                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7212                                       si->dst_reg, si->src_reg,
7213                                       offsetof(struct xdp_buff, data_end));
7214                 break;
7215         case offsetof(struct xdp_md, ingress_ifindex):
7216                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7217                                       si->dst_reg, si->src_reg,
7218                                       offsetof(struct xdp_buff, rxq));
7219                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7220                                       si->dst_reg, si->dst_reg,
7221                                       offsetof(struct xdp_rxq_info, dev));
7222                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7223                                       offsetof(struct net_device, ifindex));
7224                 break;
7225         case offsetof(struct xdp_md, rx_queue_index):
7226                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7227                                       si->dst_reg, si->src_reg,
7228                                       offsetof(struct xdp_buff, rxq));
7229                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7230                                       offsetof(struct xdp_rxq_info,
7231                                                queue_index));
7232                 break;
7233         }
7234
7235         return insn - insn_buf;
7236 }
7237
7238 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7239  * context Structure, F is Field in context structure that contains a pointer
7240  * to Nested Structure of type NS that has the field NF.
7241  *
7242  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7243  * sure that SIZE is not greater than actual size of S.F.NF.
7244  *
7245  * If offset OFF is provided, the load happens from that offset relative to
7246  * offset of NF.
7247  */
7248 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
7249         do {                                                                   \
7250                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7251                                       si->src_reg, offsetof(S, F));            \
7252                 *insn++ = BPF_LDX_MEM(                                         \
7253                         SIZE, si->dst_reg, si->dst_reg,                        \
7254                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
7255                                        target_size)                            \
7256                                 + OFF);                                        \
7257         } while (0)
7258
7259 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
7260         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
7261                                              BPF_FIELD_SIZEOF(NS, NF), 0)
7262
7263 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7264  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7265  *
7266  * It doesn't support SIZE argument though since narrow stores are not
7267  * supported for now.
7268  *
7269  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7270  * "register" since two registers available in convert_ctx_access are not
7271  * enough: we can't override neither SRC, since it contains value to store, nor
7272  * DST since it contains pointer to context that may be used by later
7273  * instructions. But we need a temporary place to save pointer to nested
7274  * structure whose field we want to store to.
7275  */
7276 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
7277         do {                                                                   \
7278                 int tmp_reg = BPF_REG_9;                                       \
7279                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7280                         --tmp_reg;                                             \
7281                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7282                         --tmp_reg;                                             \
7283                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
7284                                       offsetof(S, TF));                        \
7285                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
7286                                       si->dst_reg, offsetof(S, F));            \
7287                 *insn++ = BPF_STX_MEM(                                         \
7288                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
7289                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
7290                                        target_size)                            \
7291                                 + OFF);                                        \
7292                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
7293                                       offsetof(S, TF));                        \
7294         } while (0)
7295
7296 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7297                                                       TF)                      \
7298         do {                                                                   \
7299                 if (type == BPF_WRITE) {                                       \
7300                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
7301                                                          TF);                  \
7302                 } else {                                                       \
7303                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
7304                                 S, NS, F, NF, SIZE, OFF);  \
7305                 }                                                              \
7306         } while (0)
7307
7308 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
7309         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
7310                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7311
7312 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7313                                         const struct bpf_insn *si,
7314                                         struct bpf_insn *insn_buf,
7315                                         struct bpf_prog *prog, u32 *target_size)
7316 {
7317         struct bpf_insn *insn = insn_buf;
7318         int off;
7319
7320         switch (si->off) {
7321         case offsetof(struct bpf_sock_addr, user_family):
7322                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7323                                             struct sockaddr, uaddr, sa_family);
7324                 break;
7325
7326         case offsetof(struct bpf_sock_addr, user_ip4):
7327                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7328                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7329                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7330                 break;
7331
7332         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7333                 off = si->off;
7334                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7335                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7336                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7337                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7338                         tmp_reg);
7339                 break;
7340
7341         case offsetof(struct bpf_sock_addr, user_port):
7342                 /* To get port we need to know sa_family first and then treat
7343                  * sockaddr as either sockaddr_in or sockaddr_in6.
7344                  * Though we can simplify since port field has same offset and
7345                  * size in both structures.
7346                  * Here we check this invariant and use just one of the
7347                  * structures if it's true.
7348                  */
7349                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7350                              offsetof(struct sockaddr_in6, sin6_port));
7351                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7352                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7353                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7354                                                      struct sockaddr_in6, uaddr,
7355                                                      sin6_port, tmp_reg);
7356                 break;
7357
7358         case offsetof(struct bpf_sock_addr, family):
7359                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7360                                             struct sock, sk, sk_family);
7361                 break;
7362
7363         case offsetof(struct bpf_sock_addr, type):
7364                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7365                         struct bpf_sock_addr_kern, struct sock, sk,
7366                         __sk_flags_offset, BPF_W, 0);
7367                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7368                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7369                 break;
7370
7371         case offsetof(struct bpf_sock_addr, protocol):
7372                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7373                         struct bpf_sock_addr_kern, struct sock, sk,
7374                         __sk_flags_offset, BPF_W, 0);
7375                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7376                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7377                                         SK_FL_PROTO_SHIFT);
7378                 break;
7379
7380         case offsetof(struct bpf_sock_addr, msg_src_ip4):
7381                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7382                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7383                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7384                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7385                 break;
7386
7387         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7388                                 msg_src_ip6[3]):
7389                 off = si->off;
7390                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7391                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7392                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7393                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7394                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7395                 break;
7396         }
7397
7398         return insn - insn_buf;
7399 }
7400
7401 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7402                                        const struct bpf_insn *si,
7403                                        struct bpf_insn *insn_buf,
7404                                        struct bpf_prog *prog,
7405                                        u32 *target_size)
7406 {
7407         struct bpf_insn *insn = insn_buf;
7408         int off;
7409
7410 /* Helper macro for adding read access to tcp_sock or sock fields. */
7411 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7412         do {                                                                  \
7413                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7414                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7415                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7416                                                 struct bpf_sock_ops_kern,     \
7417                                                 is_fullsock),                 \
7418                                       si->dst_reg, si->src_reg,               \
7419                                       offsetof(struct bpf_sock_ops_kern,      \
7420                                                is_fullsock));                 \
7421                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
7422                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7423                                                 struct bpf_sock_ops_kern, sk),\
7424                                       si->dst_reg, si->src_reg,               \
7425                                       offsetof(struct bpf_sock_ops_kern, sk));\
7426                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
7427                                                        OBJ_FIELD),            \
7428                                       si->dst_reg, si->dst_reg,               \
7429                                       offsetof(OBJ, OBJ_FIELD));              \
7430         } while (0)
7431
7432 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
7433                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
7434
7435 /* Helper macro for adding write access to tcp_sock or sock fields.
7436  * The macro is called with two registers, dst_reg which contains a pointer
7437  * to ctx (context) and src_reg which contains the value that should be
7438  * stored. However, we need an additional register since we cannot overwrite
7439  * dst_reg because it may be used later in the program.
7440  * Instead we "borrow" one of the other register. We first save its value
7441  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7442  * it at the end of the macro.
7443  */
7444 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7445         do {                                                                  \
7446                 int reg = BPF_REG_9;                                          \
7447                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7448                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7449                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7450                         reg--;                                                \
7451                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7452                         reg--;                                                \
7453                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
7454                                       offsetof(struct bpf_sock_ops_kern,      \
7455                                                temp));                        \
7456                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7457                                                 struct bpf_sock_ops_kern,     \
7458                                                 is_fullsock),                 \
7459                                       reg, si->dst_reg,                       \
7460                                       offsetof(struct bpf_sock_ops_kern,      \
7461                                                is_fullsock));                 \
7462                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
7463                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7464                                                 struct bpf_sock_ops_kern, sk),\
7465                                       reg, si->dst_reg,                       \
7466                                       offsetof(struct bpf_sock_ops_kern, sk));\
7467                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
7468                                       reg, si->src_reg,                       \
7469                                       offsetof(OBJ, OBJ_FIELD));              \
7470                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
7471                                       offsetof(struct bpf_sock_ops_kern,      \
7472                                                temp));                        \
7473         } while (0)
7474
7475 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
7476         do {                                                                  \
7477                 if (TYPE == BPF_WRITE)                                        \
7478                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7479                 else                                                          \
7480                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7481         } while (0)
7482
7483         CONVERT_COMMON_TCP_SOCK_FIELDS(struct bpf_sock_ops,
7484                                        SOCK_OPS_GET_TCP_SOCK_FIELD);
7485
7486         if (insn > insn_buf)
7487                 return insn - insn_buf;
7488
7489         switch (si->off) {
7490         case offsetof(struct bpf_sock_ops, op) ...
7491              offsetof(struct bpf_sock_ops, replylong[3]):
7492                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
7493                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
7494                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
7495                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
7496                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
7497                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
7498                 off = si->off;
7499                 off -= offsetof(struct bpf_sock_ops, op);
7500                 off += offsetof(struct bpf_sock_ops_kern, op);
7501                 if (type == BPF_WRITE)
7502                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7503                                               off);
7504                 else
7505                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7506                                               off);
7507                 break;
7508
7509         case offsetof(struct bpf_sock_ops, family):
7510                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7511
7512                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7513                                               struct bpf_sock_ops_kern, sk),
7514                                       si->dst_reg, si->src_reg,
7515                                       offsetof(struct bpf_sock_ops_kern, sk));
7516                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7517                                       offsetof(struct sock_common, skc_family));
7518                 break;
7519
7520         case offsetof(struct bpf_sock_ops, remote_ip4):
7521                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7522
7523                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7524                                                 struct bpf_sock_ops_kern, sk),
7525                                       si->dst_reg, si->src_reg,
7526                                       offsetof(struct bpf_sock_ops_kern, sk));
7527                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7528                                       offsetof(struct sock_common, skc_daddr));
7529                 break;
7530
7531         case offsetof(struct bpf_sock_ops, local_ip4):
7532                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7533                                           skc_rcv_saddr) != 4);
7534
7535                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7536                                               struct bpf_sock_ops_kern, sk),
7537                                       si->dst_reg, si->src_reg,
7538                                       offsetof(struct bpf_sock_ops_kern, sk));
7539                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7540                                       offsetof(struct sock_common,
7541                                                skc_rcv_saddr));
7542                 break;
7543
7544         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
7545              offsetof(struct bpf_sock_ops, remote_ip6[3]):
7546 #if IS_ENABLED(CONFIG_IPV6)
7547                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7548                                           skc_v6_daddr.s6_addr32[0]) != 4);
7549
7550                 off = si->off;
7551                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
7552                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7553                                                 struct bpf_sock_ops_kern, sk),
7554                                       si->dst_reg, si->src_reg,
7555                                       offsetof(struct bpf_sock_ops_kern, sk));
7556                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7557                                       offsetof(struct sock_common,
7558                                                skc_v6_daddr.s6_addr32[0]) +
7559                                       off);
7560 #else
7561                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7562 #endif
7563                 break;
7564
7565         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
7566              offsetof(struct bpf_sock_ops, local_ip6[3]):
7567 #if IS_ENABLED(CONFIG_IPV6)
7568                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7569                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7570
7571                 off = si->off;
7572                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
7573                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7574                                                 struct bpf_sock_ops_kern, sk),
7575                                       si->dst_reg, si->src_reg,
7576                                       offsetof(struct bpf_sock_ops_kern, sk));
7577                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7578                                       offsetof(struct sock_common,
7579                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7580                                       off);
7581 #else
7582                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7583 #endif
7584                 break;
7585
7586         case offsetof(struct bpf_sock_ops, remote_port):
7587                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7588
7589                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7590                                                 struct bpf_sock_ops_kern, sk),
7591                                       si->dst_reg, si->src_reg,
7592                                       offsetof(struct bpf_sock_ops_kern, sk));
7593                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7594                                       offsetof(struct sock_common, skc_dport));
7595 #ifndef __BIG_ENDIAN_BITFIELD
7596                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7597 #endif
7598                 break;
7599
7600         case offsetof(struct bpf_sock_ops, local_port):
7601                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7602
7603                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7604                                                 struct bpf_sock_ops_kern, sk),
7605                                       si->dst_reg, si->src_reg,
7606                                       offsetof(struct bpf_sock_ops_kern, sk));
7607                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7608                                       offsetof(struct sock_common, skc_num));
7609                 break;
7610
7611         case offsetof(struct bpf_sock_ops, is_fullsock):
7612                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7613                                                 struct bpf_sock_ops_kern,
7614                                                 is_fullsock),
7615                                       si->dst_reg, si->src_reg,
7616                                       offsetof(struct bpf_sock_ops_kern,
7617                                                is_fullsock));
7618                 break;
7619
7620         case offsetof(struct bpf_sock_ops, state):
7621                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
7622
7623                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7624                                                 struct bpf_sock_ops_kern, sk),
7625                                       si->dst_reg, si->src_reg,
7626                                       offsetof(struct bpf_sock_ops_kern, sk));
7627                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
7628                                       offsetof(struct sock_common, skc_state));
7629                 break;
7630
7631         case offsetof(struct bpf_sock_ops, rtt_min):
7632                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
7633                              sizeof(struct minmax));
7634                 BUILD_BUG_ON(sizeof(struct minmax) <
7635                              sizeof(struct minmax_sample));
7636
7637                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7638                                                 struct bpf_sock_ops_kern, sk),
7639                                       si->dst_reg, si->src_reg,
7640                                       offsetof(struct bpf_sock_ops_kern, sk));
7641                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7642                                       offsetof(struct tcp_sock, rtt_min) +
7643                                       FIELD_SIZEOF(struct minmax_sample, t));
7644                 break;
7645
7646         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
7647                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
7648                                    struct tcp_sock);
7649                 break;
7650
7651         case offsetof(struct bpf_sock_ops, sk_txhash):
7652                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
7653                                           struct sock, type);
7654                 break;
7655         }
7656         return insn - insn_buf;
7657 }
7658
7659 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
7660                                      const struct bpf_insn *si,
7661                                      struct bpf_insn *insn_buf,
7662                                      struct bpf_prog *prog, u32 *target_size)
7663 {
7664         struct bpf_insn *insn = insn_buf;
7665         int off;
7666
7667         switch (si->off) {
7668         case offsetof(struct __sk_buff, data_end):
7669                 off  = si->off;
7670                 off -= offsetof(struct __sk_buff, data_end);
7671                 off += offsetof(struct sk_buff, cb);
7672                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
7673                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7674                                       si->src_reg, off);
7675                 break;
7676         default:
7677                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7678                                               target_size);
7679         }
7680
7681         return insn - insn_buf;
7682 }
7683
7684 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
7685                                      const struct bpf_insn *si,
7686                                      struct bpf_insn *insn_buf,
7687                                      struct bpf_prog *prog, u32 *target_size)
7688 {
7689         struct bpf_insn *insn = insn_buf;
7690 #if IS_ENABLED(CONFIG_IPV6)
7691         int off;
7692 #endif
7693
7694         /* convert ctx uses the fact sg element is first in struct */
7695         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
7696
7697         switch (si->off) {
7698         case offsetof(struct sk_msg_md, data):
7699                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
7700                                       si->dst_reg, si->src_reg,
7701                                       offsetof(struct sk_msg, data));
7702                 break;
7703         case offsetof(struct sk_msg_md, data_end):
7704                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
7705                                       si->dst_reg, si->src_reg,
7706                                       offsetof(struct sk_msg, data_end));
7707                 break;
7708         case offsetof(struct sk_msg_md, family):
7709                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7710
7711                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7712                                               struct sk_msg, sk),
7713                                       si->dst_reg, si->src_reg,
7714                                       offsetof(struct sk_msg, sk));
7715                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7716                                       offsetof(struct sock_common, skc_family));
7717                 break;
7718
7719         case offsetof(struct sk_msg_md, remote_ip4):
7720                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7721
7722                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7723                                                 struct sk_msg, sk),
7724                                       si->dst_reg, si->src_reg,
7725                                       offsetof(struct sk_msg, sk));
7726                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7727                                       offsetof(struct sock_common, skc_daddr));
7728                 break;
7729
7730         case offsetof(struct sk_msg_md, local_ip4):
7731                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7732                                           skc_rcv_saddr) != 4);
7733
7734                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7735                                               struct sk_msg, sk),
7736                                       si->dst_reg, si->src_reg,
7737                                       offsetof(struct sk_msg, sk));
7738                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7739                                       offsetof(struct sock_common,
7740                                                skc_rcv_saddr));
7741                 break;
7742
7743         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
7744              offsetof(struct sk_msg_md, remote_ip6[3]):
7745 #if IS_ENABLED(CONFIG_IPV6)
7746                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7747                                           skc_v6_daddr.s6_addr32[0]) != 4);
7748
7749                 off = si->off;
7750                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
7751                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7752                                                 struct sk_msg, sk),
7753                                       si->dst_reg, si->src_reg,
7754                                       offsetof(struct sk_msg, sk));
7755                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7756                                       offsetof(struct sock_common,
7757                                                skc_v6_daddr.s6_addr32[0]) +
7758                                       off);
7759 #else
7760                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7761 #endif
7762                 break;
7763
7764         case offsetof(struct sk_msg_md, local_ip6[0]) ...
7765              offsetof(struct sk_msg_md, local_ip6[3]):
7766 #if IS_ENABLED(CONFIG_IPV6)
7767                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7768                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7769
7770                 off = si->off;
7771                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
7772                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7773                                                 struct sk_msg, sk),
7774                                       si->dst_reg, si->src_reg,
7775                                       offsetof(struct sk_msg, sk));
7776                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7777                                       offsetof(struct sock_common,
7778                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7779                                       off);
7780 #else
7781                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7782 #endif
7783                 break;
7784
7785         case offsetof(struct sk_msg_md, remote_port):
7786                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7787
7788                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7789                                                 struct sk_msg, sk),
7790                                       si->dst_reg, si->src_reg,
7791                                       offsetof(struct sk_msg, sk));
7792                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7793                                       offsetof(struct sock_common, skc_dport));
7794 #ifndef __BIG_ENDIAN_BITFIELD
7795                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7796 #endif
7797                 break;
7798
7799         case offsetof(struct sk_msg_md, local_port):
7800                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7801
7802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7803                                                 struct sk_msg, sk),
7804                                       si->dst_reg, si->src_reg,
7805                                       offsetof(struct sk_msg, sk));
7806                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7807                                       offsetof(struct sock_common, skc_num));
7808                 break;
7809
7810         case offsetof(struct sk_msg_md, size):
7811                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
7812                                       si->dst_reg, si->src_reg,
7813                                       offsetof(struct sk_msg_sg, size));
7814                 break;
7815         }
7816
7817         return insn - insn_buf;
7818 }
7819
7820 const struct bpf_verifier_ops sk_filter_verifier_ops = {
7821         .get_func_proto         = sk_filter_func_proto,
7822         .is_valid_access        = sk_filter_is_valid_access,
7823         .convert_ctx_access     = bpf_convert_ctx_access,
7824         .gen_ld_abs             = bpf_gen_ld_abs,
7825 };
7826
7827 const struct bpf_prog_ops sk_filter_prog_ops = {
7828         .test_run               = bpf_prog_test_run_skb,
7829 };
7830
7831 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
7832         .get_func_proto         = tc_cls_act_func_proto,
7833         .is_valid_access        = tc_cls_act_is_valid_access,
7834         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
7835         .gen_prologue           = tc_cls_act_prologue,
7836         .gen_ld_abs             = bpf_gen_ld_abs,
7837 };
7838
7839 const struct bpf_prog_ops tc_cls_act_prog_ops = {
7840         .test_run               = bpf_prog_test_run_skb,
7841 };
7842
7843 const struct bpf_verifier_ops xdp_verifier_ops = {
7844         .get_func_proto         = xdp_func_proto,
7845         .is_valid_access        = xdp_is_valid_access,
7846         .convert_ctx_access     = xdp_convert_ctx_access,
7847         .gen_prologue           = bpf_noop_prologue,
7848 };
7849
7850 const struct bpf_prog_ops xdp_prog_ops = {
7851         .test_run               = bpf_prog_test_run_xdp,
7852 };
7853
7854 const struct bpf_verifier_ops cg_skb_verifier_ops = {
7855         .get_func_proto         = cg_skb_func_proto,
7856         .is_valid_access        = cg_skb_is_valid_access,
7857         .convert_ctx_access     = bpf_convert_ctx_access,
7858 };
7859
7860 const struct bpf_prog_ops cg_skb_prog_ops = {
7861         .test_run               = bpf_prog_test_run_skb,
7862 };
7863
7864 const struct bpf_verifier_ops lwt_in_verifier_ops = {
7865         .get_func_proto         = lwt_in_func_proto,
7866         .is_valid_access        = lwt_is_valid_access,
7867         .convert_ctx_access     = bpf_convert_ctx_access,
7868 };
7869
7870 const struct bpf_prog_ops lwt_in_prog_ops = {
7871         .test_run               = bpf_prog_test_run_skb,
7872 };
7873
7874 const struct bpf_verifier_ops lwt_out_verifier_ops = {
7875         .get_func_proto         = lwt_out_func_proto,
7876         .is_valid_access        = lwt_is_valid_access,
7877         .convert_ctx_access     = bpf_convert_ctx_access,
7878 };
7879
7880 const struct bpf_prog_ops lwt_out_prog_ops = {
7881         .test_run               = bpf_prog_test_run_skb,
7882 };
7883
7884 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
7885         .get_func_proto         = lwt_xmit_func_proto,
7886         .is_valid_access        = lwt_is_valid_access,
7887         .convert_ctx_access     = bpf_convert_ctx_access,
7888         .gen_prologue           = tc_cls_act_prologue,
7889 };
7890
7891 const struct bpf_prog_ops lwt_xmit_prog_ops = {
7892         .test_run               = bpf_prog_test_run_skb,
7893 };
7894
7895 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
7896         .get_func_proto         = lwt_seg6local_func_proto,
7897         .is_valid_access        = lwt_is_valid_access,
7898         .convert_ctx_access     = bpf_convert_ctx_access,
7899 };
7900
7901 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
7902         .test_run               = bpf_prog_test_run_skb,
7903 };
7904
7905 const struct bpf_verifier_ops cg_sock_verifier_ops = {
7906         .get_func_proto         = sock_filter_func_proto,
7907         .is_valid_access        = sock_filter_is_valid_access,
7908         .convert_ctx_access     = bpf_sock_convert_ctx_access,
7909 };
7910
7911 const struct bpf_prog_ops cg_sock_prog_ops = {
7912 };
7913
7914 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
7915         .get_func_proto         = sock_addr_func_proto,
7916         .is_valid_access        = sock_addr_is_valid_access,
7917         .convert_ctx_access     = sock_addr_convert_ctx_access,
7918 };
7919
7920 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
7921 };
7922
7923 const struct bpf_verifier_ops sock_ops_verifier_ops = {
7924         .get_func_proto         = sock_ops_func_proto,
7925         .is_valid_access        = sock_ops_is_valid_access,
7926         .convert_ctx_access     = sock_ops_convert_ctx_access,
7927 };
7928
7929 const struct bpf_prog_ops sock_ops_prog_ops = {
7930 };
7931
7932 const struct bpf_verifier_ops sk_skb_verifier_ops = {
7933         .get_func_proto         = sk_skb_func_proto,
7934         .is_valid_access        = sk_skb_is_valid_access,
7935         .convert_ctx_access     = sk_skb_convert_ctx_access,
7936         .gen_prologue           = sk_skb_prologue,
7937 };
7938
7939 const struct bpf_prog_ops sk_skb_prog_ops = {
7940 };
7941
7942 const struct bpf_verifier_ops sk_msg_verifier_ops = {
7943         .get_func_proto         = sk_msg_func_proto,
7944         .is_valid_access        = sk_msg_is_valid_access,
7945         .convert_ctx_access     = sk_msg_convert_ctx_access,
7946         .gen_prologue           = bpf_noop_prologue,
7947 };
7948
7949 const struct bpf_prog_ops sk_msg_prog_ops = {
7950 };
7951
7952 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
7953         .get_func_proto         = flow_dissector_func_proto,
7954         .is_valid_access        = flow_dissector_is_valid_access,
7955         .convert_ctx_access     = bpf_convert_ctx_access,
7956 };
7957
7958 const struct bpf_prog_ops flow_dissector_prog_ops = {
7959         .test_run               = bpf_prog_test_run_flow_dissector,
7960 };
7961
7962 int sk_detach_filter(struct sock *sk)
7963 {
7964         int ret = -ENOENT;
7965         struct sk_filter *filter;
7966
7967         if (sock_flag(sk, SOCK_FILTER_LOCKED))
7968                 return -EPERM;
7969
7970         filter = rcu_dereference_protected(sk->sk_filter,
7971                                            lockdep_sock_is_held(sk));
7972         if (filter) {
7973                 RCU_INIT_POINTER(sk->sk_filter, NULL);
7974                 sk_filter_uncharge(sk, filter);
7975                 ret = 0;
7976         }
7977
7978         return ret;
7979 }
7980 EXPORT_SYMBOL_GPL(sk_detach_filter);
7981
7982 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7983                   unsigned int len)
7984 {
7985         struct sock_fprog_kern *fprog;
7986         struct sk_filter *filter;
7987         int ret = 0;
7988
7989         lock_sock(sk);
7990         filter = rcu_dereference_protected(sk->sk_filter,
7991                                            lockdep_sock_is_held(sk));
7992         if (!filter)
7993                 goto out;
7994
7995         /* We're copying the filter that has been originally attached,
7996          * so no conversion/decode needed anymore. eBPF programs that
7997          * have no original program cannot be dumped through this.
7998          */
7999         ret = -EACCES;
8000         fprog = filter->prog->orig_prog;
8001         if (!fprog)
8002                 goto out;
8003
8004         ret = fprog->len;
8005         if (!len)
8006                 /* User space only enquires number of filter blocks. */
8007                 goto out;
8008
8009         ret = -EINVAL;
8010         if (len < fprog->len)
8011                 goto out;
8012
8013         ret = -EFAULT;
8014         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8015                 goto out;
8016
8017         /* Instead of bytes, the API requests to return the number
8018          * of filter blocks.
8019          */
8020         ret = fprog->len;
8021 out:
8022         release_sock(sk);
8023         return ret;
8024 }
8025
8026 #ifdef CONFIG_INET
8027 struct sk_reuseport_kern {
8028         struct sk_buff *skb;
8029         struct sock *sk;
8030         struct sock *selected_sk;
8031         void *data_end;
8032         u32 hash;
8033         u32 reuseport_id;
8034         bool bind_inany;
8035 };
8036
8037 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8038                                     struct sock_reuseport *reuse,
8039                                     struct sock *sk, struct sk_buff *skb,
8040                                     u32 hash)
8041 {
8042         reuse_kern->skb = skb;
8043         reuse_kern->sk = sk;
8044         reuse_kern->selected_sk = NULL;
8045         reuse_kern->data_end = skb->data + skb_headlen(skb);
8046         reuse_kern->hash = hash;
8047         reuse_kern->reuseport_id = reuse->reuseport_id;
8048         reuse_kern->bind_inany = reuse->bind_inany;
8049 }
8050
8051 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8052                                   struct bpf_prog *prog, struct sk_buff *skb,
8053                                   u32 hash)
8054 {
8055         struct sk_reuseport_kern reuse_kern;
8056         enum sk_action action;
8057
8058         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8059         action = BPF_PROG_RUN(prog, &reuse_kern);
8060
8061         if (action == SK_PASS)
8062                 return reuse_kern.selected_sk;
8063         else
8064                 return ERR_PTR(-ECONNREFUSED);
8065 }
8066
8067 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8068            struct bpf_map *, map, void *, key, u32, flags)
8069 {
8070         struct sock_reuseport *reuse;
8071         struct sock *selected_sk;
8072
8073         selected_sk = map->ops->map_lookup_elem(map, key);
8074         if (!selected_sk)
8075                 return -ENOENT;
8076
8077         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8078         if (!reuse)
8079                 /* selected_sk is unhashed (e.g. by close()) after the
8080                  * above map_lookup_elem().  Treat selected_sk has already
8081                  * been removed from the map.
8082                  */
8083                 return -ENOENT;
8084
8085         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8086                 struct sock *sk;
8087
8088                 if (unlikely(!reuse_kern->reuseport_id))
8089                         /* There is a small race between adding the
8090                          * sk to the map and setting the
8091                          * reuse_kern->reuseport_id.
8092                          * Treat it as the sk has not been added to
8093                          * the bpf map yet.
8094                          */
8095                         return -ENOENT;
8096
8097                 sk = reuse_kern->sk;
8098                 if (sk->sk_protocol != selected_sk->sk_protocol)
8099                         return -EPROTOTYPE;
8100                 else if (sk->sk_family != selected_sk->sk_family)
8101                         return -EAFNOSUPPORT;
8102
8103                 /* Catch all. Likely bound to a different sockaddr. */
8104                 return -EBADFD;
8105         }
8106
8107         reuse_kern->selected_sk = selected_sk;
8108
8109         return 0;
8110 }
8111
8112 static const struct bpf_func_proto sk_select_reuseport_proto = {
8113         .func           = sk_select_reuseport,
8114         .gpl_only       = false,
8115         .ret_type       = RET_INTEGER,
8116         .arg1_type      = ARG_PTR_TO_CTX,
8117         .arg2_type      = ARG_CONST_MAP_PTR,
8118         .arg3_type      = ARG_PTR_TO_MAP_KEY,
8119         .arg4_type      = ARG_ANYTHING,
8120 };
8121
8122 BPF_CALL_4(sk_reuseport_load_bytes,
8123            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8124            void *, to, u32, len)
8125 {
8126         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8127 }
8128
8129 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8130         .func           = sk_reuseport_load_bytes,
8131         .gpl_only       = false,
8132         .ret_type       = RET_INTEGER,
8133         .arg1_type      = ARG_PTR_TO_CTX,
8134         .arg2_type      = ARG_ANYTHING,
8135         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8136         .arg4_type      = ARG_CONST_SIZE,
8137 };
8138
8139 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8140            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8141            void *, to, u32, len, u32, start_header)
8142 {
8143         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8144                                                len, start_header);
8145 }
8146
8147 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8148         .func           = sk_reuseport_load_bytes_relative,
8149         .gpl_only       = false,
8150         .ret_type       = RET_INTEGER,
8151         .arg1_type      = ARG_PTR_TO_CTX,
8152         .arg2_type      = ARG_ANYTHING,
8153         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8154         .arg4_type      = ARG_CONST_SIZE,
8155         .arg5_type      = ARG_ANYTHING,
8156 };
8157
8158 static const struct bpf_func_proto *
8159 sk_reuseport_func_proto(enum bpf_func_id func_id,
8160                         const struct bpf_prog *prog)
8161 {
8162         switch (func_id) {
8163         case BPF_FUNC_sk_select_reuseport:
8164                 return &sk_select_reuseport_proto;
8165         case BPF_FUNC_skb_load_bytes:
8166                 return &sk_reuseport_load_bytes_proto;
8167         case BPF_FUNC_skb_load_bytes_relative:
8168                 return &sk_reuseport_load_bytes_relative_proto;
8169         default:
8170                 return bpf_base_func_proto(func_id);
8171         }
8172 }
8173
8174 static bool
8175 sk_reuseport_is_valid_access(int off, int size,
8176                              enum bpf_access_type type,
8177                              const struct bpf_prog *prog,
8178                              struct bpf_insn_access_aux *info)
8179 {
8180         const u32 size_default = sizeof(__u32);
8181
8182         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8183             off % size || type != BPF_READ)
8184                 return false;
8185
8186         switch (off) {
8187         case offsetof(struct sk_reuseport_md, data):
8188                 info->reg_type = PTR_TO_PACKET;
8189                 return size == sizeof(__u64);
8190
8191         case offsetof(struct sk_reuseport_md, data_end):
8192                 info->reg_type = PTR_TO_PACKET_END;
8193                 return size == sizeof(__u64);
8194
8195         case offsetof(struct sk_reuseport_md, hash):
8196                 return size == size_default;
8197
8198         /* Fields that allow narrowing */
8199         case offsetof(struct sk_reuseport_md, eth_protocol):
8200                 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
8201                         return false;
8202                 /* fall through */
8203         case offsetof(struct sk_reuseport_md, ip_protocol):
8204         case offsetof(struct sk_reuseport_md, bind_inany):
8205         case offsetof(struct sk_reuseport_md, len):
8206                 bpf_ctx_record_field_size(info, size_default);
8207                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8208
8209         default:
8210                 return false;
8211         }
8212 }
8213
8214 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
8215         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8216                               si->dst_reg, si->src_reg,                 \
8217                               bpf_target_off(struct sk_reuseport_kern, F, \
8218                                              FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8219                                              target_size));             \
8220         })
8221
8222 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
8223         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8224                                     struct sk_buff,                     \
8225                                     skb,                                \
8226                                     SKB_FIELD)
8227
8228 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8229         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
8230                                              struct sock,               \
8231                                              sk,                        \
8232                                              SK_FIELD, BPF_SIZE, EXTRA_OFF)
8233
8234 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8235                                            const struct bpf_insn *si,
8236                                            struct bpf_insn *insn_buf,
8237                                            struct bpf_prog *prog,
8238                                            u32 *target_size)
8239 {
8240         struct bpf_insn *insn = insn_buf;
8241
8242         switch (si->off) {
8243         case offsetof(struct sk_reuseport_md, data):
8244                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
8245                 break;
8246
8247         case offsetof(struct sk_reuseport_md, len):
8248                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
8249                 break;
8250
8251         case offsetof(struct sk_reuseport_md, eth_protocol):
8252                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8253                 break;
8254
8255         case offsetof(struct sk_reuseport_md, ip_protocol):
8256                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8257                 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8258                                                     BPF_W, 0);
8259                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8260                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8261                                         SK_FL_PROTO_SHIFT);
8262                 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8263                  * aware.  No further narrowing or masking is needed.
8264                  */
8265                 *target_size = 1;
8266                 break;
8267
8268         case offsetof(struct sk_reuseport_md, data_end):
8269                 SK_REUSEPORT_LOAD_FIELD(data_end);
8270                 break;
8271
8272         case offsetof(struct sk_reuseport_md, hash):
8273                 SK_REUSEPORT_LOAD_FIELD(hash);
8274                 break;
8275
8276         case offsetof(struct sk_reuseport_md, bind_inany):
8277                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8278                 break;
8279         }
8280
8281         return insn - insn_buf;
8282 }
8283
8284 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8285         .get_func_proto         = sk_reuseport_func_proto,
8286         .is_valid_access        = sk_reuseport_is_valid_access,
8287         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8288 };
8289
8290 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8291 };
8292 #endif /* CONFIG_INET */