net: devlink: introduce devlink_compat_phys_port_name_get()
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150
151 #include "net-sysfs.h"
152
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168                                            struct net_device *dev,
169                                            struct netlink_ext_ack *extack);
170 static struct napi_struct *napi_by_id(unsigned int napi_id);
171
172 /*
173  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174  * semaphore.
175  *
176  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
177  *
178  * Writers must hold the rtnl semaphore while they loop through the
179  * dev_base_head list, and hold dev_base_lock for writing when they do the
180  * actual updates.  This allows pure readers to access the list even
181  * while a writer is preparing to update it.
182  *
183  * To put it another way, dev_base_lock is held for writing only to
184  * protect against pure readers; the rtnl semaphore provides the
185  * protection against other writers.
186  *
187  * See, for example usages, register_netdevice() and
188  * unregister_netdevice(), which must be called with the rtnl
189  * semaphore held.
190  */
191 DEFINE_RWLOCK(dev_base_lock);
192 EXPORT_SYMBOL(dev_base_lock);
193
194 static DEFINE_MUTEX(ifalias_mutex);
195
196 /* protects napi_hash addition/deletion and napi_gen_id */
197 static DEFINE_SPINLOCK(napi_hash_lock);
198
199 static unsigned int napi_gen_id = NR_CPUS;
200 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
201
202 static seqcount_t devnet_rename_seq;
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206         while (++net->dev_base_seq == 0)
207                 ;
208 }
209
210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 {
212         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
213
214         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 }
216
217 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 {
219         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 }
221
222 static inline void rps_lock(struct softnet_data *sd)
223 {
224 #ifdef CONFIG_RPS
225         spin_lock(&sd->input_pkt_queue.lock);
226 #endif
227 }
228
229 static inline void rps_unlock(struct softnet_data *sd)
230 {
231 #ifdef CONFIG_RPS
232         spin_unlock(&sd->input_pkt_queue.lock);
233 #endif
234 }
235
236 /* Device list insertion */
237 static void list_netdevice(struct net_device *dev)
238 {
239         struct net *net = dev_net(dev);
240
241         ASSERT_RTNL();
242
243         write_lock_bh(&dev_base_lock);
244         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
245         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
246         hlist_add_head_rcu(&dev->index_hlist,
247                            dev_index_hash(net, dev->ifindex));
248         write_unlock_bh(&dev_base_lock);
249
250         dev_base_seq_inc(net);
251 }
252
253 /* Device list removal
254  * caller must respect a RCU grace period before freeing/reusing dev
255  */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258         ASSERT_RTNL();
259
260         /* Unlink dev from the device chain */
261         write_lock_bh(&dev_base_lock);
262         list_del_rcu(&dev->dev_list);
263         hlist_del_rcu(&dev->name_hlist);
264         hlist_del_rcu(&dev->index_hlist);
265         write_unlock_bh(&dev_base_lock);
266
267         dev_base_seq_inc(dev_net(dev));
268 }
269
270 /*
271  *      Our notifier list
272  */
273
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275
276 /*
277  *      Device drivers call our routines to queue packets here. We empty the
278  *      queue in the local softnet handler.
279  */
280
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284 #ifdef CONFIG_LOCKDEP
285 /*
286  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287  * according to dev->type
288  */
289 static const unsigned short netdev_lock_type[] = {
290          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
303          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
304          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
305
306 static const char *const netdev_lock_name[] = {
307         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
308         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
309         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
310         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
311         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
312         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
313         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
314         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
315         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
316         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
317         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
318         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
319         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
320         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
321         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
322
323 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
325
326 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
327 {
328         int i;
329
330         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
331                 if (netdev_lock_type[i] == dev_type)
332                         return i;
333         /* the last key is used by default */
334         return ARRAY_SIZE(netdev_lock_type) - 1;
335 }
336
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338                                                  unsigned short dev_type)
339 {
340         int i;
341
342         i = netdev_lock_pos(dev_type);
343         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
344                                    netdev_lock_name[i]);
345 }
346
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349         int i;
350
351         i = netdev_lock_pos(dev->type);
352         lockdep_set_class_and_name(&dev->addr_list_lock,
353                                    &netdev_addr_lock_key[i],
354                                    netdev_lock_name[i]);
355 }
356 #else
357 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
358                                                  unsigned short dev_type)
359 {
360 }
361 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
362 {
363 }
364 #endif
365
366 /*******************************************************************************
367  *
368  *              Protocol management and registration routines
369  *
370  *******************************************************************************/
371
372
373 /*
374  *      Add a protocol ID to the list. Now that the input handler is
375  *      smarter we can dispense with all the messy stuff that used to be
376  *      here.
377  *
378  *      BEWARE!!! Protocol handlers, mangling input packets,
379  *      MUST BE last in hash buckets and checking protocol handlers
380  *      MUST start from promiscuous ptype_all chain in net_bh.
381  *      It is true now, do not change it.
382  *      Explanation follows: if protocol handler, mangling packet, will
383  *      be the first on list, it is not able to sense, that packet
384  *      is cloned and should be copied-on-write, so that it will
385  *      change it and subsequent readers will get broken packet.
386  *                                                      --ANK (980803)
387  */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391         if (pt->type == htons(ETH_P_ALL))
392                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
393         else
394                 return pt->dev ? &pt->dev->ptype_specific :
395                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397
398 /**
399  *      dev_add_pack - add packet handler
400  *      @pt: packet type declaration
401  *
402  *      Add a protocol handler to the networking stack. The passed &packet_type
403  *      is linked into kernel lists and may not be freed until it has been
404  *      removed from the kernel lists.
405  *
406  *      This call does not sleep therefore it can not
407  *      guarantee all CPU's that are in middle of receiving packets
408  *      will see the new packet type (until the next received packet).
409  */
410
411 void dev_add_pack(struct packet_type *pt)
412 {
413         struct list_head *head = ptype_head(pt);
414
415         spin_lock(&ptype_lock);
416         list_add_rcu(&pt->list, head);
417         spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420
421 /**
422  *      __dev_remove_pack        - remove packet handler
423  *      @pt: packet type declaration
424  *
425  *      Remove a protocol handler that was previously added to the kernel
426  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
427  *      from the kernel lists and can be freed or reused once this function
428  *      returns.
429  *
430  *      The packet type might still be in use by receivers
431  *      and must not be freed until after all the CPU's have gone
432  *      through a quiescent state.
433  */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436         struct list_head *head = ptype_head(pt);
437         struct packet_type *pt1;
438
439         spin_lock(&ptype_lock);
440
441         list_for_each_entry(pt1, head, list) {
442                 if (pt == pt1) {
443                         list_del_rcu(&pt->list);
444                         goto out;
445                 }
446         }
447
448         pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450         spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453
454 /**
455  *      dev_remove_pack  - remove packet handler
456  *      @pt: packet type declaration
457  *
458  *      Remove a protocol handler that was previously added to the kernel
459  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
460  *      from the kernel lists and can be freed or reused once this function
461  *      returns.
462  *
463  *      This call sleeps to guarantee that no CPU is looking at the packet
464  *      type after return.
465  */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468         __dev_remove_pack(pt);
469
470         synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473
474
475 /**
476  *      dev_add_offload - register offload handlers
477  *      @po: protocol offload declaration
478  *
479  *      Add protocol offload handlers to the networking stack. The passed
480  *      &proto_offload is linked into kernel lists and may not be freed until
481  *      it has been removed from the kernel lists.
482  *
483  *      This call does not sleep therefore it can not
484  *      guarantee all CPU's that are in middle of receiving packets
485  *      will see the new offload handlers (until the next received packet).
486  */
487 void dev_add_offload(struct packet_offload *po)
488 {
489         struct packet_offload *elem;
490
491         spin_lock(&offload_lock);
492         list_for_each_entry(elem, &offload_base, list) {
493                 if (po->priority < elem->priority)
494                         break;
495         }
496         list_add_rcu(&po->list, elem->list.prev);
497         spin_unlock(&offload_lock);
498 }
499 EXPORT_SYMBOL(dev_add_offload);
500
501 /**
502  *      __dev_remove_offload     - remove offload handler
503  *      @po: packet offload declaration
504  *
505  *      Remove a protocol offload handler that was previously added to the
506  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
507  *      is removed from the kernel lists and can be freed or reused once this
508  *      function returns.
509  *
510  *      The packet type might still be in use by receivers
511  *      and must not be freed until after all the CPU's have gone
512  *      through a quiescent state.
513  */
514 static void __dev_remove_offload(struct packet_offload *po)
515 {
516         struct list_head *head = &offload_base;
517         struct packet_offload *po1;
518
519         spin_lock(&offload_lock);
520
521         list_for_each_entry(po1, head, list) {
522                 if (po == po1) {
523                         list_del_rcu(&po->list);
524                         goto out;
525                 }
526         }
527
528         pr_warn("dev_remove_offload: %p not found\n", po);
529 out:
530         spin_unlock(&offload_lock);
531 }
532
533 /**
534  *      dev_remove_offload       - remove packet offload handler
535  *      @po: packet offload declaration
536  *
537  *      Remove a packet offload handler that was previously added to the kernel
538  *      offload handlers by dev_add_offload(). The passed &offload_type is
539  *      removed from the kernel lists and can be freed or reused once this
540  *      function returns.
541  *
542  *      This call sleeps to guarantee that no CPU is looking at the packet
543  *      type after return.
544  */
545 void dev_remove_offload(struct packet_offload *po)
546 {
547         __dev_remove_offload(po);
548
549         synchronize_net();
550 }
551 EXPORT_SYMBOL(dev_remove_offload);
552
553 /******************************************************************************
554  *
555  *                    Device Boot-time Settings Routines
556  *
557  ******************************************************************************/
558
559 /* Boot time configuration table */
560 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
561
562 /**
563  *      netdev_boot_setup_add   - add new setup entry
564  *      @name: name of the device
565  *      @map: configured settings for the device
566  *
567  *      Adds new setup entry to the dev_boot_setup list.  The function
568  *      returns 0 on error and 1 on success.  This is a generic routine to
569  *      all netdevices.
570  */
571 static int netdev_boot_setup_add(char *name, struct ifmap *map)
572 {
573         struct netdev_boot_setup *s;
574         int i;
575
576         s = dev_boot_setup;
577         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
578                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
579                         memset(s[i].name, 0, sizeof(s[i].name));
580                         strlcpy(s[i].name, name, IFNAMSIZ);
581                         memcpy(&s[i].map, map, sizeof(s[i].map));
582                         break;
583                 }
584         }
585
586         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
587 }
588
589 /**
590  * netdev_boot_setup_check      - check boot time settings
591  * @dev: the netdevice
592  *
593  * Check boot time settings for the device.
594  * The found settings are set for the device to be used
595  * later in the device probing.
596  * Returns 0 if no settings found, 1 if they are.
597  */
598 int netdev_boot_setup_check(struct net_device *dev)
599 {
600         struct netdev_boot_setup *s = dev_boot_setup;
601         int i;
602
603         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
604                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
605                     !strcmp(dev->name, s[i].name)) {
606                         dev->irq = s[i].map.irq;
607                         dev->base_addr = s[i].map.base_addr;
608                         dev->mem_start = s[i].map.mem_start;
609                         dev->mem_end = s[i].map.mem_end;
610                         return 1;
611                 }
612         }
613         return 0;
614 }
615 EXPORT_SYMBOL(netdev_boot_setup_check);
616
617
618 /**
619  * netdev_boot_base     - get address from boot time settings
620  * @prefix: prefix for network device
621  * @unit: id for network device
622  *
623  * Check boot time settings for the base address of device.
624  * The found settings are set for the device to be used
625  * later in the device probing.
626  * Returns 0 if no settings found.
627  */
628 unsigned long netdev_boot_base(const char *prefix, int unit)
629 {
630         const struct netdev_boot_setup *s = dev_boot_setup;
631         char name[IFNAMSIZ];
632         int i;
633
634         sprintf(name, "%s%d", prefix, unit);
635
636         /*
637          * If device already registered then return base of 1
638          * to indicate not to probe for this interface
639          */
640         if (__dev_get_by_name(&init_net, name))
641                 return 1;
642
643         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
644                 if (!strcmp(name, s[i].name))
645                         return s[i].map.base_addr;
646         return 0;
647 }
648
649 /*
650  * Saves at boot time configured settings for any netdevice.
651  */
652 int __init netdev_boot_setup(char *str)
653 {
654         int ints[5];
655         struct ifmap map;
656
657         str = get_options(str, ARRAY_SIZE(ints), ints);
658         if (!str || !*str)
659                 return 0;
660
661         /* Save settings */
662         memset(&map, 0, sizeof(map));
663         if (ints[0] > 0)
664                 map.irq = ints[1];
665         if (ints[0] > 1)
666                 map.base_addr = ints[2];
667         if (ints[0] > 2)
668                 map.mem_start = ints[3];
669         if (ints[0] > 3)
670                 map.mem_end = ints[4];
671
672         /* Add new entry to the list */
673         return netdev_boot_setup_add(str, &map);
674 }
675
676 __setup("netdev=", netdev_boot_setup);
677
678 /*******************************************************************************
679  *
680  *                          Device Interface Subroutines
681  *
682  *******************************************************************************/
683
684 /**
685  *      dev_get_iflink  - get 'iflink' value of a interface
686  *      @dev: targeted interface
687  *
688  *      Indicates the ifindex the interface is linked to.
689  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
690  */
691
692 int dev_get_iflink(const struct net_device *dev)
693 {
694         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
695                 return dev->netdev_ops->ndo_get_iflink(dev);
696
697         return dev->ifindex;
698 }
699 EXPORT_SYMBOL(dev_get_iflink);
700
701 /**
702  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
703  *      @dev: targeted interface
704  *      @skb: The packet.
705  *
706  *      For better visibility of tunnel traffic OVS needs to retrieve
707  *      egress tunnel information for a packet. Following API allows
708  *      user to get this info.
709  */
710 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
711 {
712         struct ip_tunnel_info *info;
713
714         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
715                 return -EINVAL;
716
717         info = skb_tunnel_info_unclone(skb);
718         if (!info)
719                 return -ENOMEM;
720         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
721                 return -EINVAL;
722
723         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
724 }
725 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
726
727 /**
728  *      __dev_get_by_name       - find a device by its name
729  *      @net: the applicable net namespace
730  *      @name: name to find
731  *
732  *      Find an interface by name. Must be called under RTNL semaphore
733  *      or @dev_base_lock. If the name is found a pointer to the device
734  *      is returned. If the name is not found then %NULL is returned. The
735  *      reference counters are not incremented so the caller must be
736  *      careful with locks.
737  */
738
739 struct net_device *__dev_get_by_name(struct net *net, const char *name)
740 {
741         struct net_device *dev;
742         struct hlist_head *head = dev_name_hash(net, name);
743
744         hlist_for_each_entry(dev, head, name_hlist)
745                 if (!strncmp(dev->name, name, IFNAMSIZ))
746                         return dev;
747
748         return NULL;
749 }
750 EXPORT_SYMBOL(__dev_get_by_name);
751
752 /**
753  * dev_get_by_name_rcu  - find a device by its name
754  * @net: the applicable net namespace
755  * @name: name to find
756  *
757  * Find an interface by name.
758  * If the name is found a pointer to the device is returned.
759  * If the name is not found then %NULL is returned.
760  * The reference counters are not incremented so the caller must be
761  * careful with locks. The caller must hold RCU lock.
762  */
763
764 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
765 {
766         struct net_device *dev;
767         struct hlist_head *head = dev_name_hash(net, name);
768
769         hlist_for_each_entry_rcu(dev, head, name_hlist)
770                 if (!strncmp(dev->name, name, IFNAMSIZ))
771                         return dev;
772
773         return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_name_rcu);
776
777 /**
778  *      dev_get_by_name         - find a device by its name
779  *      @net: the applicable net namespace
780  *      @name: name to find
781  *
782  *      Find an interface by name. This can be called from any
783  *      context and does its own locking. The returned handle has
784  *      the usage count incremented and the caller must use dev_put() to
785  *      release it when it is no longer needed. %NULL is returned if no
786  *      matching device is found.
787  */
788
789 struct net_device *dev_get_by_name(struct net *net, const char *name)
790 {
791         struct net_device *dev;
792
793         rcu_read_lock();
794         dev = dev_get_by_name_rcu(net, name);
795         if (dev)
796                 dev_hold(dev);
797         rcu_read_unlock();
798         return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_name);
801
802 /**
803  *      __dev_get_by_index - find a device by its ifindex
804  *      @net: the applicable net namespace
805  *      @ifindex: index of device
806  *
807  *      Search for an interface by index. Returns %NULL if the device
808  *      is not found or a pointer to the device. The device has not
809  *      had its reference counter increased so the caller must be careful
810  *      about locking. The caller must hold either the RTNL semaphore
811  *      or @dev_base_lock.
812  */
813
814 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
815 {
816         struct net_device *dev;
817         struct hlist_head *head = dev_index_hash(net, ifindex);
818
819         hlist_for_each_entry(dev, head, index_hlist)
820                 if (dev->ifindex == ifindex)
821                         return dev;
822
823         return NULL;
824 }
825 EXPORT_SYMBOL(__dev_get_by_index);
826
827 /**
828  *      dev_get_by_index_rcu - find a device by its ifindex
829  *      @net: the applicable net namespace
830  *      @ifindex: index of device
831  *
832  *      Search for an interface by index. Returns %NULL if the device
833  *      is not found or a pointer to the device. The device has not
834  *      had its reference counter increased so the caller must be careful
835  *      about locking. The caller must hold RCU lock.
836  */
837
838 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
839 {
840         struct net_device *dev;
841         struct hlist_head *head = dev_index_hash(net, ifindex);
842
843         hlist_for_each_entry_rcu(dev, head, index_hlist)
844                 if (dev->ifindex == ifindex)
845                         return dev;
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(dev_get_by_index_rcu);
850
851
852 /**
853  *      dev_get_by_index - find a device by its ifindex
854  *      @net: the applicable net namespace
855  *      @ifindex: index of device
856  *
857  *      Search for an interface by index. Returns NULL if the device
858  *      is not found or a pointer to the device. The device returned has
859  *      had a reference added and the pointer is safe until the user calls
860  *      dev_put to indicate they have finished with it.
861  */
862
863 struct net_device *dev_get_by_index(struct net *net, int ifindex)
864 {
865         struct net_device *dev;
866
867         rcu_read_lock();
868         dev = dev_get_by_index_rcu(net, ifindex);
869         if (dev)
870                 dev_hold(dev);
871         rcu_read_unlock();
872         return dev;
873 }
874 EXPORT_SYMBOL(dev_get_by_index);
875
876 /**
877  *      dev_get_by_napi_id - find a device by napi_id
878  *      @napi_id: ID of the NAPI struct
879  *
880  *      Search for an interface by NAPI ID. Returns %NULL if the device
881  *      is not found or a pointer to the device. The device has not had
882  *      its reference counter increased so the caller must be careful
883  *      about locking. The caller must hold RCU lock.
884  */
885
886 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
887 {
888         struct napi_struct *napi;
889
890         WARN_ON_ONCE(!rcu_read_lock_held());
891
892         if (napi_id < MIN_NAPI_ID)
893                 return NULL;
894
895         napi = napi_by_id(napi_id);
896
897         return napi ? napi->dev : NULL;
898 }
899 EXPORT_SYMBOL(dev_get_by_napi_id);
900
901 /**
902  *      netdev_get_name - get a netdevice name, knowing its ifindex.
903  *      @net: network namespace
904  *      @name: a pointer to the buffer where the name will be stored.
905  *      @ifindex: the ifindex of the interface to get the name from.
906  *
907  *      The use of raw_seqcount_begin() and cond_resched() before
908  *      retrying is required as we want to give the writers a chance
909  *      to complete when CONFIG_PREEMPT is not set.
910  */
911 int netdev_get_name(struct net *net, char *name, int ifindex)
912 {
913         struct net_device *dev;
914         unsigned int seq;
915
916 retry:
917         seq = raw_seqcount_begin(&devnet_rename_seq);
918         rcu_read_lock();
919         dev = dev_get_by_index_rcu(net, ifindex);
920         if (!dev) {
921                 rcu_read_unlock();
922                 return -ENODEV;
923         }
924
925         strcpy(name, dev->name);
926         rcu_read_unlock();
927         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
928                 cond_resched();
929                 goto retry;
930         }
931
932         return 0;
933 }
934
935 /**
936  *      dev_getbyhwaddr_rcu - find a device by its hardware address
937  *      @net: the applicable net namespace
938  *      @type: media type of device
939  *      @ha: hardware address
940  *
941  *      Search for an interface by MAC address. Returns NULL if the device
942  *      is not found or a pointer to the device.
943  *      The caller must hold RCU or RTNL.
944  *      The returned device has not had its ref count increased
945  *      and the caller must therefore be careful about locking
946  *
947  */
948
949 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
950                                        const char *ha)
951 {
952         struct net_device *dev;
953
954         for_each_netdev_rcu(net, dev)
955                 if (dev->type == type &&
956                     !memcmp(dev->dev_addr, ha, dev->addr_len))
957                         return dev;
958
959         return NULL;
960 }
961 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
962
963 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
964 {
965         struct net_device *dev;
966
967         ASSERT_RTNL();
968         for_each_netdev(net, dev)
969                 if (dev->type == type)
970                         return dev;
971
972         return NULL;
973 }
974 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
975
976 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
977 {
978         struct net_device *dev, *ret = NULL;
979
980         rcu_read_lock();
981         for_each_netdev_rcu(net, dev)
982                 if (dev->type == type) {
983                         dev_hold(dev);
984                         ret = dev;
985                         break;
986                 }
987         rcu_read_unlock();
988         return ret;
989 }
990 EXPORT_SYMBOL(dev_getfirstbyhwtype);
991
992 /**
993  *      __dev_get_by_flags - find any device with given flags
994  *      @net: the applicable net namespace
995  *      @if_flags: IFF_* values
996  *      @mask: bitmask of bits in if_flags to check
997  *
998  *      Search for any interface with the given flags. Returns NULL if a device
999  *      is not found or a pointer to the device. Must be called inside
1000  *      rtnl_lock(), and result refcount is unchanged.
1001  */
1002
1003 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1004                                       unsigned short mask)
1005 {
1006         struct net_device *dev, *ret;
1007
1008         ASSERT_RTNL();
1009
1010         ret = NULL;
1011         for_each_netdev(net, dev) {
1012                 if (((dev->flags ^ if_flags) & mask) == 0) {
1013                         ret = dev;
1014                         break;
1015                 }
1016         }
1017         return ret;
1018 }
1019 EXPORT_SYMBOL(__dev_get_by_flags);
1020
1021 /**
1022  *      dev_valid_name - check if name is okay for network device
1023  *      @name: name string
1024  *
1025  *      Network device names need to be valid file names to
1026  *      to allow sysfs to work.  We also disallow any kind of
1027  *      whitespace.
1028  */
1029 bool dev_valid_name(const char *name)
1030 {
1031         if (*name == '\0')
1032                 return false;
1033         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1034                 return false;
1035         if (!strcmp(name, ".") || !strcmp(name, ".."))
1036                 return false;
1037
1038         while (*name) {
1039                 if (*name == '/' || *name == ':' || isspace(*name))
1040                         return false;
1041                 name++;
1042         }
1043         return true;
1044 }
1045 EXPORT_SYMBOL(dev_valid_name);
1046
1047 /**
1048  *      __dev_alloc_name - allocate a name for a device
1049  *      @net: network namespace to allocate the device name in
1050  *      @name: name format string
1051  *      @buf:  scratch buffer and result name string
1052  *
1053  *      Passed a format string - eg "lt%d" it will try and find a suitable
1054  *      id. It scans list of devices to build up a free map, then chooses
1055  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1056  *      while allocating the name and adding the device in order to avoid
1057  *      duplicates.
1058  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1059  *      Returns the number of the unit assigned or a negative errno code.
1060  */
1061
1062 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1063 {
1064         int i = 0;
1065         const char *p;
1066         const int max_netdevices = 8*PAGE_SIZE;
1067         unsigned long *inuse;
1068         struct net_device *d;
1069
1070         if (!dev_valid_name(name))
1071                 return -EINVAL;
1072
1073         p = strchr(name, '%');
1074         if (p) {
1075                 /*
1076                  * Verify the string as this thing may have come from
1077                  * the user.  There must be either one "%d" and no other "%"
1078                  * characters.
1079                  */
1080                 if (p[1] != 'd' || strchr(p + 2, '%'))
1081                         return -EINVAL;
1082
1083                 /* Use one page as a bit array of possible slots */
1084                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1085                 if (!inuse)
1086                         return -ENOMEM;
1087
1088                 for_each_netdev(net, d) {
1089                         if (!sscanf(d->name, name, &i))
1090                                 continue;
1091                         if (i < 0 || i >= max_netdevices)
1092                                 continue;
1093
1094                         /*  avoid cases where sscanf is not exact inverse of printf */
1095                         snprintf(buf, IFNAMSIZ, name, i);
1096                         if (!strncmp(buf, d->name, IFNAMSIZ))
1097                                 set_bit(i, inuse);
1098                 }
1099
1100                 i = find_first_zero_bit(inuse, max_netdevices);
1101                 free_page((unsigned long) inuse);
1102         }
1103
1104         snprintf(buf, IFNAMSIZ, name, i);
1105         if (!__dev_get_by_name(net, buf))
1106                 return i;
1107
1108         /* It is possible to run out of possible slots
1109          * when the name is long and there isn't enough space left
1110          * for the digits, or if all bits are used.
1111          */
1112         return -ENFILE;
1113 }
1114
1115 static int dev_alloc_name_ns(struct net *net,
1116                              struct net_device *dev,
1117                              const char *name)
1118 {
1119         char buf[IFNAMSIZ];
1120         int ret;
1121
1122         BUG_ON(!net);
1123         ret = __dev_alloc_name(net, name, buf);
1124         if (ret >= 0)
1125                 strlcpy(dev->name, buf, IFNAMSIZ);
1126         return ret;
1127 }
1128
1129 /**
1130  *      dev_alloc_name - allocate a name for a device
1131  *      @dev: device
1132  *      @name: name format string
1133  *
1134  *      Passed a format string - eg "lt%d" it will try and find a suitable
1135  *      id. It scans list of devices to build up a free map, then chooses
1136  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1137  *      while allocating the name and adding the device in order to avoid
1138  *      duplicates.
1139  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1140  *      Returns the number of the unit assigned or a negative errno code.
1141  */
1142
1143 int dev_alloc_name(struct net_device *dev, const char *name)
1144 {
1145         return dev_alloc_name_ns(dev_net(dev), dev, name);
1146 }
1147 EXPORT_SYMBOL(dev_alloc_name);
1148
1149 int dev_get_valid_name(struct net *net, struct net_device *dev,
1150                        const char *name)
1151 {
1152         BUG_ON(!net);
1153
1154         if (!dev_valid_name(name))
1155                 return -EINVAL;
1156
1157         if (strchr(name, '%'))
1158                 return dev_alloc_name_ns(net, dev, name);
1159         else if (__dev_get_by_name(net, name))
1160                 return -EEXIST;
1161         else if (dev->name != name)
1162                 strlcpy(dev->name, name, IFNAMSIZ);
1163
1164         return 0;
1165 }
1166 EXPORT_SYMBOL(dev_get_valid_name);
1167
1168 /**
1169  *      dev_change_name - change name of a device
1170  *      @dev: device
1171  *      @newname: name (or format string) must be at least IFNAMSIZ
1172  *
1173  *      Change name of a device, can pass format strings "eth%d".
1174  *      for wildcarding.
1175  */
1176 int dev_change_name(struct net_device *dev, const char *newname)
1177 {
1178         unsigned char old_assign_type;
1179         char oldname[IFNAMSIZ];
1180         int err = 0;
1181         int ret;
1182         struct net *net;
1183
1184         ASSERT_RTNL();
1185         BUG_ON(!dev_net(dev));
1186
1187         net = dev_net(dev);
1188         if (dev->flags & IFF_UP)
1189                 return -EBUSY;
1190
1191         write_seqcount_begin(&devnet_rename_seq);
1192
1193         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194                 write_seqcount_end(&devnet_rename_seq);
1195                 return 0;
1196         }
1197
1198         memcpy(oldname, dev->name, IFNAMSIZ);
1199
1200         err = dev_get_valid_name(net, dev, newname);
1201         if (err < 0) {
1202                 write_seqcount_end(&devnet_rename_seq);
1203                 return err;
1204         }
1205
1206         if (oldname[0] && !strchr(oldname, '%'))
1207                 netdev_info(dev, "renamed from %s\n", oldname);
1208
1209         old_assign_type = dev->name_assign_type;
1210         dev->name_assign_type = NET_NAME_RENAMED;
1211
1212 rollback:
1213         ret = device_rename(&dev->dev, dev->name);
1214         if (ret) {
1215                 memcpy(dev->name, oldname, IFNAMSIZ);
1216                 dev->name_assign_type = old_assign_type;
1217                 write_seqcount_end(&devnet_rename_seq);
1218                 return ret;
1219         }
1220
1221         write_seqcount_end(&devnet_rename_seq);
1222
1223         netdev_adjacent_rename_links(dev, oldname);
1224
1225         write_lock_bh(&dev_base_lock);
1226         hlist_del_rcu(&dev->name_hlist);
1227         write_unlock_bh(&dev_base_lock);
1228
1229         synchronize_rcu();
1230
1231         write_lock_bh(&dev_base_lock);
1232         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233         write_unlock_bh(&dev_base_lock);
1234
1235         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236         ret = notifier_to_errno(ret);
1237
1238         if (ret) {
1239                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240                 if (err >= 0) {
1241                         err = ret;
1242                         write_seqcount_begin(&devnet_rename_seq);
1243                         memcpy(dev->name, oldname, IFNAMSIZ);
1244                         memcpy(oldname, newname, IFNAMSIZ);
1245                         dev->name_assign_type = old_assign_type;
1246                         old_assign_type = NET_NAME_RENAMED;
1247                         goto rollback;
1248                 } else {
1249                         pr_err("%s: name change rollback failed: %d\n",
1250                                dev->name, ret);
1251                 }
1252         }
1253
1254         return err;
1255 }
1256
1257 /**
1258  *      dev_set_alias - change ifalias of a device
1259  *      @dev: device
1260  *      @alias: name up to IFALIASZ
1261  *      @len: limit of bytes to copy from info
1262  *
1263  *      Set ifalias for a device,
1264  */
1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266 {
1267         struct dev_ifalias *new_alias = NULL;
1268
1269         if (len >= IFALIASZ)
1270                 return -EINVAL;
1271
1272         if (len) {
1273                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1274                 if (!new_alias)
1275                         return -ENOMEM;
1276
1277                 memcpy(new_alias->ifalias, alias, len);
1278                 new_alias->ifalias[len] = 0;
1279         }
1280
1281         mutex_lock(&ifalias_mutex);
1282         rcu_swap_protected(dev->ifalias, new_alias,
1283                            mutex_is_locked(&ifalias_mutex));
1284         mutex_unlock(&ifalias_mutex);
1285
1286         if (new_alias)
1287                 kfree_rcu(new_alias, rcuhead);
1288
1289         return len;
1290 }
1291 EXPORT_SYMBOL(dev_set_alias);
1292
1293 /**
1294  *      dev_get_alias - get ifalias of a device
1295  *      @dev: device
1296  *      @name: buffer to store name of ifalias
1297  *      @len: size of buffer
1298  *
1299  *      get ifalias for a device.  Caller must make sure dev cannot go
1300  *      away,  e.g. rcu read lock or own a reference count to device.
1301  */
1302 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1303 {
1304         const struct dev_ifalias *alias;
1305         int ret = 0;
1306
1307         rcu_read_lock();
1308         alias = rcu_dereference(dev->ifalias);
1309         if (alias)
1310                 ret = snprintf(name, len, "%s", alias->ifalias);
1311         rcu_read_unlock();
1312
1313         return ret;
1314 }
1315
1316 /**
1317  *      netdev_features_change - device changes features
1318  *      @dev: device to cause notification
1319  *
1320  *      Called to indicate a device has changed features.
1321  */
1322 void netdev_features_change(struct net_device *dev)
1323 {
1324         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1325 }
1326 EXPORT_SYMBOL(netdev_features_change);
1327
1328 /**
1329  *      netdev_state_change - device changes state
1330  *      @dev: device to cause notification
1331  *
1332  *      Called to indicate a device has changed state. This function calls
1333  *      the notifier chains for netdev_chain and sends a NEWLINK message
1334  *      to the routing socket.
1335  */
1336 void netdev_state_change(struct net_device *dev)
1337 {
1338         if (dev->flags & IFF_UP) {
1339                 struct netdev_notifier_change_info change_info = {
1340                         .info.dev = dev,
1341                 };
1342
1343                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1344                                               &change_info.info);
1345                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1346         }
1347 }
1348 EXPORT_SYMBOL(netdev_state_change);
1349
1350 /**
1351  * netdev_notify_peers - notify network peers about existence of @dev
1352  * @dev: network device
1353  *
1354  * Generate traffic such that interested network peers are aware of
1355  * @dev, such as by generating a gratuitous ARP. This may be used when
1356  * a device wants to inform the rest of the network about some sort of
1357  * reconfiguration such as a failover event or virtual machine
1358  * migration.
1359  */
1360 void netdev_notify_peers(struct net_device *dev)
1361 {
1362         rtnl_lock();
1363         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1364         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1365         rtnl_unlock();
1366 }
1367 EXPORT_SYMBOL(netdev_notify_peers);
1368
1369 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1370 {
1371         const struct net_device_ops *ops = dev->netdev_ops;
1372         int ret;
1373
1374         ASSERT_RTNL();
1375
1376         if (!netif_device_present(dev))
1377                 return -ENODEV;
1378
1379         /* Block netpoll from trying to do any rx path servicing.
1380          * If we don't do this there is a chance ndo_poll_controller
1381          * or ndo_poll may be running while we open the device
1382          */
1383         netpoll_poll_disable(dev);
1384
1385         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1386         ret = notifier_to_errno(ret);
1387         if (ret)
1388                 return ret;
1389
1390         set_bit(__LINK_STATE_START, &dev->state);
1391
1392         if (ops->ndo_validate_addr)
1393                 ret = ops->ndo_validate_addr(dev);
1394
1395         if (!ret && ops->ndo_open)
1396                 ret = ops->ndo_open(dev);
1397
1398         netpoll_poll_enable(dev);
1399
1400         if (ret)
1401                 clear_bit(__LINK_STATE_START, &dev->state);
1402         else {
1403                 dev->flags |= IFF_UP;
1404                 dev_set_rx_mode(dev);
1405                 dev_activate(dev);
1406                 add_device_randomness(dev->dev_addr, dev->addr_len);
1407         }
1408
1409         return ret;
1410 }
1411
1412 /**
1413  *      dev_open        - prepare an interface for use.
1414  *      @dev: device to open
1415  *      @extack: netlink extended ack
1416  *
1417  *      Takes a device from down to up state. The device's private open
1418  *      function is invoked and then the multicast lists are loaded. Finally
1419  *      the device is moved into the up state and a %NETDEV_UP message is
1420  *      sent to the netdev notifier chain.
1421  *
1422  *      Calling this function on an active interface is a nop. On a failure
1423  *      a negative errno code is returned.
1424  */
1425 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1426 {
1427         int ret;
1428
1429         if (dev->flags & IFF_UP)
1430                 return 0;
1431
1432         ret = __dev_open(dev, extack);
1433         if (ret < 0)
1434                 return ret;
1435
1436         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1437         call_netdevice_notifiers(NETDEV_UP, dev);
1438
1439         return ret;
1440 }
1441 EXPORT_SYMBOL(dev_open);
1442
1443 static void __dev_close_many(struct list_head *head)
1444 {
1445         struct net_device *dev;
1446
1447         ASSERT_RTNL();
1448         might_sleep();
1449
1450         list_for_each_entry(dev, head, close_list) {
1451                 /* Temporarily disable netpoll until the interface is down */
1452                 netpoll_poll_disable(dev);
1453
1454                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1455
1456                 clear_bit(__LINK_STATE_START, &dev->state);
1457
1458                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1459                  * can be even on different cpu. So just clear netif_running().
1460                  *
1461                  * dev->stop() will invoke napi_disable() on all of it's
1462                  * napi_struct instances on this device.
1463                  */
1464                 smp_mb__after_atomic(); /* Commit netif_running(). */
1465         }
1466
1467         dev_deactivate_many(head);
1468
1469         list_for_each_entry(dev, head, close_list) {
1470                 const struct net_device_ops *ops = dev->netdev_ops;
1471
1472                 /*
1473                  *      Call the device specific close. This cannot fail.
1474                  *      Only if device is UP
1475                  *
1476                  *      We allow it to be called even after a DETACH hot-plug
1477                  *      event.
1478                  */
1479                 if (ops->ndo_stop)
1480                         ops->ndo_stop(dev);
1481
1482                 dev->flags &= ~IFF_UP;
1483                 netpoll_poll_enable(dev);
1484         }
1485 }
1486
1487 static void __dev_close(struct net_device *dev)
1488 {
1489         LIST_HEAD(single);
1490
1491         list_add(&dev->close_list, &single);
1492         __dev_close_many(&single);
1493         list_del(&single);
1494 }
1495
1496 void dev_close_many(struct list_head *head, bool unlink)
1497 {
1498         struct net_device *dev, *tmp;
1499
1500         /* Remove the devices that don't need to be closed */
1501         list_for_each_entry_safe(dev, tmp, head, close_list)
1502                 if (!(dev->flags & IFF_UP))
1503                         list_del_init(&dev->close_list);
1504
1505         __dev_close_many(head);
1506
1507         list_for_each_entry_safe(dev, tmp, head, close_list) {
1508                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1509                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1510                 if (unlink)
1511                         list_del_init(&dev->close_list);
1512         }
1513 }
1514 EXPORT_SYMBOL(dev_close_many);
1515
1516 /**
1517  *      dev_close - shutdown an interface.
1518  *      @dev: device to shutdown
1519  *
1520  *      This function moves an active device into down state. A
1521  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1522  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1523  *      chain.
1524  */
1525 void dev_close(struct net_device *dev)
1526 {
1527         if (dev->flags & IFF_UP) {
1528                 LIST_HEAD(single);
1529
1530                 list_add(&dev->close_list, &single);
1531                 dev_close_many(&single, true);
1532                 list_del(&single);
1533         }
1534 }
1535 EXPORT_SYMBOL(dev_close);
1536
1537
1538 /**
1539  *      dev_disable_lro - disable Large Receive Offload on a device
1540  *      @dev: device
1541  *
1542  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1543  *      called under RTNL.  This is needed if received packets may be
1544  *      forwarded to another interface.
1545  */
1546 void dev_disable_lro(struct net_device *dev)
1547 {
1548         struct net_device *lower_dev;
1549         struct list_head *iter;
1550
1551         dev->wanted_features &= ~NETIF_F_LRO;
1552         netdev_update_features(dev);
1553
1554         if (unlikely(dev->features & NETIF_F_LRO))
1555                 netdev_WARN(dev, "failed to disable LRO!\n");
1556
1557         netdev_for_each_lower_dev(dev, lower_dev, iter)
1558                 dev_disable_lro(lower_dev);
1559 }
1560 EXPORT_SYMBOL(dev_disable_lro);
1561
1562 /**
1563  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1564  *      @dev: device
1565  *
1566  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1567  *      called under RTNL.  This is needed if Generic XDP is installed on
1568  *      the device.
1569  */
1570 static void dev_disable_gro_hw(struct net_device *dev)
1571 {
1572         dev->wanted_features &= ~NETIF_F_GRO_HW;
1573         netdev_update_features(dev);
1574
1575         if (unlikely(dev->features & NETIF_F_GRO_HW))
1576                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1577 }
1578
1579 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1580 {
1581 #define N(val)                                          \
1582         case NETDEV_##val:                              \
1583                 return "NETDEV_" __stringify(val);
1584         switch (cmd) {
1585         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1586         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1587         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1588         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1589         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1590         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1591         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1592         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1593         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1594         N(PRE_CHANGEADDR)
1595         }
1596 #undef N
1597         return "UNKNOWN_NETDEV_EVENT";
1598 }
1599 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1600
1601 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1602                                    struct net_device *dev)
1603 {
1604         struct netdev_notifier_info info = {
1605                 .dev = dev,
1606         };
1607
1608         return nb->notifier_call(nb, val, &info);
1609 }
1610
1611 static int dev_boot_phase = 1;
1612
1613 /**
1614  * register_netdevice_notifier - register a network notifier block
1615  * @nb: notifier
1616  *
1617  * Register a notifier to be called when network device events occur.
1618  * The notifier passed is linked into the kernel structures and must
1619  * not be reused until it has been unregistered. A negative errno code
1620  * is returned on a failure.
1621  *
1622  * When registered all registration and up events are replayed
1623  * to the new notifier to allow device to have a race free
1624  * view of the network device list.
1625  */
1626
1627 int register_netdevice_notifier(struct notifier_block *nb)
1628 {
1629         struct net_device *dev;
1630         struct net_device *last;
1631         struct net *net;
1632         int err;
1633
1634         /* Close race with setup_net() and cleanup_net() */
1635         down_write(&pernet_ops_rwsem);
1636         rtnl_lock();
1637         err = raw_notifier_chain_register(&netdev_chain, nb);
1638         if (err)
1639                 goto unlock;
1640         if (dev_boot_phase)
1641                 goto unlock;
1642         for_each_net(net) {
1643                 for_each_netdev(net, dev) {
1644                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1645                         err = notifier_to_errno(err);
1646                         if (err)
1647                                 goto rollback;
1648
1649                         if (!(dev->flags & IFF_UP))
1650                                 continue;
1651
1652                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1653                 }
1654         }
1655
1656 unlock:
1657         rtnl_unlock();
1658         up_write(&pernet_ops_rwsem);
1659         return err;
1660
1661 rollback:
1662         last = dev;
1663         for_each_net(net) {
1664                 for_each_netdev(net, dev) {
1665                         if (dev == last)
1666                                 goto outroll;
1667
1668                         if (dev->flags & IFF_UP) {
1669                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                                         dev);
1671                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672                         }
1673                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674                 }
1675         }
1676
1677 outroll:
1678         raw_notifier_chain_unregister(&netdev_chain, nb);
1679         goto unlock;
1680 }
1681 EXPORT_SYMBOL(register_netdevice_notifier);
1682
1683 /**
1684  * unregister_netdevice_notifier - unregister a network notifier block
1685  * @nb: notifier
1686  *
1687  * Unregister a notifier previously registered by
1688  * register_netdevice_notifier(). The notifier is unlinked into the
1689  * kernel structures and may then be reused. A negative errno code
1690  * is returned on a failure.
1691  *
1692  * After unregistering unregister and down device events are synthesized
1693  * for all devices on the device list to the removed notifier to remove
1694  * the need for special case cleanup code.
1695  */
1696
1697 int unregister_netdevice_notifier(struct notifier_block *nb)
1698 {
1699         struct net_device *dev;
1700         struct net *net;
1701         int err;
1702
1703         /* Close race with setup_net() and cleanup_net() */
1704         down_write(&pernet_ops_rwsem);
1705         rtnl_lock();
1706         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1707         if (err)
1708                 goto unlock;
1709
1710         for_each_net(net) {
1711                 for_each_netdev(net, dev) {
1712                         if (dev->flags & IFF_UP) {
1713                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714                                                         dev);
1715                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716                         }
1717                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718                 }
1719         }
1720 unlock:
1721         rtnl_unlock();
1722         up_write(&pernet_ops_rwsem);
1723         return err;
1724 }
1725 EXPORT_SYMBOL(unregister_netdevice_notifier);
1726
1727 /**
1728  *      call_netdevice_notifiers_info - call all network notifier blocks
1729  *      @val: value passed unmodified to notifier function
1730  *      @info: notifier information data
1731  *
1732  *      Call all network notifier blocks.  Parameters and return value
1733  *      are as for raw_notifier_call_chain().
1734  */
1735
1736 static int call_netdevice_notifiers_info(unsigned long val,
1737                                          struct netdev_notifier_info *info)
1738 {
1739         ASSERT_RTNL();
1740         return raw_notifier_call_chain(&netdev_chain, val, info);
1741 }
1742
1743 static int call_netdevice_notifiers_extack(unsigned long val,
1744                                            struct net_device *dev,
1745                                            struct netlink_ext_ack *extack)
1746 {
1747         struct netdev_notifier_info info = {
1748                 .dev = dev,
1749                 .extack = extack,
1750         };
1751
1752         return call_netdevice_notifiers_info(val, &info);
1753 }
1754
1755 /**
1756  *      call_netdevice_notifiers - call all network notifier blocks
1757  *      @val: value passed unmodified to notifier function
1758  *      @dev: net_device pointer passed unmodified to notifier function
1759  *
1760  *      Call all network notifier blocks.  Parameters and return value
1761  *      are as for raw_notifier_call_chain().
1762  */
1763
1764 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1765 {
1766         return call_netdevice_notifiers_extack(val, dev, NULL);
1767 }
1768 EXPORT_SYMBOL(call_netdevice_notifiers);
1769
1770 /**
1771  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1772  *      @val: value passed unmodified to notifier function
1773  *      @dev: net_device pointer passed unmodified to notifier function
1774  *      @arg: additional u32 argument passed to the notifier function
1775  *
1776  *      Call all network notifier blocks.  Parameters and return value
1777  *      are as for raw_notifier_call_chain().
1778  */
1779 static int call_netdevice_notifiers_mtu(unsigned long val,
1780                                         struct net_device *dev, u32 arg)
1781 {
1782         struct netdev_notifier_info_ext info = {
1783                 .info.dev = dev,
1784                 .ext.mtu = arg,
1785         };
1786
1787         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1788
1789         return call_netdevice_notifiers_info(val, &info.info);
1790 }
1791
1792 #ifdef CONFIG_NET_INGRESS
1793 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1794
1795 void net_inc_ingress_queue(void)
1796 {
1797         static_branch_inc(&ingress_needed_key);
1798 }
1799 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1800
1801 void net_dec_ingress_queue(void)
1802 {
1803         static_branch_dec(&ingress_needed_key);
1804 }
1805 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1806 #endif
1807
1808 #ifdef CONFIG_NET_EGRESS
1809 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1810
1811 void net_inc_egress_queue(void)
1812 {
1813         static_branch_inc(&egress_needed_key);
1814 }
1815 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1816
1817 void net_dec_egress_queue(void)
1818 {
1819         static_branch_dec(&egress_needed_key);
1820 }
1821 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1822 #endif
1823
1824 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1825 #ifdef CONFIG_JUMP_LABEL
1826 static atomic_t netstamp_needed_deferred;
1827 static atomic_t netstamp_wanted;
1828 static void netstamp_clear(struct work_struct *work)
1829 {
1830         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1831         int wanted;
1832
1833         wanted = atomic_add_return(deferred, &netstamp_wanted);
1834         if (wanted > 0)
1835                 static_branch_enable(&netstamp_needed_key);
1836         else
1837                 static_branch_disable(&netstamp_needed_key);
1838 }
1839 static DECLARE_WORK(netstamp_work, netstamp_clear);
1840 #endif
1841
1842 void net_enable_timestamp(void)
1843 {
1844 #ifdef CONFIG_JUMP_LABEL
1845         int wanted;
1846
1847         while (1) {
1848                 wanted = atomic_read(&netstamp_wanted);
1849                 if (wanted <= 0)
1850                         break;
1851                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1852                         return;
1853         }
1854         atomic_inc(&netstamp_needed_deferred);
1855         schedule_work(&netstamp_work);
1856 #else
1857         static_branch_inc(&netstamp_needed_key);
1858 #endif
1859 }
1860 EXPORT_SYMBOL(net_enable_timestamp);
1861
1862 void net_disable_timestamp(void)
1863 {
1864 #ifdef CONFIG_JUMP_LABEL
1865         int wanted;
1866
1867         while (1) {
1868                 wanted = atomic_read(&netstamp_wanted);
1869                 if (wanted <= 1)
1870                         break;
1871                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1872                         return;
1873         }
1874         atomic_dec(&netstamp_needed_deferred);
1875         schedule_work(&netstamp_work);
1876 #else
1877         static_branch_dec(&netstamp_needed_key);
1878 #endif
1879 }
1880 EXPORT_SYMBOL(net_disable_timestamp);
1881
1882 static inline void net_timestamp_set(struct sk_buff *skb)
1883 {
1884         skb->tstamp = 0;
1885         if (static_branch_unlikely(&netstamp_needed_key))
1886                 __net_timestamp(skb);
1887 }
1888
1889 #define net_timestamp_check(COND, SKB)                          \
1890         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1891                 if ((COND) && !(SKB)->tstamp)                   \
1892                         __net_timestamp(SKB);                   \
1893         }                                                       \
1894
1895 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1896 {
1897         unsigned int len;
1898
1899         if (!(dev->flags & IFF_UP))
1900                 return false;
1901
1902         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1903         if (skb->len <= len)
1904                 return true;
1905
1906         /* if TSO is enabled, we don't care about the length as the packet
1907          * could be forwarded without being segmented before
1908          */
1909         if (skb_is_gso(skb))
1910                 return true;
1911
1912         return false;
1913 }
1914 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1915
1916 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1917 {
1918         int ret = ____dev_forward_skb(dev, skb);
1919
1920         if (likely(!ret)) {
1921                 skb->protocol = eth_type_trans(skb, dev);
1922                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1923         }
1924
1925         return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1928
1929 /**
1930  * dev_forward_skb - loopback an skb to another netif
1931  *
1932  * @dev: destination network device
1933  * @skb: buffer to forward
1934  *
1935  * return values:
1936  *      NET_RX_SUCCESS  (no congestion)
1937  *      NET_RX_DROP     (packet was dropped, but freed)
1938  *
1939  * dev_forward_skb can be used for injecting an skb from the
1940  * start_xmit function of one device into the receive queue
1941  * of another device.
1942  *
1943  * The receiving device may be in another namespace, so
1944  * we have to clear all information in the skb that could
1945  * impact namespace isolation.
1946  */
1947 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1948 {
1949         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1950 }
1951 EXPORT_SYMBOL_GPL(dev_forward_skb);
1952
1953 static inline int deliver_skb(struct sk_buff *skb,
1954                               struct packet_type *pt_prev,
1955                               struct net_device *orig_dev)
1956 {
1957         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1958                 return -ENOMEM;
1959         refcount_inc(&skb->users);
1960         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1961 }
1962
1963 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1964                                           struct packet_type **pt,
1965                                           struct net_device *orig_dev,
1966                                           __be16 type,
1967                                           struct list_head *ptype_list)
1968 {
1969         struct packet_type *ptype, *pt_prev = *pt;
1970
1971         list_for_each_entry_rcu(ptype, ptype_list, list) {
1972                 if (ptype->type != type)
1973                         continue;
1974                 if (pt_prev)
1975                         deliver_skb(skb, pt_prev, orig_dev);
1976                 pt_prev = ptype;
1977         }
1978         *pt = pt_prev;
1979 }
1980
1981 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1982 {
1983         if (!ptype->af_packet_priv || !skb->sk)
1984                 return false;
1985
1986         if (ptype->id_match)
1987                 return ptype->id_match(ptype, skb->sk);
1988         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1989                 return true;
1990
1991         return false;
1992 }
1993
1994 /**
1995  * dev_nit_active - return true if any network interface taps are in use
1996  *
1997  * @dev: network device to check for the presence of taps
1998  */
1999 bool dev_nit_active(struct net_device *dev)
2000 {
2001         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2002 }
2003 EXPORT_SYMBOL_GPL(dev_nit_active);
2004
2005 /*
2006  *      Support routine. Sends outgoing frames to any network
2007  *      taps currently in use.
2008  */
2009
2010 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2011 {
2012         struct packet_type *ptype;
2013         struct sk_buff *skb2 = NULL;
2014         struct packet_type *pt_prev = NULL;
2015         struct list_head *ptype_list = &ptype_all;
2016
2017         rcu_read_lock();
2018 again:
2019         list_for_each_entry_rcu(ptype, ptype_list, list) {
2020                 if (ptype->ignore_outgoing)
2021                         continue;
2022
2023                 /* Never send packets back to the socket
2024                  * they originated from - MvS (miquels@drinkel.ow.org)
2025                  */
2026                 if (skb_loop_sk(ptype, skb))
2027                         continue;
2028
2029                 if (pt_prev) {
2030                         deliver_skb(skb2, pt_prev, skb->dev);
2031                         pt_prev = ptype;
2032                         continue;
2033                 }
2034
2035                 /* need to clone skb, done only once */
2036                 skb2 = skb_clone(skb, GFP_ATOMIC);
2037                 if (!skb2)
2038                         goto out_unlock;
2039
2040                 net_timestamp_set(skb2);
2041
2042                 /* skb->nh should be correctly
2043                  * set by sender, so that the second statement is
2044                  * just protection against buggy protocols.
2045                  */
2046                 skb_reset_mac_header(skb2);
2047
2048                 if (skb_network_header(skb2) < skb2->data ||
2049                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2050                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2051                                              ntohs(skb2->protocol),
2052                                              dev->name);
2053                         skb_reset_network_header(skb2);
2054                 }
2055
2056                 skb2->transport_header = skb2->network_header;
2057                 skb2->pkt_type = PACKET_OUTGOING;
2058                 pt_prev = ptype;
2059         }
2060
2061         if (ptype_list == &ptype_all) {
2062                 ptype_list = &dev->ptype_all;
2063                 goto again;
2064         }
2065 out_unlock:
2066         if (pt_prev) {
2067                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2068                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2069                 else
2070                         kfree_skb(skb2);
2071         }
2072         rcu_read_unlock();
2073 }
2074 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2075
2076 /**
2077  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2078  * @dev: Network device
2079  * @txq: number of queues available
2080  *
2081  * If real_num_tx_queues is changed the tc mappings may no longer be
2082  * valid. To resolve this verify the tc mapping remains valid and if
2083  * not NULL the mapping. With no priorities mapping to this
2084  * offset/count pair it will no longer be used. In the worst case TC0
2085  * is invalid nothing can be done so disable priority mappings. If is
2086  * expected that drivers will fix this mapping if they can before
2087  * calling netif_set_real_num_tx_queues.
2088  */
2089 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2090 {
2091         int i;
2092         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2093
2094         /* If TC0 is invalidated disable TC mapping */
2095         if (tc->offset + tc->count > txq) {
2096                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2097                 dev->num_tc = 0;
2098                 return;
2099         }
2100
2101         /* Invalidated prio to tc mappings set to TC0 */
2102         for (i = 1; i < TC_BITMASK + 1; i++) {
2103                 int q = netdev_get_prio_tc_map(dev, i);
2104
2105                 tc = &dev->tc_to_txq[q];
2106                 if (tc->offset + tc->count > txq) {
2107                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2108                                 i, q);
2109                         netdev_set_prio_tc_map(dev, i, 0);
2110                 }
2111         }
2112 }
2113
2114 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2115 {
2116         if (dev->num_tc) {
2117                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2118                 int i;
2119
2120                 /* walk through the TCs and see if it falls into any of them */
2121                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2122                         if ((txq - tc->offset) < tc->count)
2123                                 return i;
2124                 }
2125
2126                 /* didn't find it, just return -1 to indicate no match */
2127                 return -1;
2128         }
2129
2130         return 0;
2131 }
2132 EXPORT_SYMBOL(netdev_txq_to_tc);
2133
2134 #ifdef CONFIG_XPS
2135 struct static_key xps_needed __read_mostly;
2136 EXPORT_SYMBOL(xps_needed);
2137 struct static_key xps_rxqs_needed __read_mostly;
2138 EXPORT_SYMBOL(xps_rxqs_needed);
2139 static DEFINE_MUTEX(xps_map_mutex);
2140 #define xmap_dereference(P)             \
2141         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2142
2143 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2144                              int tci, u16 index)
2145 {
2146         struct xps_map *map = NULL;
2147         int pos;
2148
2149         if (dev_maps)
2150                 map = xmap_dereference(dev_maps->attr_map[tci]);
2151         if (!map)
2152                 return false;
2153
2154         for (pos = map->len; pos--;) {
2155                 if (map->queues[pos] != index)
2156                         continue;
2157
2158                 if (map->len > 1) {
2159                         map->queues[pos] = map->queues[--map->len];
2160                         break;
2161                 }
2162
2163                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2164                 kfree_rcu(map, rcu);
2165                 return false;
2166         }
2167
2168         return true;
2169 }
2170
2171 static bool remove_xps_queue_cpu(struct net_device *dev,
2172                                  struct xps_dev_maps *dev_maps,
2173                                  int cpu, u16 offset, u16 count)
2174 {
2175         int num_tc = dev->num_tc ? : 1;
2176         bool active = false;
2177         int tci;
2178
2179         for (tci = cpu * num_tc; num_tc--; tci++) {
2180                 int i, j;
2181
2182                 for (i = count, j = offset; i--; j++) {
2183                         if (!remove_xps_queue(dev_maps, tci, j))
2184                                 break;
2185                 }
2186
2187                 active |= i < 0;
2188         }
2189
2190         return active;
2191 }
2192
2193 static void reset_xps_maps(struct net_device *dev,
2194                            struct xps_dev_maps *dev_maps,
2195                            bool is_rxqs_map)
2196 {
2197         if (is_rxqs_map) {
2198                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2199                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2200         } else {
2201                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2202         }
2203         static_key_slow_dec_cpuslocked(&xps_needed);
2204         kfree_rcu(dev_maps, rcu);
2205 }
2206
2207 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2208                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2209                            u16 offset, u16 count, bool is_rxqs_map)
2210 {
2211         bool active = false;
2212         int i, j;
2213
2214         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2215              j < nr_ids;)
2216                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2217                                                count);
2218         if (!active)
2219                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2220
2221         if (!is_rxqs_map) {
2222                 for (i = offset + (count - 1); count--; i--) {
2223                         netdev_queue_numa_node_write(
2224                                 netdev_get_tx_queue(dev, i),
2225                                 NUMA_NO_NODE);
2226                 }
2227         }
2228 }
2229
2230 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2231                                    u16 count)
2232 {
2233         const unsigned long *possible_mask = NULL;
2234         struct xps_dev_maps *dev_maps;
2235         unsigned int nr_ids;
2236
2237         if (!static_key_false(&xps_needed))
2238                 return;
2239
2240         cpus_read_lock();
2241         mutex_lock(&xps_map_mutex);
2242
2243         if (static_key_false(&xps_rxqs_needed)) {
2244                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2245                 if (dev_maps) {
2246                         nr_ids = dev->num_rx_queues;
2247                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2248                                        offset, count, true);
2249                 }
2250         }
2251
2252         dev_maps = xmap_dereference(dev->xps_cpus_map);
2253         if (!dev_maps)
2254                 goto out_no_maps;
2255
2256         if (num_possible_cpus() > 1)
2257                 possible_mask = cpumask_bits(cpu_possible_mask);
2258         nr_ids = nr_cpu_ids;
2259         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2260                        false);
2261
2262 out_no_maps:
2263         mutex_unlock(&xps_map_mutex);
2264         cpus_read_unlock();
2265 }
2266
2267 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2268 {
2269         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2270 }
2271
2272 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2273                                       u16 index, bool is_rxqs_map)
2274 {
2275         struct xps_map *new_map;
2276         int alloc_len = XPS_MIN_MAP_ALLOC;
2277         int i, pos;
2278
2279         for (pos = 0; map && pos < map->len; pos++) {
2280                 if (map->queues[pos] != index)
2281                         continue;
2282                 return map;
2283         }
2284
2285         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2286         if (map) {
2287                 if (pos < map->alloc_len)
2288                         return map;
2289
2290                 alloc_len = map->alloc_len * 2;
2291         }
2292
2293         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2294          *  map
2295          */
2296         if (is_rxqs_map)
2297                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2298         else
2299                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2300                                        cpu_to_node(attr_index));
2301         if (!new_map)
2302                 return NULL;
2303
2304         for (i = 0; i < pos; i++)
2305                 new_map->queues[i] = map->queues[i];
2306         new_map->alloc_len = alloc_len;
2307         new_map->len = pos;
2308
2309         return new_map;
2310 }
2311
2312 /* Must be called under cpus_read_lock */
2313 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2314                           u16 index, bool is_rxqs_map)
2315 {
2316         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2317         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2318         int i, j, tci, numa_node_id = -2;
2319         int maps_sz, num_tc = 1, tc = 0;
2320         struct xps_map *map, *new_map;
2321         bool active = false;
2322         unsigned int nr_ids;
2323
2324         if (dev->num_tc) {
2325                 /* Do not allow XPS on subordinate device directly */
2326                 num_tc = dev->num_tc;
2327                 if (num_tc < 0)
2328                         return -EINVAL;
2329
2330                 /* If queue belongs to subordinate dev use its map */
2331                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2332
2333                 tc = netdev_txq_to_tc(dev, index);
2334                 if (tc < 0)
2335                         return -EINVAL;
2336         }
2337
2338         mutex_lock(&xps_map_mutex);
2339         if (is_rxqs_map) {
2340                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2341                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2342                 nr_ids = dev->num_rx_queues;
2343         } else {
2344                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2345                 if (num_possible_cpus() > 1) {
2346                         online_mask = cpumask_bits(cpu_online_mask);
2347                         possible_mask = cpumask_bits(cpu_possible_mask);
2348                 }
2349                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2350                 nr_ids = nr_cpu_ids;
2351         }
2352
2353         if (maps_sz < L1_CACHE_BYTES)
2354                 maps_sz = L1_CACHE_BYTES;
2355
2356         /* allocate memory for queue storage */
2357         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2358              j < nr_ids;) {
2359                 if (!new_dev_maps)
2360                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2361                 if (!new_dev_maps) {
2362                         mutex_unlock(&xps_map_mutex);
2363                         return -ENOMEM;
2364                 }
2365
2366                 tci = j * num_tc + tc;
2367                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2368                                  NULL;
2369
2370                 map = expand_xps_map(map, j, index, is_rxqs_map);
2371                 if (!map)
2372                         goto error;
2373
2374                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2375         }
2376
2377         if (!new_dev_maps)
2378                 goto out_no_new_maps;
2379
2380         if (!dev_maps) {
2381                 /* Increment static keys at most once per type */
2382                 static_key_slow_inc_cpuslocked(&xps_needed);
2383                 if (is_rxqs_map)
2384                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2385         }
2386
2387         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2388              j < nr_ids;) {
2389                 /* copy maps belonging to foreign traffic classes */
2390                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2391                         /* fill in the new device map from the old device map */
2392                         map = xmap_dereference(dev_maps->attr_map[tci]);
2393                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2394                 }
2395
2396                 /* We need to explicitly update tci as prevous loop
2397                  * could break out early if dev_maps is NULL.
2398                  */
2399                 tci = j * num_tc + tc;
2400
2401                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2402                     netif_attr_test_online(j, online_mask, nr_ids)) {
2403                         /* add tx-queue to CPU/rx-queue maps */
2404                         int pos = 0;
2405
2406                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2407                         while ((pos < map->len) && (map->queues[pos] != index))
2408                                 pos++;
2409
2410                         if (pos == map->len)
2411                                 map->queues[map->len++] = index;
2412 #ifdef CONFIG_NUMA
2413                         if (!is_rxqs_map) {
2414                                 if (numa_node_id == -2)
2415                                         numa_node_id = cpu_to_node(j);
2416                                 else if (numa_node_id != cpu_to_node(j))
2417                                         numa_node_id = -1;
2418                         }
2419 #endif
2420                 } else if (dev_maps) {
2421                         /* fill in the new device map from the old device map */
2422                         map = xmap_dereference(dev_maps->attr_map[tci]);
2423                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2424                 }
2425
2426                 /* copy maps belonging to foreign traffic classes */
2427                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2428                         /* fill in the new device map from the old device map */
2429                         map = xmap_dereference(dev_maps->attr_map[tci]);
2430                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2431                 }
2432         }
2433
2434         if (is_rxqs_map)
2435                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2436         else
2437                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2438
2439         /* Cleanup old maps */
2440         if (!dev_maps)
2441                 goto out_no_old_maps;
2442
2443         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2444              j < nr_ids;) {
2445                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2446                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2447                         map = xmap_dereference(dev_maps->attr_map[tci]);
2448                         if (map && map != new_map)
2449                                 kfree_rcu(map, rcu);
2450                 }
2451         }
2452
2453         kfree_rcu(dev_maps, rcu);
2454
2455 out_no_old_maps:
2456         dev_maps = new_dev_maps;
2457         active = true;
2458
2459 out_no_new_maps:
2460         if (!is_rxqs_map) {
2461                 /* update Tx queue numa node */
2462                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2463                                              (numa_node_id >= 0) ?
2464                                              numa_node_id : NUMA_NO_NODE);
2465         }
2466
2467         if (!dev_maps)
2468                 goto out_no_maps;
2469
2470         /* removes tx-queue from unused CPUs/rx-queues */
2471         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2472              j < nr_ids;) {
2473                 for (i = tc, tci = j * num_tc; i--; tci++)
2474                         active |= remove_xps_queue(dev_maps, tci, index);
2475                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2476                     !netif_attr_test_online(j, online_mask, nr_ids))
2477                         active |= remove_xps_queue(dev_maps, tci, index);
2478                 for (i = num_tc - tc, tci++; --i; tci++)
2479                         active |= remove_xps_queue(dev_maps, tci, index);
2480         }
2481
2482         /* free map if not active */
2483         if (!active)
2484                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2485
2486 out_no_maps:
2487         mutex_unlock(&xps_map_mutex);
2488
2489         return 0;
2490 error:
2491         /* remove any maps that we added */
2492         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2493              j < nr_ids;) {
2494                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2495                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2496                         map = dev_maps ?
2497                               xmap_dereference(dev_maps->attr_map[tci]) :
2498                               NULL;
2499                         if (new_map && new_map != map)
2500                                 kfree(new_map);
2501                 }
2502         }
2503
2504         mutex_unlock(&xps_map_mutex);
2505
2506         kfree(new_dev_maps);
2507         return -ENOMEM;
2508 }
2509 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2510
2511 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2512                         u16 index)
2513 {
2514         int ret;
2515
2516         cpus_read_lock();
2517         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2518         cpus_read_unlock();
2519
2520         return ret;
2521 }
2522 EXPORT_SYMBOL(netif_set_xps_queue);
2523
2524 #endif
2525 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2526 {
2527         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2528
2529         /* Unbind any subordinate channels */
2530         while (txq-- != &dev->_tx[0]) {
2531                 if (txq->sb_dev)
2532                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2533         }
2534 }
2535
2536 void netdev_reset_tc(struct net_device *dev)
2537 {
2538 #ifdef CONFIG_XPS
2539         netif_reset_xps_queues_gt(dev, 0);
2540 #endif
2541         netdev_unbind_all_sb_channels(dev);
2542
2543         /* Reset TC configuration of device */
2544         dev->num_tc = 0;
2545         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2546         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2547 }
2548 EXPORT_SYMBOL(netdev_reset_tc);
2549
2550 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2551 {
2552         if (tc >= dev->num_tc)
2553                 return -EINVAL;
2554
2555 #ifdef CONFIG_XPS
2556         netif_reset_xps_queues(dev, offset, count);
2557 #endif
2558         dev->tc_to_txq[tc].count = count;
2559         dev->tc_to_txq[tc].offset = offset;
2560         return 0;
2561 }
2562 EXPORT_SYMBOL(netdev_set_tc_queue);
2563
2564 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2565 {
2566         if (num_tc > TC_MAX_QUEUE)
2567                 return -EINVAL;
2568
2569 #ifdef CONFIG_XPS
2570         netif_reset_xps_queues_gt(dev, 0);
2571 #endif
2572         netdev_unbind_all_sb_channels(dev);
2573
2574         dev->num_tc = num_tc;
2575         return 0;
2576 }
2577 EXPORT_SYMBOL(netdev_set_num_tc);
2578
2579 void netdev_unbind_sb_channel(struct net_device *dev,
2580                               struct net_device *sb_dev)
2581 {
2582         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2583
2584 #ifdef CONFIG_XPS
2585         netif_reset_xps_queues_gt(sb_dev, 0);
2586 #endif
2587         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2588         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2589
2590         while (txq-- != &dev->_tx[0]) {
2591                 if (txq->sb_dev == sb_dev)
2592                         txq->sb_dev = NULL;
2593         }
2594 }
2595 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2596
2597 int netdev_bind_sb_channel_queue(struct net_device *dev,
2598                                  struct net_device *sb_dev,
2599                                  u8 tc, u16 count, u16 offset)
2600 {
2601         /* Make certain the sb_dev and dev are already configured */
2602         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2603                 return -EINVAL;
2604
2605         /* We cannot hand out queues we don't have */
2606         if ((offset + count) > dev->real_num_tx_queues)
2607                 return -EINVAL;
2608
2609         /* Record the mapping */
2610         sb_dev->tc_to_txq[tc].count = count;
2611         sb_dev->tc_to_txq[tc].offset = offset;
2612
2613         /* Provide a way for Tx queue to find the tc_to_txq map or
2614          * XPS map for itself.
2615          */
2616         while (count--)
2617                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2618
2619         return 0;
2620 }
2621 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2622
2623 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2624 {
2625         /* Do not use a multiqueue device to represent a subordinate channel */
2626         if (netif_is_multiqueue(dev))
2627                 return -ENODEV;
2628
2629         /* We allow channels 1 - 32767 to be used for subordinate channels.
2630          * Channel 0 is meant to be "native" mode and used only to represent
2631          * the main root device. We allow writing 0 to reset the device back
2632          * to normal mode after being used as a subordinate channel.
2633          */
2634         if (channel > S16_MAX)
2635                 return -EINVAL;
2636
2637         dev->num_tc = -channel;
2638
2639         return 0;
2640 }
2641 EXPORT_SYMBOL(netdev_set_sb_channel);
2642
2643 /*
2644  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2645  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2646  */
2647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2648 {
2649         bool disabling;
2650         int rc;
2651
2652         disabling = txq < dev->real_num_tx_queues;
2653
2654         if (txq < 1 || txq > dev->num_tx_queues)
2655                 return -EINVAL;
2656
2657         if (dev->reg_state == NETREG_REGISTERED ||
2658             dev->reg_state == NETREG_UNREGISTERING) {
2659                 ASSERT_RTNL();
2660
2661                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2662                                                   txq);
2663                 if (rc)
2664                         return rc;
2665
2666                 if (dev->num_tc)
2667                         netif_setup_tc(dev, txq);
2668
2669                 dev->real_num_tx_queues = txq;
2670
2671                 if (disabling) {
2672                         synchronize_net();
2673                         qdisc_reset_all_tx_gt(dev, txq);
2674 #ifdef CONFIG_XPS
2675                         netif_reset_xps_queues_gt(dev, txq);
2676 #endif
2677                 }
2678         } else {
2679                 dev->real_num_tx_queues = txq;
2680         }
2681
2682         return 0;
2683 }
2684 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2685
2686 #ifdef CONFIG_SYSFS
2687 /**
2688  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2689  *      @dev: Network device
2690  *      @rxq: Actual number of RX queues
2691  *
2692  *      This must be called either with the rtnl_lock held or before
2693  *      registration of the net device.  Returns 0 on success, or a
2694  *      negative error code.  If called before registration, it always
2695  *      succeeds.
2696  */
2697 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2698 {
2699         int rc;
2700
2701         if (rxq < 1 || rxq > dev->num_rx_queues)
2702                 return -EINVAL;
2703
2704         if (dev->reg_state == NETREG_REGISTERED) {
2705                 ASSERT_RTNL();
2706
2707                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2708                                                   rxq);
2709                 if (rc)
2710                         return rc;
2711         }
2712
2713         dev->real_num_rx_queues = rxq;
2714         return 0;
2715 }
2716 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2717 #endif
2718
2719 /**
2720  * netif_get_num_default_rss_queues - default number of RSS queues
2721  *
2722  * This routine should set an upper limit on the number of RSS queues
2723  * used by default by multiqueue devices.
2724  */
2725 int netif_get_num_default_rss_queues(void)
2726 {
2727         return is_kdump_kernel() ?
2728                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2729 }
2730 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2731
2732 static void __netif_reschedule(struct Qdisc *q)
2733 {
2734         struct softnet_data *sd;
2735         unsigned long flags;
2736
2737         local_irq_save(flags);
2738         sd = this_cpu_ptr(&softnet_data);
2739         q->next_sched = NULL;
2740         *sd->output_queue_tailp = q;
2741         sd->output_queue_tailp = &q->next_sched;
2742         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2743         local_irq_restore(flags);
2744 }
2745
2746 void __netif_schedule(struct Qdisc *q)
2747 {
2748         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2749                 __netif_reschedule(q);
2750 }
2751 EXPORT_SYMBOL(__netif_schedule);
2752
2753 struct dev_kfree_skb_cb {
2754         enum skb_free_reason reason;
2755 };
2756
2757 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2758 {
2759         return (struct dev_kfree_skb_cb *)skb->cb;
2760 }
2761
2762 void netif_schedule_queue(struct netdev_queue *txq)
2763 {
2764         rcu_read_lock();
2765         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2766                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2767
2768                 __netif_schedule(q);
2769         }
2770         rcu_read_unlock();
2771 }
2772 EXPORT_SYMBOL(netif_schedule_queue);
2773
2774 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2775 {
2776         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2777                 struct Qdisc *q;
2778
2779                 rcu_read_lock();
2780                 q = rcu_dereference(dev_queue->qdisc);
2781                 __netif_schedule(q);
2782                 rcu_read_unlock();
2783         }
2784 }
2785 EXPORT_SYMBOL(netif_tx_wake_queue);
2786
2787 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2788 {
2789         unsigned long flags;
2790
2791         if (unlikely(!skb))
2792                 return;
2793
2794         if (likely(refcount_read(&skb->users) == 1)) {
2795                 smp_rmb();
2796                 refcount_set(&skb->users, 0);
2797         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2798                 return;
2799         }
2800         get_kfree_skb_cb(skb)->reason = reason;
2801         local_irq_save(flags);
2802         skb->next = __this_cpu_read(softnet_data.completion_queue);
2803         __this_cpu_write(softnet_data.completion_queue, skb);
2804         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2805         local_irq_restore(flags);
2806 }
2807 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2808
2809 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2810 {
2811         if (in_irq() || irqs_disabled())
2812                 __dev_kfree_skb_irq(skb, reason);
2813         else
2814                 dev_kfree_skb(skb);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_any);
2817
2818
2819 /**
2820  * netif_device_detach - mark device as removed
2821  * @dev: network device
2822  *
2823  * Mark device as removed from system and therefore no longer available.
2824  */
2825 void netif_device_detach(struct net_device *dev)
2826 {
2827         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2828             netif_running(dev)) {
2829                 netif_tx_stop_all_queues(dev);
2830         }
2831 }
2832 EXPORT_SYMBOL(netif_device_detach);
2833
2834 /**
2835  * netif_device_attach - mark device as attached
2836  * @dev: network device
2837  *
2838  * Mark device as attached from system and restart if needed.
2839  */
2840 void netif_device_attach(struct net_device *dev)
2841 {
2842         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2843             netif_running(dev)) {
2844                 netif_tx_wake_all_queues(dev);
2845                 __netdev_watchdog_up(dev);
2846         }
2847 }
2848 EXPORT_SYMBOL(netif_device_attach);
2849
2850 /*
2851  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2852  * to be used as a distribution range.
2853  */
2854 static u16 skb_tx_hash(const struct net_device *dev,
2855                        const struct net_device *sb_dev,
2856                        struct sk_buff *skb)
2857 {
2858         u32 hash;
2859         u16 qoffset = 0;
2860         u16 qcount = dev->real_num_tx_queues;
2861
2862         if (dev->num_tc) {
2863                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2864
2865                 qoffset = sb_dev->tc_to_txq[tc].offset;
2866                 qcount = sb_dev->tc_to_txq[tc].count;
2867         }
2868
2869         if (skb_rx_queue_recorded(skb)) {
2870                 hash = skb_get_rx_queue(skb);
2871                 while (unlikely(hash >= qcount))
2872                         hash -= qcount;
2873                 return hash + qoffset;
2874         }
2875
2876         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2877 }
2878
2879 static void skb_warn_bad_offload(const struct sk_buff *skb)
2880 {
2881         static const netdev_features_t null_features;
2882         struct net_device *dev = skb->dev;
2883         const char *name = "";
2884
2885         if (!net_ratelimit())
2886                 return;
2887
2888         if (dev) {
2889                 if (dev->dev.parent)
2890                         name = dev_driver_string(dev->dev.parent);
2891                 else
2892                         name = netdev_name(dev);
2893         }
2894         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2895              "gso_type=%d ip_summed=%d\n",
2896              name, dev ? &dev->features : &null_features,
2897              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2898              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2899              skb_shinfo(skb)->gso_type, skb->ip_summed);
2900 }
2901
2902 /*
2903  * Invalidate hardware checksum when packet is to be mangled, and
2904  * complete checksum manually on outgoing path.
2905  */
2906 int skb_checksum_help(struct sk_buff *skb)
2907 {
2908         __wsum csum;
2909         int ret = 0, offset;
2910
2911         if (skb->ip_summed == CHECKSUM_COMPLETE)
2912                 goto out_set_summed;
2913
2914         if (unlikely(skb_shinfo(skb)->gso_size)) {
2915                 skb_warn_bad_offload(skb);
2916                 return -EINVAL;
2917         }
2918
2919         /* Before computing a checksum, we should make sure no frag could
2920          * be modified by an external entity : checksum could be wrong.
2921          */
2922         if (skb_has_shared_frag(skb)) {
2923                 ret = __skb_linearize(skb);
2924                 if (ret)
2925                         goto out;
2926         }
2927
2928         offset = skb_checksum_start_offset(skb);
2929         BUG_ON(offset >= skb_headlen(skb));
2930         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2931
2932         offset += skb->csum_offset;
2933         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2934
2935         if (skb_cloned(skb) &&
2936             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2937                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2938                 if (ret)
2939                         goto out;
2940         }
2941
2942         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2943 out_set_summed:
2944         skb->ip_summed = CHECKSUM_NONE;
2945 out:
2946         return ret;
2947 }
2948 EXPORT_SYMBOL(skb_checksum_help);
2949
2950 int skb_crc32c_csum_help(struct sk_buff *skb)
2951 {
2952         __le32 crc32c_csum;
2953         int ret = 0, offset, start;
2954
2955         if (skb->ip_summed != CHECKSUM_PARTIAL)
2956                 goto out;
2957
2958         if (unlikely(skb_is_gso(skb)))
2959                 goto out;
2960
2961         /* Before computing a checksum, we should make sure no frag could
2962          * be modified by an external entity : checksum could be wrong.
2963          */
2964         if (unlikely(skb_has_shared_frag(skb))) {
2965                 ret = __skb_linearize(skb);
2966                 if (ret)
2967                         goto out;
2968         }
2969         start = skb_checksum_start_offset(skb);
2970         offset = start + offsetof(struct sctphdr, checksum);
2971         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2972                 ret = -EINVAL;
2973                 goto out;
2974         }
2975         if (skb_cloned(skb) &&
2976             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2977                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2978                 if (ret)
2979                         goto out;
2980         }
2981         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2982                                                   skb->len - start, ~(__u32)0,
2983                                                   crc32c_csum_stub));
2984         *(__le32 *)(skb->data + offset) = crc32c_csum;
2985         skb->ip_summed = CHECKSUM_NONE;
2986         skb->csum_not_inet = 0;
2987 out:
2988         return ret;
2989 }
2990
2991 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2992 {
2993         __be16 type = skb->protocol;
2994
2995         /* Tunnel gso handlers can set protocol to ethernet. */
2996         if (type == htons(ETH_P_TEB)) {
2997                 struct ethhdr *eth;
2998
2999                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3000                         return 0;
3001
3002                 eth = (struct ethhdr *)skb->data;
3003                 type = eth->h_proto;
3004         }
3005
3006         return __vlan_get_protocol(skb, type, depth);
3007 }
3008
3009 /**
3010  *      skb_mac_gso_segment - mac layer segmentation handler.
3011  *      @skb: buffer to segment
3012  *      @features: features for the output path (see dev->features)
3013  */
3014 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3015                                     netdev_features_t features)
3016 {
3017         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3018         struct packet_offload *ptype;
3019         int vlan_depth = skb->mac_len;
3020         __be16 type = skb_network_protocol(skb, &vlan_depth);
3021
3022         if (unlikely(!type))
3023                 return ERR_PTR(-EINVAL);
3024
3025         __skb_pull(skb, vlan_depth);
3026
3027         rcu_read_lock();
3028         list_for_each_entry_rcu(ptype, &offload_base, list) {
3029                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3030                         segs = ptype->callbacks.gso_segment(skb, features);
3031                         break;
3032                 }
3033         }
3034         rcu_read_unlock();
3035
3036         __skb_push(skb, skb->data - skb_mac_header(skb));
3037
3038         return segs;
3039 }
3040 EXPORT_SYMBOL(skb_mac_gso_segment);
3041
3042
3043 /* openvswitch calls this on rx path, so we need a different check.
3044  */
3045 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3046 {
3047         if (tx_path)
3048                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3049                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3050
3051         return skb->ip_summed == CHECKSUM_NONE;
3052 }
3053
3054 /**
3055  *      __skb_gso_segment - Perform segmentation on skb.
3056  *      @skb: buffer to segment
3057  *      @features: features for the output path (see dev->features)
3058  *      @tx_path: whether it is called in TX path
3059  *
3060  *      This function segments the given skb and returns a list of segments.
3061  *
3062  *      It may return NULL if the skb requires no segmentation.  This is
3063  *      only possible when GSO is used for verifying header integrity.
3064  *
3065  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3066  */
3067 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3068                                   netdev_features_t features, bool tx_path)
3069 {
3070         struct sk_buff *segs;
3071
3072         if (unlikely(skb_needs_check(skb, tx_path))) {
3073                 int err;
3074
3075                 /* We're going to init ->check field in TCP or UDP header */
3076                 err = skb_cow_head(skb, 0);
3077                 if (err < 0)
3078                         return ERR_PTR(err);
3079         }
3080
3081         /* Only report GSO partial support if it will enable us to
3082          * support segmentation on this frame without needing additional
3083          * work.
3084          */
3085         if (features & NETIF_F_GSO_PARTIAL) {
3086                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3087                 struct net_device *dev = skb->dev;
3088
3089                 partial_features |= dev->features & dev->gso_partial_features;
3090                 if (!skb_gso_ok(skb, features | partial_features))
3091                         features &= ~NETIF_F_GSO_PARTIAL;
3092         }
3093
3094         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3095                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3096
3097         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3098         SKB_GSO_CB(skb)->encap_level = 0;
3099
3100         skb_reset_mac_header(skb);
3101         skb_reset_mac_len(skb);
3102
3103         segs = skb_mac_gso_segment(skb, features);
3104
3105         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3106                 skb_warn_bad_offload(skb);
3107
3108         return segs;
3109 }
3110 EXPORT_SYMBOL(__skb_gso_segment);
3111
3112 /* Take action when hardware reception checksum errors are detected. */
3113 #ifdef CONFIG_BUG
3114 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3115 {
3116         if (net_ratelimit()) {
3117                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3118                 if (dev)
3119                         pr_err("dev features: %pNF\n", &dev->features);
3120                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3121                        skb->len, skb->data_len, skb->pkt_type,
3122                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3123                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3124                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3125                 dump_stack();
3126         }
3127 }
3128 EXPORT_SYMBOL(netdev_rx_csum_fault);
3129 #endif
3130
3131 /* XXX: check that highmem exists at all on the given machine. */
3132 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3133 {
3134 #ifdef CONFIG_HIGHMEM
3135         int i;
3136
3137         if (!(dev->features & NETIF_F_HIGHDMA)) {
3138                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3139                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3140
3141                         if (PageHighMem(skb_frag_page(frag)))
3142                                 return 1;
3143                 }
3144         }
3145 #endif
3146         return 0;
3147 }
3148
3149 /* If MPLS offload request, verify we are testing hardware MPLS features
3150  * instead of standard features for the netdev.
3151  */
3152 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3153 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3154                                            netdev_features_t features,
3155                                            __be16 type)
3156 {
3157         if (eth_p_mpls(type))
3158                 features &= skb->dev->mpls_features;
3159
3160         return features;
3161 }
3162 #else
3163 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3164                                            netdev_features_t features,
3165                                            __be16 type)
3166 {
3167         return features;
3168 }
3169 #endif
3170
3171 static netdev_features_t harmonize_features(struct sk_buff *skb,
3172         netdev_features_t features)
3173 {
3174         int tmp;
3175         __be16 type;
3176
3177         type = skb_network_protocol(skb, &tmp);
3178         features = net_mpls_features(skb, features, type);
3179
3180         if (skb->ip_summed != CHECKSUM_NONE &&
3181             !can_checksum_protocol(features, type)) {
3182                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3183         }
3184         if (illegal_highdma(skb->dev, skb))
3185                 features &= ~NETIF_F_SG;
3186
3187         return features;
3188 }
3189
3190 netdev_features_t passthru_features_check(struct sk_buff *skb,
3191                                           struct net_device *dev,
3192                                           netdev_features_t features)
3193 {
3194         return features;
3195 }
3196 EXPORT_SYMBOL(passthru_features_check);
3197
3198 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3199                                              struct net_device *dev,
3200                                              netdev_features_t features)
3201 {
3202         return vlan_features_check(skb, features);
3203 }
3204
3205 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3206                                             struct net_device *dev,
3207                                             netdev_features_t features)
3208 {
3209         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3210
3211         if (gso_segs > dev->gso_max_segs)
3212                 return features & ~NETIF_F_GSO_MASK;
3213
3214         /* Support for GSO partial features requires software
3215          * intervention before we can actually process the packets
3216          * so we need to strip support for any partial features now
3217          * and we can pull them back in after we have partially
3218          * segmented the frame.
3219          */
3220         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3221                 features &= ~dev->gso_partial_features;
3222
3223         /* Make sure to clear the IPv4 ID mangling feature if the
3224          * IPv4 header has the potential to be fragmented.
3225          */
3226         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3227                 struct iphdr *iph = skb->encapsulation ?
3228                                     inner_ip_hdr(skb) : ip_hdr(skb);
3229
3230                 if (!(iph->frag_off & htons(IP_DF)))
3231                         features &= ~NETIF_F_TSO_MANGLEID;
3232         }
3233
3234         return features;
3235 }
3236
3237 netdev_features_t netif_skb_features(struct sk_buff *skb)
3238 {
3239         struct net_device *dev = skb->dev;
3240         netdev_features_t features = dev->features;
3241
3242         if (skb_is_gso(skb))
3243                 features = gso_features_check(skb, dev, features);
3244
3245         /* If encapsulation offload request, verify we are testing
3246          * hardware encapsulation features instead of standard
3247          * features for the netdev
3248          */
3249         if (skb->encapsulation)
3250                 features &= dev->hw_enc_features;
3251
3252         if (skb_vlan_tagged(skb))
3253                 features = netdev_intersect_features(features,
3254                                                      dev->vlan_features |
3255                                                      NETIF_F_HW_VLAN_CTAG_TX |
3256                                                      NETIF_F_HW_VLAN_STAG_TX);
3257
3258         if (dev->netdev_ops->ndo_features_check)
3259                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3260                                                                 features);
3261         else
3262                 features &= dflt_features_check(skb, dev, features);
3263
3264         return harmonize_features(skb, features);
3265 }
3266 EXPORT_SYMBOL(netif_skb_features);
3267
3268 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3269                     struct netdev_queue *txq, bool more)
3270 {
3271         unsigned int len;
3272         int rc;
3273
3274         if (dev_nit_active(dev))
3275                 dev_queue_xmit_nit(skb, dev);
3276
3277         len = skb->len;
3278         trace_net_dev_start_xmit(skb, dev);
3279         rc = netdev_start_xmit(skb, dev, txq, more);
3280         trace_net_dev_xmit(skb, rc, dev, len);
3281
3282         return rc;
3283 }
3284
3285 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3286                                     struct netdev_queue *txq, int *ret)
3287 {
3288         struct sk_buff *skb = first;
3289         int rc = NETDEV_TX_OK;
3290
3291         while (skb) {
3292                 struct sk_buff *next = skb->next;
3293
3294                 skb_mark_not_on_list(skb);
3295                 rc = xmit_one(skb, dev, txq, next != NULL);
3296                 if (unlikely(!dev_xmit_complete(rc))) {
3297                         skb->next = next;
3298                         goto out;
3299                 }
3300
3301                 skb = next;
3302                 if (netif_tx_queue_stopped(txq) && skb) {
3303                         rc = NETDEV_TX_BUSY;
3304                         break;
3305                 }
3306         }
3307
3308 out:
3309         *ret = rc;
3310         return skb;
3311 }
3312
3313 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3314                                           netdev_features_t features)
3315 {
3316         if (skb_vlan_tag_present(skb) &&
3317             !vlan_hw_offload_capable(features, skb->vlan_proto))
3318                 skb = __vlan_hwaccel_push_inside(skb);
3319         return skb;
3320 }
3321
3322 int skb_csum_hwoffload_help(struct sk_buff *skb,
3323                             const netdev_features_t features)
3324 {
3325         if (unlikely(skb->csum_not_inet))
3326                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3327                         skb_crc32c_csum_help(skb);
3328
3329         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3330 }
3331 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3332
3333 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3334 {
3335         netdev_features_t features;
3336
3337         features = netif_skb_features(skb);
3338         skb = validate_xmit_vlan(skb, features);
3339         if (unlikely(!skb))
3340                 goto out_null;
3341
3342         skb = sk_validate_xmit_skb(skb, dev);
3343         if (unlikely(!skb))
3344                 goto out_null;
3345
3346         if (netif_needs_gso(skb, features)) {
3347                 struct sk_buff *segs;
3348
3349                 segs = skb_gso_segment(skb, features);
3350                 if (IS_ERR(segs)) {
3351                         goto out_kfree_skb;
3352                 } else if (segs) {
3353                         consume_skb(skb);
3354                         skb = segs;
3355                 }
3356         } else {
3357                 if (skb_needs_linearize(skb, features) &&
3358                     __skb_linearize(skb))
3359                         goto out_kfree_skb;
3360
3361                 /* If packet is not checksummed and device does not
3362                  * support checksumming for this protocol, complete
3363                  * checksumming here.
3364                  */
3365                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3366                         if (skb->encapsulation)
3367                                 skb_set_inner_transport_header(skb,
3368                                                                skb_checksum_start_offset(skb));
3369                         else
3370                                 skb_set_transport_header(skb,
3371                                                          skb_checksum_start_offset(skb));
3372                         if (skb_csum_hwoffload_help(skb, features))
3373                                 goto out_kfree_skb;
3374                 }
3375         }
3376
3377         skb = validate_xmit_xfrm(skb, features, again);
3378
3379         return skb;
3380
3381 out_kfree_skb:
3382         kfree_skb(skb);
3383 out_null:
3384         atomic_long_inc(&dev->tx_dropped);
3385         return NULL;
3386 }
3387
3388 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3389 {
3390         struct sk_buff *next, *head = NULL, *tail;
3391
3392         for (; skb != NULL; skb = next) {
3393                 next = skb->next;
3394                 skb_mark_not_on_list(skb);
3395
3396                 /* in case skb wont be segmented, point to itself */
3397                 skb->prev = skb;
3398
3399                 skb = validate_xmit_skb(skb, dev, again);
3400                 if (!skb)
3401                         continue;
3402
3403                 if (!head)
3404                         head = skb;
3405                 else
3406                         tail->next = skb;
3407                 /* If skb was segmented, skb->prev points to
3408                  * the last segment. If not, it still contains skb.
3409                  */
3410                 tail = skb->prev;
3411         }
3412         return head;
3413 }
3414 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3415
3416 static void qdisc_pkt_len_init(struct sk_buff *skb)
3417 {
3418         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3419
3420         qdisc_skb_cb(skb)->pkt_len = skb->len;
3421
3422         /* To get more precise estimation of bytes sent on wire,
3423          * we add to pkt_len the headers size of all segments
3424          */
3425         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3426                 unsigned int hdr_len;
3427                 u16 gso_segs = shinfo->gso_segs;
3428
3429                 /* mac layer + network layer */
3430                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3431
3432                 /* + transport layer */
3433                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3434                         const struct tcphdr *th;
3435                         struct tcphdr _tcphdr;
3436
3437                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3438                                                 sizeof(_tcphdr), &_tcphdr);
3439                         if (likely(th))
3440                                 hdr_len += __tcp_hdrlen(th);
3441                 } else {
3442                         struct udphdr _udphdr;
3443
3444                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3445                                                sizeof(_udphdr), &_udphdr))
3446                                 hdr_len += sizeof(struct udphdr);
3447                 }
3448
3449                 if (shinfo->gso_type & SKB_GSO_DODGY)
3450                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3451                                                 shinfo->gso_size);
3452
3453                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3454         }
3455 }
3456
3457 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3458                                  struct net_device *dev,
3459                                  struct netdev_queue *txq)
3460 {
3461         spinlock_t *root_lock = qdisc_lock(q);
3462         struct sk_buff *to_free = NULL;
3463         bool contended;
3464         int rc;
3465
3466         qdisc_calculate_pkt_len(skb, q);
3467
3468         if (q->flags & TCQ_F_NOLOCK) {
3469                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3470                         __qdisc_drop(skb, &to_free);
3471                         rc = NET_XMIT_DROP;
3472                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3473                            qdisc_run_begin(q)) {
3474                         qdisc_bstats_cpu_update(q, skb);
3475
3476                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3477                                 __qdisc_run(q);
3478
3479                         qdisc_run_end(q);
3480                         rc = NET_XMIT_SUCCESS;
3481                 } else {
3482                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3483                         qdisc_run(q);
3484                 }
3485
3486                 if (unlikely(to_free))
3487                         kfree_skb_list(to_free);
3488                 return rc;
3489         }
3490
3491         /*
3492          * Heuristic to force contended enqueues to serialize on a
3493          * separate lock before trying to get qdisc main lock.
3494          * This permits qdisc->running owner to get the lock more
3495          * often and dequeue packets faster.
3496          */
3497         contended = qdisc_is_running(q);
3498         if (unlikely(contended))
3499                 spin_lock(&q->busylock);
3500
3501         spin_lock(root_lock);
3502         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3503                 __qdisc_drop(skb, &to_free);
3504                 rc = NET_XMIT_DROP;
3505         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3506                    qdisc_run_begin(q)) {
3507                 /*
3508                  * This is a work-conserving queue; there are no old skbs
3509                  * waiting to be sent out; and the qdisc is not running -
3510                  * xmit the skb directly.
3511                  */
3512
3513                 qdisc_bstats_update(q, skb);
3514
3515                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3516                         if (unlikely(contended)) {
3517                                 spin_unlock(&q->busylock);
3518                                 contended = false;
3519                         }
3520                         __qdisc_run(q);
3521                 }
3522
3523                 qdisc_run_end(q);
3524                 rc = NET_XMIT_SUCCESS;
3525         } else {
3526                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3527                 if (qdisc_run_begin(q)) {
3528                         if (unlikely(contended)) {
3529                                 spin_unlock(&q->busylock);
3530                                 contended = false;
3531                         }
3532                         __qdisc_run(q);
3533                         qdisc_run_end(q);
3534                 }
3535         }
3536         spin_unlock(root_lock);
3537         if (unlikely(to_free))
3538                 kfree_skb_list(to_free);
3539         if (unlikely(contended))
3540                 spin_unlock(&q->busylock);
3541         return rc;
3542 }
3543
3544 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3545 static void skb_update_prio(struct sk_buff *skb)
3546 {
3547         const struct netprio_map *map;
3548         const struct sock *sk;
3549         unsigned int prioidx;
3550
3551         if (skb->priority)
3552                 return;
3553         map = rcu_dereference_bh(skb->dev->priomap);
3554         if (!map)
3555                 return;
3556         sk = skb_to_full_sk(skb);
3557         if (!sk)
3558                 return;
3559
3560         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3561
3562         if (prioidx < map->priomap_len)
3563                 skb->priority = map->priomap[prioidx];
3564 }
3565 #else
3566 #define skb_update_prio(skb)
3567 #endif
3568
3569 DEFINE_PER_CPU(int, xmit_recursion);
3570 EXPORT_SYMBOL(xmit_recursion);
3571
3572 /**
3573  *      dev_loopback_xmit - loop back @skb
3574  *      @net: network namespace this loopback is happening in
3575  *      @sk:  sk needed to be a netfilter okfn
3576  *      @skb: buffer to transmit
3577  */
3578 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3579 {
3580         skb_reset_mac_header(skb);
3581         __skb_pull(skb, skb_network_offset(skb));
3582         skb->pkt_type = PACKET_LOOPBACK;
3583         skb->ip_summed = CHECKSUM_UNNECESSARY;
3584         WARN_ON(!skb_dst(skb));
3585         skb_dst_force(skb);
3586         netif_rx_ni(skb);
3587         return 0;
3588 }
3589 EXPORT_SYMBOL(dev_loopback_xmit);
3590
3591 #ifdef CONFIG_NET_EGRESS
3592 static struct sk_buff *
3593 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3594 {
3595         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3596         struct tcf_result cl_res;
3597
3598         if (!miniq)
3599                 return skb;
3600
3601         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3602         mini_qdisc_bstats_cpu_update(miniq, skb);
3603
3604         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3605         case TC_ACT_OK:
3606         case TC_ACT_RECLASSIFY:
3607                 skb->tc_index = TC_H_MIN(cl_res.classid);
3608                 break;
3609         case TC_ACT_SHOT:
3610                 mini_qdisc_qstats_cpu_drop(miniq);
3611                 *ret = NET_XMIT_DROP;
3612                 kfree_skb(skb);
3613                 return NULL;
3614         case TC_ACT_STOLEN:
3615         case TC_ACT_QUEUED:
3616         case TC_ACT_TRAP:
3617                 *ret = NET_XMIT_SUCCESS;
3618                 consume_skb(skb);
3619                 return NULL;
3620         case TC_ACT_REDIRECT:
3621                 /* No need to push/pop skb's mac_header here on egress! */
3622                 skb_do_redirect(skb);
3623                 *ret = NET_XMIT_SUCCESS;
3624                 return NULL;
3625         default:
3626                 break;
3627         }
3628
3629         return skb;
3630 }
3631 #endif /* CONFIG_NET_EGRESS */
3632
3633 #ifdef CONFIG_XPS
3634 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3635                                struct xps_dev_maps *dev_maps, unsigned int tci)
3636 {
3637         struct xps_map *map;
3638         int queue_index = -1;
3639
3640         if (dev->num_tc) {
3641                 tci *= dev->num_tc;
3642                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3643         }
3644
3645         map = rcu_dereference(dev_maps->attr_map[tci]);
3646         if (map) {
3647                 if (map->len == 1)
3648                         queue_index = map->queues[0];
3649                 else
3650                         queue_index = map->queues[reciprocal_scale(
3651                                                 skb_get_hash(skb), map->len)];
3652                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3653                         queue_index = -1;
3654         }
3655         return queue_index;
3656 }
3657 #endif
3658
3659 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3660                          struct sk_buff *skb)
3661 {
3662 #ifdef CONFIG_XPS
3663         struct xps_dev_maps *dev_maps;
3664         struct sock *sk = skb->sk;
3665         int queue_index = -1;
3666
3667         if (!static_key_false(&xps_needed))
3668                 return -1;
3669
3670         rcu_read_lock();
3671         if (!static_key_false(&xps_rxqs_needed))
3672                 goto get_cpus_map;
3673
3674         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3675         if (dev_maps) {
3676                 int tci = sk_rx_queue_get(sk);
3677
3678                 if (tci >= 0 && tci < dev->num_rx_queues)
3679                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680                                                           tci);
3681         }
3682
3683 get_cpus_map:
3684         if (queue_index < 0) {
3685                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3686                 if (dev_maps) {
3687                         unsigned int tci = skb->sender_cpu - 1;
3688
3689                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690                                                           tci);
3691                 }
3692         }
3693         rcu_read_unlock();
3694
3695         return queue_index;
3696 #else
3697         return -1;
3698 #endif
3699 }
3700
3701 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3702                      struct net_device *sb_dev)
3703 {
3704         return 0;
3705 }
3706 EXPORT_SYMBOL(dev_pick_tx_zero);
3707
3708 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3709                        struct net_device *sb_dev)
3710 {
3711         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3712 }
3713 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3714
3715 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3716                      struct net_device *sb_dev)
3717 {
3718         struct sock *sk = skb->sk;
3719         int queue_index = sk_tx_queue_get(sk);
3720
3721         sb_dev = sb_dev ? : dev;
3722
3723         if (queue_index < 0 || skb->ooo_okay ||
3724             queue_index >= dev->real_num_tx_queues) {
3725                 int new_index = get_xps_queue(dev, sb_dev, skb);
3726
3727                 if (new_index < 0)
3728                         new_index = skb_tx_hash(dev, sb_dev, skb);
3729
3730                 if (queue_index != new_index && sk &&
3731                     sk_fullsock(sk) &&
3732                     rcu_access_pointer(sk->sk_dst_cache))
3733                         sk_tx_queue_set(sk, new_index);
3734
3735                 queue_index = new_index;
3736         }
3737
3738         return queue_index;
3739 }
3740 EXPORT_SYMBOL(netdev_pick_tx);
3741
3742 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3743                                          struct sk_buff *skb,
3744                                          struct net_device *sb_dev)
3745 {
3746         int queue_index = 0;
3747
3748 #ifdef CONFIG_XPS
3749         u32 sender_cpu = skb->sender_cpu - 1;
3750
3751         if (sender_cpu >= (u32)NR_CPUS)
3752                 skb->sender_cpu = raw_smp_processor_id() + 1;
3753 #endif
3754
3755         if (dev->real_num_tx_queues != 1) {
3756                 const struct net_device_ops *ops = dev->netdev_ops;
3757
3758                 if (ops->ndo_select_queue)
3759                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3760                 else
3761                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3762
3763                 queue_index = netdev_cap_txqueue(dev, queue_index);
3764         }
3765
3766         skb_set_queue_mapping(skb, queue_index);
3767         return netdev_get_tx_queue(dev, queue_index);
3768 }
3769
3770 /**
3771  *      __dev_queue_xmit - transmit a buffer
3772  *      @skb: buffer to transmit
3773  *      @sb_dev: suboordinate device used for L2 forwarding offload
3774  *
3775  *      Queue a buffer for transmission to a network device. The caller must
3776  *      have set the device and priority and built the buffer before calling
3777  *      this function. The function can be called from an interrupt.
3778  *
3779  *      A negative errno code is returned on a failure. A success does not
3780  *      guarantee the frame will be transmitted as it may be dropped due
3781  *      to congestion or traffic shaping.
3782  *
3783  * -----------------------------------------------------------------------------------
3784  *      I notice this method can also return errors from the queue disciplines,
3785  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3786  *      be positive.
3787  *
3788  *      Regardless of the return value, the skb is consumed, so it is currently
3789  *      difficult to retry a send to this method.  (You can bump the ref count
3790  *      before sending to hold a reference for retry if you are careful.)
3791  *
3792  *      When calling this method, interrupts MUST be enabled.  This is because
3793  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3794  *          --BLG
3795  */
3796 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3797 {
3798         struct net_device *dev = skb->dev;
3799         struct netdev_queue *txq;
3800         struct Qdisc *q;
3801         int rc = -ENOMEM;
3802         bool again = false;
3803
3804         skb_reset_mac_header(skb);
3805
3806         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3807                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3808
3809         /* Disable soft irqs for various locks below. Also
3810          * stops preemption for RCU.
3811          */
3812         rcu_read_lock_bh();
3813
3814         skb_update_prio(skb);
3815
3816         qdisc_pkt_len_init(skb);
3817 #ifdef CONFIG_NET_CLS_ACT
3818         skb->tc_at_ingress = 0;
3819 # ifdef CONFIG_NET_EGRESS
3820         if (static_branch_unlikely(&egress_needed_key)) {
3821                 skb = sch_handle_egress(skb, &rc, dev);
3822                 if (!skb)
3823                         goto out;
3824         }
3825 # endif
3826 #endif
3827         /* If device/qdisc don't need skb->dst, release it right now while
3828          * its hot in this cpu cache.
3829          */
3830         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3831                 skb_dst_drop(skb);
3832         else
3833                 skb_dst_force(skb);
3834
3835         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3836         q = rcu_dereference_bh(txq->qdisc);
3837
3838         trace_net_dev_queue(skb);
3839         if (q->enqueue) {
3840                 rc = __dev_xmit_skb(skb, q, dev, txq);
3841                 goto out;
3842         }
3843
3844         /* The device has no queue. Common case for software devices:
3845          * loopback, all the sorts of tunnels...
3846
3847          * Really, it is unlikely that netif_tx_lock protection is necessary
3848          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3849          * counters.)
3850          * However, it is possible, that they rely on protection
3851          * made by us here.
3852
3853          * Check this and shot the lock. It is not prone from deadlocks.
3854          *Either shot noqueue qdisc, it is even simpler 8)
3855          */
3856         if (dev->flags & IFF_UP) {
3857                 int cpu = smp_processor_id(); /* ok because BHs are off */
3858
3859                 if (txq->xmit_lock_owner != cpu) {
3860                         if (unlikely(__this_cpu_read(xmit_recursion) >
3861                                      XMIT_RECURSION_LIMIT))
3862                                 goto recursion_alert;
3863
3864                         skb = validate_xmit_skb(skb, dev, &again);
3865                         if (!skb)
3866                                 goto out;
3867
3868                         HARD_TX_LOCK(dev, txq, cpu);
3869
3870                         if (!netif_xmit_stopped(txq)) {
3871                                 __this_cpu_inc(xmit_recursion);
3872                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3873                                 __this_cpu_dec(xmit_recursion);
3874                                 if (dev_xmit_complete(rc)) {
3875                                         HARD_TX_UNLOCK(dev, txq);
3876                                         goto out;
3877                                 }
3878                         }
3879                         HARD_TX_UNLOCK(dev, txq);
3880                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3881                                              dev->name);
3882                 } else {
3883                         /* Recursion is detected! It is possible,
3884                          * unfortunately
3885                          */
3886 recursion_alert:
3887                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3888                                              dev->name);
3889                 }
3890         }
3891
3892         rc = -ENETDOWN;
3893         rcu_read_unlock_bh();
3894
3895         atomic_long_inc(&dev->tx_dropped);
3896         kfree_skb_list(skb);
3897         return rc;
3898 out:
3899         rcu_read_unlock_bh();
3900         return rc;
3901 }
3902
3903 int dev_queue_xmit(struct sk_buff *skb)
3904 {
3905         return __dev_queue_xmit(skb, NULL);
3906 }
3907 EXPORT_SYMBOL(dev_queue_xmit);
3908
3909 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3910 {
3911         return __dev_queue_xmit(skb, sb_dev);
3912 }
3913 EXPORT_SYMBOL(dev_queue_xmit_accel);
3914
3915 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3916 {
3917         struct net_device *dev = skb->dev;
3918         struct sk_buff *orig_skb = skb;
3919         struct netdev_queue *txq;
3920         int ret = NETDEV_TX_BUSY;
3921         bool again = false;
3922
3923         if (unlikely(!netif_running(dev) ||
3924                      !netif_carrier_ok(dev)))
3925                 goto drop;
3926
3927         skb = validate_xmit_skb_list(skb, dev, &again);
3928         if (skb != orig_skb)
3929                 goto drop;
3930
3931         skb_set_queue_mapping(skb, queue_id);
3932         txq = skb_get_tx_queue(dev, skb);
3933
3934         local_bh_disable();
3935
3936         HARD_TX_LOCK(dev, txq, smp_processor_id());
3937         if (!netif_xmit_frozen_or_drv_stopped(txq))
3938                 ret = netdev_start_xmit(skb, dev, txq, false);
3939         HARD_TX_UNLOCK(dev, txq);
3940
3941         local_bh_enable();
3942
3943         if (!dev_xmit_complete(ret))
3944                 kfree_skb(skb);
3945
3946         return ret;
3947 drop:
3948         atomic_long_inc(&dev->tx_dropped);
3949         kfree_skb_list(skb);
3950         return NET_XMIT_DROP;
3951 }
3952 EXPORT_SYMBOL(dev_direct_xmit);
3953
3954 /*************************************************************************
3955  *                      Receiver routines
3956  *************************************************************************/
3957
3958 int netdev_max_backlog __read_mostly = 1000;
3959 EXPORT_SYMBOL(netdev_max_backlog);
3960
3961 int netdev_tstamp_prequeue __read_mostly = 1;
3962 int netdev_budget __read_mostly = 300;
3963 unsigned int __read_mostly netdev_budget_usecs = 2000;
3964 int weight_p __read_mostly = 64;           /* old backlog weight */
3965 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3966 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3967 int dev_rx_weight __read_mostly = 64;
3968 int dev_tx_weight __read_mostly = 64;
3969
3970 /* Called with irq disabled */
3971 static inline void ____napi_schedule(struct softnet_data *sd,
3972                                      struct napi_struct *napi)
3973 {
3974         list_add_tail(&napi->poll_list, &sd->poll_list);
3975         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3976 }
3977
3978 #ifdef CONFIG_RPS
3979
3980 /* One global table that all flow-based protocols share. */
3981 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3982 EXPORT_SYMBOL(rps_sock_flow_table);
3983 u32 rps_cpu_mask __read_mostly;
3984 EXPORT_SYMBOL(rps_cpu_mask);
3985
3986 struct static_key_false rps_needed __read_mostly;
3987 EXPORT_SYMBOL(rps_needed);
3988 struct static_key_false rfs_needed __read_mostly;
3989 EXPORT_SYMBOL(rfs_needed);
3990
3991 static struct rps_dev_flow *
3992 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3993             struct rps_dev_flow *rflow, u16 next_cpu)
3994 {
3995         if (next_cpu < nr_cpu_ids) {
3996 #ifdef CONFIG_RFS_ACCEL
3997                 struct netdev_rx_queue *rxqueue;
3998                 struct rps_dev_flow_table *flow_table;
3999                 struct rps_dev_flow *old_rflow;
4000                 u32 flow_id;
4001                 u16 rxq_index;
4002                 int rc;
4003
4004                 /* Should we steer this flow to a different hardware queue? */
4005                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4006                     !(dev->features & NETIF_F_NTUPLE))
4007                         goto out;
4008                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4009                 if (rxq_index == skb_get_rx_queue(skb))
4010                         goto out;
4011
4012                 rxqueue = dev->_rx + rxq_index;
4013                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4014                 if (!flow_table)
4015                         goto out;
4016                 flow_id = skb_get_hash(skb) & flow_table->mask;
4017                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4018                                                         rxq_index, flow_id);
4019                 if (rc < 0)
4020                         goto out;
4021                 old_rflow = rflow;
4022                 rflow = &flow_table->flows[flow_id];
4023                 rflow->filter = rc;
4024                 if (old_rflow->filter == rflow->filter)
4025                         old_rflow->filter = RPS_NO_FILTER;
4026         out:
4027 #endif
4028                 rflow->last_qtail =
4029                         per_cpu(softnet_data, next_cpu).input_queue_head;
4030         }
4031
4032         rflow->cpu = next_cpu;
4033         return rflow;
4034 }
4035
4036 /*
4037  * get_rps_cpu is called from netif_receive_skb and returns the target
4038  * CPU from the RPS map of the receiving queue for a given skb.
4039  * rcu_read_lock must be held on entry.
4040  */
4041 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4042                        struct rps_dev_flow **rflowp)
4043 {
4044         const struct rps_sock_flow_table *sock_flow_table;
4045         struct netdev_rx_queue *rxqueue = dev->_rx;
4046         struct rps_dev_flow_table *flow_table;
4047         struct rps_map *map;
4048         int cpu = -1;
4049         u32 tcpu;
4050         u32 hash;
4051
4052         if (skb_rx_queue_recorded(skb)) {
4053                 u16 index = skb_get_rx_queue(skb);
4054
4055                 if (unlikely(index >= dev->real_num_rx_queues)) {
4056                         WARN_ONCE(dev->real_num_rx_queues > 1,
4057                                   "%s received packet on queue %u, but number "
4058                                   "of RX queues is %u\n",
4059                                   dev->name, index, dev->real_num_rx_queues);
4060                         goto done;
4061                 }
4062                 rxqueue += index;
4063         }
4064
4065         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4066
4067         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4068         map = rcu_dereference(rxqueue->rps_map);
4069         if (!flow_table && !map)
4070                 goto done;
4071
4072         skb_reset_network_header(skb);
4073         hash = skb_get_hash(skb);
4074         if (!hash)
4075                 goto done;
4076
4077         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4078         if (flow_table && sock_flow_table) {
4079                 struct rps_dev_flow *rflow;
4080                 u32 next_cpu;
4081                 u32 ident;
4082
4083                 /* First check into global flow table if there is a match */
4084                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4085                 if ((ident ^ hash) & ~rps_cpu_mask)
4086                         goto try_rps;
4087
4088                 next_cpu = ident & rps_cpu_mask;
4089
4090                 /* OK, now we know there is a match,
4091                  * we can look at the local (per receive queue) flow table
4092                  */
4093                 rflow = &flow_table->flows[hash & flow_table->mask];
4094                 tcpu = rflow->cpu;
4095
4096                 /*
4097                  * If the desired CPU (where last recvmsg was done) is
4098                  * different from current CPU (one in the rx-queue flow
4099                  * table entry), switch if one of the following holds:
4100                  *   - Current CPU is unset (>= nr_cpu_ids).
4101                  *   - Current CPU is offline.
4102                  *   - The current CPU's queue tail has advanced beyond the
4103                  *     last packet that was enqueued using this table entry.
4104                  *     This guarantees that all previous packets for the flow
4105                  *     have been dequeued, thus preserving in order delivery.
4106                  */
4107                 if (unlikely(tcpu != next_cpu) &&
4108                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4109                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4110                       rflow->last_qtail)) >= 0)) {
4111                         tcpu = next_cpu;
4112                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4113                 }
4114
4115                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4116                         *rflowp = rflow;
4117                         cpu = tcpu;
4118                         goto done;
4119                 }
4120         }
4121
4122 try_rps:
4123
4124         if (map) {
4125                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4126                 if (cpu_online(tcpu)) {
4127                         cpu = tcpu;
4128                         goto done;
4129                 }
4130         }
4131
4132 done:
4133         return cpu;
4134 }
4135
4136 #ifdef CONFIG_RFS_ACCEL
4137
4138 /**
4139  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4140  * @dev: Device on which the filter was set
4141  * @rxq_index: RX queue index
4142  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4143  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4144  *
4145  * Drivers that implement ndo_rx_flow_steer() should periodically call
4146  * this function for each installed filter and remove the filters for
4147  * which it returns %true.
4148  */
4149 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4150                          u32 flow_id, u16 filter_id)
4151 {
4152         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4153         struct rps_dev_flow_table *flow_table;
4154         struct rps_dev_flow *rflow;
4155         bool expire = true;
4156         unsigned int cpu;
4157
4158         rcu_read_lock();
4159         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4160         if (flow_table && flow_id <= flow_table->mask) {
4161                 rflow = &flow_table->flows[flow_id];
4162                 cpu = READ_ONCE(rflow->cpu);
4163                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4164                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4165                            rflow->last_qtail) <
4166                      (int)(10 * flow_table->mask)))
4167                         expire = false;
4168         }
4169         rcu_read_unlock();
4170         return expire;
4171 }
4172 EXPORT_SYMBOL(rps_may_expire_flow);
4173
4174 #endif /* CONFIG_RFS_ACCEL */
4175
4176 /* Called from hardirq (IPI) context */
4177 static void rps_trigger_softirq(void *data)
4178 {
4179         struct softnet_data *sd = data;
4180
4181         ____napi_schedule(sd, &sd->backlog);
4182         sd->received_rps++;
4183 }
4184
4185 #endif /* CONFIG_RPS */
4186
4187 /*
4188  * Check if this softnet_data structure is another cpu one
4189  * If yes, queue it to our IPI list and return 1
4190  * If no, return 0
4191  */
4192 static int rps_ipi_queued(struct softnet_data *sd)
4193 {
4194 #ifdef CONFIG_RPS
4195         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4196
4197         if (sd != mysd) {
4198                 sd->rps_ipi_next = mysd->rps_ipi_list;
4199                 mysd->rps_ipi_list = sd;
4200
4201                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4202                 return 1;
4203         }
4204 #endif /* CONFIG_RPS */
4205         return 0;
4206 }
4207
4208 #ifdef CONFIG_NET_FLOW_LIMIT
4209 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4210 #endif
4211
4212 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4213 {
4214 #ifdef CONFIG_NET_FLOW_LIMIT
4215         struct sd_flow_limit *fl;
4216         struct softnet_data *sd;
4217         unsigned int old_flow, new_flow;
4218
4219         if (qlen < (netdev_max_backlog >> 1))
4220                 return false;
4221
4222         sd = this_cpu_ptr(&softnet_data);
4223
4224         rcu_read_lock();
4225         fl = rcu_dereference(sd->flow_limit);
4226         if (fl) {
4227                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4228                 old_flow = fl->history[fl->history_head];
4229                 fl->history[fl->history_head] = new_flow;
4230
4231                 fl->history_head++;
4232                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4233
4234                 if (likely(fl->buckets[old_flow]))
4235                         fl->buckets[old_flow]--;
4236
4237                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4238                         fl->count++;
4239                         rcu_read_unlock();
4240                         return true;
4241                 }
4242         }
4243         rcu_read_unlock();
4244 #endif
4245         return false;
4246 }
4247
4248 /*
4249  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4250  * queue (may be a remote CPU queue).
4251  */
4252 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4253                               unsigned int *qtail)
4254 {
4255         struct softnet_data *sd;
4256         unsigned long flags;
4257         unsigned int qlen;
4258
4259         sd = &per_cpu(softnet_data, cpu);
4260
4261         local_irq_save(flags);
4262
4263         rps_lock(sd);
4264         if (!netif_running(skb->dev))
4265                 goto drop;
4266         qlen = skb_queue_len(&sd->input_pkt_queue);
4267         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4268                 if (qlen) {
4269 enqueue:
4270                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4271                         input_queue_tail_incr_save(sd, qtail);
4272                         rps_unlock(sd);
4273                         local_irq_restore(flags);
4274                         return NET_RX_SUCCESS;
4275                 }
4276
4277                 /* Schedule NAPI for backlog device
4278                  * We can use non atomic operation since we own the queue lock
4279                  */
4280                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4281                         if (!rps_ipi_queued(sd))
4282                                 ____napi_schedule(sd, &sd->backlog);
4283                 }
4284                 goto enqueue;
4285         }
4286
4287 drop:
4288         sd->dropped++;
4289         rps_unlock(sd);
4290
4291         local_irq_restore(flags);
4292
4293         atomic_long_inc(&skb->dev->rx_dropped);
4294         kfree_skb(skb);
4295         return NET_RX_DROP;
4296 }
4297
4298 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4299 {
4300         struct net_device *dev = skb->dev;
4301         struct netdev_rx_queue *rxqueue;
4302
4303         rxqueue = dev->_rx;
4304
4305         if (skb_rx_queue_recorded(skb)) {
4306                 u16 index = skb_get_rx_queue(skb);
4307
4308                 if (unlikely(index >= dev->real_num_rx_queues)) {
4309                         WARN_ONCE(dev->real_num_rx_queues > 1,
4310                                   "%s received packet on queue %u, but number "
4311                                   "of RX queues is %u\n",
4312                                   dev->name, index, dev->real_num_rx_queues);
4313
4314                         return rxqueue; /* Return first rxqueue */
4315                 }
4316                 rxqueue += index;
4317         }
4318         return rxqueue;
4319 }
4320
4321 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4322                                      struct xdp_buff *xdp,
4323                                      struct bpf_prog *xdp_prog)
4324 {
4325         struct netdev_rx_queue *rxqueue;
4326         void *orig_data, *orig_data_end;
4327         u32 metalen, act = XDP_DROP;
4328         __be16 orig_eth_type;
4329         struct ethhdr *eth;
4330         bool orig_bcast;
4331         int hlen, off;
4332         u32 mac_len;
4333
4334         /* Reinjected packets coming from act_mirred or similar should
4335          * not get XDP generic processing.
4336          */
4337         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4338                 return XDP_PASS;
4339
4340         /* XDP packets must be linear and must have sufficient headroom
4341          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4342          * native XDP provides, thus we need to do it here as well.
4343          */
4344         if (skb_is_nonlinear(skb) ||
4345             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4346                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4347                 int troom = skb->tail + skb->data_len - skb->end;
4348
4349                 /* In case we have to go down the path and also linearize,
4350                  * then lets do the pskb_expand_head() work just once here.
4351                  */
4352                 if (pskb_expand_head(skb,
4353                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4354                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4355                         goto do_drop;
4356                 if (skb_linearize(skb))
4357                         goto do_drop;
4358         }
4359
4360         /* The XDP program wants to see the packet starting at the MAC
4361          * header.
4362          */
4363         mac_len = skb->data - skb_mac_header(skb);
4364         hlen = skb_headlen(skb) + mac_len;
4365         xdp->data = skb->data - mac_len;
4366         xdp->data_meta = xdp->data;
4367         xdp->data_end = xdp->data + hlen;
4368         xdp->data_hard_start = skb->data - skb_headroom(skb);
4369         orig_data_end = xdp->data_end;
4370         orig_data = xdp->data;
4371         eth = (struct ethhdr *)xdp->data;
4372         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4373         orig_eth_type = eth->h_proto;
4374
4375         rxqueue = netif_get_rxqueue(skb);
4376         xdp->rxq = &rxqueue->xdp_rxq;
4377
4378         act = bpf_prog_run_xdp(xdp_prog, xdp);
4379
4380         off = xdp->data - orig_data;
4381         if (off > 0)
4382                 __skb_pull(skb, off);
4383         else if (off < 0)
4384                 __skb_push(skb, -off);
4385         skb->mac_header += off;
4386
4387         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4388          * pckt.
4389          */
4390         off = orig_data_end - xdp->data_end;
4391         if (off != 0) {
4392                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4393                 skb->len -= off;
4394
4395         }
4396
4397         /* check if XDP changed eth hdr such SKB needs update */
4398         eth = (struct ethhdr *)xdp->data;
4399         if ((orig_eth_type != eth->h_proto) ||
4400             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4401                 __skb_push(skb, ETH_HLEN);
4402                 skb->protocol = eth_type_trans(skb, skb->dev);
4403         }
4404
4405         switch (act) {
4406         case XDP_REDIRECT:
4407         case XDP_TX:
4408                 __skb_push(skb, mac_len);
4409                 break;
4410         case XDP_PASS:
4411                 metalen = xdp->data - xdp->data_meta;
4412                 if (metalen)
4413                         skb_metadata_set(skb, metalen);
4414                 break;
4415         default:
4416                 bpf_warn_invalid_xdp_action(act);
4417                 /* fall through */
4418         case XDP_ABORTED:
4419                 trace_xdp_exception(skb->dev, xdp_prog, act);
4420                 /* fall through */
4421         case XDP_DROP:
4422         do_drop:
4423                 kfree_skb(skb);
4424                 break;
4425         }
4426
4427         return act;
4428 }
4429
4430 /* When doing generic XDP we have to bypass the qdisc layer and the
4431  * network taps in order to match in-driver-XDP behavior.
4432  */
4433 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4434 {
4435         struct net_device *dev = skb->dev;
4436         struct netdev_queue *txq;
4437         bool free_skb = true;
4438         int cpu, rc;
4439
4440         txq = netdev_core_pick_tx(dev, skb, NULL);
4441         cpu = smp_processor_id();
4442         HARD_TX_LOCK(dev, txq, cpu);
4443         if (!netif_xmit_stopped(txq)) {
4444                 rc = netdev_start_xmit(skb, dev, txq, 0);
4445                 if (dev_xmit_complete(rc))
4446                         free_skb = false;
4447         }
4448         HARD_TX_UNLOCK(dev, txq);
4449         if (free_skb) {
4450                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4451                 kfree_skb(skb);
4452         }
4453 }
4454 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4455
4456 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4457
4458 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4459 {
4460         if (xdp_prog) {
4461                 struct xdp_buff xdp;
4462                 u32 act;
4463                 int err;
4464
4465                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4466                 if (act != XDP_PASS) {
4467                         switch (act) {
4468                         case XDP_REDIRECT:
4469                                 err = xdp_do_generic_redirect(skb->dev, skb,
4470                                                               &xdp, xdp_prog);
4471                                 if (err)
4472                                         goto out_redir;
4473                                 break;
4474                         case XDP_TX:
4475                                 generic_xdp_tx(skb, xdp_prog);
4476                                 break;
4477                         }
4478                         return XDP_DROP;
4479                 }
4480         }
4481         return XDP_PASS;
4482 out_redir:
4483         kfree_skb(skb);
4484         return XDP_DROP;
4485 }
4486 EXPORT_SYMBOL_GPL(do_xdp_generic);
4487
4488 static int netif_rx_internal(struct sk_buff *skb)
4489 {
4490         int ret;
4491
4492         net_timestamp_check(netdev_tstamp_prequeue, skb);
4493
4494         trace_netif_rx(skb);
4495
4496         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4497                 int ret;
4498
4499                 preempt_disable();
4500                 rcu_read_lock();
4501                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4502                 rcu_read_unlock();
4503                 preempt_enable();
4504
4505                 /* Consider XDP consuming the packet a success from
4506                  * the netdev point of view we do not want to count
4507                  * this as an error.
4508                  */
4509                 if (ret != XDP_PASS)
4510                         return NET_RX_SUCCESS;
4511         }
4512
4513 #ifdef CONFIG_RPS
4514         if (static_branch_unlikely(&rps_needed)) {
4515                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4516                 int cpu;
4517
4518                 preempt_disable();
4519                 rcu_read_lock();
4520
4521                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4522                 if (cpu < 0)
4523                         cpu = smp_processor_id();
4524
4525                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4526
4527                 rcu_read_unlock();
4528                 preempt_enable();
4529         } else
4530 #endif
4531         {
4532                 unsigned int qtail;
4533
4534                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4535                 put_cpu();
4536         }
4537         return ret;
4538 }
4539
4540 /**
4541  *      netif_rx        -       post buffer to the network code
4542  *      @skb: buffer to post
4543  *
4544  *      This function receives a packet from a device driver and queues it for
4545  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4546  *      may be dropped during processing for congestion control or by the
4547  *      protocol layers.
4548  *
4549  *      return values:
4550  *      NET_RX_SUCCESS  (no congestion)
4551  *      NET_RX_DROP     (packet was dropped)
4552  *
4553  */
4554
4555 int netif_rx(struct sk_buff *skb)
4556 {
4557         int ret;
4558
4559         trace_netif_rx_entry(skb);
4560
4561         ret = netif_rx_internal(skb);
4562         trace_netif_rx_exit(ret);
4563
4564         return ret;
4565 }
4566 EXPORT_SYMBOL(netif_rx);
4567
4568 int netif_rx_ni(struct sk_buff *skb)
4569 {
4570         int err;
4571
4572         trace_netif_rx_ni_entry(skb);
4573
4574         preempt_disable();
4575         err = netif_rx_internal(skb);
4576         if (local_softirq_pending())
4577                 do_softirq();
4578         preempt_enable();
4579         trace_netif_rx_ni_exit(err);
4580
4581         return err;
4582 }
4583 EXPORT_SYMBOL(netif_rx_ni);
4584
4585 static __latent_entropy void net_tx_action(struct softirq_action *h)
4586 {
4587         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4588
4589         if (sd->completion_queue) {
4590                 struct sk_buff *clist;
4591
4592                 local_irq_disable();
4593                 clist = sd->completion_queue;
4594                 sd->completion_queue = NULL;
4595                 local_irq_enable();
4596
4597                 while (clist) {
4598                         struct sk_buff *skb = clist;
4599
4600                         clist = clist->next;
4601
4602                         WARN_ON(refcount_read(&skb->users));
4603                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4604                                 trace_consume_skb(skb);
4605                         else
4606                                 trace_kfree_skb(skb, net_tx_action);
4607
4608                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4609                                 __kfree_skb(skb);
4610                         else
4611                                 __kfree_skb_defer(skb);
4612                 }
4613
4614                 __kfree_skb_flush();
4615         }
4616
4617         if (sd->output_queue) {
4618                 struct Qdisc *head;
4619
4620                 local_irq_disable();
4621                 head = sd->output_queue;
4622                 sd->output_queue = NULL;
4623                 sd->output_queue_tailp = &sd->output_queue;
4624                 local_irq_enable();
4625
4626                 while (head) {
4627                         struct Qdisc *q = head;
4628                         spinlock_t *root_lock = NULL;
4629
4630                         head = head->next_sched;
4631
4632                         if (!(q->flags & TCQ_F_NOLOCK)) {
4633                                 root_lock = qdisc_lock(q);
4634                                 spin_lock(root_lock);
4635                         }
4636                         /* We need to make sure head->next_sched is read
4637                          * before clearing __QDISC_STATE_SCHED
4638                          */
4639                         smp_mb__before_atomic();
4640                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4641                         qdisc_run(q);
4642                         if (root_lock)
4643                                 spin_unlock(root_lock);
4644                 }
4645         }
4646
4647         xfrm_dev_backlog(sd);
4648 }
4649
4650 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4651 /* This hook is defined here for ATM LANE */
4652 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4653                              unsigned char *addr) __read_mostly;
4654 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4655 #endif
4656
4657 static inline struct sk_buff *
4658 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4659                    struct net_device *orig_dev)
4660 {
4661 #ifdef CONFIG_NET_CLS_ACT
4662         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4663         struct tcf_result cl_res;
4664
4665         /* If there's at least one ingress present somewhere (so
4666          * we get here via enabled static key), remaining devices
4667          * that are not configured with an ingress qdisc will bail
4668          * out here.
4669          */
4670         if (!miniq)
4671                 return skb;
4672
4673         if (*pt_prev) {
4674                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4675                 *pt_prev = NULL;
4676         }
4677
4678         qdisc_skb_cb(skb)->pkt_len = skb->len;
4679         skb->tc_at_ingress = 1;
4680         mini_qdisc_bstats_cpu_update(miniq, skb);
4681
4682         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4683         case TC_ACT_OK:
4684         case TC_ACT_RECLASSIFY:
4685                 skb->tc_index = TC_H_MIN(cl_res.classid);
4686                 break;
4687         case TC_ACT_SHOT:
4688                 mini_qdisc_qstats_cpu_drop(miniq);
4689                 kfree_skb(skb);
4690                 return NULL;
4691         case TC_ACT_STOLEN:
4692         case TC_ACT_QUEUED:
4693         case TC_ACT_TRAP:
4694                 consume_skb(skb);
4695                 return NULL;
4696         case TC_ACT_REDIRECT:
4697                 /* skb_mac_header check was done by cls/act_bpf, so
4698                  * we can safely push the L2 header back before
4699                  * redirecting to another netdev
4700                  */
4701                 __skb_push(skb, skb->mac_len);
4702                 skb_do_redirect(skb);
4703                 return NULL;
4704         case TC_ACT_REINSERT:
4705                 /* this does not scrub the packet, and updates stats on error */
4706                 skb_tc_reinsert(skb, &cl_res);
4707                 return NULL;
4708         default:
4709                 break;
4710         }
4711 #endif /* CONFIG_NET_CLS_ACT */
4712         return skb;
4713 }
4714
4715 /**
4716  *      netdev_is_rx_handler_busy - check if receive handler is registered
4717  *      @dev: device to check
4718  *
4719  *      Check if a receive handler is already registered for a given device.
4720  *      Return true if there one.
4721  *
4722  *      The caller must hold the rtnl_mutex.
4723  */
4724 bool netdev_is_rx_handler_busy(struct net_device *dev)
4725 {
4726         ASSERT_RTNL();
4727         return dev && rtnl_dereference(dev->rx_handler);
4728 }
4729 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4730
4731 /**
4732  *      netdev_rx_handler_register - register receive handler
4733  *      @dev: device to register a handler for
4734  *      @rx_handler: receive handler to register
4735  *      @rx_handler_data: data pointer that is used by rx handler
4736  *
4737  *      Register a receive handler for a device. This handler will then be
4738  *      called from __netif_receive_skb. A negative errno code is returned
4739  *      on a failure.
4740  *
4741  *      The caller must hold the rtnl_mutex.
4742  *
4743  *      For a general description of rx_handler, see enum rx_handler_result.
4744  */
4745 int netdev_rx_handler_register(struct net_device *dev,
4746                                rx_handler_func_t *rx_handler,
4747                                void *rx_handler_data)
4748 {
4749         if (netdev_is_rx_handler_busy(dev))
4750                 return -EBUSY;
4751
4752         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4753                 return -EINVAL;
4754
4755         /* Note: rx_handler_data must be set before rx_handler */
4756         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4757         rcu_assign_pointer(dev->rx_handler, rx_handler);
4758
4759         return 0;
4760 }
4761 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4762
4763 /**
4764  *      netdev_rx_handler_unregister - unregister receive handler
4765  *      @dev: device to unregister a handler from
4766  *
4767  *      Unregister a receive handler from a device.
4768  *
4769  *      The caller must hold the rtnl_mutex.
4770  */
4771 void netdev_rx_handler_unregister(struct net_device *dev)
4772 {
4773
4774         ASSERT_RTNL();
4775         RCU_INIT_POINTER(dev->rx_handler, NULL);
4776         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4777          * section has a guarantee to see a non NULL rx_handler_data
4778          * as well.
4779          */
4780         synchronize_net();
4781         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4782 }
4783 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4784
4785 /*
4786  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4787  * the special handling of PFMEMALLOC skbs.
4788  */
4789 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4790 {
4791         switch (skb->protocol) {
4792         case htons(ETH_P_ARP):
4793         case htons(ETH_P_IP):
4794         case htons(ETH_P_IPV6):
4795         case htons(ETH_P_8021Q):
4796         case htons(ETH_P_8021AD):
4797                 return true;
4798         default:
4799                 return false;
4800         }
4801 }
4802
4803 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4804                              int *ret, struct net_device *orig_dev)
4805 {
4806 #ifdef CONFIG_NETFILTER_INGRESS
4807         if (nf_hook_ingress_active(skb)) {
4808                 int ingress_retval;
4809
4810                 if (*pt_prev) {
4811                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4812                         *pt_prev = NULL;
4813                 }
4814
4815                 rcu_read_lock();
4816                 ingress_retval = nf_hook_ingress(skb);
4817                 rcu_read_unlock();
4818                 return ingress_retval;
4819         }
4820 #endif /* CONFIG_NETFILTER_INGRESS */
4821         return 0;
4822 }
4823
4824 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4825                                     struct packet_type **ppt_prev)
4826 {
4827         struct packet_type *ptype, *pt_prev;
4828         rx_handler_func_t *rx_handler;
4829         struct net_device *orig_dev;
4830         bool deliver_exact = false;
4831         int ret = NET_RX_DROP;
4832         __be16 type;
4833
4834         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4835
4836         trace_netif_receive_skb(skb);
4837
4838         orig_dev = skb->dev;
4839
4840         skb_reset_network_header(skb);
4841         if (!skb_transport_header_was_set(skb))
4842                 skb_reset_transport_header(skb);
4843         skb_reset_mac_len(skb);
4844
4845         pt_prev = NULL;
4846
4847 another_round:
4848         skb->skb_iif = skb->dev->ifindex;
4849
4850         __this_cpu_inc(softnet_data.processed);
4851
4852         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854                 skb = skb_vlan_untag(skb);
4855                 if (unlikely(!skb))
4856                         goto out;
4857         }
4858
4859         if (skb_skip_tc_classify(skb))
4860                 goto skip_classify;
4861
4862         if (pfmemalloc)
4863                 goto skip_taps;
4864
4865         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4866                 if (pt_prev)
4867                         ret = deliver_skb(skb, pt_prev, orig_dev);
4868                 pt_prev = ptype;
4869         }
4870
4871         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872                 if (pt_prev)
4873                         ret = deliver_skb(skb, pt_prev, orig_dev);
4874                 pt_prev = ptype;
4875         }
4876
4877 skip_taps:
4878 #ifdef CONFIG_NET_INGRESS
4879         if (static_branch_unlikely(&ingress_needed_key)) {
4880                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4881                 if (!skb)
4882                         goto out;
4883
4884                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4885                         goto out;
4886         }
4887 #endif
4888         skb_reset_tc(skb);
4889 skip_classify:
4890         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4891                 goto drop;
4892
4893         if (skb_vlan_tag_present(skb)) {
4894                 if (pt_prev) {
4895                         ret = deliver_skb(skb, pt_prev, orig_dev);
4896                         pt_prev = NULL;
4897                 }
4898                 if (vlan_do_receive(&skb))
4899                         goto another_round;
4900                 else if (unlikely(!skb))
4901                         goto out;
4902         }
4903
4904         rx_handler = rcu_dereference(skb->dev->rx_handler);
4905         if (rx_handler) {
4906                 if (pt_prev) {
4907                         ret = deliver_skb(skb, pt_prev, orig_dev);
4908                         pt_prev = NULL;
4909                 }
4910                 switch (rx_handler(&skb)) {
4911                 case RX_HANDLER_CONSUMED:
4912                         ret = NET_RX_SUCCESS;
4913                         goto out;
4914                 case RX_HANDLER_ANOTHER:
4915                         goto another_round;
4916                 case RX_HANDLER_EXACT:
4917                         deliver_exact = true;
4918                 case RX_HANDLER_PASS:
4919                         break;
4920                 default:
4921                         BUG();
4922                 }
4923         }
4924
4925         if (unlikely(skb_vlan_tag_present(skb))) {
4926                 if (skb_vlan_tag_get_id(skb))
4927                         skb->pkt_type = PACKET_OTHERHOST;
4928                 /* Note: we might in the future use prio bits
4929                  * and set skb->priority like in vlan_do_receive()
4930                  * For the time being, just ignore Priority Code Point
4931                  */
4932                 __vlan_hwaccel_clear_tag(skb);
4933         }
4934
4935         type = skb->protocol;
4936
4937         /* deliver only exact match when indicated */
4938         if (likely(!deliver_exact)) {
4939                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4940                                        &ptype_base[ntohs(type) &
4941                                                    PTYPE_HASH_MASK]);
4942         }
4943
4944         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4945                                &orig_dev->ptype_specific);
4946
4947         if (unlikely(skb->dev != orig_dev)) {
4948                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949                                        &skb->dev->ptype_specific);
4950         }
4951
4952         if (pt_prev) {
4953                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4954                         goto drop;
4955                 *ppt_prev = pt_prev;
4956         } else {
4957 drop:
4958                 if (!deliver_exact)
4959                         atomic_long_inc(&skb->dev->rx_dropped);
4960                 else
4961                         atomic_long_inc(&skb->dev->rx_nohandler);
4962                 kfree_skb(skb);
4963                 /* Jamal, now you will not able to escape explaining
4964                  * me how you were going to use this. :-)
4965                  */
4966                 ret = NET_RX_DROP;
4967         }
4968
4969 out:
4970         return ret;
4971 }
4972
4973 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4974 {
4975         struct net_device *orig_dev = skb->dev;
4976         struct packet_type *pt_prev = NULL;
4977         int ret;
4978
4979         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4980         if (pt_prev)
4981                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4982         return ret;
4983 }
4984
4985 /**
4986  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4987  *      @skb: buffer to process
4988  *
4989  *      More direct receive version of netif_receive_skb().  It should
4990  *      only be used by callers that have a need to skip RPS and Generic XDP.
4991  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4992  *
4993  *      This function may only be called from softirq context and interrupts
4994  *      should be enabled.
4995  *
4996  *      Return values (usually ignored):
4997  *      NET_RX_SUCCESS: no congestion
4998  *      NET_RX_DROP: packet was dropped
4999  */
5000 int netif_receive_skb_core(struct sk_buff *skb)
5001 {
5002         int ret;
5003
5004         rcu_read_lock();
5005         ret = __netif_receive_skb_one_core(skb, false);
5006         rcu_read_unlock();
5007
5008         return ret;
5009 }
5010 EXPORT_SYMBOL(netif_receive_skb_core);
5011
5012 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5013                                                   struct packet_type *pt_prev,
5014                                                   struct net_device *orig_dev)
5015 {
5016         struct sk_buff *skb, *next;
5017
5018         if (!pt_prev)
5019                 return;
5020         if (list_empty(head))
5021                 return;
5022         if (pt_prev->list_func != NULL)
5023                 pt_prev->list_func(head, pt_prev, orig_dev);
5024         else
5025                 list_for_each_entry_safe(skb, next, head, list)
5026                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5027 }
5028
5029 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5030 {
5031         /* Fast-path assumptions:
5032          * - There is no RX handler.
5033          * - Only one packet_type matches.
5034          * If either of these fails, we will end up doing some per-packet
5035          * processing in-line, then handling the 'last ptype' for the whole
5036          * sublist.  This can't cause out-of-order delivery to any single ptype,
5037          * because the 'last ptype' must be constant across the sublist, and all
5038          * other ptypes are handled per-packet.
5039          */
5040         /* Current (common) ptype of sublist */
5041         struct packet_type *pt_curr = NULL;
5042         /* Current (common) orig_dev of sublist */
5043         struct net_device *od_curr = NULL;
5044         struct list_head sublist;
5045         struct sk_buff *skb, *next;
5046
5047         INIT_LIST_HEAD(&sublist);
5048         list_for_each_entry_safe(skb, next, head, list) {
5049                 struct net_device *orig_dev = skb->dev;
5050                 struct packet_type *pt_prev = NULL;
5051
5052                 skb_list_del_init(skb);
5053                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5054                 if (!pt_prev)
5055                         continue;
5056                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5057                         /* dispatch old sublist */
5058                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5059                         /* start new sublist */
5060                         INIT_LIST_HEAD(&sublist);
5061                         pt_curr = pt_prev;
5062                         od_curr = orig_dev;
5063                 }
5064                 list_add_tail(&skb->list, &sublist);
5065         }
5066
5067         /* dispatch final sublist */
5068         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5069 }
5070
5071 static int __netif_receive_skb(struct sk_buff *skb)
5072 {
5073         int ret;
5074
5075         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5076                 unsigned int noreclaim_flag;
5077
5078                 /*
5079                  * PFMEMALLOC skbs are special, they should
5080                  * - be delivered to SOCK_MEMALLOC sockets only
5081                  * - stay away from userspace
5082                  * - have bounded memory usage
5083                  *
5084                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5085                  * context down to all allocation sites.
5086                  */
5087                 noreclaim_flag = memalloc_noreclaim_save();
5088                 ret = __netif_receive_skb_one_core(skb, true);
5089                 memalloc_noreclaim_restore(noreclaim_flag);
5090         } else
5091                 ret = __netif_receive_skb_one_core(skb, false);
5092
5093         return ret;
5094 }
5095
5096 static void __netif_receive_skb_list(struct list_head *head)
5097 {
5098         unsigned long noreclaim_flag = 0;
5099         struct sk_buff *skb, *next;
5100         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5101
5102         list_for_each_entry_safe(skb, next, head, list) {
5103                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5104                         struct list_head sublist;
5105
5106                         /* Handle the previous sublist */
5107                         list_cut_before(&sublist, head, &skb->list);
5108                         if (!list_empty(&sublist))
5109                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5110                         pfmemalloc = !pfmemalloc;
5111                         /* See comments in __netif_receive_skb */
5112                         if (pfmemalloc)
5113                                 noreclaim_flag = memalloc_noreclaim_save();
5114                         else
5115                                 memalloc_noreclaim_restore(noreclaim_flag);
5116                 }
5117         }
5118         /* Handle the remaining sublist */
5119         if (!list_empty(head))
5120                 __netif_receive_skb_list_core(head, pfmemalloc);
5121         /* Restore pflags */
5122         if (pfmemalloc)
5123                 memalloc_noreclaim_restore(noreclaim_flag);
5124 }
5125
5126 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5127 {
5128         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5129         struct bpf_prog *new = xdp->prog;
5130         int ret = 0;
5131
5132         switch (xdp->command) {
5133         case XDP_SETUP_PROG:
5134                 rcu_assign_pointer(dev->xdp_prog, new);
5135                 if (old)
5136                         bpf_prog_put(old);
5137
5138                 if (old && !new) {
5139                         static_branch_dec(&generic_xdp_needed_key);
5140                 } else if (new && !old) {
5141                         static_branch_inc(&generic_xdp_needed_key);
5142                         dev_disable_lro(dev);
5143                         dev_disable_gro_hw(dev);
5144                 }
5145                 break;
5146
5147         case XDP_QUERY_PROG:
5148                 xdp->prog_id = old ? old->aux->id : 0;
5149                 break;
5150
5151         default:
5152                 ret = -EINVAL;
5153                 break;
5154         }
5155
5156         return ret;
5157 }
5158
5159 static int netif_receive_skb_internal(struct sk_buff *skb)
5160 {
5161         int ret;
5162
5163         net_timestamp_check(netdev_tstamp_prequeue, skb);
5164
5165         if (skb_defer_rx_timestamp(skb))
5166                 return NET_RX_SUCCESS;
5167
5168         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5169                 int ret;
5170
5171                 preempt_disable();
5172                 rcu_read_lock();
5173                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5174                 rcu_read_unlock();
5175                 preempt_enable();
5176
5177                 if (ret != XDP_PASS)
5178                         return NET_RX_DROP;
5179         }
5180
5181         rcu_read_lock();
5182 #ifdef CONFIG_RPS
5183         if (static_branch_unlikely(&rps_needed)) {
5184                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5185                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5186
5187                 if (cpu >= 0) {
5188                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5189                         rcu_read_unlock();
5190                         return ret;
5191                 }
5192         }
5193 #endif
5194         ret = __netif_receive_skb(skb);
5195         rcu_read_unlock();
5196         return ret;
5197 }
5198
5199 static void netif_receive_skb_list_internal(struct list_head *head)
5200 {
5201         struct bpf_prog *xdp_prog = NULL;
5202         struct sk_buff *skb, *next;
5203         struct list_head sublist;
5204
5205         INIT_LIST_HEAD(&sublist);
5206         list_for_each_entry_safe(skb, next, head, list) {
5207                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5208                 skb_list_del_init(skb);
5209                 if (!skb_defer_rx_timestamp(skb))
5210                         list_add_tail(&skb->list, &sublist);
5211         }
5212         list_splice_init(&sublist, head);
5213
5214         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5215                 preempt_disable();
5216                 rcu_read_lock();
5217                 list_for_each_entry_safe(skb, next, head, list) {
5218                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5219                         skb_list_del_init(skb);
5220                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5221                                 list_add_tail(&skb->list, &sublist);
5222                 }
5223                 rcu_read_unlock();
5224                 preempt_enable();
5225                 /* Put passed packets back on main list */
5226                 list_splice_init(&sublist, head);
5227         }
5228
5229         rcu_read_lock();
5230 #ifdef CONFIG_RPS
5231         if (static_branch_unlikely(&rps_needed)) {
5232                 list_for_each_entry_safe(skb, next, head, list) {
5233                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5234                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5235
5236                         if (cpu >= 0) {
5237                                 /* Will be handled, remove from list */
5238                                 skb_list_del_init(skb);
5239                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5240                         }
5241                 }
5242         }
5243 #endif
5244         __netif_receive_skb_list(head);
5245         rcu_read_unlock();
5246 }
5247
5248 /**
5249  *      netif_receive_skb - process receive buffer from network
5250  *      @skb: buffer to process
5251  *
5252  *      netif_receive_skb() is the main receive data processing function.
5253  *      It always succeeds. The buffer may be dropped during processing
5254  *      for congestion control or by the protocol layers.
5255  *
5256  *      This function may only be called from softirq context and interrupts
5257  *      should be enabled.
5258  *
5259  *      Return values (usually ignored):
5260  *      NET_RX_SUCCESS: no congestion
5261  *      NET_RX_DROP: packet was dropped
5262  */
5263 int netif_receive_skb(struct sk_buff *skb)
5264 {
5265         int ret;
5266
5267         trace_netif_receive_skb_entry(skb);
5268
5269         ret = netif_receive_skb_internal(skb);
5270         trace_netif_receive_skb_exit(ret);
5271
5272         return ret;
5273 }
5274 EXPORT_SYMBOL(netif_receive_skb);
5275
5276 /**
5277  *      netif_receive_skb_list - process many receive buffers from network
5278  *      @head: list of skbs to process.
5279  *
5280  *      Since return value of netif_receive_skb() is normally ignored, and
5281  *      wouldn't be meaningful for a list, this function returns void.
5282  *
5283  *      This function may only be called from softirq context and interrupts
5284  *      should be enabled.
5285  */
5286 void netif_receive_skb_list(struct list_head *head)
5287 {
5288         struct sk_buff *skb;
5289
5290         if (list_empty(head))
5291                 return;
5292         if (trace_netif_receive_skb_list_entry_enabled()) {
5293                 list_for_each_entry(skb, head, list)
5294                         trace_netif_receive_skb_list_entry(skb);
5295         }
5296         netif_receive_skb_list_internal(head);
5297         trace_netif_receive_skb_list_exit(0);
5298 }
5299 EXPORT_SYMBOL(netif_receive_skb_list);
5300
5301 DEFINE_PER_CPU(struct work_struct, flush_works);
5302
5303 /* Network device is going away, flush any packets still pending */
5304 static void flush_backlog(struct work_struct *work)
5305 {
5306         struct sk_buff *skb, *tmp;
5307         struct softnet_data *sd;
5308
5309         local_bh_disable();
5310         sd = this_cpu_ptr(&softnet_data);
5311
5312         local_irq_disable();
5313         rps_lock(sd);
5314         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5315                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5316                         __skb_unlink(skb, &sd->input_pkt_queue);
5317                         kfree_skb(skb);
5318                         input_queue_head_incr(sd);
5319                 }
5320         }
5321         rps_unlock(sd);
5322         local_irq_enable();
5323
5324         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5325                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5326                         __skb_unlink(skb, &sd->process_queue);
5327                         kfree_skb(skb);
5328                         input_queue_head_incr(sd);
5329                 }
5330         }
5331         local_bh_enable();
5332 }
5333
5334 static void flush_all_backlogs(void)
5335 {
5336         unsigned int cpu;
5337
5338         get_online_cpus();
5339
5340         for_each_online_cpu(cpu)
5341                 queue_work_on(cpu, system_highpri_wq,
5342                               per_cpu_ptr(&flush_works, cpu));
5343
5344         for_each_online_cpu(cpu)
5345                 flush_work(per_cpu_ptr(&flush_works, cpu));
5346
5347         put_online_cpus();
5348 }
5349
5350 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5351 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5352 static int napi_gro_complete(struct sk_buff *skb)
5353 {
5354         struct packet_offload *ptype;
5355         __be16 type = skb->protocol;
5356         struct list_head *head = &offload_base;
5357         int err = -ENOENT;
5358
5359         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5360
5361         if (NAPI_GRO_CB(skb)->count == 1) {
5362                 skb_shinfo(skb)->gso_size = 0;
5363                 goto out;
5364         }
5365
5366         rcu_read_lock();
5367         list_for_each_entry_rcu(ptype, head, list) {
5368                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5369                         continue;
5370
5371                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5372                                          ipv6_gro_complete, inet_gro_complete,
5373                                          skb, 0);
5374                 break;
5375         }
5376         rcu_read_unlock();
5377
5378         if (err) {
5379                 WARN_ON(&ptype->list == head);
5380                 kfree_skb(skb);
5381                 return NET_RX_SUCCESS;
5382         }
5383
5384 out:
5385         return netif_receive_skb_internal(skb);
5386 }
5387
5388 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5389                                    bool flush_old)
5390 {
5391         struct list_head *head = &napi->gro_hash[index].list;
5392         struct sk_buff *skb, *p;
5393
5394         list_for_each_entry_safe_reverse(skb, p, head, list) {
5395                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5396                         return;
5397                 skb_list_del_init(skb);
5398                 napi_gro_complete(skb);
5399                 napi->gro_hash[index].count--;
5400         }
5401
5402         if (!napi->gro_hash[index].count)
5403                 __clear_bit(index, &napi->gro_bitmask);
5404 }
5405
5406 /* napi->gro_hash[].list contains packets ordered by age.
5407  * youngest packets at the head of it.
5408  * Complete skbs in reverse order to reduce latencies.
5409  */
5410 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5411 {
5412         unsigned long bitmask = napi->gro_bitmask;
5413         unsigned int i, base = ~0U;
5414
5415         while ((i = ffs(bitmask)) != 0) {
5416                 bitmask >>= i;
5417                 base += i;
5418                 __napi_gro_flush_chain(napi, base, flush_old);
5419         }
5420 }
5421 EXPORT_SYMBOL(napi_gro_flush);
5422
5423 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5424                                           struct sk_buff *skb)
5425 {
5426         unsigned int maclen = skb->dev->hard_header_len;
5427         u32 hash = skb_get_hash_raw(skb);
5428         struct list_head *head;
5429         struct sk_buff *p;
5430
5431         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5432         list_for_each_entry(p, head, list) {
5433                 unsigned long diffs;
5434
5435                 NAPI_GRO_CB(p)->flush = 0;
5436
5437                 if (hash != skb_get_hash_raw(p)) {
5438                         NAPI_GRO_CB(p)->same_flow = 0;
5439                         continue;
5440                 }
5441
5442                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5443                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5444                 if (skb_vlan_tag_present(p))
5445                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5446                 diffs |= skb_metadata_dst_cmp(p, skb);
5447                 diffs |= skb_metadata_differs(p, skb);
5448                 if (maclen == ETH_HLEN)
5449                         diffs |= compare_ether_header(skb_mac_header(p),
5450                                                       skb_mac_header(skb));
5451                 else if (!diffs)
5452                         diffs = memcmp(skb_mac_header(p),
5453                                        skb_mac_header(skb),
5454                                        maclen);
5455                 NAPI_GRO_CB(p)->same_flow = !diffs;
5456         }
5457
5458         return head;
5459 }
5460
5461 static void skb_gro_reset_offset(struct sk_buff *skb)
5462 {
5463         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5464         const skb_frag_t *frag0 = &pinfo->frags[0];
5465
5466         NAPI_GRO_CB(skb)->data_offset = 0;
5467         NAPI_GRO_CB(skb)->frag0 = NULL;
5468         NAPI_GRO_CB(skb)->frag0_len = 0;
5469
5470         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5471             pinfo->nr_frags &&
5472             !PageHighMem(skb_frag_page(frag0))) {
5473                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5474                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5475                                                     skb_frag_size(frag0),
5476                                                     skb->end - skb->tail);
5477         }
5478 }
5479
5480 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5481 {
5482         struct skb_shared_info *pinfo = skb_shinfo(skb);
5483
5484         BUG_ON(skb->end - skb->tail < grow);
5485
5486         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5487
5488         skb->data_len -= grow;
5489         skb->tail += grow;
5490
5491         pinfo->frags[0].page_offset += grow;
5492         skb_frag_size_sub(&pinfo->frags[0], grow);
5493
5494         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5495                 skb_frag_unref(skb, 0);
5496                 memmove(pinfo->frags, pinfo->frags + 1,
5497                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5498         }
5499 }
5500
5501 static void gro_flush_oldest(struct list_head *head)
5502 {
5503         struct sk_buff *oldest;
5504
5505         oldest = list_last_entry(head, struct sk_buff, list);
5506
5507         /* We are called with head length >= MAX_GRO_SKBS, so this is
5508          * impossible.
5509          */
5510         if (WARN_ON_ONCE(!oldest))
5511                 return;
5512
5513         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5514          * SKB to the chain.
5515          */
5516         skb_list_del_init(oldest);
5517         napi_gro_complete(oldest);
5518 }
5519
5520 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5521                                                            struct sk_buff *));
5522 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5523                                                            struct sk_buff *));
5524 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5525 {
5526         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5527         struct list_head *head = &offload_base;
5528         struct packet_offload *ptype;
5529         __be16 type = skb->protocol;
5530         struct list_head *gro_head;
5531         struct sk_buff *pp = NULL;
5532         enum gro_result ret;
5533         int same_flow;
5534         int grow;
5535
5536         if (netif_elide_gro(skb->dev))
5537                 goto normal;
5538
5539         gro_head = gro_list_prepare(napi, skb);
5540
5541         rcu_read_lock();
5542         list_for_each_entry_rcu(ptype, head, list) {
5543                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5544                         continue;
5545
5546                 skb_set_network_header(skb, skb_gro_offset(skb));
5547                 skb_reset_mac_len(skb);
5548                 NAPI_GRO_CB(skb)->same_flow = 0;
5549                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5550                 NAPI_GRO_CB(skb)->free = 0;
5551                 NAPI_GRO_CB(skb)->encap_mark = 0;
5552                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5553                 NAPI_GRO_CB(skb)->is_fou = 0;
5554                 NAPI_GRO_CB(skb)->is_atomic = 1;
5555                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5556
5557                 /* Setup for GRO checksum validation */
5558                 switch (skb->ip_summed) {
5559                 case CHECKSUM_COMPLETE:
5560                         NAPI_GRO_CB(skb)->csum = skb->csum;
5561                         NAPI_GRO_CB(skb)->csum_valid = 1;
5562                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5563                         break;
5564                 case CHECKSUM_UNNECESSARY:
5565                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5566                         NAPI_GRO_CB(skb)->csum_valid = 0;
5567                         break;
5568                 default:
5569                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5570                         NAPI_GRO_CB(skb)->csum_valid = 0;
5571                 }
5572
5573                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5574                                         ipv6_gro_receive, inet_gro_receive,
5575                                         gro_head, skb);
5576                 break;
5577         }
5578         rcu_read_unlock();
5579
5580         if (&ptype->list == head)
5581                 goto normal;
5582
5583         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5584                 ret = GRO_CONSUMED;
5585                 goto ok;
5586         }
5587
5588         same_flow = NAPI_GRO_CB(skb)->same_flow;
5589         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5590
5591         if (pp) {
5592                 skb_list_del_init(pp);
5593                 napi_gro_complete(pp);
5594                 napi->gro_hash[hash].count--;
5595         }
5596
5597         if (same_flow)
5598                 goto ok;
5599
5600         if (NAPI_GRO_CB(skb)->flush)
5601                 goto normal;
5602
5603         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5604                 gro_flush_oldest(gro_head);
5605         } else {
5606                 napi->gro_hash[hash].count++;
5607         }
5608         NAPI_GRO_CB(skb)->count = 1;
5609         NAPI_GRO_CB(skb)->age = jiffies;
5610         NAPI_GRO_CB(skb)->last = skb;
5611         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5612         list_add(&skb->list, gro_head);
5613         ret = GRO_HELD;
5614
5615 pull:
5616         grow = skb_gro_offset(skb) - skb_headlen(skb);
5617         if (grow > 0)
5618                 gro_pull_from_frag0(skb, grow);
5619 ok:
5620         if (napi->gro_hash[hash].count) {
5621                 if (!test_bit(hash, &napi->gro_bitmask))
5622                         __set_bit(hash, &napi->gro_bitmask);
5623         } else if (test_bit(hash, &napi->gro_bitmask)) {
5624                 __clear_bit(hash, &napi->gro_bitmask);
5625         }
5626
5627         return ret;
5628
5629 normal:
5630         ret = GRO_NORMAL;
5631         goto pull;
5632 }
5633
5634 struct packet_offload *gro_find_receive_by_type(__be16 type)
5635 {
5636         struct list_head *offload_head = &offload_base;
5637         struct packet_offload *ptype;
5638
5639         list_for_each_entry_rcu(ptype, offload_head, list) {
5640                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5641                         continue;
5642                 return ptype;
5643         }
5644         return NULL;
5645 }
5646 EXPORT_SYMBOL(gro_find_receive_by_type);
5647
5648 struct packet_offload *gro_find_complete_by_type(__be16 type)
5649 {
5650         struct list_head *offload_head = &offload_base;
5651         struct packet_offload *ptype;
5652
5653         list_for_each_entry_rcu(ptype, offload_head, list) {
5654                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5655                         continue;
5656                 return ptype;
5657         }
5658         return NULL;
5659 }
5660 EXPORT_SYMBOL(gro_find_complete_by_type);
5661
5662 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5663 {
5664         skb_dst_drop(skb);
5665         secpath_reset(skb);
5666         kmem_cache_free(skbuff_head_cache, skb);
5667 }
5668
5669 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5670 {
5671         switch (ret) {
5672         case GRO_NORMAL:
5673                 if (netif_receive_skb_internal(skb))
5674                         ret = GRO_DROP;
5675                 break;
5676
5677         case GRO_DROP:
5678                 kfree_skb(skb);
5679                 break;
5680
5681         case GRO_MERGED_FREE:
5682                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5683                         napi_skb_free_stolen_head(skb);
5684                 else
5685                         __kfree_skb(skb);
5686                 break;
5687
5688         case GRO_HELD:
5689         case GRO_MERGED:
5690         case GRO_CONSUMED:
5691                 break;
5692         }
5693
5694         return ret;
5695 }
5696
5697 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5698 {
5699         gro_result_t ret;
5700
5701         skb_mark_napi_id(skb, napi);
5702         trace_napi_gro_receive_entry(skb);
5703
5704         skb_gro_reset_offset(skb);
5705
5706         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5707         trace_napi_gro_receive_exit(ret);
5708
5709         return ret;
5710 }
5711 EXPORT_SYMBOL(napi_gro_receive);
5712
5713 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5714 {
5715         if (unlikely(skb->pfmemalloc)) {
5716                 consume_skb(skb);
5717                 return;
5718         }
5719         __skb_pull(skb, skb_headlen(skb));
5720         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5721         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5722         __vlan_hwaccel_clear_tag(skb);
5723         skb->dev = napi->dev;
5724         skb->skb_iif = 0;
5725
5726         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5727         skb->pkt_type = PACKET_HOST;
5728
5729         skb->encapsulation = 0;
5730         skb_shinfo(skb)->gso_type = 0;
5731         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5732         secpath_reset(skb);
5733
5734         napi->skb = skb;
5735 }
5736
5737 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5738 {
5739         struct sk_buff *skb = napi->skb;
5740
5741         if (!skb) {
5742                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5743                 if (skb) {
5744                         napi->skb = skb;
5745                         skb_mark_napi_id(skb, napi);
5746                 }
5747         }
5748         return skb;
5749 }
5750 EXPORT_SYMBOL(napi_get_frags);
5751
5752 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5753                                       struct sk_buff *skb,
5754                                       gro_result_t ret)
5755 {
5756         switch (ret) {
5757         case GRO_NORMAL:
5758         case GRO_HELD:
5759                 __skb_push(skb, ETH_HLEN);
5760                 skb->protocol = eth_type_trans(skb, skb->dev);
5761                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5762                         ret = GRO_DROP;
5763                 break;
5764
5765         case GRO_DROP:
5766                 napi_reuse_skb(napi, skb);
5767                 break;
5768
5769         case GRO_MERGED_FREE:
5770                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5771                         napi_skb_free_stolen_head(skb);
5772                 else
5773                         napi_reuse_skb(napi, skb);
5774                 break;
5775
5776         case GRO_MERGED:
5777         case GRO_CONSUMED:
5778                 break;
5779         }
5780
5781         return ret;
5782 }
5783
5784 /* Upper GRO stack assumes network header starts at gro_offset=0
5785  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5786  * We copy ethernet header into skb->data to have a common layout.
5787  */
5788 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5789 {
5790         struct sk_buff *skb = napi->skb;
5791         const struct ethhdr *eth;
5792         unsigned int hlen = sizeof(*eth);
5793
5794         napi->skb = NULL;
5795
5796         skb_reset_mac_header(skb);
5797         skb_gro_reset_offset(skb);
5798
5799         eth = skb_gro_header_fast(skb, 0);
5800         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5801                 eth = skb_gro_header_slow(skb, hlen, 0);
5802                 if (unlikely(!eth)) {
5803                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5804                                              __func__, napi->dev->name);
5805                         napi_reuse_skb(napi, skb);
5806                         return NULL;
5807                 }
5808         } else {
5809                 gro_pull_from_frag0(skb, hlen);
5810                 NAPI_GRO_CB(skb)->frag0 += hlen;
5811                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5812         }
5813         __skb_pull(skb, hlen);
5814
5815         /*
5816          * This works because the only protocols we care about don't require
5817          * special handling.
5818          * We'll fix it up properly in napi_frags_finish()
5819          */
5820         skb->protocol = eth->h_proto;
5821
5822         return skb;
5823 }
5824
5825 gro_result_t napi_gro_frags(struct napi_struct *napi)
5826 {
5827         gro_result_t ret;
5828         struct sk_buff *skb = napi_frags_skb(napi);
5829
5830         if (!skb)
5831                 return GRO_DROP;
5832
5833         trace_napi_gro_frags_entry(skb);
5834
5835         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5836         trace_napi_gro_frags_exit(ret);
5837
5838         return ret;
5839 }
5840 EXPORT_SYMBOL(napi_gro_frags);
5841
5842 /* Compute the checksum from gro_offset and return the folded value
5843  * after adding in any pseudo checksum.
5844  */
5845 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5846 {
5847         __wsum wsum;
5848         __sum16 sum;
5849
5850         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5851
5852         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5853         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5854         /* See comments in __skb_checksum_complete(). */
5855         if (likely(!sum)) {
5856                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5857                     !skb->csum_complete_sw)
5858                         netdev_rx_csum_fault(skb->dev, skb);
5859         }
5860
5861         NAPI_GRO_CB(skb)->csum = wsum;
5862         NAPI_GRO_CB(skb)->csum_valid = 1;
5863
5864         return sum;
5865 }
5866 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5867
5868 static void net_rps_send_ipi(struct softnet_data *remsd)
5869 {
5870 #ifdef CONFIG_RPS
5871         while (remsd) {
5872                 struct softnet_data *next = remsd->rps_ipi_next;
5873
5874                 if (cpu_online(remsd->cpu))
5875                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5876                 remsd = next;
5877         }
5878 #endif
5879 }
5880
5881 /*
5882  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5883  * Note: called with local irq disabled, but exits with local irq enabled.
5884  */
5885 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5886 {
5887 #ifdef CONFIG_RPS
5888         struct softnet_data *remsd = sd->rps_ipi_list;
5889
5890         if (remsd) {
5891                 sd->rps_ipi_list = NULL;
5892
5893                 local_irq_enable();
5894
5895                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5896                 net_rps_send_ipi(remsd);
5897         } else
5898 #endif
5899                 local_irq_enable();
5900 }
5901
5902 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5903 {
5904 #ifdef CONFIG_RPS
5905         return sd->rps_ipi_list != NULL;
5906 #else
5907         return false;
5908 #endif
5909 }
5910
5911 static int process_backlog(struct napi_struct *napi, int quota)
5912 {
5913         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5914         bool again = true;
5915         int work = 0;
5916
5917         /* Check if we have pending ipi, its better to send them now,
5918          * not waiting net_rx_action() end.
5919          */
5920         if (sd_has_rps_ipi_waiting(sd)) {
5921                 local_irq_disable();
5922                 net_rps_action_and_irq_enable(sd);
5923         }
5924
5925         napi->weight = dev_rx_weight;
5926         while (again) {
5927                 struct sk_buff *skb;
5928
5929                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5930                         rcu_read_lock();
5931                         __netif_receive_skb(skb);
5932                         rcu_read_unlock();
5933                         input_queue_head_incr(sd);
5934                         if (++work >= quota)
5935                                 return work;
5936
5937                 }
5938
5939                 local_irq_disable();
5940                 rps_lock(sd);
5941                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5942                         /*
5943                          * Inline a custom version of __napi_complete().
5944                          * only current cpu owns and manipulates this napi,
5945                          * and NAPI_STATE_SCHED is the only possible flag set
5946                          * on backlog.
5947                          * We can use a plain write instead of clear_bit(),
5948                          * and we dont need an smp_mb() memory barrier.
5949                          */
5950                         napi->state = 0;
5951                         again = false;
5952                 } else {
5953                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5954                                                    &sd->process_queue);
5955                 }
5956                 rps_unlock(sd);
5957                 local_irq_enable();
5958         }
5959
5960         return work;
5961 }
5962
5963 /**
5964  * __napi_schedule - schedule for receive
5965  * @n: entry to schedule
5966  *
5967  * The entry's receive function will be scheduled to run.
5968  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5969  */
5970 void __napi_schedule(struct napi_struct *n)
5971 {
5972         unsigned long flags;
5973
5974         local_irq_save(flags);
5975         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5976         local_irq_restore(flags);
5977 }
5978 EXPORT_SYMBOL(__napi_schedule);
5979
5980 /**
5981  *      napi_schedule_prep - check if napi can be scheduled
5982  *      @n: napi context
5983  *
5984  * Test if NAPI routine is already running, and if not mark
5985  * it as running.  This is used as a condition variable
5986  * insure only one NAPI poll instance runs.  We also make
5987  * sure there is no pending NAPI disable.
5988  */
5989 bool napi_schedule_prep(struct napi_struct *n)
5990 {
5991         unsigned long val, new;
5992
5993         do {
5994                 val = READ_ONCE(n->state);
5995                 if (unlikely(val & NAPIF_STATE_DISABLE))
5996                         return false;
5997                 new = val | NAPIF_STATE_SCHED;
5998
5999                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6000                  * This was suggested by Alexander Duyck, as compiler
6001                  * emits better code than :
6002                  * if (val & NAPIF_STATE_SCHED)
6003                  *     new |= NAPIF_STATE_MISSED;
6004                  */
6005                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6006                                                    NAPIF_STATE_MISSED;
6007         } while (cmpxchg(&n->state, val, new) != val);
6008
6009         return !(val & NAPIF_STATE_SCHED);
6010 }
6011 EXPORT_SYMBOL(napi_schedule_prep);
6012
6013 /**
6014  * __napi_schedule_irqoff - schedule for receive
6015  * @n: entry to schedule
6016  *
6017  * Variant of __napi_schedule() assuming hard irqs are masked
6018  */
6019 void __napi_schedule_irqoff(struct napi_struct *n)
6020 {
6021         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6022 }
6023 EXPORT_SYMBOL(__napi_schedule_irqoff);
6024
6025 bool napi_complete_done(struct napi_struct *n, int work_done)
6026 {
6027         unsigned long flags, val, new;
6028
6029         /*
6030          * 1) Don't let napi dequeue from the cpu poll list
6031          *    just in case its running on a different cpu.
6032          * 2) If we are busy polling, do nothing here, we have
6033          *    the guarantee we will be called later.
6034          */
6035         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6036                                  NAPIF_STATE_IN_BUSY_POLL)))
6037                 return false;
6038
6039         if (n->gro_bitmask) {
6040                 unsigned long timeout = 0;
6041
6042                 if (work_done)
6043                         timeout = n->dev->gro_flush_timeout;
6044
6045                 /* When the NAPI instance uses a timeout and keeps postponing
6046                  * it, we need to bound somehow the time packets are kept in
6047                  * the GRO layer
6048                  */
6049                 napi_gro_flush(n, !!timeout);
6050                 if (timeout)
6051                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6052                                       HRTIMER_MODE_REL_PINNED);
6053         }
6054         if (unlikely(!list_empty(&n->poll_list))) {
6055                 /* If n->poll_list is not empty, we need to mask irqs */
6056                 local_irq_save(flags);
6057                 list_del_init(&n->poll_list);
6058                 local_irq_restore(flags);
6059         }
6060
6061         do {
6062                 val = READ_ONCE(n->state);
6063
6064                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6065
6066                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6067
6068                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6069                  * because we will call napi->poll() one more time.
6070                  * This C code was suggested by Alexander Duyck to help gcc.
6071                  */
6072                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6073                                                     NAPIF_STATE_SCHED;
6074         } while (cmpxchg(&n->state, val, new) != val);
6075
6076         if (unlikely(val & NAPIF_STATE_MISSED)) {
6077                 __napi_schedule(n);
6078                 return false;
6079         }
6080
6081         return true;
6082 }
6083 EXPORT_SYMBOL(napi_complete_done);
6084
6085 /* must be called under rcu_read_lock(), as we dont take a reference */
6086 static struct napi_struct *napi_by_id(unsigned int napi_id)
6087 {
6088         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6089         struct napi_struct *napi;
6090
6091         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6092                 if (napi->napi_id == napi_id)
6093                         return napi;
6094
6095         return NULL;
6096 }
6097
6098 #if defined(CONFIG_NET_RX_BUSY_POLL)
6099
6100 #define BUSY_POLL_BUDGET 8
6101
6102 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6103 {
6104         int rc;
6105
6106         /* Busy polling means there is a high chance device driver hard irq
6107          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6108          * set in napi_schedule_prep().
6109          * Since we are about to call napi->poll() once more, we can safely
6110          * clear NAPI_STATE_MISSED.
6111          *
6112          * Note: x86 could use a single "lock and ..." instruction
6113          * to perform these two clear_bit()
6114          */
6115         clear_bit(NAPI_STATE_MISSED, &napi->state);
6116         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6117
6118         local_bh_disable();
6119
6120         /* All we really want here is to re-enable device interrupts.
6121          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6122          */
6123         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6124         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6125         netpoll_poll_unlock(have_poll_lock);
6126         if (rc == BUSY_POLL_BUDGET)
6127                 __napi_schedule(napi);
6128         local_bh_enable();
6129 }
6130
6131 void napi_busy_loop(unsigned int napi_id,
6132                     bool (*loop_end)(void *, unsigned long),
6133                     void *loop_end_arg)
6134 {
6135         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6136         int (*napi_poll)(struct napi_struct *napi, int budget);
6137         void *have_poll_lock = NULL;
6138         struct napi_struct *napi;
6139
6140 restart:
6141         napi_poll = NULL;
6142
6143         rcu_read_lock();
6144
6145         napi = napi_by_id(napi_id);
6146         if (!napi)
6147                 goto out;
6148
6149         preempt_disable();
6150         for (;;) {
6151                 int work = 0;
6152
6153                 local_bh_disable();
6154                 if (!napi_poll) {
6155                         unsigned long val = READ_ONCE(napi->state);
6156
6157                         /* If multiple threads are competing for this napi,
6158                          * we avoid dirtying napi->state as much as we can.
6159                          */
6160                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6161                                    NAPIF_STATE_IN_BUSY_POLL))
6162                                 goto count;
6163                         if (cmpxchg(&napi->state, val,
6164                                     val | NAPIF_STATE_IN_BUSY_POLL |
6165                                           NAPIF_STATE_SCHED) != val)
6166                                 goto count;
6167                         have_poll_lock = netpoll_poll_lock(napi);
6168                         napi_poll = napi->poll;
6169                 }
6170                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6171                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6172 count:
6173                 if (work > 0)
6174                         __NET_ADD_STATS(dev_net(napi->dev),
6175                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6176                 local_bh_enable();
6177
6178                 if (!loop_end || loop_end(loop_end_arg, start_time))
6179                         break;
6180
6181                 if (unlikely(need_resched())) {
6182                         if (napi_poll)
6183                                 busy_poll_stop(napi, have_poll_lock);
6184                         preempt_enable();
6185                         rcu_read_unlock();
6186                         cond_resched();
6187                         if (loop_end(loop_end_arg, start_time))
6188                                 return;
6189                         goto restart;
6190                 }
6191                 cpu_relax();
6192         }
6193         if (napi_poll)
6194                 busy_poll_stop(napi, have_poll_lock);
6195         preempt_enable();
6196 out:
6197         rcu_read_unlock();
6198 }
6199 EXPORT_SYMBOL(napi_busy_loop);
6200
6201 #endif /* CONFIG_NET_RX_BUSY_POLL */
6202
6203 static void napi_hash_add(struct napi_struct *napi)
6204 {
6205         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6206             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6207                 return;
6208
6209         spin_lock(&napi_hash_lock);
6210
6211         /* 0..NR_CPUS range is reserved for sender_cpu use */
6212         do {
6213                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6214                         napi_gen_id = MIN_NAPI_ID;
6215         } while (napi_by_id(napi_gen_id));
6216         napi->napi_id = napi_gen_id;
6217
6218         hlist_add_head_rcu(&napi->napi_hash_node,
6219                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6220
6221         spin_unlock(&napi_hash_lock);
6222 }
6223
6224 /* Warning : caller is responsible to make sure rcu grace period
6225  * is respected before freeing memory containing @napi
6226  */
6227 bool napi_hash_del(struct napi_struct *napi)
6228 {
6229         bool rcu_sync_needed = false;
6230
6231         spin_lock(&napi_hash_lock);
6232
6233         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6234                 rcu_sync_needed = true;
6235                 hlist_del_rcu(&napi->napi_hash_node);
6236         }
6237         spin_unlock(&napi_hash_lock);
6238         return rcu_sync_needed;
6239 }
6240 EXPORT_SYMBOL_GPL(napi_hash_del);
6241
6242 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6243 {
6244         struct napi_struct *napi;
6245
6246         napi = container_of(timer, struct napi_struct, timer);
6247
6248         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6249          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6250          */
6251         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6252             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6253                 __napi_schedule_irqoff(napi);
6254
6255         return HRTIMER_NORESTART;
6256 }
6257
6258 static void init_gro_hash(struct napi_struct *napi)
6259 {
6260         int i;
6261
6262         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6263                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6264                 napi->gro_hash[i].count = 0;
6265         }
6266         napi->gro_bitmask = 0;
6267 }
6268
6269 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6270                     int (*poll)(struct napi_struct *, int), int weight)
6271 {
6272         INIT_LIST_HEAD(&napi->poll_list);
6273         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6274         napi->timer.function = napi_watchdog;
6275         init_gro_hash(napi);
6276         napi->skb = NULL;
6277         napi->poll = poll;
6278         if (weight > NAPI_POLL_WEIGHT)
6279                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6280                                 weight);
6281         napi->weight = weight;
6282         list_add(&napi->dev_list, &dev->napi_list);
6283         napi->dev = dev;
6284 #ifdef CONFIG_NETPOLL
6285         napi->poll_owner = -1;
6286 #endif
6287         set_bit(NAPI_STATE_SCHED, &napi->state);
6288         napi_hash_add(napi);
6289 }
6290 EXPORT_SYMBOL(netif_napi_add);
6291
6292 void napi_disable(struct napi_struct *n)
6293 {
6294         might_sleep();
6295         set_bit(NAPI_STATE_DISABLE, &n->state);
6296
6297         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6298                 msleep(1);
6299         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6300                 msleep(1);
6301
6302         hrtimer_cancel(&n->timer);
6303
6304         clear_bit(NAPI_STATE_DISABLE, &n->state);
6305 }
6306 EXPORT_SYMBOL(napi_disable);
6307
6308 static void flush_gro_hash(struct napi_struct *napi)
6309 {
6310         int i;
6311
6312         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6313                 struct sk_buff *skb, *n;
6314
6315                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6316                         kfree_skb(skb);
6317                 napi->gro_hash[i].count = 0;
6318         }
6319 }
6320
6321 /* Must be called in process context */
6322 void netif_napi_del(struct napi_struct *napi)
6323 {
6324         might_sleep();
6325         if (napi_hash_del(napi))
6326                 synchronize_net();
6327         list_del_init(&napi->dev_list);
6328         napi_free_frags(napi);
6329
6330         flush_gro_hash(napi);
6331         napi->gro_bitmask = 0;
6332 }
6333 EXPORT_SYMBOL(netif_napi_del);
6334
6335 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6336 {
6337         void *have;
6338         int work, weight;
6339
6340         list_del_init(&n->poll_list);
6341
6342         have = netpoll_poll_lock(n);
6343
6344         weight = n->weight;
6345
6346         /* This NAPI_STATE_SCHED test is for avoiding a race
6347          * with netpoll's poll_napi().  Only the entity which
6348          * obtains the lock and sees NAPI_STATE_SCHED set will
6349          * actually make the ->poll() call.  Therefore we avoid
6350          * accidentally calling ->poll() when NAPI is not scheduled.
6351          */
6352         work = 0;
6353         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6354                 work = n->poll(n, weight);
6355                 trace_napi_poll(n, work, weight);
6356         }
6357
6358         WARN_ON_ONCE(work > weight);
6359
6360         if (likely(work < weight))
6361                 goto out_unlock;
6362
6363         /* Drivers must not modify the NAPI state if they
6364          * consume the entire weight.  In such cases this code
6365          * still "owns" the NAPI instance and therefore can
6366          * move the instance around on the list at-will.
6367          */
6368         if (unlikely(napi_disable_pending(n))) {
6369                 napi_complete(n);
6370                 goto out_unlock;
6371         }
6372
6373         if (n->gro_bitmask) {
6374                 /* flush too old packets
6375                  * If HZ < 1000, flush all packets.
6376                  */
6377                 napi_gro_flush(n, HZ >= 1000);
6378         }
6379
6380         /* Some drivers may have called napi_schedule
6381          * prior to exhausting their budget.
6382          */
6383         if (unlikely(!list_empty(&n->poll_list))) {
6384                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6385                              n->dev ? n->dev->name : "backlog");
6386                 goto out_unlock;
6387         }
6388
6389         list_add_tail(&n->poll_list, repoll);
6390
6391 out_unlock:
6392         netpoll_poll_unlock(have);
6393
6394         return work;
6395 }
6396
6397 static __latent_entropy void net_rx_action(struct softirq_action *h)
6398 {
6399         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6400         unsigned long time_limit = jiffies +
6401                 usecs_to_jiffies(netdev_budget_usecs);
6402         int budget = netdev_budget;
6403         LIST_HEAD(list);
6404         LIST_HEAD(repoll);
6405
6406         local_irq_disable();
6407         list_splice_init(&sd->poll_list, &list);
6408         local_irq_enable();
6409
6410         for (;;) {
6411                 struct napi_struct *n;
6412
6413                 if (list_empty(&list)) {
6414                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6415                                 goto out;
6416                         break;
6417                 }
6418
6419                 n = list_first_entry(&list, struct napi_struct, poll_list);
6420                 budget -= napi_poll(n, &repoll);
6421
6422                 /* If softirq window is exhausted then punt.
6423                  * Allow this to run for 2 jiffies since which will allow
6424                  * an average latency of 1.5/HZ.
6425                  */
6426                 if (unlikely(budget <= 0 ||
6427                              time_after_eq(jiffies, time_limit))) {
6428                         sd->time_squeeze++;
6429                         break;
6430                 }
6431         }
6432
6433         local_irq_disable();
6434
6435         list_splice_tail_init(&sd->poll_list, &list);
6436         list_splice_tail(&repoll, &list);
6437         list_splice(&list, &sd->poll_list);
6438         if (!list_empty(&sd->poll_list))
6439                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6440
6441         net_rps_action_and_irq_enable(sd);
6442 out:
6443         __kfree_skb_flush();
6444 }
6445
6446 struct netdev_adjacent {
6447         struct net_device *dev;
6448
6449         /* upper master flag, there can only be one master device per list */
6450         bool master;
6451
6452         /* counter for the number of times this device was added to us */
6453         u16 ref_nr;
6454
6455         /* private field for the users */
6456         void *private;
6457
6458         struct list_head list;
6459         struct rcu_head rcu;
6460 };
6461
6462 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6463                                                  struct list_head *adj_list)
6464 {
6465         struct netdev_adjacent *adj;
6466
6467         list_for_each_entry(adj, adj_list, list) {
6468                 if (adj->dev == adj_dev)
6469                         return adj;
6470         }
6471         return NULL;
6472 }
6473
6474 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6475 {
6476         struct net_device *dev = data;
6477
6478         return upper_dev == dev;
6479 }
6480
6481 /**
6482  * netdev_has_upper_dev - Check if device is linked to an upper device
6483  * @dev: device
6484  * @upper_dev: upper device to check
6485  *
6486  * Find out if a device is linked to specified upper device and return true
6487  * in case it is. Note that this checks only immediate upper device,
6488  * not through a complete stack of devices. The caller must hold the RTNL lock.
6489  */
6490 bool netdev_has_upper_dev(struct net_device *dev,
6491                           struct net_device *upper_dev)
6492 {
6493         ASSERT_RTNL();
6494
6495         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6496                                              upper_dev);
6497 }
6498 EXPORT_SYMBOL(netdev_has_upper_dev);
6499
6500 /**
6501  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6502  * @dev: device
6503  * @upper_dev: upper device to check
6504  *
6505  * Find out if a device is linked to specified upper device and return true
6506  * in case it is. Note that this checks the entire upper device chain.
6507  * The caller must hold rcu lock.
6508  */
6509
6510 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6511                                   struct net_device *upper_dev)
6512 {
6513         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6514                                                upper_dev);
6515 }
6516 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6517
6518 /**
6519  * netdev_has_any_upper_dev - Check if device is linked to some device
6520  * @dev: device
6521  *
6522  * Find out if a device is linked to an upper device and return true in case
6523  * it is. The caller must hold the RTNL lock.
6524  */
6525 bool netdev_has_any_upper_dev(struct net_device *dev)
6526 {
6527         ASSERT_RTNL();
6528
6529         return !list_empty(&dev->adj_list.upper);
6530 }
6531 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6532
6533 /**
6534  * netdev_master_upper_dev_get - Get master upper device
6535  * @dev: device
6536  *
6537  * Find a master upper device and return pointer to it or NULL in case
6538  * it's not there. The caller must hold the RTNL lock.
6539  */
6540 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6541 {
6542         struct netdev_adjacent *upper;
6543
6544         ASSERT_RTNL();
6545
6546         if (list_empty(&dev->adj_list.upper))
6547                 return NULL;
6548
6549         upper = list_first_entry(&dev->adj_list.upper,
6550                                  struct netdev_adjacent, list);
6551         if (likely(upper->master))
6552                 return upper->dev;
6553         return NULL;
6554 }
6555 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6556
6557 /**
6558  * netdev_has_any_lower_dev - Check if device is linked to some device
6559  * @dev: device
6560  *
6561  * Find out if a device is linked to a lower device and return true in case
6562  * it is. The caller must hold the RTNL lock.
6563  */
6564 static bool netdev_has_any_lower_dev(struct net_device *dev)
6565 {
6566         ASSERT_RTNL();
6567
6568         return !list_empty(&dev->adj_list.lower);
6569 }
6570
6571 void *netdev_adjacent_get_private(struct list_head *adj_list)
6572 {
6573         struct netdev_adjacent *adj;
6574
6575         adj = list_entry(adj_list, struct netdev_adjacent, list);
6576
6577         return adj->private;
6578 }
6579 EXPORT_SYMBOL(netdev_adjacent_get_private);
6580
6581 /**
6582  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6583  * @dev: device
6584  * @iter: list_head ** of the current position
6585  *
6586  * Gets the next device from the dev's upper list, starting from iter
6587  * position. The caller must hold RCU read lock.
6588  */
6589 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6590                                                  struct list_head **iter)
6591 {
6592         struct netdev_adjacent *upper;
6593
6594         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6595
6596         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6597
6598         if (&upper->list == &dev->adj_list.upper)
6599                 return NULL;
6600
6601         *iter = &upper->list;
6602
6603         return upper->dev;
6604 }
6605 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6606
6607 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6608                                                     struct list_head **iter)
6609 {
6610         struct netdev_adjacent *upper;
6611
6612         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6613
6614         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6615
6616         if (&upper->list == &dev->adj_list.upper)
6617                 return NULL;
6618
6619         *iter = &upper->list;
6620
6621         return upper->dev;
6622 }
6623
6624 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6625                                   int (*fn)(struct net_device *dev,
6626                                             void *data),
6627                                   void *data)
6628 {
6629         struct net_device *udev;
6630         struct list_head *iter;
6631         int ret;
6632
6633         for (iter = &dev->adj_list.upper,
6634              udev = netdev_next_upper_dev_rcu(dev, &iter);
6635              udev;
6636              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6637                 /* first is the upper device itself */
6638                 ret = fn(udev, data);
6639                 if (ret)
6640                         return ret;
6641
6642                 /* then look at all of its upper devices */
6643                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6644                 if (ret)
6645                         return ret;
6646         }
6647
6648         return 0;
6649 }
6650 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6651
6652 /**
6653  * netdev_lower_get_next_private - Get the next ->private from the
6654  *                                 lower neighbour list
6655  * @dev: device
6656  * @iter: list_head ** of the current position
6657  *
6658  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6659  * list, starting from iter position. The caller must hold either hold the
6660  * RTNL lock or its own locking that guarantees that the neighbour lower
6661  * list will remain unchanged.
6662  */
6663 void *netdev_lower_get_next_private(struct net_device *dev,
6664                                     struct list_head **iter)
6665 {
6666         struct netdev_adjacent *lower;
6667
6668         lower = list_entry(*iter, struct netdev_adjacent, list);
6669
6670         if (&lower->list == &dev->adj_list.lower)
6671                 return NULL;
6672
6673         *iter = lower->list.next;
6674
6675         return lower->private;
6676 }
6677 EXPORT_SYMBOL(netdev_lower_get_next_private);
6678
6679 /**
6680  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6681  *                                     lower neighbour list, RCU
6682  *                                     variant
6683  * @dev: device
6684  * @iter: list_head ** of the current position
6685  *
6686  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6687  * list, starting from iter position. The caller must hold RCU read lock.
6688  */
6689 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6690                                         struct list_head **iter)
6691 {
6692         struct netdev_adjacent *lower;
6693
6694         WARN_ON_ONCE(!rcu_read_lock_held());
6695
6696         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6697
6698         if (&lower->list == &dev->adj_list.lower)
6699                 return NULL;
6700
6701         *iter = &lower->list;
6702
6703         return lower->private;
6704 }
6705 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6706
6707 /**
6708  * netdev_lower_get_next - Get the next device from the lower neighbour
6709  *                         list
6710  * @dev: device
6711  * @iter: list_head ** of the current position
6712  *
6713  * Gets the next netdev_adjacent from the dev's lower neighbour
6714  * list, starting from iter position. The caller must hold RTNL lock or
6715  * its own locking that guarantees that the neighbour lower
6716  * list will remain unchanged.
6717  */
6718 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6719 {
6720         struct netdev_adjacent *lower;
6721
6722         lower = list_entry(*iter, struct netdev_adjacent, list);
6723
6724         if (&lower->list == &dev->adj_list.lower)
6725                 return NULL;
6726
6727         *iter = lower->list.next;
6728
6729         return lower->dev;
6730 }
6731 EXPORT_SYMBOL(netdev_lower_get_next);
6732
6733 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6734                                                 struct list_head **iter)
6735 {
6736         struct netdev_adjacent *lower;
6737
6738         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6739
6740         if (&lower->list == &dev->adj_list.lower)
6741                 return NULL;
6742
6743         *iter = &lower->list;
6744
6745         return lower->dev;
6746 }
6747
6748 int netdev_walk_all_lower_dev(struct net_device *dev,
6749                               int (*fn)(struct net_device *dev,
6750                                         void *data),
6751                               void *data)
6752 {
6753         struct net_device *ldev;
6754         struct list_head *iter;
6755         int ret;
6756
6757         for (iter = &dev->adj_list.lower,
6758              ldev = netdev_next_lower_dev(dev, &iter);
6759              ldev;
6760              ldev = netdev_next_lower_dev(dev, &iter)) {
6761                 /* first is the lower device itself */
6762                 ret = fn(ldev, data);
6763                 if (ret)
6764                         return ret;
6765
6766                 /* then look at all of its lower devices */
6767                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6768                 if (ret)
6769                         return ret;
6770         }
6771
6772         return 0;
6773 }
6774 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6775
6776 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6777                                                     struct list_head **iter)
6778 {
6779         struct netdev_adjacent *lower;
6780
6781         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6782         if (&lower->list == &dev->adj_list.lower)
6783                 return NULL;
6784
6785         *iter = &lower->list;
6786
6787         return lower->dev;
6788 }
6789
6790 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6791                                   int (*fn)(struct net_device *dev,
6792                                             void *data),
6793                                   void *data)
6794 {
6795         struct net_device *ldev;
6796         struct list_head *iter;
6797         int ret;
6798
6799         for (iter = &dev->adj_list.lower,
6800              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6801              ldev;
6802              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6803                 /* first is the lower device itself */
6804                 ret = fn(ldev, data);
6805                 if (ret)
6806                         return ret;
6807
6808                 /* then look at all of its lower devices */
6809                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6810                 if (ret)
6811                         return ret;
6812         }
6813
6814         return 0;
6815 }
6816 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6817
6818 /**
6819  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6820  *                                     lower neighbour list, RCU
6821  *                                     variant
6822  * @dev: device
6823  *
6824  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6825  * list. The caller must hold RCU read lock.
6826  */
6827 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6828 {
6829         struct netdev_adjacent *lower;
6830
6831         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6832                         struct netdev_adjacent, list);
6833         if (lower)
6834                 return lower->private;
6835         return NULL;
6836 }
6837 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6838
6839 /**
6840  * netdev_master_upper_dev_get_rcu - Get master upper device
6841  * @dev: device
6842  *
6843  * Find a master upper device and return pointer to it or NULL in case
6844  * it's not there. The caller must hold the RCU read lock.
6845  */
6846 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6847 {
6848         struct netdev_adjacent *upper;
6849
6850         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6851                                        struct netdev_adjacent, list);
6852         if (upper && likely(upper->master))
6853                 return upper->dev;
6854         return NULL;
6855 }
6856 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6857
6858 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6859                               struct net_device *adj_dev,
6860                               struct list_head *dev_list)
6861 {
6862         char linkname[IFNAMSIZ+7];
6863
6864         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6865                 "upper_%s" : "lower_%s", adj_dev->name);
6866         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6867                                  linkname);
6868 }
6869 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6870                                char *name,
6871                                struct list_head *dev_list)
6872 {
6873         char linkname[IFNAMSIZ+7];
6874
6875         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6876                 "upper_%s" : "lower_%s", name);
6877         sysfs_remove_link(&(dev->dev.kobj), linkname);
6878 }
6879
6880 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6881                                                  struct net_device *adj_dev,
6882                                                  struct list_head *dev_list)
6883 {
6884         return (dev_list == &dev->adj_list.upper ||
6885                 dev_list == &dev->adj_list.lower) &&
6886                 net_eq(dev_net(dev), dev_net(adj_dev));
6887 }
6888
6889 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6890                                         struct net_device *adj_dev,
6891                                         struct list_head *dev_list,
6892                                         void *private, bool master)
6893 {
6894         struct netdev_adjacent *adj;
6895         int ret;
6896
6897         adj = __netdev_find_adj(adj_dev, dev_list);
6898
6899         if (adj) {
6900                 adj->ref_nr += 1;
6901                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6902                          dev->name, adj_dev->name, adj->ref_nr);
6903
6904                 return 0;
6905         }
6906
6907         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6908         if (!adj)
6909                 return -ENOMEM;
6910
6911         adj->dev = adj_dev;
6912         adj->master = master;
6913         adj->ref_nr = 1;
6914         adj->private = private;
6915         dev_hold(adj_dev);
6916
6917         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6918                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6919
6920         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6921                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6922                 if (ret)
6923                         goto free_adj;
6924         }
6925
6926         /* Ensure that master link is always the first item in list. */
6927         if (master) {
6928                 ret = sysfs_create_link(&(dev->dev.kobj),
6929                                         &(adj_dev->dev.kobj), "master");
6930                 if (ret)
6931                         goto remove_symlinks;
6932
6933                 list_add_rcu(&adj->list, dev_list);
6934         } else {
6935                 list_add_tail_rcu(&adj->list, dev_list);
6936         }
6937
6938         return 0;
6939
6940 remove_symlinks:
6941         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6942                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6943 free_adj:
6944         kfree(adj);
6945         dev_put(adj_dev);
6946
6947         return ret;
6948 }
6949
6950 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6951                                          struct net_device *adj_dev,
6952                                          u16 ref_nr,
6953                                          struct list_head *dev_list)
6954 {
6955         struct netdev_adjacent *adj;
6956
6957         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6958                  dev->name, adj_dev->name, ref_nr);
6959
6960         adj = __netdev_find_adj(adj_dev, dev_list);
6961
6962         if (!adj) {
6963                 pr_err("Adjacency does not exist for device %s from %s\n",
6964                        dev->name, adj_dev->name);
6965                 WARN_ON(1);
6966                 return;
6967         }
6968
6969         if (adj->ref_nr > ref_nr) {
6970                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6971                          dev->name, adj_dev->name, ref_nr,
6972                          adj->ref_nr - ref_nr);
6973                 adj->ref_nr -= ref_nr;
6974                 return;
6975         }
6976
6977         if (adj->master)
6978                 sysfs_remove_link(&(dev->dev.kobj), "master");
6979
6980         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6981                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6982
6983         list_del_rcu(&adj->list);
6984         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6985                  adj_dev->name, dev->name, adj_dev->name);
6986         dev_put(adj_dev);
6987         kfree_rcu(adj, rcu);
6988 }
6989
6990 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6991                                             struct net_device *upper_dev,
6992                                             struct list_head *up_list,
6993                                             struct list_head *down_list,
6994                                             void *private, bool master)
6995 {
6996         int ret;
6997
6998         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6999                                            private, master);
7000         if (ret)
7001                 return ret;
7002
7003         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7004                                            private, false);
7005         if (ret) {
7006                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7007                 return ret;
7008         }
7009
7010         return 0;
7011 }
7012
7013 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7014                                                struct net_device *upper_dev,
7015                                                u16 ref_nr,
7016                                                struct list_head *up_list,
7017                                                struct list_head *down_list)
7018 {
7019         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7020         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7021 }
7022
7023 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7024                                                 struct net_device *upper_dev,
7025                                                 void *private, bool master)
7026 {
7027         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7028                                                 &dev->adj_list.upper,
7029                                                 &upper_dev->adj_list.lower,
7030                                                 private, master);
7031 }
7032
7033 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7034                                                    struct net_device *upper_dev)
7035 {
7036         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7037                                            &dev->adj_list.upper,
7038                                            &upper_dev->adj_list.lower);
7039 }
7040
7041 static int __netdev_upper_dev_link(struct net_device *dev,
7042                                    struct net_device *upper_dev, bool master,
7043                                    void *upper_priv, void *upper_info,
7044                                    struct netlink_ext_ack *extack)
7045 {
7046         struct netdev_notifier_changeupper_info changeupper_info = {
7047                 .info = {
7048                         .dev = dev,
7049                         .extack = extack,
7050                 },
7051                 .upper_dev = upper_dev,
7052                 .master = master,
7053                 .linking = true,
7054                 .upper_info = upper_info,
7055         };
7056         struct net_device *master_dev;
7057         int ret = 0;
7058
7059         ASSERT_RTNL();
7060
7061         if (dev == upper_dev)
7062                 return -EBUSY;
7063
7064         /* To prevent loops, check if dev is not upper device to upper_dev. */
7065         if (netdev_has_upper_dev(upper_dev, dev))
7066                 return -EBUSY;
7067
7068         if (!master) {
7069                 if (netdev_has_upper_dev(dev, upper_dev))
7070                         return -EEXIST;
7071         } else {
7072                 master_dev = netdev_master_upper_dev_get(dev);
7073                 if (master_dev)
7074                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7075         }
7076
7077         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7078                                             &changeupper_info.info);
7079         ret = notifier_to_errno(ret);
7080         if (ret)
7081                 return ret;
7082
7083         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7084                                                    master);
7085         if (ret)
7086                 return ret;
7087
7088         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7089                                             &changeupper_info.info);
7090         ret = notifier_to_errno(ret);
7091         if (ret)
7092                 goto rollback;
7093
7094         return 0;
7095
7096 rollback:
7097         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7098
7099         return ret;
7100 }
7101
7102 /**
7103  * netdev_upper_dev_link - Add a link to the upper device
7104  * @dev: device
7105  * @upper_dev: new upper device
7106  * @extack: netlink extended ack
7107  *
7108  * Adds a link to device which is upper to this one. The caller must hold
7109  * the RTNL lock. On a failure a negative errno code is returned.
7110  * On success the reference counts are adjusted and the function
7111  * returns zero.
7112  */
7113 int netdev_upper_dev_link(struct net_device *dev,
7114                           struct net_device *upper_dev,
7115                           struct netlink_ext_ack *extack)
7116 {
7117         return __netdev_upper_dev_link(dev, upper_dev, false,
7118                                        NULL, NULL, extack);
7119 }
7120 EXPORT_SYMBOL(netdev_upper_dev_link);
7121
7122 /**
7123  * netdev_master_upper_dev_link - Add a master link to the upper device
7124  * @dev: device
7125  * @upper_dev: new upper device
7126  * @upper_priv: upper device private
7127  * @upper_info: upper info to be passed down via notifier
7128  * @extack: netlink extended ack
7129  *
7130  * Adds a link to device which is upper to this one. In this case, only
7131  * one master upper device can be linked, although other non-master devices
7132  * might be linked as well. The caller must hold the RTNL lock.
7133  * On a failure a negative errno code is returned. On success the reference
7134  * counts are adjusted and the function returns zero.
7135  */
7136 int netdev_master_upper_dev_link(struct net_device *dev,
7137                                  struct net_device *upper_dev,
7138                                  void *upper_priv, void *upper_info,
7139                                  struct netlink_ext_ack *extack)
7140 {
7141         return __netdev_upper_dev_link(dev, upper_dev, true,
7142                                        upper_priv, upper_info, extack);
7143 }
7144 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7145
7146 /**
7147  * netdev_upper_dev_unlink - Removes a link to upper device
7148  * @dev: device
7149  * @upper_dev: new upper device
7150  *
7151  * Removes a link to device which is upper to this one. The caller must hold
7152  * the RTNL lock.
7153  */
7154 void netdev_upper_dev_unlink(struct net_device *dev,
7155                              struct net_device *upper_dev)
7156 {
7157         struct netdev_notifier_changeupper_info changeupper_info = {
7158                 .info = {
7159                         .dev = dev,
7160                 },
7161                 .upper_dev = upper_dev,
7162                 .linking = false,
7163         };
7164
7165         ASSERT_RTNL();
7166
7167         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7168
7169         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7170                                       &changeupper_info.info);
7171
7172         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7173
7174         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7175                                       &changeupper_info.info);
7176 }
7177 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7178
7179 /**
7180  * netdev_bonding_info_change - Dispatch event about slave change
7181  * @dev: device
7182  * @bonding_info: info to dispatch
7183  *
7184  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7185  * The caller must hold the RTNL lock.
7186  */
7187 void netdev_bonding_info_change(struct net_device *dev,
7188                                 struct netdev_bonding_info *bonding_info)
7189 {
7190         struct netdev_notifier_bonding_info info = {
7191                 .info.dev = dev,
7192         };
7193
7194         memcpy(&info.bonding_info, bonding_info,
7195                sizeof(struct netdev_bonding_info));
7196         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7197                                       &info.info);
7198 }
7199 EXPORT_SYMBOL(netdev_bonding_info_change);
7200
7201 static void netdev_adjacent_add_links(struct net_device *dev)
7202 {
7203         struct netdev_adjacent *iter;
7204
7205         struct net *net = dev_net(dev);
7206
7207         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7208                 if (!net_eq(net, dev_net(iter->dev)))
7209                         continue;
7210                 netdev_adjacent_sysfs_add(iter->dev, dev,
7211                                           &iter->dev->adj_list.lower);
7212                 netdev_adjacent_sysfs_add(dev, iter->dev,
7213                                           &dev->adj_list.upper);
7214         }
7215
7216         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7217                 if (!net_eq(net, dev_net(iter->dev)))
7218                         continue;
7219                 netdev_adjacent_sysfs_add(iter->dev, dev,
7220                                           &iter->dev->adj_list.upper);
7221                 netdev_adjacent_sysfs_add(dev, iter->dev,
7222                                           &dev->adj_list.lower);
7223         }
7224 }
7225
7226 static void netdev_adjacent_del_links(struct net_device *dev)
7227 {
7228         struct netdev_adjacent *iter;
7229
7230         struct net *net = dev_net(dev);
7231
7232         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7233                 if (!net_eq(net, dev_net(iter->dev)))
7234                         continue;
7235                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7236                                           &iter->dev->adj_list.lower);
7237                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7238                                           &dev->adj_list.upper);
7239         }
7240
7241         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7242                 if (!net_eq(net, dev_net(iter->dev)))
7243                         continue;
7244                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7245                                           &iter->dev->adj_list.upper);
7246                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7247                                           &dev->adj_list.lower);
7248         }
7249 }
7250
7251 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7252 {
7253         struct netdev_adjacent *iter;
7254
7255         struct net *net = dev_net(dev);
7256
7257         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7258                 if (!net_eq(net, dev_net(iter->dev)))
7259                         continue;
7260                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7261                                           &iter->dev->adj_list.lower);
7262                 netdev_adjacent_sysfs_add(iter->dev, dev,
7263                                           &iter->dev->adj_list.lower);
7264         }
7265
7266         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7267                 if (!net_eq(net, dev_net(iter->dev)))
7268                         continue;
7269                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7270                                           &iter->dev->adj_list.upper);
7271                 netdev_adjacent_sysfs_add(iter->dev, dev,
7272                                           &iter->dev->adj_list.upper);
7273         }
7274 }
7275
7276 void *netdev_lower_dev_get_private(struct net_device *dev,
7277                                    struct net_device *lower_dev)
7278 {
7279         struct netdev_adjacent *lower;
7280
7281         if (!lower_dev)
7282                 return NULL;
7283         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7284         if (!lower)
7285                 return NULL;
7286
7287         return lower->private;
7288 }
7289 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7290
7291
7292 int dev_get_nest_level(struct net_device *dev)
7293 {
7294         struct net_device *lower = NULL;
7295         struct list_head *iter;
7296         int max_nest = -1;
7297         int nest;
7298
7299         ASSERT_RTNL();
7300
7301         netdev_for_each_lower_dev(dev, lower, iter) {
7302                 nest = dev_get_nest_level(lower);
7303                 if (max_nest < nest)
7304                         max_nest = nest;
7305         }
7306
7307         return max_nest + 1;
7308 }
7309 EXPORT_SYMBOL(dev_get_nest_level);
7310
7311 /**
7312  * netdev_lower_change - Dispatch event about lower device state change
7313  * @lower_dev: device
7314  * @lower_state_info: state to dispatch
7315  *
7316  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7317  * The caller must hold the RTNL lock.
7318  */
7319 void netdev_lower_state_changed(struct net_device *lower_dev,
7320                                 void *lower_state_info)
7321 {
7322         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7323                 .info.dev = lower_dev,
7324         };
7325
7326         ASSERT_RTNL();
7327         changelowerstate_info.lower_state_info = lower_state_info;
7328         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7329                                       &changelowerstate_info.info);
7330 }
7331 EXPORT_SYMBOL(netdev_lower_state_changed);
7332
7333 static void dev_change_rx_flags(struct net_device *dev, int flags)
7334 {
7335         const struct net_device_ops *ops = dev->netdev_ops;
7336
7337         if (ops->ndo_change_rx_flags)
7338                 ops->ndo_change_rx_flags(dev, flags);
7339 }
7340
7341 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7342 {
7343         unsigned int old_flags = dev->flags;
7344         kuid_t uid;
7345         kgid_t gid;
7346
7347         ASSERT_RTNL();
7348
7349         dev->flags |= IFF_PROMISC;
7350         dev->promiscuity += inc;
7351         if (dev->promiscuity == 0) {
7352                 /*
7353                  * Avoid overflow.
7354                  * If inc causes overflow, untouch promisc and return error.
7355                  */
7356                 if (inc < 0)
7357                         dev->flags &= ~IFF_PROMISC;
7358                 else {
7359                         dev->promiscuity -= inc;
7360                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7361                                 dev->name);
7362                         return -EOVERFLOW;
7363                 }
7364         }
7365         if (dev->flags != old_flags) {
7366                 pr_info("device %s %s promiscuous mode\n",
7367                         dev->name,
7368                         dev->flags & IFF_PROMISC ? "entered" : "left");
7369                 if (audit_enabled) {
7370                         current_uid_gid(&uid, &gid);
7371                         audit_log(audit_context(), GFP_ATOMIC,
7372                                   AUDIT_ANOM_PROMISCUOUS,
7373                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7374                                   dev->name, (dev->flags & IFF_PROMISC),
7375                                   (old_flags & IFF_PROMISC),
7376                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7377                                   from_kuid(&init_user_ns, uid),
7378                                   from_kgid(&init_user_ns, gid),
7379                                   audit_get_sessionid(current));
7380                 }
7381
7382                 dev_change_rx_flags(dev, IFF_PROMISC);
7383         }
7384         if (notify)
7385                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7386         return 0;
7387 }
7388
7389 /**
7390  *      dev_set_promiscuity     - update promiscuity count on a device
7391  *      @dev: device
7392  *      @inc: modifier
7393  *
7394  *      Add or remove promiscuity from a device. While the count in the device
7395  *      remains above zero the interface remains promiscuous. Once it hits zero
7396  *      the device reverts back to normal filtering operation. A negative inc
7397  *      value is used to drop promiscuity on the device.
7398  *      Return 0 if successful or a negative errno code on error.
7399  */
7400 int dev_set_promiscuity(struct net_device *dev, int inc)
7401 {
7402         unsigned int old_flags = dev->flags;
7403         int err;
7404
7405         err = __dev_set_promiscuity(dev, inc, true);
7406         if (err < 0)
7407                 return err;
7408         if (dev->flags != old_flags)
7409                 dev_set_rx_mode(dev);
7410         return err;
7411 }
7412 EXPORT_SYMBOL(dev_set_promiscuity);
7413
7414 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7415 {
7416         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7417
7418         ASSERT_RTNL();
7419
7420         dev->flags |= IFF_ALLMULTI;
7421         dev->allmulti += inc;
7422         if (dev->allmulti == 0) {
7423                 /*
7424                  * Avoid overflow.
7425                  * If inc causes overflow, untouch allmulti and return error.
7426                  */
7427                 if (inc < 0)
7428                         dev->flags &= ~IFF_ALLMULTI;
7429                 else {
7430                         dev->allmulti -= inc;
7431                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7432                                 dev->name);
7433                         return -EOVERFLOW;
7434                 }
7435         }
7436         if (dev->flags ^ old_flags) {
7437                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7438                 dev_set_rx_mode(dev);
7439                 if (notify)
7440                         __dev_notify_flags(dev, old_flags,
7441                                            dev->gflags ^ old_gflags);
7442         }
7443         return 0;
7444 }
7445
7446 /**
7447  *      dev_set_allmulti        - update allmulti count on a device
7448  *      @dev: device
7449  *      @inc: modifier
7450  *
7451  *      Add or remove reception of all multicast frames to a device. While the
7452  *      count in the device remains above zero the interface remains listening
7453  *      to all interfaces. Once it hits zero the device reverts back to normal
7454  *      filtering operation. A negative @inc value is used to drop the counter
7455  *      when releasing a resource needing all multicasts.
7456  *      Return 0 if successful or a negative errno code on error.
7457  */
7458
7459 int dev_set_allmulti(struct net_device *dev, int inc)
7460 {
7461         return __dev_set_allmulti(dev, inc, true);
7462 }
7463 EXPORT_SYMBOL(dev_set_allmulti);
7464
7465 /*
7466  *      Upload unicast and multicast address lists to device and
7467  *      configure RX filtering. When the device doesn't support unicast
7468  *      filtering it is put in promiscuous mode while unicast addresses
7469  *      are present.
7470  */
7471 void __dev_set_rx_mode(struct net_device *dev)
7472 {
7473         const struct net_device_ops *ops = dev->netdev_ops;
7474
7475         /* dev_open will call this function so the list will stay sane. */
7476         if (!(dev->flags&IFF_UP))
7477                 return;
7478
7479         if (!netif_device_present(dev))
7480                 return;
7481
7482         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7483                 /* Unicast addresses changes may only happen under the rtnl,
7484                  * therefore calling __dev_set_promiscuity here is safe.
7485                  */
7486                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7487                         __dev_set_promiscuity(dev, 1, false);
7488                         dev->uc_promisc = true;
7489                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7490                         __dev_set_promiscuity(dev, -1, false);
7491                         dev->uc_promisc = false;
7492                 }
7493         }
7494
7495         if (ops->ndo_set_rx_mode)
7496                 ops->ndo_set_rx_mode(dev);
7497 }
7498
7499 void dev_set_rx_mode(struct net_device *dev)
7500 {
7501         netif_addr_lock_bh(dev);
7502         __dev_set_rx_mode(dev);
7503         netif_addr_unlock_bh(dev);
7504 }
7505
7506 /**
7507  *      dev_get_flags - get flags reported to userspace
7508  *      @dev: device
7509  *
7510  *      Get the combination of flag bits exported through APIs to userspace.
7511  */
7512 unsigned int dev_get_flags(const struct net_device *dev)
7513 {
7514         unsigned int flags;
7515
7516         flags = (dev->flags & ~(IFF_PROMISC |
7517                                 IFF_ALLMULTI |
7518                                 IFF_RUNNING |
7519                                 IFF_LOWER_UP |
7520                                 IFF_DORMANT)) |
7521                 (dev->gflags & (IFF_PROMISC |
7522                                 IFF_ALLMULTI));
7523
7524         if (netif_running(dev)) {
7525                 if (netif_oper_up(dev))
7526                         flags |= IFF_RUNNING;
7527                 if (netif_carrier_ok(dev))
7528                         flags |= IFF_LOWER_UP;
7529                 if (netif_dormant(dev))
7530                         flags |= IFF_DORMANT;
7531         }
7532
7533         return flags;
7534 }
7535 EXPORT_SYMBOL(dev_get_flags);
7536
7537 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7538                        struct netlink_ext_ack *extack)
7539 {
7540         unsigned int old_flags = dev->flags;
7541         int ret;
7542
7543         ASSERT_RTNL();
7544
7545         /*
7546          *      Set the flags on our device.
7547          */
7548
7549         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7550                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7551                                IFF_AUTOMEDIA)) |
7552                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7553                                     IFF_ALLMULTI));
7554
7555         /*
7556          *      Load in the correct multicast list now the flags have changed.
7557          */
7558
7559         if ((old_flags ^ flags) & IFF_MULTICAST)
7560                 dev_change_rx_flags(dev, IFF_MULTICAST);
7561
7562         dev_set_rx_mode(dev);
7563
7564         /*
7565          *      Have we downed the interface. We handle IFF_UP ourselves
7566          *      according to user attempts to set it, rather than blindly
7567          *      setting it.
7568          */
7569
7570         ret = 0;
7571         if ((old_flags ^ flags) & IFF_UP) {
7572                 if (old_flags & IFF_UP)
7573                         __dev_close(dev);
7574                 else
7575                         ret = __dev_open(dev, extack);
7576         }
7577
7578         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7579                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7580                 unsigned int old_flags = dev->flags;
7581
7582                 dev->gflags ^= IFF_PROMISC;
7583
7584                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7585                         if (dev->flags != old_flags)
7586                                 dev_set_rx_mode(dev);
7587         }
7588
7589         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7590          * is important. Some (broken) drivers set IFF_PROMISC, when
7591          * IFF_ALLMULTI is requested not asking us and not reporting.
7592          */
7593         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7594                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7595
7596                 dev->gflags ^= IFF_ALLMULTI;
7597                 __dev_set_allmulti(dev, inc, false);
7598         }
7599
7600         return ret;
7601 }
7602
7603 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7604                         unsigned int gchanges)
7605 {
7606         unsigned int changes = dev->flags ^ old_flags;
7607
7608         if (gchanges)
7609                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7610
7611         if (changes & IFF_UP) {
7612                 if (dev->flags & IFF_UP)
7613                         call_netdevice_notifiers(NETDEV_UP, dev);
7614                 else
7615                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7616         }
7617
7618         if (dev->flags & IFF_UP &&
7619             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7620                 struct netdev_notifier_change_info change_info = {
7621                         .info = {
7622                                 .dev = dev,
7623                         },
7624                         .flags_changed = changes,
7625                 };
7626
7627                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7628         }
7629 }
7630
7631 /**
7632  *      dev_change_flags - change device settings
7633  *      @dev: device
7634  *      @flags: device state flags
7635  *      @extack: netlink extended ack
7636  *
7637  *      Change settings on device based state flags. The flags are
7638  *      in the userspace exported format.
7639  */
7640 int dev_change_flags(struct net_device *dev, unsigned int flags,
7641                      struct netlink_ext_ack *extack)
7642 {
7643         int ret;
7644         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7645
7646         ret = __dev_change_flags(dev, flags, extack);
7647         if (ret < 0)
7648                 return ret;
7649
7650         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7651         __dev_notify_flags(dev, old_flags, changes);
7652         return ret;
7653 }
7654 EXPORT_SYMBOL(dev_change_flags);
7655
7656 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7657 {
7658         const struct net_device_ops *ops = dev->netdev_ops;
7659
7660         if (ops->ndo_change_mtu)
7661                 return ops->ndo_change_mtu(dev, new_mtu);
7662
7663         dev->mtu = new_mtu;
7664         return 0;
7665 }
7666 EXPORT_SYMBOL(__dev_set_mtu);
7667
7668 /**
7669  *      dev_set_mtu_ext - Change maximum transfer unit
7670  *      @dev: device
7671  *      @new_mtu: new transfer unit
7672  *      @extack: netlink extended ack
7673  *
7674  *      Change the maximum transfer size of the network device.
7675  */
7676 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7677                     struct netlink_ext_ack *extack)
7678 {
7679         int err, orig_mtu;
7680
7681         if (new_mtu == dev->mtu)
7682                 return 0;
7683
7684         /* MTU must be positive, and in range */
7685         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7686                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7687                 return -EINVAL;
7688         }
7689
7690         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7691                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7692                 return -EINVAL;
7693         }
7694
7695         if (!netif_device_present(dev))
7696                 return -ENODEV;
7697
7698         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7699         err = notifier_to_errno(err);
7700         if (err)
7701                 return err;
7702
7703         orig_mtu = dev->mtu;
7704         err = __dev_set_mtu(dev, new_mtu);
7705
7706         if (!err) {
7707                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7708                                                    orig_mtu);
7709                 err = notifier_to_errno(err);
7710                 if (err) {
7711                         /* setting mtu back and notifying everyone again,
7712                          * so that they have a chance to revert changes.
7713                          */
7714                         __dev_set_mtu(dev, orig_mtu);
7715                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7716                                                      new_mtu);
7717                 }
7718         }
7719         return err;
7720 }
7721
7722 int dev_set_mtu(struct net_device *dev, int new_mtu)
7723 {
7724         struct netlink_ext_ack extack;
7725         int err;
7726
7727         memset(&extack, 0, sizeof(extack));
7728         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7729         if (err && extack._msg)
7730                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7731         return err;
7732 }
7733 EXPORT_SYMBOL(dev_set_mtu);
7734
7735 /**
7736  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7737  *      @dev: device
7738  *      @new_len: new tx queue length
7739  */
7740 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7741 {
7742         unsigned int orig_len = dev->tx_queue_len;
7743         int res;
7744
7745         if (new_len != (unsigned int)new_len)
7746                 return -ERANGE;
7747
7748         if (new_len != orig_len) {
7749                 dev->tx_queue_len = new_len;
7750                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7751                 res = notifier_to_errno(res);
7752                 if (res)
7753                         goto err_rollback;
7754                 res = dev_qdisc_change_tx_queue_len(dev);
7755                 if (res)
7756                         goto err_rollback;
7757         }
7758
7759         return 0;
7760
7761 err_rollback:
7762         netdev_err(dev, "refused to change device tx_queue_len\n");
7763         dev->tx_queue_len = orig_len;
7764         return res;
7765 }
7766
7767 /**
7768  *      dev_set_group - Change group this device belongs to
7769  *      @dev: device
7770  *      @new_group: group this device should belong to
7771  */
7772 void dev_set_group(struct net_device *dev, int new_group)
7773 {
7774         dev->group = new_group;
7775 }
7776 EXPORT_SYMBOL(dev_set_group);
7777
7778 /**
7779  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7780  *      @dev: device
7781  *      @addr: new address
7782  *      @extack: netlink extended ack
7783  */
7784 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7785                               struct netlink_ext_ack *extack)
7786 {
7787         struct netdev_notifier_pre_changeaddr_info info = {
7788                 .info.dev = dev,
7789                 .info.extack = extack,
7790                 .dev_addr = addr,
7791         };
7792         int rc;
7793
7794         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7795         return notifier_to_errno(rc);
7796 }
7797 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7798
7799 /**
7800  *      dev_set_mac_address - Change Media Access Control Address
7801  *      @dev: device
7802  *      @sa: new address
7803  *      @extack: netlink extended ack
7804  *
7805  *      Change the hardware (MAC) address of the device
7806  */
7807 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7808                         struct netlink_ext_ack *extack)
7809 {
7810         const struct net_device_ops *ops = dev->netdev_ops;
7811         int err;
7812
7813         if (!ops->ndo_set_mac_address)
7814                 return -EOPNOTSUPP;
7815         if (sa->sa_family != dev->type)
7816                 return -EINVAL;
7817         if (!netif_device_present(dev))
7818                 return -ENODEV;
7819         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7820         if (err)
7821                 return err;
7822         err = ops->ndo_set_mac_address(dev, sa);
7823         if (err)
7824                 return err;
7825         dev->addr_assign_type = NET_ADDR_SET;
7826         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7827         add_device_randomness(dev->dev_addr, dev->addr_len);
7828         return 0;
7829 }
7830 EXPORT_SYMBOL(dev_set_mac_address);
7831
7832 /**
7833  *      dev_change_carrier - Change device carrier
7834  *      @dev: device
7835  *      @new_carrier: new value
7836  *
7837  *      Change device carrier
7838  */
7839 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7840 {
7841         const struct net_device_ops *ops = dev->netdev_ops;
7842
7843         if (!ops->ndo_change_carrier)
7844                 return -EOPNOTSUPP;
7845         if (!netif_device_present(dev))
7846                 return -ENODEV;
7847         return ops->ndo_change_carrier(dev, new_carrier);
7848 }
7849 EXPORT_SYMBOL(dev_change_carrier);
7850
7851 /**
7852  *      dev_get_phys_port_id - Get device physical port ID
7853  *      @dev: device
7854  *      @ppid: port ID
7855  *
7856  *      Get device physical port ID
7857  */
7858 int dev_get_phys_port_id(struct net_device *dev,
7859                          struct netdev_phys_item_id *ppid)
7860 {
7861         const struct net_device_ops *ops = dev->netdev_ops;
7862
7863         if (!ops->ndo_get_phys_port_id)
7864                 return -EOPNOTSUPP;
7865         return ops->ndo_get_phys_port_id(dev, ppid);
7866 }
7867 EXPORT_SYMBOL(dev_get_phys_port_id);
7868
7869 /**
7870  *      dev_get_phys_port_name - Get device physical port name
7871  *      @dev: device
7872  *      @name: port name
7873  *      @len: limit of bytes to copy to name
7874  *
7875  *      Get device physical port name
7876  */
7877 int dev_get_phys_port_name(struct net_device *dev,
7878                            char *name, size_t len)
7879 {
7880         const struct net_device_ops *ops = dev->netdev_ops;
7881         int err;
7882
7883         if (ops->ndo_get_phys_port_name) {
7884                 err = ops->ndo_get_phys_port_name(dev, name, len);
7885                 if (err != -EOPNOTSUPP)
7886                         return err;
7887         }
7888         return devlink_compat_phys_port_name_get(dev, name, len);
7889 }
7890 EXPORT_SYMBOL(dev_get_phys_port_name);
7891
7892 /**
7893  *      dev_get_port_parent_id - Get the device's port parent identifier
7894  *      @dev: network device
7895  *      @ppid: pointer to a storage for the port's parent identifier
7896  *      @recurse: allow/disallow recursion to lower devices
7897  *
7898  *      Get the devices's port parent identifier
7899  */
7900 int dev_get_port_parent_id(struct net_device *dev,
7901                            struct netdev_phys_item_id *ppid,
7902                            bool recurse)
7903 {
7904         const struct net_device_ops *ops = dev->netdev_ops;
7905         struct netdev_phys_item_id first = { };
7906         struct net_device *lower_dev;
7907         struct list_head *iter;
7908         int err = -EOPNOTSUPP;
7909
7910         if (ops->ndo_get_port_parent_id)
7911                 return ops->ndo_get_port_parent_id(dev, ppid);
7912
7913         if (!recurse)
7914                 return err;
7915
7916         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7917                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7918                 if (err)
7919                         break;
7920                 if (!first.id_len)
7921                         first = *ppid;
7922                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7923                         return -ENODATA;
7924         }
7925
7926         return err;
7927 }
7928 EXPORT_SYMBOL(dev_get_port_parent_id);
7929
7930 /**
7931  *      netdev_port_same_parent_id - Indicate if two network devices have
7932  *      the same port parent identifier
7933  *      @a: first network device
7934  *      @b: second network device
7935  */
7936 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7937 {
7938         struct netdev_phys_item_id a_id = { };
7939         struct netdev_phys_item_id b_id = { };
7940
7941         if (dev_get_port_parent_id(a, &a_id, true) ||
7942             dev_get_port_parent_id(b, &b_id, true))
7943                 return false;
7944
7945         return netdev_phys_item_id_same(&a_id, &b_id);
7946 }
7947 EXPORT_SYMBOL(netdev_port_same_parent_id);
7948
7949 /**
7950  *      dev_change_proto_down - update protocol port state information
7951  *      @dev: device
7952  *      @proto_down: new value
7953  *
7954  *      This info can be used by switch drivers to set the phys state of the
7955  *      port.
7956  */
7957 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7958 {
7959         const struct net_device_ops *ops = dev->netdev_ops;
7960
7961         if (!ops->ndo_change_proto_down)
7962                 return -EOPNOTSUPP;
7963         if (!netif_device_present(dev))
7964                 return -ENODEV;
7965         return ops->ndo_change_proto_down(dev, proto_down);
7966 }
7967 EXPORT_SYMBOL(dev_change_proto_down);
7968
7969 /**
7970  *      dev_change_proto_down_generic - generic implementation for
7971  *      ndo_change_proto_down that sets carrier according to
7972  *      proto_down.
7973  *
7974  *      @dev: device
7975  *      @proto_down: new value
7976  */
7977 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7978 {
7979         if (proto_down)
7980                 netif_carrier_off(dev);
7981         else
7982                 netif_carrier_on(dev);
7983         dev->proto_down = proto_down;
7984         return 0;
7985 }
7986 EXPORT_SYMBOL(dev_change_proto_down_generic);
7987
7988 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7989                     enum bpf_netdev_command cmd)
7990 {
7991         struct netdev_bpf xdp;
7992
7993         if (!bpf_op)
7994                 return 0;
7995
7996         memset(&xdp, 0, sizeof(xdp));
7997         xdp.command = cmd;
7998
7999         /* Query must always succeed. */
8000         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8001
8002         return xdp.prog_id;
8003 }
8004
8005 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8006                            struct netlink_ext_ack *extack, u32 flags,
8007                            struct bpf_prog *prog)
8008 {
8009         struct netdev_bpf xdp;
8010
8011         memset(&xdp, 0, sizeof(xdp));
8012         if (flags & XDP_FLAGS_HW_MODE)
8013                 xdp.command = XDP_SETUP_PROG_HW;
8014         else
8015                 xdp.command = XDP_SETUP_PROG;
8016         xdp.extack = extack;
8017         xdp.flags = flags;
8018         xdp.prog = prog;
8019
8020         return bpf_op(dev, &xdp);
8021 }
8022
8023 static void dev_xdp_uninstall(struct net_device *dev)
8024 {
8025         struct netdev_bpf xdp;
8026         bpf_op_t ndo_bpf;
8027
8028         /* Remove generic XDP */
8029         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8030
8031         /* Remove from the driver */
8032         ndo_bpf = dev->netdev_ops->ndo_bpf;
8033         if (!ndo_bpf)
8034                 return;
8035
8036         memset(&xdp, 0, sizeof(xdp));
8037         xdp.command = XDP_QUERY_PROG;
8038         WARN_ON(ndo_bpf(dev, &xdp));
8039         if (xdp.prog_id)
8040                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8041                                         NULL));
8042
8043         /* Remove HW offload */
8044         memset(&xdp, 0, sizeof(xdp));
8045         xdp.command = XDP_QUERY_PROG_HW;
8046         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8047                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8048                                         NULL));
8049 }
8050
8051 /**
8052  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8053  *      @dev: device
8054  *      @extack: netlink extended ack
8055  *      @fd: new program fd or negative value to clear
8056  *      @flags: xdp-related flags
8057  *
8058  *      Set or clear a bpf program for a device
8059  */
8060 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8061                       int fd, u32 flags)
8062 {
8063         const struct net_device_ops *ops = dev->netdev_ops;
8064         enum bpf_netdev_command query;
8065         struct bpf_prog *prog = NULL;
8066         bpf_op_t bpf_op, bpf_chk;
8067         bool offload;
8068         int err;
8069
8070         ASSERT_RTNL();
8071
8072         offload = flags & XDP_FLAGS_HW_MODE;
8073         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8074
8075         bpf_op = bpf_chk = ops->ndo_bpf;
8076         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8077                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8078                 return -EOPNOTSUPP;
8079         }
8080         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8081                 bpf_op = generic_xdp_install;
8082         if (bpf_op == bpf_chk)
8083                 bpf_chk = generic_xdp_install;
8084
8085         if (fd >= 0) {
8086                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8087                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8088                         return -EEXIST;
8089                 }
8090                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8091                     __dev_xdp_query(dev, bpf_op, query)) {
8092                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8093                         return -EBUSY;
8094                 }
8095
8096                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8097                                              bpf_op == ops->ndo_bpf);
8098                 if (IS_ERR(prog))
8099                         return PTR_ERR(prog);
8100
8101                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8102                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8103                         bpf_prog_put(prog);
8104                         return -EINVAL;
8105                 }
8106         }
8107
8108         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8109         if (err < 0 && prog)
8110                 bpf_prog_put(prog);
8111
8112         return err;
8113 }
8114
8115 /**
8116  *      dev_new_index   -       allocate an ifindex
8117  *      @net: the applicable net namespace
8118  *
8119  *      Returns a suitable unique value for a new device interface
8120  *      number.  The caller must hold the rtnl semaphore or the
8121  *      dev_base_lock to be sure it remains unique.
8122  */
8123 static int dev_new_index(struct net *net)
8124 {
8125         int ifindex = net->ifindex;
8126
8127         for (;;) {
8128                 if (++ifindex <= 0)
8129                         ifindex = 1;
8130                 if (!__dev_get_by_index(net, ifindex))
8131                         return net->ifindex = ifindex;
8132         }
8133 }
8134
8135 /* Delayed registration/unregisteration */
8136 static LIST_HEAD(net_todo_list);
8137 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8138
8139 static void net_set_todo(struct net_device *dev)
8140 {
8141         list_add_tail(&dev->todo_list, &net_todo_list);
8142         dev_net(dev)->dev_unreg_count++;
8143 }
8144
8145 static void rollback_registered_many(struct list_head *head)
8146 {
8147         struct net_device *dev, *tmp;
8148         LIST_HEAD(close_head);
8149
8150         BUG_ON(dev_boot_phase);
8151         ASSERT_RTNL();
8152
8153         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8154                 /* Some devices call without registering
8155                  * for initialization unwind. Remove those
8156                  * devices and proceed with the remaining.
8157                  */
8158                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8159                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8160                                  dev->name, dev);
8161
8162                         WARN_ON(1);
8163                         list_del(&dev->unreg_list);
8164                         continue;
8165                 }
8166                 dev->dismantle = true;
8167                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8168         }
8169
8170         /* If device is running, close it first. */
8171         list_for_each_entry(dev, head, unreg_list)
8172                 list_add_tail(&dev->close_list, &close_head);
8173         dev_close_many(&close_head, true);
8174
8175         list_for_each_entry(dev, head, unreg_list) {
8176                 /* And unlink it from device chain. */
8177                 unlist_netdevice(dev);
8178
8179                 dev->reg_state = NETREG_UNREGISTERING;
8180         }
8181         flush_all_backlogs();
8182
8183         synchronize_net();
8184
8185         list_for_each_entry(dev, head, unreg_list) {
8186                 struct sk_buff *skb = NULL;
8187
8188                 /* Shutdown queueing discipline. */
8189                 dev_shutdown(dev);
8190
8191                 dev_xdp_uninstall(dev);
8192
8193                 /* Notify protocols, that we are about to destroy
8194                  * this device. They should clean all the things.
8195                  */
8196                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8197
8198                 if (!dev->rtnl_link_ops ||
8199                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8200                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8201                                                      GFP_KERNEL, NULL, 0);
8202
8203                 /*
8204                  *      Flush the unicast and multicast chains
8205                  */
8206                 dev_uc_flush(dev);
8207                 dev_mc_flush(dev);
8208
8209                 if (dev->netdev_ops->ndo_uninit)
8210                         dev->netdev_ops->ndo_uninit(dev);
8211
8212                 if (skb)
8213                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8214
8215                 /* Notifier chain MUST detach us all upper devices. */
8216                 WARN_ON(netdev_has_any_upper_dev(dev));
8217                 WARN_ON(netdev_has_any_lower_dev(dev));
8218
8219                 /* Remove entries from kobject tree */
8220                 netdev_unregister_kobject(dev);
8221 #ifdef CONFIG_XPS
8222                 /* Remove XPS queueing entries */
8223                 netif_reset_xps_queues_gt(dev, 0);
8224 #endif
8225         }
8226
8227         synchronize_net();
8228
8229         list_for_each_entry(dev, head, unreg_list)
8230                 dev_put(dev);
8231 }
8232
8233 static void rollback_registered(struct net_device *dev)
8234 {
8235         LIST_HEAD(single);
8236
8237         list_add(&dev->unreg_list, &single);
8238         rollback_registered_many(&single);
8239         list_del(&single);
8240 }
8241
8242 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8243         struct net_device *upper, netdev_features_t features)
8244 {
8245         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8246         netdev_features_t feature;
8247         int feature_bit;
8248
8249         for_each_netdev_feature(upper_disables, feature_bit) {
8250                 feature = __NETIF_F_BIT(feature_bit);
8251                 if (!(upper->wanted_features & feature)
8252                     && (features & feature)) {
8253                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8254                                    &feature, upper->name);
8255                         features &= ~feature;
8256                 }
8257         }
8258
8259         return features;
8260 }
8261
8262 static void netdev_sync_lower_features(struct net_device *upper,
8263         struct net_device *lower, netdev_features_t features)
8264 {
8265         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266         netdev_features_t feature;
8267         int feature_bit;
8268
8269         for_each_netdev_feature(upper_disables, feature_bit) {
8270                 feature = __NETIF_F_BIT(feature_bit);
8271                 if (!(features & feature) && (lower->features & feature)) {
8272                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8273                                    &feature, lower->name);
8274                         lower->wanted_features &= ~feature;
8275                         netdev_update_features(lower);
8276
8277                         if (unlikely(lower->features & feature))
8278                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8279                                             &feature, lower->name);
8280                 }
8281         }
8282 }
8283
8284 static netdev_features_t netdev_fix_features(struct net_device *dev,
8285         netdev_features_t features)
8286 {
8287         /* Fix illegal checksum combinations */
8288         if ((features & NETIF_F_HW_CSUM) &&
8289             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8290                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8291                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8292         }
8293
8294         /* TSO requires that SG is present as well. */
8295         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8296                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8297                 features &= ~NETIF_F_ALL_TSO;
8298         }
8299
8300         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8301                                         !(features & NETIF_F_IP_CSUM)) {
8302                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8303                 features &= ~NETIF_F_TSO;
8304                 features &= ~NETIF_F_TSO_ECN;
8305         }
8306
8307         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8308                                          !(features & NETIF_F_IPV6_CSUM)) {
8309                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8310                 features &= ~NETIF_F_TSO6;
8311         }
8312
8313         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8314         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8315                 features &= ~NETIF_F_TSO_MANGLEID;
8316
8317         /* TSO ECN requires that TSO is present as well. */
8318         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8319                 features &= ~NETIF_F_TSO_ECN;
8320
8321         /* Software GSO depends on SG. */
8322         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8323                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8324                 features &= ~NETIF_F_GSO;
8325         }
8326
8327         /* GSO partial features require GSO partial be set */
8328         if ((features & dev->gso_partial_features) &&
8329             !(features & NETIF_F_GSO_PARTIAL)) {
8330                 netdev_dbg(dev,
8331                            "Dropping partially supported GSO features since no GSO partial.\n");
8332                 features &= ~dev->gso_partial_features;
8333         }
8334
8335         if (!(features & NETIF_F_RXCSUM)) {
8336                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8337                  * successfully merged by hardware must also have the
8338                  * checksum verified by hardware.  If the user does not
8339                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8340                  */
8341                 if (features & NETIF_F_GRO_HW) {
8342                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8343                         features &= ~NETIF_F_GRO_HW;
8344                 }
8345         }
8346
8347         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8348         if (features & NETIF_F_RXFCS) {
8349                 if (features & NETIF_F_LRO) {
8350                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8351                         features &= ~NETIF_F_LRO;
8352                 }
8353
8354                 if (features & NETIF_F_GRO_HW) {
8355                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8356                         features &= ~NETIF_F_GRO_HW;
8357                 }
8358         }
8359
8360         return features;
8361 }
8362
8363 int __netdev_update_features(struct net_device *dev)
8364 {
8365         struct net_device *upper, *lower;
8366         netdev_features_t features;
8367         struct list_head *iter;
8368         int err = -1;
8369
8370         ASSERT_RTNL();
8371
8372         features = netdev_get_wanted_features(dev);
8373
8374         if (dev->netdev_ops->ndo_fix_features)
8375                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8376
8377         /* driver might be less strict about feature dependencies */
8378         features = netdev_fix_features(dev, features);
8379
8380         /* some features can't be enabled if they're off an an upper device */
8381         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8382                 features = netdev_sync_upper_features(dev, upper, features);
8383
8384         if (dev->features == features)
8385                 goto sync_lower;
8386
8387         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8388                 &dev->features, &features);
8389
8390         if (dev->netdev_ops->ndo_set_features)
8391                 err = dev->netdev_ops->ndo_set_features(dev, features);
8392         else
8393                 err = 0;
8394
8395         if (unlikely(err < 0)) {
8396                 netdev_err(dev,
8397                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8398                         err, &features, &dev->features);
8399                 /* return non-0 since some features might have changed and
8400                  * it's better to fire a spurious notification than miss it
8401                  */
8402                 return -1;
8403         }
8404
8405 sync_lower:
8406         /* some features must be disabled on lower devices when disabled
8407          * on an upper device (think: bonding master or bridge)
8408          */
8409         netdev_for_each_lower_dev(dev, lower, iter)
8410                 netdev_sync_lower_features(dev, lower, features);
8411
8412         if (!err) {
8413                 netdev_features_t diff = features ^ dev->features;
8414
8415                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8416                         /* udp_tunnel_{get,drop}_rx_info both need
8417                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8418                          * device, or they won't do anything.
8419                          * Thus we need to update dev->features
8420                          * *before* calling udp_tunnel_get_rx_info,
8421                          * but *after* calling udp_tunnel_drop_rx_info.
8422                          */
8423                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8424                                 dev->features = features;
8425                                 udp_tunnel_get_rx_info(dev);
8426                         } else {
8427                                 udp_tunnel_drop_rx_info(dev);
8428                         }
8429                 }
8430
8431                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8432                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8433                                 dev->features = features;
8434                                 err |= vlan_get_rx_ctag_filter_info(dev);
8435                         } else {
8436                                 vlan_drop_rx_ctag_filter_info(dev);
8437                         }
8438                 }
8439
8440                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8441                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8442                                 dev->features = features;
8443                                 err |= vlan_get_rx_stag_filter_info(dev);
8444                         } else {
8445                                 vlan_drop_rx_stag_filter_info(dev);
8446                         }
8447                 }
8448
8449                 dev->features = features;
8450         }
8451
8452         return err < 0 ? 0 : 1;
8453 }
8454
8455 /**
8456  *      netdev_update_features - recalculate device features
8457  *      @dev: the device to check
8458  *
8459  *      Recalculate dev->features set and send notifications if it
8460  *      has changed. Should be called after driver or hardware dependent
8461  *      conditions might have changed that influence the features.
8462  */
8463 void netdev_update_features(struct net_device *dev)
8464 {
8465         if (__netdev_update_features(dev))
8466                 netdev_features_change(dev);
8467 }
8468 EXPORT_SYMBOL(netdev_update_features);
8469
8470 /**
8471  *      netdev_change_features - recalculate device features
8472  *      @dev: the device to check
8473  *
8474  *      Recalculate dev->features set and send notifications even
8475  *      if they have not changed. Should be called instead of
8476  *      netdev_update_features() if also dev->vlan_features might
8477  *      have changed to allow the changes to be propagated to stacked
8478  *      VLAN devices.
8479  */
8480 void netdev_change_features(struct net_device *dev)
8481 {
8482         __netdev_update_features(dev);
8483         netdev_features_change(dev);
8484 }
8485 EXPORT_SYMBOL(netdev_change_features);
8486
8487 /**
8488  *      netif_stacked_transfer_operstate -      transfer operstate
8489  *      @rootdev: the root or lower level device to transfer state from
8490  *      @dev: the device to transfer operstate to
8491  *
8492  *      Transfer operational state from root to device. This is normally
8493  *      called when a stacking relationship exists between the root
8494  *      device and the device(a leaf device).
8495  */
8496 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8497                                         struct net_device *dev)
8498 {
8499         if (rootdev->operstate == IF_OPER_DORMANT)
8500                 netif_dormant_on(dev);
8501         else
8502                 netif_dormant_off(dev);
8503
8504         if (netif_carrier_ok(rootdev))
8505                 netif_carrier_on(dev);
8506         else
8507                 netif_carrier_off(dev);
8508 }
8509 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8510
8511 static int netif_alloc_rx_queues(struct net_device *dev)
8512 {
8513         unsigned int i, count = dev->num_rx_queues;
8514         struct netdev_rx_queue *rx;
8515         size_t sz = count * sizeof(*rx);
8516         int err = 0;
8517
8518         BUG_ON(count < 1);
8519
8520         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8521         if (!rx)
8522                 return -ENOMEM;
8523
8524         dev->_rx = rx;
8525
8526         for (i = 0; i < count; i++) {
8527                 rx[i].dev = dev;
8528
8529                 /* XDP RX-queue setup */
8530                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8531                 if (err < 0)
8532                         goto err_rxq_info;
8533         }
8534         return 0;
8535
8536 err_rxq_info:
8537         /* Rollback successful reg's and free other resources */
8538         while (i--)
8539                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8540         kvfree(dev->_rx);
8541         dev->_rx = NULL;
8542         return err;
8543 }
8544
8545 static void netif_free_rx_queues(struct net_device *dev)
8546 {
8547         unsigned int i, count = dev->num_rx_queues;
8548
8549         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8550         if (!dev->_rx)
8551                 return;
8552
8553         for (i = 0; i < count; i++)
8554                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8555
8556         kvfree(dev->_rx);
8557 }
8558
8559 static void netdev_init_one_queue(struct net_device *dev,
8560                                   struct netdev_queue *queue, void *_unused)
8561 {
8562         /* Initialize queue lock */
8563         spin_lock_init(&queue->_xmit_lock);
8564         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8565         queue->xmit_lock_owner = -1;
8566         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8567         queue->dev = dev;
8568 #ifdef CONFIG_BQL
8569         dql_init(&queue->dql, HZ);
8570 #endif
8571 }
8572
8573 static void netif_free_tx_queues(struct net_device *dev)
8574 {
8575         kvfree(dev->_tx);
8576 }
8577
8578 static int netif_alloc_netdev_queues(struct net_device *dev)
8579 {
8580         unsigned int count = dev->num_tx_queues;
8581         struct netdev_queue *tx;
8582         size_t sz = count * sizeof(*tx);
8583
8584         if (count < 1 || count > 0xffff)
8585                 return -EINVAL;
8586
8587         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8588         if (!tx)
8589                 return -ENOMEM;
8590
8591         dev->_tx = tx;
8592
8593         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8594         spin_lock_init(&dev->tx_global_lock);
8595
8596         return 0;
8597 }
8598
8599 void netif_tx_stop_all_queues(struct net_device *dev)
8600 {
8601         unsigned int i;
8602
8603         for (i = 0; i < dev->num_tx_queues; i++) {
8604                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8605
8606                 netif_tx_stop_queue(txq);
8607         }
8608 }
8609 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8610
8611 /**
8612  *      register_netdevice      - register a network device
8613  *      @dev: device to register
8614  *
8615  *      Take a completed network device structure and add it to the kernel
8616  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8617  *      chain. 0 is returned on success. A negative errno code is returned
8618  *      on a failure to set up the device, or if the name is a duplicate.
8619  *
8620  *      Callers must hold the rtnl semaphore. You may want
8621  *      register_netdev() instead of this.
8622  *
8623  *      BUGS:
8624  *      The locking appears insufficient to guarantee two parallel registers
8625  *      will not get the same name.
8626  */
8627
8628 int register_netdevice(struct net_device *dev)
8629 {
8630         int ret;
8631         struct net *net = dev_net(dev);
8632
8633         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8634                      NETDEV_FEATURE_COUNT);
8635         BUG_ON(dev_boot_phase);
8636         ASSERT_RTNL();
8637
8638         might_sleep();
8639
8640         /* When net_device's are persistent, this will be fatal. */
8641         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8642         BUG_ON(!net);
8643
8644         spin_lock_init(&dev->addr_list_lock);
8645         netdev_set_addr_lockdep_class(dev);
8646
8647         ret = dev_get_valid_name(net, dev, dev->name);
8648         if (ret < 0)
8649                 goto out;
8650
8651         /* Init, if this function is available */
8652         if (dev->netdev_ops->ndo_init) {
8653                 ret = dev->netdev_ops->ndo_init(dev);
8654                 if (ret) {
8655                         if (ret > 0)
8656                                 ret = -EIO;
8657                         goto out;
8658                 }
8659         }
8660
8661         if (((dev->hw_features | dev->features) &
8662              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8663             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8664              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8665                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8666                 ret = -EINVAL;
8667                 goto err_uninit;
8668         }
8669
8670         ret = -EBUSY;
8671         if (!dev->ifindex)
8672                 dev->ifindex = dev_new_index(net);
8673         else if (__dev_get_by_index(net, dev->ifindex))
8674                 goto err_uninit;
8675
8676         /* Transfer changeable features to wanted_features and enable
8677          * software offloads (GSO and GRO).
8678          */
8679         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8680         dev->features |= NETIF_F_SOFT_FEATURES;
8681
8682         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8683                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8684                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8685         }
8686
8687         dev->wanted_features = dev->features & dev->hw_features;
8688
8689         if (!(dev->flags & IFF_LOOPBACK))
8690                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8691
8692         /* If IPv4 TCP segmentation offload is supported we should also
8693          * allow the device to enable segmenting the frame with the option
8694          * of ignoring a static IP ID value.  This doesn't enable the
8695          * feature itself but allows the user to enable it later.
8696          */
8697         if (dev->hw_features & NETIF_F_TSO)
8698                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8699         if (dev->vlan_features & NETIF_F_TSO)
8700                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8701         if (dev->mpls_features & NETIF_F_TSO)
8702                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8703         if (dev->hw_enc_features & NETIF_F_TSO)
8704                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8705
8706         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8707          */
8708         dev->vlan_features |= NETIF_F_HIGHDMA;
8709
8710         /* Make NETIF_F_SG inheritable to tunnel devices.
8711          */
8712         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8713
8714         /* Make NETIF_F_SG inheritable to MPLS.
8715          */
8716         dev->mpls_features |= NETIF_F_SG;
8717
8718         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8719         ret = notifier_to_errno(ret);
8720         if (ret)
8721                 goto err_uninit;
8722
8723         ret = netdev_register_kobject(dev);
8724         if (ret)
8725                 goto err_uninit;
8726         dev->reg_state = NETREG_REGISTERED;
8727
8728         __netdev_update_features(dev);
8729
8730         /*
8731          *      Default initial state at registry is that the
8732          *      device is present.
8733          */
8734
8735         set_bit(__LINK_STATE_PRESENT, &dev->state);
8736
8737         linkwatch_init_dev(dev);
8738
8739         dev_init_scheduler(dev);
8740         dev_hold(dev);
8741         list_netdevice(dev);
8742         add_device_randomness(dev->dev_addr, dev->addr_len);
8743
8744         /* If the device has permanent device address, driver should
8745          * set dev_addr and also addr_assign_type should be set to
8746          * NET_ADDR_PERM (default value).
8747          */
8748         if (dev->addr_assign_type == NET_ADDR_PERM)
8749                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8750
8751         /* Notify protocols, that a new device appeared. */
8752         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8753         ret = notifier_to_errno(ret);
8754         if (ret) {
8755                 rollback_registered(dev);
8756                 dev->reg_state = NETREG_UNREGISTERED;
8757         }
8758         /*
8759          *      Prevent userspace races by waiting until the network
8760          *      device is fully setup before sending notifications.
8761          */
8762         if (!dev->rtnl_link_ops ||
8763             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8764                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8765
8766 out:
8767         return ret;
8768
8769 err_uninit:
8770         if (dev->netdev_ops->ndo_uninit)
8771                 dev->netdev_ops->ndo_uninit(dev);
8772         if (dev->priv_destructor)
8773                 dev->priv_destructor(dev);
8774         goto out;
8775 }
8776 EXPORT_SYMBOL(register_netdevice);
8777
8778 /**
8779  *      init_dummy_netdev       - init a dummy network device for NAPI
8780  *      @dev: device to init
8781  *
8782  *      This takes a network device structure and initialize the minimum
8783  *      amount of fields so it can be used to schedule NAPI polls without
8784  *      registering a full blown interface. This is to be used by drivers
8785  *      that need to tie several hardware interfaces to a single NAPI
8786  *      poll scheduler due to HW limitations.
8787  */
8788 int init_dummy_netdev(struct net_device *dev)
8789 {
8790         /* Clear everything. Note we don't initialize spinlocks
8791          * are they aren't supposed to be taken by any of the
8792          * NAPI code and this dummy netdev is supposed to be
8793          * only ever used for NAPI polls
8794          */
8795         memset(dev, 0, sizeof(struct net_device));
8796
8797         /* make sure we BUG if trying to hit standard
8798          * register/unregister code path
8799          */
8800         dev->reg_state = NETREG_DUMMY;
8801
8802         /* NAPI wants this */
8803         INIT_LIST_HEAD(&dev->napi_list);
8804
8805         /* a dummy interface is started by default */
8806         set_bit(__LINK_STATE_PRESENT, &dev->state);
8807         set_bit(__LINK_STATE_START, &dev->state);
8808
8809         /* napi_busy_loop stats accounting wants this */
8810         dev_net_set(dev, &init_net);
8811
8812         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8813          * because users of this 'device' dont need to change
8814          * its refcount.
8815          */
8816
8817         return 0;
8818 }
8819 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8820
8821
8822 /**
8823  *      register_netdev - register a network device
8824  *      @dev: device to register
8825  *
8826  *      Take a completed network device structure and add it to the kernel
8827  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8828  *      chain. 0 is returned on success. A negative errno code is returned
8829  *      on a failure to set up the device, or if the name is a duplicate.
8830  *
8831  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8832  *      and expands the device name if you passed a format string to
8833  *      alloc_netdev.
8834  */
8835 int register_netdev(struct net_device *dev)
8836 {
8837         int err;
8838
8839         if (rtnl_lock_killable())
8840                 return -EINTR;
8841         err = register_netdevice(dev);
8842         rtnl_unlock();
8843         return err;
8844 }
8845 EXPORT_SYMBOL(register_netdev);
8846
8847 int netdev_refcnt_read(const struct net_device *dev)
8848 {
8849         int i, refcnt = 0;
8850
8851         for_each_possible_cpu(i)
8852                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8853         return refcnt;
8854 }
8855 EXPORT_SYMBOL(netdev_refcnt_read);
8856
8857 /**
8858  * netdev_wait_allrefs - wait until all references are gone.
8859  * @dev: target net_device
8860  *
8861  * This is called when unregistering network devices.
8862  *
8863  * Any protocol or device that holds a reference should register
8864  * for netdevice notification, and cleanup and put back the
8865  * reference if they receive an UNREGISTER event.
8866  * We can get stuck here if buggy protocols don't correctly
8867  * call dev_put.
8868  */
8869 static void netdev_wait_allrefs(struct net_device *dev)
8870 {
8871         unsigned long rebroadcast_time, warning_time;
8872         int refcnt;
8873
8874         linkwatch_forget_dev(dev);
8875
8876         rebroadcast_time = warning_time = jiffies;
8877         refcnt = netdev_refcnt_read(dev);
8878
8879         while (refcnt != 0) {
8880                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8881                         rtnl_lock();
8882
8883                         /* Rebroadcast unregister notification */
8884                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8885
8886                         __rtnl_unlock();
8887                         rcu_barrier();
8888                         rtnl_lock();
8889
8890                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8891                                      &dev->state)) {
8892                                 /* We must not have linkwatch events
8893                                  * pending on unregister. If this
8894                                  * happens, we simply run the queue
8895                                  * unscheduled, resulting in a noop
8896                                  * for this device.
8897                                  */
8898                                 linkwatch_run_queue();
8899                         }
8900
8901                         __rtnl_unlock();
8902
8903                         rebroadcast_time = jiffies;
8904                 }
8905
8906                 msleep(250);
8907
8908                 refcnt = netdev_refcnt_read(dev);
8909
8910                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8911                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8912                                  dev->name, refcnt);
8913                         warning_time = jiffies;
8914                 }
8915         }
8916 }
8917
8918 /* The sequence is:
8919  *
8920  *      rtnl_lock();
8921  *      ...
8922  *      register_netdevice(x1);
8923  *      register_netdevice(x2);
8924  *      ...
8925  *      unregister_netdevice(y1);
8926  *      unregister_netdevice(y2);
8927  *      ...
8928  *      rtnl_unlock();
8929  *      free_netdev(y1);
8930  *      free_netdev(y2);
8931  *
8932  * We are invoked by rtnl_unlock().
8933  * This allows us to deal with problems:
8934  * 1) We can delete sysfs objects which invoke hotplug
8935  *    without deadlocking with linkwatch via keventd.
8936  * 2) Since we run with the RTNL semaphore not held, we can sleep
8937  *    safely in order to wait for the netdev refcnt to drop to zero.
8938  *
8939  * We must not return until all unregister events added during
8940  * the interval the lock was held have been completed.
8941  */
8942 void netdev_run_todo(void)
8943 {
8944         struct list_head list;
8945
8946         /* Snapshot list, allow later requests */
8947         list_replace_init(&net_todo_list, &list);
8948
8949         __rtnl_unlock();
8950
8951
8952         /* Wait for rcu callbacks to finish before next phase */
8953         if (!list_empty(&list))
8954                 rcu_barrier();
8955
8956         while (!list_empty(&list)) {
8957                 struct net_device *dev
8958                         = list_first_entry(&list, struct net_device, todo_list);
8959                 list_del(&dev->todo_list);
8960
8961                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8962                         pr_err("network todo '%s' but state %d\n",
8963                                dev->name, dev->reg_state);
8964                         dump_stack();
8965                         continue;
8966                 }
8967
8968                 dev->reg_state = NETREG_UNREGISTERED;
8969
8970                 netdev_wait_allrefs(dev);
8971
8972                 /* paranoia */
8973                 BUG_ON(netdev_refcnt_read(dev));
8974                 BUG_ON(!list_empty(&dev->ptype_all));
8975                 BUG_ON(!list_empty(&dev->ptype_specific));
8976                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8977                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8978 #if IS_ENABLED(CONFIG_DECNET)
8979                 WARN_ON(dev->dn_ptr);
8980 #endif
8981                 if (dev->priv_destructor)
8982                         dev->priv_destructor(dev);
8983                 if (dev->needs_free_netdev)
8984                         free_netdev(dev);
8985
8986                 /* Report a network device has been unregistered */
8987                 rtnl_lock();
8988                 dev_net(dev)->dev_unreg_count--;
8989                 __rtnl_unlock();
8990                 wake_up(&netdev_unregistering_wq);
8991
8992                 /* Free network device */
8993                 kobject_put(&dev->dev.kobj);
8994         }
8995 }
8996
8997 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8998  * all the same fields in the same order as net_device_stats, with only
8999  * the type differing, but rtnl_link_stats64 may have additional fields
9000  * at the end for newer counters.
9001  */
9002 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9003                              const struct net_device_stats *netdev_stats)
9004 {
9005 #if BITS_PER_LONG == 64
9006         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9007         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9008         /* zero out counters that only exist in rtnl_link_stats64 */
9009         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9010                sizeof(*stats64) - sizeof(*netdev_stats));
9011 #else
9012         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9013         const unsigned long *src = (const unsigned long *)netdev_stats;
9014         u64 *dst = (u64 *)stats64;
9015
9016         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9017         for (i = 0; i < n; i++)
9018                 dst[i] = src[i];
9019         /* zero out counters that only exist in rtnl_link_stats64 */
9020         memset((char *)stats64 + n * sizeof(u64), 0,
9021                sizeof(*stats64) - n * sizeof(u64));
9022 #endif
9023 }
9024 EXPORT_SYMBOL(netdev_stats_to_stats64);
9025
9026 /**
9027  *      dev_get_stats   - get network device statistics
9028  *      @dev: device to get statistics from
9029  *      @storage: place to store stats
9030  *
9031  *      Get network statistics from device. Return @storage.
9032  *      The device driver may provide its own method by setting
9033  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9034  *      otherwise the internal statistics structure is used.
9035  */
9036 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9037                                         struct rtnl_link_stats64 *storage)
9038 {
9039         const struct net_device_ops *ops = dev->netdev_ops;
9040
9041         if (ops->ndo_get_stats64) {
9042                 memset(storage, 0, sizeof(*storage));
9043                 ops->ndo_get_stats64(dev, storage);
9044         } else if (ops->ndo_get_stats) {
9045                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9046         } else {
9047                 netdev_stats_to_stats64(storage, &dev->stats);
9048         }
9049         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9050         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9051         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9052         return storage;
9053 }
9054 EXPORT_SYMBOL(dev_get_stats);
9055
9056 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9057 {
9058         struct netdev_queue *queue = dev_ingress_queue(dev);
9059
9060 #ifdef CONFIG_NET_CLS_ACT
9061         if (queue)
9062                 return queue;
9063         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9064         if (!queue)
9065                 return NULL;
9066         netdev_init_one_queue(dev, queue, NULL);
9067         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9068         queue->qdisc_sleeping = &noop_qdisc;
9069         rcu_assign_pointer(dev->ingress_queue, queue);
9070 #endif
9071         return queue;
9072 }
9073
9074 static const struct ethtool_ops default_ethtool_ops;
9075
9076 void netdev_set_default_ethtool_ops(struct net_device *dev,
9077                                     const struct ethtool_ops *ops)
9078 {
9079         if (dev->ethtool_ops == &default_ethtool_ops)
9080                 dev->ethtool_ops = ops;
9081 }
9082 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9083
9084 void netdev_freemem(struct net_device *dev)
9085 {
9086         char *addr = (char *)dev - dev->padded;
9087
9088         kvfree(addr);
9089 }
9090
9091 /**
9092  * alloc_netdev_mqs - allocate network device
9093  * @sizeof_priv: size of private data to allocate space for
9094  * @name: device name format string
9095  * @name_assign_type: origin of device name
9096  * @setup: callback to initialize device
9097  * @txqs: the number of TX subqueues to allocate
9098  * @rxqs: the number of RX subqueues to allocate
9099  *
9100  * Allocates a struct net_device with private data area for driver use
9101  * and performs basic initialization.  Also allocates subqueue structs
9102  * for each queue on the device.
9103  */
9104 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9105                 unsigned char name_assign_type,
9106                 void (*setup)(struct net_device *),
9107                 unsigned int txqs, unsigned int rxqs)
9108 {
9109         struct net_device *dev;
9110         unsigned int alloc_size;
9111         struct net_device *p;
9112
9113         BUG_ON(strlen(name) >= sizeof(dev->name));
9114
9115         if (txqs < 1) {
9116                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9117                 return NULL;
9118         }
9119
9120         if (rxqs < 1) {
9121                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9122                 return NULL;
9123         }
9124
9125         alloc_size = sizeof(struct net_device);
9126         if (sizeof_priv) {
9127                 /* ensure 32-byte alignment of private area */
9128                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9129                 alloc_size += sizeof_priv;
9130         }
9131         /* ensure 32-byte alignment of whole construct */
9132         alloc_size += NETDEV_ALIGN - 1;
9133
9134         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9135         if (!p)
9136                 return NULL;
9137
9138         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9139         dev->padded = (char *)dev - (char *)p;
9140
9141         dev->pcpu_refcnt = alloc_percpu(int);
9142         if (!dev->pcpu_refcnt)
9143                 goto free_dev;
9144
9145         if (dev_addr_init(dev))
9146                 goto free_pcpu;
9147
9148         dev_mc_init(dev);
9149         dev_uc_init(dev);
9150
9151         dev_net_set(dev, &init_net);
9152
9153         dev->gso_max_size = GSO_MAX_SIZE;
9154         dev->gso_max_segs = GSO_MAX_SEGS;
9155
9156         INIT_LIST_HEAD(&dev->napi_list);
9157         INIT_LIST_HEAD(&dev->unreg_list);
9158         INIT_LIST_HEAD(&dev->close_list);
9159         INIT_LIST_HEAD(&dev->link_watch_list);
9160         INIT_LIST_HEAD(&dev->adj_list.upper);
9161         INIT_LIST_HEAD(&dev->adj_list.lower);
9162         INIT_LIST_HEAD(&dev->ptype_all);
9163         INIT_LIST_HEAD(&dev->ptype_specific);
9164 #ifdef CONFIG_NET_SCHED
9165         hash_init(dev->qdisc_hash);
9166 #endif
9167         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9168         setup(dev);
9169
9170         if (!dev->tx_queue_len) {
9171                 dev->priv_flags |= IFF_NO_QUEUE;
9172                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9173         }
9174
9175         dev->num_tx_queues = txqs;
9176         dev->real_num_tx_queues = txqs;
9177         if (netif_alloc_netdev_queues(dev))
9178                 goto free_all;
9179
9180         dev->num_rx_queues = rxqs;
9181         dev->real_num_rx_queues = rxqs;
9182         if (netif_alloc_rx_queues(dev))
9183                 goto free_all;
9184
9185         strcpy(dev->name, name);
9186         dev->name_assign_type = name_assign_type;
9187         dev->group = INIT_NETDEV_GROUP;
9188         if (!dev->ethtool_ops)
9189                 dev->ethtool_ops = &default_ethtool_ops;
9190
9191         nf_hook_ingress_init(dev);
9192
9193         return dev;
9194
9195 free_all:
9196         free_netdev(dev);
9197         return NULL;
9198
9199 free_pcpu:
9200         free_percpu(dev->pcpu_refcnt);
9201 free_dev:
9202         netdev_freemem(dev);
9203         return NULL;
9204 }
9205 EXPORT_SYMBOL(alloc_netdev_mqs);
9206
9207 /**
9208  * free_netdev - free network device
9209  * @dev: device
9210  *
9211  * This function does the last stage of destroying an allocated device
9212  * interface. The reference to the device object is released. If this
9213  * is the last reference then it will be freed.Must be called in process
9214  * context.
9215  */
9216 void free_netdev(struct net_device *dev)
9217 {
9218         struct napi_struct *p, *n;
9219
9220         might_sleep();
9221         netif_free_tx_queues(dev);
9222         netif_free_rx_queues(dev);
9223
9224         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9225
9226         /* Flush device addresses */
9227         dev_addr_flush(dev);
9228
9229         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9230                 netif_napi_del(p);
9231
9232         free_percpu(dev->pcpu_refcnt);
9233         dev->pcpu_refcnt = NULL;
9234
9235         /*  Compatibility with error handling in drivers */
9236         if (dev->reg_state == NETREG_UNINITIALIZED) {
9237                 netdev_freemem(dev);
9238                 return;
9239         }
9240
9241         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9242         dev->reg_state = NETREG_RELEASED;
9243
9244         /* will free via device release */
9245         put_device(&dev->dev);
9246 }
9247 EXPORT_SYMBOL(free_netdev);
9248
9249 /**
9250  *      synchronize_net -  Synchronize with packet receive processing
9251  *
9252  *      Wait for packets currently being received to be done.
9253  *      Does not block later packets from starting.
9254  */
9255 void synchronize_net(void)
9256 {
9257         might_sleep();
9258         if (rtnl_is_locked())
9259                 synchronize_rcu_expedited();
9260         else
9261                 synchronize_rcu();
9262 }
9263 EXPORT_SYMBOL(synchronize_net);
9264
9265 /**
9266  *      unregister_netdevice_queue - remove device from the kernel
9267  *      @dev: device
9268  *      @head: list
9269  *
9270  *      This function shuts down a device interface and removes it
9271  *      from the kernel tables.
9272  *      If head not NULL, device is queued to be unregistered later.
9273  *
9274  *      Callers must hold the rtnl semaphore.  You may want
9275  *      unregister_netdev() instead of this.
9276  */
9277
9278 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9279 {
9280         ASSERT_RTNL();
9281
9282         if (head) {
9283                 list_move_tail(&dev->unreg_list, head);
9284         } else {
9285                 rollback_registered(dev);
9286                 /* Finish processing unregister after unlock */
9287                 net_set_todo(dev);
9288         }
9289 }
9290 EXPORT_SYMBOL(unregister_netdevice_queue);
9291
9292 /**
9293  *      unregister_netdevice_many - unregister many devices
9294  *      @head: list of devices
9295  *
9296  *  Note: As most callers use a stack allocated list_head,
9297  *  we force a list_del() to make sure stack wont be corrupted later.
9298  */
9299 void unregister_netdevice_many(struct list_head *head)
9300 {
9301         struct net_device *dev;
9302
9303         if (!list_empty(head)) {
9304                 rollback_registered_many(head);
9305                 list_for_each_entry(dev, head, unreg_list)
9306                         net_set_todo(dev);
9307                 list_del(head);
9308         }
9309 }
9310 EXPORT_SYMBOL(unregister_netdevice_many);
9311
9312 /**
9313  *      unregister_netdev - remove device from the kernel
9314  *      @dev: device
9315  *
9316  *      This function shuts down a device interface and removes it
9317  *      from the kernel tables.
9318  *
9319  *      This is just a wrapper for unregister_netdevice that takes
9320  *      the rtnl semaphore.  In general you want to use this and not
9321  *      unregister_netdevice.
9322  */
9323 void unregister_netdev(struct net_device *dev)
9324 {
9325         rtnl_lock();
9326         unregister_netdevice(dev);
9327         rtnl_unlock();
9328 }
9329 EXPORT_SYMBOL(unregister_netdev);
9330
9331 /**
9332  *      dev_change_net_namespace - move device to different nethost namespace
9333  *      @dev: device
9334  *      @net: network namespace
9335  *      @pat: If not NULL name pattern to try if the current device name
9336  *            is already taken in the destination network namespace.
9337  *
9338  *      This function shuts down a device interface and moves it
9339  *      to a new network namespace. On success 0 is returned, on
9340  *      a failure a netagive errno code is returned.
9341  *
9342  *      Callers must hold the rtnl semaphore.
9343  */
9344
9345 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9346 {
9347         int err, new_nsid, new_ifindex;
9348
9349         ASSERT_RTNL();
9350
9351         /* Don't allow namespace local devices to be moved. */
9352         err = -EINVAL;
9353         if (dev->features & NETIF_F_NETNS_LOCAL)
9354                 goto out;
9355
9356         /* Ensure the device has been registrered */
9357         if (dev->reg_state != NETREG_REGISTERED)
9358                 goto out;
9359
9360         /* Get out if there is nothing todo */
9361         err = 0;
9362         if (net_eq(dev_net(dev), net))
9363                 goto out;
9364
9365         /* Pick the destination device name, and ensure
9366          * we can use it in the destination network namespace.
9367          */
9368         err = -EEXIST;
9369         if (__dev_get_by_name(net, dev->name)) {
9370                 /* We get here if we can't use the current device name */
9371                 if (!pat)
9372                         goto out;
9373                 err = dev_get_valid_name(net, dev, pat);
9374                 if (err < 0)
9375                         goto out;
9376         }
9377
9378         /*
9379          * And now a mini version of register_netdevice unregister_netdevice.
9380          */
9381
9382         /* If device is running close it first. */
9383         dev_close(dev);
9384
9385         /* And unlink it from device chain */
9386         unlist_netdevice(dev);
9387
9388         synchronize_net();
9389
9390         /* Shutdown queueing discipline. */
9391         dev_shutdown(dev);
9392
9393         /* Notify protocols, that we are about to destroy
9394          * this device. They should clean all the things.
9395          *
9396          * Note that dev->reg_state stays at NETREG_REGISTERED.
9397          * This is wanted because this way 8021q and macvlan know
9398          * the device is just moving and can keep their slaves up.
9399          */
9400         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9401         rcu_barrier();
9402
9403         new_nsid = peernet2id_alloc(dev_net(dev), net);
9404         /* If there is an ifindex conflict assign a new one */
9405         if (__dev_get_by_index(net, dev->ifindex))
9406                 new_ifindex = dev_new_index(net);
9407         else
9408                 new_ifindex = dev->ifindex;
9409
9410         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9411                             new_ifindex);
9412
9413         /*
9414          *      Flush the unicast and multicast chains
9415          */
9416         dev_uc_flush(dev);
9417         dev_mc_flush(dev);
9418
9419         /* Send a netdev-removed uevent to the old namespace */
9420         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9421         netdev_adjacent_del_links(dev);
9422
9423         /* Actually switch the network namespace */
9424         dev_net_set(dev, net);
9425         dev->ifindex = new_ifindex;
9426
9427         /* Send a netdev-add uevent to the new namespace */
9428         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9429         netdev_adjacent_add_links(dev);
9430
9431         /* Fixup kobjects */
9432         err = device_rename(&dev->dev, dev->name);
9433         WARN_ON(err);
9434
9435         /* Add the device back in the hashes */
9436         list_netdevice(dev);
9437
9438         /* Notify protocols, that a new device appeared. */
9439         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9440
9441         /*
9442          *      Prevent userspace races by waiting until the network
9443          *      device is fully setup before sending notifications.
9444          */
9445         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9446
9447         synchronize_net();
9448         err = 0;
9449 out:
9450         return err;
9451 }
9452 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9453
9454 static int dev_cpu_dead(unsigned int oldcpu)
9455 {
9456         struct sk_buff **list_skb;
9457         struct sk_buff *skb;
9458         unsigned int cpu;
9459         struct softnet_data *sd, *oldsd, *remsd = NULL;
9460
9461         local_irq_disable();
9462         cpu = smp_processor_id();
9463         sd = &per_cpu(softnet_data, cpu);
9464         oldsd = &per_cpu(softnet_data, oldcpu);
9465
9466         /* Find end of our completion_queue. */
9467         list_skb = &sd->completion_queue;
9468         while (*list_skb)
9469                 list_skb = &(*list_skb)->next;
9470         /* Append completion queue from offline CPU. */
9471         *list_skb = oldsd->completion_queue;
9472         oldsd->completion_queue = NULL;
9473
9474         /* Append output queue from offline CPU. */
9475         if (oldsd->output_queue) {
9476                 *sd->output_queue_tailp = oldsd->output_queue;
9477                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9478                 oldsd->output_queue = NULL;
9479                 oldsd->output_queue_tailp = &oldsd->output_queue;
9480         }
9481         /* Append NAPI poll list from offline CPU, with one exception :
9482          * process_backlog() must be called by cpu owning percpu backlog.
9483          * We properly handle process_queue & input_pkt_queue later.
9484          */
9485         while (!list_empty(&oldsd->poll_list)) {
9486                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9487                                                             struct napi_struct,
9488                                                             poll_list);
9489
9490                 list_del_init(&napi->poll_list);
9491                 if (napi->poll == process_backlog)
9492                         napi->state = 0;
9493                 else
9494                         ____napi_schedule(sd, napi);
9495         }
9496
9497         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9498         local_irq_enable();
9499
9500 #ifdef CONFIG_RPS
9501         remsd = oldsd->rps_ipi_list;
9502         oldsd->rps_ipi_list = NULL;
9503 #endif
9504         /* send out pending IPI's on offline CPU */
9505         net_rps_send_ipi(remsd);
9506
9507         /* Process offline CPU's input_pkt_queue */
9508         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9509                 netif_rx_ni(skb);
9510                 input_queue_head_incr(oldsd);
9511         }
9512         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9513                 netif_rx_ni(skb);
9514                 input_queue_head_incr(oldsd);
9515         }
9516
9517         return 0;
9518 }
9519
9520 /**
9521  *      netdev_increment_features - increment feature set by one
9522  *      @all: current feature set
9523  *      @one: new feature set
9524  *      @mask: mask feature set
9525  *
9526  *      Computes a new feature set after adding a device with feature set
9527  *      @one to the master device with current feature set @all.  Will not
9528  *      enable anything that is off in @mask. Returns the new feature set.
9529  */
9530 netdev_features_t netdev_increment_features(netdev_features_t all,
9531         netdev_features_t one, netdev_features_t mask)
9532 {
9533         if (mask & NETIF_F_HW_CSUM)
9534                 mask |= NETIF_F_CSUM_MASK;
9535         mask |= NETIF_F_VLAN_CHALLENGED;
9536
9537         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9538         all &= one | ~NETIF_F_ALL_FOR_ALL;
9539
9540         /* If one device supports hw checksumming, set for all. */
9541         if (all & NETIF_F_HW_CSUM)
9542                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9543
9544         return all;
9545 }
9546 EXPORT_SYMBOL(netdev_increment_features);
9547
9548 static struct hlist_head * __net_init netdev_create_hash(void)
9549 {
9550         int i;
9551         struct hlist_head *hash;
9552
9553         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9554         if (hash != NULL)
9555                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9556                         INIT_HLIST_HEAD(&hash[i]);
9557
9558         return hash;
9559 }
9560
9561 /* Initialize per network namespace state */
9562 static int __net_init netdev_init(struct net *net)
9563 {
9564         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9565                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9566
9567         if (net != &init_net)
9568                 INIT_LIST_HEAD(&net->dev_base_head);
9569
9570         net->dev_name_head = netdev_create_hash();
9571         if (net->dev_name_head == NULL)
9572                 goto err_name;
9573
9574         net->dev_index_head = netdev_create_hash();
9575         if (net->dev_index_head == NULL)
9576                 goto err_idx;
9577
9578         return 0;
9579
9580 err_idx:
9581         kfree(net->dev_name_head);
9582 err_name:
9583         return -ENOMEM;
9584 }
9585
9586 /**
9587  *      netdev_drivername - network driver for the device
9588  *      @dev: network device
9589  *
9590  *      Determine network driver for device.
9591  */
9592 const char *netdev_drivername(const struct net_device *dev)
9593 {
9594         const struct device_driver *driver;
9595         const struct device *parent;
9596         const char *empty = "";
9597
9598         parent = dev->dev.parent;
9599         if (!parent)
9600                 return empty;
9601
9602         driver = parent->driver;
9603         if (driver && driver->name)
9604                 return driver->name;
9605         return empty;
9606 }
9607
9608 static void __netdev_printk(const char *level, const struct net_device *dev,
9609                             struct va_format *vaf)
9610 {
9611         if (dev && dev->dev.parent) {
9612                 dev_printk_emit(level[1] - '0',
9613                                 dev->dev.parent,
9614                                 "%s %s %s%s: %pV",
9615                                 dev_driver_string(dev->dev.parent),
9616                                 dev_name(dev->dev.parent),
9617                                 netdev_name(dev), netdev_reg_state(dev),
9618                                 vaf);
9619         } else if (dev) {
9620                 printk("%s%s%s: %pV",
9621                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9622         } else {
9623                 printk("%s(NULL net_device): %pV", level, vaf);
9624         }
9625 }
9626
9627 void netdev_printk(const char *level, const struct net_device *dev,
9628                    const char *format, ...)
9629 {
9630         struct va_format vaf;
9631         va_list args;
9632
9633         va_start(args, format);
9634
9635         vaf.fmt = format;
9636         vaf.va = &args;
9637
9638         __netdev_printk(level, dev, &vaf);
9639
9640         va_end(args);
9641 }
9642 EXPORT_SYMBOL(netdev_printk);
9643
9644 #define define_netdev_printk_level(func, level)                 \
9645 void func(const struct net_device *dev, const char *fmt, ...)   \
9646 {                                                               \
9647         struct va_format vaf;                                   \
9648         va_list args;                                           \
9649                                                                 \
9650         va_start(args, fmt);                                    \
9651                                                                 \
9652         vaf.fmt = fmt;                                          \
9653         vaf.va = &args;                                         \
9654                                                                 \
9655         __netdev_printk(level, dev, &vaf);                      \
9656                                                                 \
9657         va_end(args);                                           \
9658 }                                                               \
9659 EXPORT_SYMBOL(func);
9660
9661 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9662 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9663 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9664 define_netdev_printk_level(netdev_err, KERN_ERR);
9665 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9666 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9667 define_netdev_printk_level(netdev_info, KERN_INFO);
9668
9669 static void __net_exit netdev_exit(struct net *net)
9670 {
9671         kfree(net->dev_name_head);
9672         kfree(net->dev_index_head);
9673         if (net != &init_net)
9674                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9675 }
9676
9677 static struct pernet_operations __net_initdata netdev_net_ops = {
9678         .init = netdev_init,
9679         .exit = netdev_exit,
9680 };
9681
9682 static void __net_exit default_device_exit(struct net *net)
9683 {
9684         struct net_device *dev, *aux;
9685         /*
9686          * Push all migratable network devices back to the
9687          * initial network namespace
9688          */
9689         rtnl_lock();
9690         for_each_netdev_safe(net, dev, aux) {
9691                 int err;
9692                 char fb_name[IFNAMSIZ];
9693
9694                 /* Ignore unmoveable devices (i.e. loopback) */
9695                 if (dev->features & NETIF_F_NETNS_LOCAL)
9696                         continue;
9697
9698                 /* Leave virtual devices for the generic cleanup */
9699                 if (dev->rtnl_link_ops)
9700                         continue;
9701
9702                 /* Push remaining network devices to init_net */
9703                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9704                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9705                 if (err) {
9706                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9707                                  __func__, dev->name, err);
9708                         BUG();
9709                 }
9710         }
9711         rtnl_unlock();
9712 }
9713
9714 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9715 {
9716         /* Return with the rtnl_lock held when there are no network
9717          * devices unregistering in any network namespace in net_list.
9718          */
9719         struct net *net;
9720         bool unregistering;
9721         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9722
9723         add_wait_queue(&netdev_unregistering_wq, &wait);
9724         for (;;) {
9725                 unregistering = false;
9726                 rtnl_lock();
9727                 list_for_each_entry(net, net_list, exit_list) {
9728                         if (net->dev_unreg_count > 0) {
9729                                 unregistering = true;
9730                                 break;
9731                         }
9732                 }
9733                 if (!unregistering)
9734                         break;
9735                 __rtnl_unlock();
9736
9737                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9738         }
9739         remove_wait_queue(&netdev_unregistering_wq, &wait);
9740 }
9741
9742 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9743 {
9744         /* At exit all network devices most be removed from a network
9745          * namespace.  Do this in the reverse order of registration.
9746          * Do this across as many network namespaces as possible to
9747          * improve batching efficiency.
9748          */
9749         struct net_device *dev;
9750         struct net *net;
9751         LIST_HEAD(dev_kill_list);
9752
9753         /* To prevent network device cleanup code from dereferencing
9754          * loopback devices or network devices that have been freed
9755          * wait here for all pending unregistrations to complete,
9756          * before unregistring the loopback device and allowing the
9757          * network namespace be freed.
9758          *
9759          * The netdev todo list containing all network devices
9760          * unregistrations that happen in default_device_exit_batch
9761          * will run in the rtnl_unlock() at the end of
9762          * default_device_exit_batch.
9763          */
9764         rtnl_lock_unregistering(net_list);
9765         list_for_each_entry(net, net_list, exit_list) {
9766                 for_each_netdev_reverse(net, dev) {
9767                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9768                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9769                         else
9770                                 unregister_netdevice_queue(dev, &dev_kill_list);
9771                 }
9772         }
9773         unregister_netdevice_many(&dev_kill_list);
9774         rtnl_unlock();
9775 }
9776
9777 static struct pernet_operations __net_initdata default_device_ops = {
9778         .exit = default_device_exit,
9779         .exit_batch = default_device_exit_batch,
9780 };
9781
9782 /*
9783  *      Initialize the DEV module. At boot time this walks the device list and
9784  *      unhooks any devices that fail to initialise (normally hardware not
9785  *      present) and leaves us with a valid list of present and active devices.
9786  *
9787  */
9788
9789 /*
9790  *       This is called single threaded during boot, so no need
9791  *       to take the rtnl semaphore.
9792  */
9793 static int __init net_dev_init(void)
9794 {
9795         int i, rc = -ENOMEM;
9796
9797         BUG_ON(!dev_boot_phase);
9798
9799         if (dev_proc_init())
9800                 goto out;
9801
9802         if (netdev_kobject_init())
9803                 goto out;
9804
9805         INIT_LIST_HEAD(&ptype_all);
9806         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9807                 INIT_LIST_HEAD(&ptype_base[i]);
9808
9809         INIT_LIST_HEAD(&offload_base);
9810
9811         if (register_pernet_subsys(&netdev_net_ops))
9812                 goto out;
9813
9814         /*
9815          *      Initialise the packet receive queues.
9816          */
9817
9818         for_each_possible_cpu(i) {
9819                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9820                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9821
9822                 INIT_WORK(flush, flush_backlog);
9823
9824                 skb_queue_head_init(&sd->input_pkt_queue);
9825                 skb_queue_head_init(&sd->process_queue);
9826 #ifdef CONFIG_XFRM_OFFLOAD
9827                 skb_queue_head_init(&sd->xfrm_backlog);
9828 #endif
9829                 INIT_LIST_HEAD(&sd->poll_list);
9830                 sd->output_queue_tailp = &sd->output_queue;
9831 #ifdef CONFIG_RPS
9832                 sd->csd.func = rps_trigger_softirq;
9833                 sd->csd.info = sd;
9834                 sd->cpu = i;
9835 #endif
9836
9837                 init_gro_hash(&sd->backlog);
9838                 sd->backlog.poll = process_backlog;
9839                 sd->backlog.weight = weight_p;
9840         }
9841
9842         dev_boot_phase = 0;
9843
9844         /* The loopback device is special if any other network devices
9845          * is present in a network namespace the loopback device must
9846          * be present. Since we now dynamically allocate and free the
9847          * loopback device ensure this invariant is maintained by
9848          * keeping the loopback device as the first device on the
9849          * list of network devices.  Ensuring the loopback devices
9850          * is the first device that appears and the last network device
9851          * that disappears.
9852          */
9853         if (register_pernet_device(&loopback_net_ops))
9854                 goto out;
9855
9856         if (register_pernet_device(&default_device_ops))
9857                 goto out;
9858
9859         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9860         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9861
9862         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9863                                        NULL, dev_cpu_dead);
9864         WARN_ON(rc < 0);
9865         rc = 0;
9866 out:
9867         return rc;
9868 }
9869
9870 subsys_initcall(net_dev_init);