nvme-rdma: use dynamic dma mapping per command
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static seqcount_t devnet_rename_seq;
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238         struct net *net = dev_net(dev);
239
240         ASSERT_RTNL();
241
242         write_lock_bh(&dev_base_lock);
243         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245         hlist_add_head_rcu(&dev->index_hlist,
246                            dev_index_hash(net, dev->ifindex));
247         write_unlock_bh(&dev_base_lock);
248
249         dev_base_seq_inc(net);
250 }
251
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257         ASSERT_RTNL();
258
259         /* Unlink dev from the device chain */
260         write_lock_bh(&dev_base_lock);
261         list_del_rcu(&dev->dev_list);
262         hlist_del_rcu(&dev->name_hlist);
263         hlist_del_rcu(&dev->index_hlist);
264         write_unlock_bh(&dev_base_lock);
265
266         dev_base_seq_inc(dev_net(dev));
267 }
268
269 /*
270  *      Our notifier list
271  */
272
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274
275 /*
276  *      Device drivers call our routines to queue packets here. We empty the
277  *      queue in the local softnet handler.
278  */
279
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305 static const char *const netdev_lock_name[] = {
306         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327         int i;
328
329         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330                 if (netdev_lock_type[i] == dev_type)
331                         return i;
332         /* the last key is used by default */
333         return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337                                                  unsigned short dev_type)
338 {
339         int i;
340
341         i = netdev_lock_pos(dev_type);
342         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348         int i;
349
350         i = netdev_lock_pos(dev->type);
351         lockdep_set_class_and_name(&dev->addr_list_lock,
352                                    &netdev_addr_lock_key[i],
353                                    netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357                                                  unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364
365 /*******************************************************************************
366  *
367  *              Protocol management and registration routines
368  *
369  *******************************************************************************/
370
371
372 /*
373  *      Add a protocol ID to the list. Now that the input handler is
374  *      smarter we can dispense with all the messy stuff that used to be
375  *      here.
376  *
377  *      BEWARE!!! Protocol handlers, mangling input packets,
378  *      MUST BE last in hash buckets and checking protocol handlers
379  *      MUST start from promiscuous ptype_all chain in net_bh.
380  *      It is true now, do not change it.
381  *      Explanation follows: if protocol handler, mangling packet, will
382  *      be the first on list, it is not able to sense, that packet
383  *      is cloned and should be copied-on-write, so that it will
384  *      change it and subsequent readers will get broken packet.
385  *                                                      --ANK (980803)
386  */
387
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390         if (pt->type == htons(ETH_P_ALL))
391                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392         else
393                 return pt->dev ? &pt->dev->ptype_specific :
394                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398  *      dev_add_pack - add packet handler
399  *      @pt: packet type declaration
400  *
401  *      Add a protocol handler to the networking stack. The passed &packet_type
402  *      is linked into kernel lists and may not be freed until it has been
403  *      removed from the kernel lists.
404  *
405  *      This call does not sleep therefore it can not
406  *      guarantee all CPU's that are in middle of receiving packets
407  *      will see the new packet type (until the next received packet).
408  */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412         struct list_head *head = ptype_head(pt);
413
414         spin_lock(&ptype_lock);
415         list_add_rcu(&pt->list, head);
416         spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421  *      __dev_remove_pack        - remove packet handler
422  *      @pt: packet type declaration
423  *
424  *      Remove a protocol handler that was previously added to the kernel
425  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *      from the kernel lists and can be freed or reused once this function
427  *      returns.
428  *
429  *      The packet type might still be in use by receivers
430  *      and must not be freed until after all the CPU's have gone
431  *      through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435         struct list_head *head = ptype_head(pt);
436         struct packet_type *pt1;
437
438         spin_lock(&ptype_lock);
439
440         list_for_each_entry(pt1, head, list) {
441                 if (pt == pt1) {
442                         list_del_rcu(&pt->list);
443                         goto out;
444                 }
445         }
446
447         pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449         spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454  *      dev_remove_pack  - remove packet handler
455  *      @pt: packet type declaration
456  *
457  *      Remove a protocol handler that was previously added to the kernel
458  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *      from the kernel lists and can be freed or reused once this function
460  *      returns.
461  *
462  *      This call sleeps to guarantee that no CPU is looking at the packet
463  *      type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467         __dev_remove_pack(pt);
468
469         synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473
474 /**
475  *      dev_add_offload - register offload handlers
476  *      @po: protocol offload declaration
477  *
478  *      Add protocol offload handlers to the networking stack. The passed
479  *      &proto_offload is linked into kernel lists and may not be freed until
480  *      it has been removed from the kernel lists.
481  *
482  *      This call does not sleep therefore it can not
483  *      guarantee all CPU's that are in middle of receiving packets
484  *      will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488         struct packet_offload *elem;
489
490         spin_lock(&offload_lock);
491         list_for_each_entry(elem, &offload_base, list) {
492                 if (po->priority < elem->priority)
493                         break;
494         }
495         list_add_rcu(&po->list, elem->list.prev);
496         spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499
500 /**
501  *      __dev_remove_offload     - remove offload handler
502  *      @po: packet offload declaration
503  *
504  *      Remove a protocol offload handler that was previously added to the
505  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *      is removed from the kernel lists and can be freed or reused once this
507  *      function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *      and must not be freed until after all the CPU's have gone
511  *      through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515         struct list_head *head = &offload_base;
516         struct packet_offload *po1;
517
518         spin_lock(&offload_lock);
519
520         list_for_each_entry(po1, head, list) {
521                 if (po == po1) {
522                         list_del_rcu(&po->list);
523                         goto out;
524                 }
525         }
526
527         pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529         spin_unlock(&offload_lock);
530 }
531
532 /**
533  *      dev_remove_offload       - remove packet offload handler
534  *      @po: packet offload declaration
535  *
536  *      Remove a packet offload handler that was previously added to the kernel
537  *      offload handlers by dev_add_offload(). The passed &offload_type is
538  *      removed from the kernel lists and can be freed or reused once this
539  *      function returns.
540  *
541  *      This call sleeps to guarantee that no CPU is looking at the packet
542  *      type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546         __dev_remove_offload(po);
547
548         synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551
552 /******************************************************************************
553  *
554  *                    Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561 /**
562  *      netdev_boot_setup_add   - add new setup entry
563  *      @name: name of the device
564  *      @map: configured settings for the device
565  *
566  *      Adds new setup entry to the dev_boot_setup list.  The function
567  *      returns 0 on error and 1 on success.  This is a generic routine to
568  *      all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572         struct netdev_boot_setup *s;
573         int i;
574
575         s = dev_boot_setup;
576         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578                         memset(s[i].name, 0, sizeof(s[i].name));
579                         strlcpy(s[i].name, name, IFNAMSIZ);
580                         memcpy(&s[i].map, map, sizeof(s[i].map));
581                         break;
582                 }
583         }
584
585         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587
588 /**
589  * netdev_boot_setup_check      - check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599         struct netdev_boot_setup *s = dev_boot_setup;
600         int i;
601
602         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604                     !strcmp(dev->name, s[i].name)) {
605                         dev->irq = s[i].map.irq;
606                         dev->base_addr = s[i].map.base_addr;
607                         dev->mem_start = s[i].map.mem_start;
608                         dev->mem_end = s[i].map.mem_end;
609                         return 1;
610                 }
611         }
612         return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617 /**
618  * netdev_boot_base     - get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629         const struct netdev_boot_setup *s = dev_boot_setup;
630         char name[IFNAMSIZ];
631         int i;
632
633         sprintf(name, "%s%d", prefix, unit);
634
635         /*
636          * If device already registered then return base of 1
637          * to indicate not to probe for this interface
638          */
639         if (__dev_get_by_name(&init_net, name))
640                 return 1;
641
642         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643                 if (!strcmp(name, s[i].name))
644                         return s[i].map.base_addr;
645         return 0;
646 }
647
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653         int ints[5];
654         struct ifmap map;
655
656         str = get_options(str, ARRAY_SIZE(ints), ints);
657         if (!str || !*str)
658                 return 0;
659
660         /* Save settings */
661         memset(&map, 0, sizeof(map));
662         if (ints[0] > 0)
663                 map.irq = ints[1];
664         if (ints[0] > 1)
665                 map.base_addr = ints[2];
666         if (ints[0] > 2)
667                 map.mem_start = ints[3];
668         if (ints[0] > 3)
669                 map.mem_end = ints[4];
670
671         /* Add new entry to the list */
672         return netdev_boot_setup_add(str, &map);
673 }
674
675 __setup("netdev=", netdev_boot_setup);
676
677 /*******************************************************************************
678  *
679  *                          Device Interface Subroutines
680  *
681  *******************************************************************************/
682
683 /**
684  *      dev_get_iflink  - get 'iflink' value of a interface
685  *      @dev: targeted interface
686  *
687  *      Indicates the ifindex the interface is linked to.
688  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690
691 int dev_get_iflink(const struct net_device *dev)
692 {
693         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694                 return dev->netdev_ops->ndo_get_iflink(dev);
695
696         return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699
700 /**
701  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *      @dev: targeted interface
703  *      @skb: The packet.
704  *
705  *      For better visibility of tunnel traffic OVS needs to retrieve
706  *      egress tunnel information for a packet. Following API allows
707  *      user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711         struct ip_tunnel_info *info;
712
713         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714                 return -EINVAL;
715
716         info = skb_tunnel_info_unclone(skb);
717         if (!info)
718                 return -ENOMEM;
719         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720                 return -EINVAL;
721
722         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726 /**
727  *      __dev_get_by_name       - find a device by its name
728  *      @net: the applicable net namespace
729  *      @name: name to find
730  *
731  *      Find an interface by name. Must be called under RTNL semaphore
732  *      or @dev_base_lock. If the name is found a pointer to the device
733  *      is returned. If the name is not found then %NULL is returned. The
734  *      reference counters are not incremented so the caller must be
735  *      careful with locks.
736  */
737
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740         struct net_device *dev;
741         struct hlist_head *head = dev_name_hash(net, name);
742
743         hlist_for_each_entry(dev, head, name_hlist)
744                 if (!strncmp(dev->name, name, IFNAMSIZ))
745                         return dev;
746
747         return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750
751 /**
752  * dev_get_by_name_rcu  - find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765         struct net_device *dev;
766         struct hlist_head *head = dev_name_hash(net, name);
767
768         hlist_for_each_entry_rcu(dev, head, name_hlist)
769                 if (!strncmp(dev->name, name, IFNAMSIZ))
770                         return dev;
771
772         return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776 /**
777  *      dev_get_by_name         - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. This can be called from any
782  *      context and does its own locking. The returned handle has
783  *      the usage count incremented and the caller must use dev_put() to
784  *      release it when it is no longer needed. %NULL is returned if no
785  *      matching device is found.
786  */
787
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790         struct net_device *dev;
791
792         rcu_read_lock();
793         dev = dev_get_by_name_rcu(net, name);
794         if (dev)
795                 dev_hold(dev);
796         rcu_read_unlock();
797         return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800
801 /**
802  *      __dev_get_by_index - find a device by its ifindex
803  *      @net: the applicable net namespace
804  *      @ifindex: index of device
805  *
806  *      Search for an interface by index. Returns %NULL if the device
807  *      is not found or a pointer to the device. The device has not
808  *      had its reference counter increased so the caller must be careful
809  *      about locking. The caller must hold either the RTNL semaphore
810  *      or @dev_base_lock.
811  */
812
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815         struct net_device *dev;
816         struct hlist_head *head = dev_index_hash(net, ifindex);
817
818         hlist_for_each_entry(dev, head, index_hlist)
819                 if (dev->ifindex == ifindex)
820                         return dev;
821
822         return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825
826 /**
827  *      dev_get_by_index_rcu - find a device by its ifindex
828  *      @net: the applicable net namespace
829  *      @ifindex: index of device
830  *
831  *      Search for an interface by index. Returns %NULL if the device
832  *      is not found or a pointer to the device. The device has not
833  *      had its reference counter increased so the caller must be careful
834  *      about locking. The caller must hold RCU lock.
835  */
836
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839         struct net_device *dev;
840         struct hlist_head *head = dev_index_hash(net, ifindex);
841
842         hlist_for_each_entry_rcu(dev, head, index_hlist)
843                 if (dev->ifindex == ifindex)
844                         return dev;
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851 /**
852  *      dev_get_by_index - find a device by its ifindex
853  *      @net: the applicable net namespace
854  *      @ifindex: index of device
855  *
856  *      Search for an interface by index. Returns NULL if the device
857  *      is not found or a pointer to the device. The device returned has
858  *      had a reference added and the pointer is safe until the user calls
859  *      dev_put to indicate they have finished with it.
860  */
861
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864         struct net_device *dev;
865
866         rcu_read_lock();
867         dev = dev_get_by_index_rcu(net, ifindex);
868         if (dev)
869                 dev_hold(dev);
870         rcu_read_unlock();
871         return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874
875 /**
876  *      dev_get_by_napi_id - find a device by napi_id
877  *      @napi_id: ID of the NAPI struct
878  *
879  *      Search for an interface by NAPI ID. Returns %NULL if the device
880  *      is not found or a pointer to the device. The device has not had
881  *      its reference counter increased so the caller must be careful
882  *      about locking. The caller must hold RCU lock.
883  */
884
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887         struct napi_struct *napi;
888
889         WARN_ON_ONCE(!rcu_read_lock_held());
890
891         if (napi_id < MIN_NAPI_ID)
892                 return NULL;
893
894         napi = napi_by_id(napi_id);
895
896         return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899
900 /**
901  *      netdev_get_name - get a netdevice name, knowing its ifindex.
902  *      @net: network namespace
903  *      @name: a pointer to the buffer where the name will be stored.
904  *      @ifindex: the ifindex of the interface to get the name from.
905  *
906  *      The use of raw_seqcount_begin() and cond_resched() before
907  *      retrying is required as we want to give the writers a chance
908  *      to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912         struct net_device *dev;
913         unsigned int seq;
914
915 retry:
916         seq = raw_seqcount_begin(&devnet_rename_seq);
917         rcu_read_lock();
918         dev = dev_get_by_index_rcu(net, ifindex);
919         if (!dev) {
920                 rcu_read_unlock();
921                 return -ENODEV;
922         }
923
924         strcpy(name, dev->name);
925         rcu_read_unlock();
926         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927                 cond_resched();
928                 goto retry;
929         }
930
931         return 0;
932 }
933
934 /**
935  *      dev_getbyhwaddr_rcu - find a device by its hardware address
936  *      @net: the applicable net namespace
937  *      @type: media type of device
938  *      @ha: hardware address
939  *
940  *      Search for an interface by MAC address. Returns NULL if the device
941  *      is not found or a pointer to the device.
942  *      The caller must hold RCU or RTNL.
943  *      The returned device has not had its ref count increased
944  *      and the caller must therefore be careful about locking
945  *
946  */
947
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949                                        const char *ha)
950 {
951         struct net_device *dev;
952
953         for_each_netdev_rcu(net, dev)
954                 if (dev->type == type &&
955                     !memcmp(dev->dev_addr, ha, dev->addr_len))
956                         return dev;
957
958         return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964         struct net_device *dev;
965
966         ASSERT_RTNL();
967         for_each_netdev(net, dev)
968                 if (dev->type == type)
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      to allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         if (!sscanf(d->name, name, &i))
1089                                 continue;
1090                         if (i < 0 || i >= max_netdevices)
1091                                 continue;
1092
1093                         /*  avoid cases where sscanf is not exact inverse of printf */
1094                         snprintf(buf, IFNAMSIZ, name, i);
1095                         if (!strncmp(buf, d->name, IFNAMSIZ))
1096                                 set_bit(i, inuse);
1097                 }
1098
1099                 i = find_first_zero_bit(inuse, max_netdevices);
1100                 free_page((unsigned long) inuse);
1101         }
1102
1103         snprintf(buf, IFNAMSIZ, name, i);
1104         if (!__dev_get_by_name(net, buf))
1105                 return i;
1106
1107         /* It is possible to run out of possible slots
1108          * when the name is long and there isn't enough space left
1109          * for the digits, or if all bits are used.
1110          */
1111         return -ENFILE;
1112 }
1113
1114 static int dev_alloc_name_ns(struct net *net,
1115                              struct net_device *dev,
1116                              const char *name)
1117 {
1118         char buf[IFNAMSIZ];
1119         int ret;
1120
1121         BUG_ON(!net);
1122         ret = __dev_alloc_name(net, name, buf);
1123         if (ret >= 0)
1124                 strlcpy(dev->name, buf, IFNAMSIZ);
1125         return ret;
1126 }
1127
1128 /**
1129  *      dev_alloc_name - allocate a name for a device
1130  *      @dev: device
1131  *      @name: name format string
1132  *
1133  *      Passed a format string - eg "lt%d" it will try and find a suitable
1134  *      id. It scans list of devices to build up a free map, then chooses
1135  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *      while allocating the name and adding the device in order to avoid
1137  *      duplicates.
1138  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *      Returns the number of the unit assigned or a negative errno code.
1140  */
1141
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144         return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149                        const char *name)
1150 {
1151         BUG_ON(!net);
1152
1153         if (!dev_valid_name(name))
1154                 return -EINVAL;
1155
1156         if (strchr(name, '%'))
1157                 return dev_alloc_name_ns(net, dev, name);
1158         else if (__dev_get_by_name(net, name))
1159                 return -EEXIST;
1160         else if (dev->name != name)
1161                 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166
1167 /**
1168  *      dev_change_name - change name of a device
1169  *      @dev: device
1170  *      @newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *      Change name of a device, can pass format strings "eth%d".
1173  *      for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177         unsigned char old_assign_type;
1178         char oldname[IFNAMSIZ];
1179         int err = 0;
1180         int ret;
1181         struct net *net;
1182
1183         ASSERT_RTNL();
1184         BUG_ON(!dev_net(dev));
1185
1186         net = dev_net(dev);
1187
1188         /* Some auto-enslaved devices e.g. failover slaves are
1189          * special, as userspace might rename the device after
1190          * the interface had been brought up and running since
1191          * the point kernel initiated auto-enslavement. Allow
1192          * live name change even when these slave devices are
1193          * up and running.
1194          *
1195          * Typically, users of these auto-enslaving devices
1196          * don't actually care about slave name change, as
1197          * they are supposed to operate on master interface
1198          * directly.
1199          */
1200         if (dev->flags & IFF_UP &&
1201             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1202                 return -EBUSY;
1203
1204         write_seqcount_begin(&devnet_rename_seq);
1205
1206         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1207                 write_seqcount_end(&devnet_rename_seq);
1208                 return 0;
1209         }
1210
1211         memcpy(oldname, dev->name, IFNAMSIZ);
1212
1213         err = dev_get_valid_name(net, dev, newname);
1214         if (err < 0) {
1215                 write_seqcount_end(&devnet_rename_seq);
1216                 return err;
1217         }
1218
1219         if (oldname[0] && !strchr(oldname, '%'))
1220                 netdev_info(dev, "renamed from %s\n", oldname);
1221
1222         old_assign_type = dev->name_assign_type;
1223         dev->name_assign_type = NET_NAME_RENAMED;
1224
1225 rollback:
1226         ret = device_rename(&dev->dev, dev->name);
1227         if (ret) {
1228                 memcpy(dev->name, oldname, IFNAMSIZ);
1229                 dev->name_assign_type = old_assign_type;
1230                 write_seqcount_end(&devnet_rename_seq);
1231                 return ret;
1232         }
1233
1234         write_seqcount_end(&devnet_rename_seq);
1235
1236         netdev_adjacent_rename_links(dev, oldname);
1237
1238         write_lock_bh(&dev_base_lock);
1239         hlist_del_rcu(&dev->name_hlist);
1240         write_unlock_bh(&dev_base_lock);
1241
1242         synchronize_rcu();
1243
1244         write_lock_bh(&dev_base_lock);
1245         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1246         write_unlock_bh(&dev_base_lock);
1247
1248         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1249         ret = notifier_to_errno(ret);
1250
1251         if (ret) {
1252                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1253                 if (err >= 0) {
1254                         err = ret;
1255                         write_seqcount_begin(&devnet_rename_seq);
1256                         memcpy(dev->name, oldname, IFNAMSIZ);
1257                         memcpy(oldname, newname, IFNAMSIZ);
1258                         dev->name_assign_type = old_assign_type;
1259                         old_assign_type = NET_NAME_RENAMED;
1260                         goto rollback;
1261                 } else {
1262                         pr_err("%s: name change rollback failed: %d\n",
1263                                dev->name, ret);
1264                 }
1265         }
1266
1267         return err;
1268 }
1269
1270 /**
1271  *      dev_set_alias - change ifalias of a device
1272  *      @dev: device
1273  *      @alias: name up to IFALIASZ
1274  *      @len: limit of bytes to copy from info
1275  *
1276  *      Set ifalias for a device,
1277  */
1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279 {
1280         struct dev_ifalias *new_alias = NULL;
1281
1282         if (len >= IFALIASZ)
1283                 return -EINVAL;
1284
1285         if (len) {
1286                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287                 if (!new_alias)
1288                         return -ENOMEM;
1289
1290                 memcpy(new_alias->ifalias, alias, len);
1291                 new_alias->ifalias[len] = 0;
1292         }
1293
1294         mutex_lock(&ifalias_mutex);
1295         rcu_swap_protected(dev->ifalias, new_alias,
1296                            mutex_is_locked(&ifalias_mutex));
1297         mutex_unlock(&ifalias_mutex);
1298
1299         if (new_alias)
1300                 kfree_rcu(new_alias, rcuhead);
1301
1302         return len;
1303 }
1304 EXPORT_SYMBOL(dev_set_alias);
1305
1306 /**
1307  *      dev_get_alias - get ifalias of a device
1308  *      @dev: device
1309  *      @name: buffer to store name of ifalias
1310  *      @len: size of buffer
1311  *
1312  *      get ifalias for a device.  Caller must make sure dev cannot go
1313  *      away,  e.g. rcu read lock or own a reference count to device.
1314  */
1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316 {
1317         const struct dev_ifalias *alias;
1318         int ret = 0;
1319
1320         rcu_read_lock();
1321         alias = rcu_dereference(dev->ifalias);
1322         if (alias)
1323                 ret = snprintf(name, len, "%s", alias->ifalias);
1324         rcu_read_unlock();
1325
1326         return ret;
1327 }
1328
1329 /**
1330  *      netdev_features_change - device changes features
1331  *      @dev: device to cause notification
1332  *
1333  *      Called to indicate a device has changed features.
1334  */
1335 void netdev_features_change(struct net_device *dev)
1336 {
1337         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1338 }
1339 EXPORT_SYMBOL(netdev_features_change);
1340
1341 /**
1342  *      netdev_state_change - device changes state
1343  *      @dev: device to cause notification
1344  *
1345  *      Called to indicate a device has changed state. This function calls
1346  *      the notifier chains for netdev_chain and sends a NEWLINK message
1347  *      to the routing socket.
1348  */
1349 void netdev_state_change(struct net_device *dev)
1350 {
1351         if (dev->flags & IFF_UP) {
1352                 struct netdev_notifier_change_info change_info = {
1353                         .info.dev = dev,
1354                 };
1355
1356                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1357                                               &change_info.info);
1358                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1359         }
1360 }
1361 EXPORT_SYMBOL(netdev_state_change);
1362
1363 /**
1364  * netdev_notify_peers - notify network peers about existence of @dev
1365  * @dev: network device
1366  *
1367  * Generate traffic such that interested network peers are aware of
1368  * @dev, such as by generating a gratuitous ARP. This may be used when
1369  * a device wants to inform the rest of the network about some sort of
1370  * reconfiguration such as a failover event or virtual machine
1371  * migration.
1372  */
1373 void netdev_notify_peers(struct net_device *dev)
1374 {
1375         rtnl_lock();
1376         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1377         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1378         rtnl_unlock();
1379 }
1380 EXPORT_SYMBOL(netdev_notify_peers);
1381
1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383 {
1384         const struct net_device_ops *ops = dev->netdev_ops;
1385         int ret;
1386
1387         ASSERT_RTNL();
1388
1389         if (!netif_device_present(dev))
1390                 return -ENODEV;
1391
1392         /* Block netpoll from trying to do any rx path servicing.
1393          * If we don't do this there is a chance ndo_poll_controller
1394          * or ndo_poll may be running while we open the device
1395          */
1396         netpoll_poll_disable(dev);
1397
1398         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1399         ret = notifier_to_errno(ret);
1400         if (ret)
1401                 return ret;
1402
1403         set_bit(__LINK_STATE_START, &dev->state);
1404
1405         if (ops->ndo_validate_addr)
1406                 ret = ops->ndo_validate_addr(dev);
1407
1408         if (!ret && ops->ndo_open)
1409                 ret = ops->ndo_open(dev);
1410
1411         netpoll_poll_enable(dev);
1412
1413         if (ret)
1414                 clear_bit(__LINK_STATE_START, &dev->state);
1415         else {
1416                 dev->flags |= IFF_UP;
1417                 dev_set_rx_mode(dev);
1418                 dev_activate(dev);
1419                 add_device_randomness(dev->dev_addr, dev->addr_len);
1420         }
1421
1422         return ret;
1423 }
1424
1425 /**
1426  *      dev_open        - prepare an interface for use.
1427  *      @dev: device to open
1428  *      @extack: netlink extended ack
1429  *
1430  *      Takes a device from down to up state. The device's private open
1431  *      function is invoked and then the multicast lists are loaded. Finally
1432  *      the device is moved into the up state and a %NETDEV_UP message is
1433  *      sent to the netdev notifier chain.
1434  *
1435  *      Calling this function on an active interface is a nop. On a failure
1436  *      a negative errno code is returned.
1437  */
1438 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1439 {
1440         int ret;
1441
1442         if (dev->flags & IFF_UP)
1443                 return 0;
1444
1445         ret = __dev_open(dev, extack);
1446         if (ret < 0)
1447                 return ret;
1448
1449         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450         call_netdevice_notifiers(NETDEV_UP, dev);
1451
1452         return ret;
1453 }
1454 EXPORT_SYMBOL(dev_open);
1455
1456 static void __dev_close_many(struct list_head *head)
1457 {
1458         struct net_device *dev;
1459
1460         ASSERT_RTNL();
1461         might_sleep();
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 /* Temporarily disable netpoll until the interface is down */
1465                 netpoll_poll_disable(dev);
1466
1467                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1468
1469                 clear_bit(__LINK_STATE_START, &dev->state);
1470
1471                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1472                  * can be even on different cpu. So just clear netif_running().
1473                  *
1474                  * dev->stop() will invoke napi_disable() on all of it's
1475                  * napi_struct instances on this device.
1476                  */
1477                 smp_mb__after_atomic(); /* Commit netif_running(). */
1478         }
1479
1480         dev_deactivate_many(head);
1481
1482         list_for_each_entry(dev, head, close_list) {
1483                 const struct net_device_ops *ops = dev->netdev_ops;
1484
1485                 /*
1486                  *      Call the device specific close. This cannot fail.
1487                  *      Only if device is UP
1488                  *
1489                  *      We allow it to be called even after a DETACH hot-plug
1490                  *      event.
1491                  */
1492                 if (ops->ndo_stop)
1493                         ops->ndo_stop(dev);
1494
1495                 dev->flags &= ~IFF_UP;
1496                 netpoll_poll_enable(dev);
1497         }
1498 }
1499
1500 static void __dev_close(struct net_device *dev)
1501 {
1502         LIST_HEAD(single);
1503
1504         list_add(&dev->close_list, &single);
1505         __dev_close_many(&single);
1506         list_del(&single);
1507 }
1508
1509 void dev_close_many(struct list_head *head, bool unlink)
1510 {
1511         struct net_device *dev, *tmp;
1512
1513         /* Remove the devices that don't need to be closed */
1514         list_for_each_entry_safe(dev, tmp, head, close_list)
1515                 if (!(dev->flags & IFF_UP))
1516                         list_del_init(&dev->close_list);
1517
1518         __dev_close_many(head);
1519
1520         list_for_each_entry_safe(dev, tmp, head, close_list) {
1521                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1522                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1523                 if (unlink)
1524                         list_del_init(&dev->close_list);
1525         }
1526 }
1527 EXPORT_SYMBOL(dev_close_many);
1528
1529 /**
1530  *      dev_close - shutdown an interface.
1531  *      @dev: device to shutdown
1532  *
1533  *      This function moves an active device into down state. A
1534  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1535  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1536  *      chain.
1537  */
1538 void dev_close(struct net_device *dev)
1539 {
1540         if (dev->flags & IFF_UP) {
1541                 LIST_HEAD(single);
1542
1543                 list_add(&dev->close_list, &single);
1544                 dev_close_many(&single, true);
1545                 list_del(&single);
1546         }
1547 }
1548 EXPORT_SYMBOL(dev_close);
1549
1550
1551 /**
1552  *      dev_disable_lro - disable Large Receive Offload on a device
1553  *      @dev: device
1554  *
1555  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1556  *      called under RTNL.  This is needed if received packets may be
1557  *      forwarded to another interface.
1558  */
1559 void dev_disable_lro(struct net_device *dev)
1560 {
1561         struct net_device *lower_dev;
1562         struct list_head *iter;
1563
1564         dev->wanted_features &= ~NETIF_F_LRO;
1565         netdev_update_features(dev);
1566
1567         if (unlikely(dev->features & NETIF_F_LRO))
1568                 netdev_WARN(dev, "failed to disable LRO!\n");
1569
1570         netdev_for_each_lower_dev(dev, lower_dev, iter)
1571                 dev_disable_lro(lower_dev);
1572 }
1573 EXPORT_SYMBOL(dev_disable_lro);
1574
1575 /**
1576  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1577  *      @dev: device
1578  *
1579  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1580  *      called under RTNL.  This is needed if Generic XDP is installed on
1581  *      the device.
1582  */
1583 static void dev_disable_gro_hw(struct net_device *dev)
1584 {
1585         dev->wanted_features &= ~NETIF_F_GRO_HW;
1586         netdev_update_features(dev);
1587
1588         if (unlikely(dev->features & NETIF_F_GRO_HW))
1589                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1590 }
1591
1592 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1593 {
1594 #define N(val)                                          \
1595         case NETDEV_##val:                              \
1596                 return "NETDEV_" __stringify(val);
1597         switch (cmd) {
1598         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1599         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1600         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1601         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1602         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1603         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1604         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1605         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1606         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1607         N(PRE_CHANGEADDR)
1608         }
1609 #undef N
1610         return "UNKNOWN_NETDEV_EVENT";
1611 }
1612 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1613
1614 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1615                                    struct net_device *dev)
1616 {
1617         struct netdev_notifier_info info = {
1618                 .dev = dev,
1619         };
1620
1621         return nb->notifier_call(nb, val, &info);
1622 }
1623
1624 static int dev_boot_phase = 1;
1625
1626 /**
1627  * register_netdevice_notifier - register a network notifier block
1628  * @nb: notifier
1629  *
1630  * Register a notifier to be called when network device events occur.
1631  * The notifier passed is linked into the kernel structures and must
1632  * not be reused until it has been unregistered. A negative errno code
1633  * is returned on a failure.
1634  *
1635  * When registered all registration and up events are replayed
1636  * to the new notifier to allow device to have a race free
1637  * view of the network device list.
1638  */
1639
1640 int register_netdevice_notifier(struct notifier_block *nb)
1641 {
1642         struct net_device *dev;
1643         struct net_device *last;
1644         struct net *net;
1645         int err;
1646
1647         /* Close race with setup_net() and cleanup_net() */
1648         down_write(&pernet_ops_rwsem);
1649         rtnl_lock();
1650         err = raw_notifier_chain_register(&netdev_chain, nb);
1651         if (err)
1652                 goto unlock;
1653         if (dev_boot_phase)
1654                 goto unlock;
1655         for_each_net(net) {
1656                 for_each_netdev(net, dev) {
1657                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1658                         err = notifier_to_errno(err);
1659                         if (err)
1660                                 goto rollback;
1661
1662                         if (!(dev->flags & IFF_UP))
1663                                 continue;
1664
1665                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1666                 }
1667         }
1668
1669 unlock:
1670         rtnl_unlock();
1671         up_write(&pernet_ops_rwsem);
1672         return err;
1673
1674 rollback:
1675         last = dev;
1676         for_each_net(net) {
1677                 for_each_netdev(net, dev) {
1678                         if (dev == last)
1679                                 goto outroll;
1680
1681                         if (dev->flags & IFF_UP) {
1682                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1683                                                         dev);
1684                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1685                         }
1686                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1687                 }
1688         }
1689
1690 outroll:
1691         raw_notifier_chain_unregister(&netdev_chain, nb);
1692         goto unlock;
1693 }
1694 EXPORT_SYMBOL(register_netdevice_notifier);
1695
1696 /**
1697  * unregister_netdevice_notifier - unregister a network notifier block
1698  * @nb: notifier
1699  *
1700  * Unregister a notifier previously registered by
1701  * register_netdevice_notifier(). The notifier is unlinked into the
1702  * kernel structures and may then be reused. A negative errno code
1703  * is returned on a failure.
1704  *
1705  * After unregistering unregister and down device events are synthesized
1706  * for all devices on the device list to the removed notifier to remove
1707  * the need for special case cleanup code.
1708  */
1709
1710 int unregister_netdevice_notifier(struct notifier_block *nb)
1711 {
1712         struct net_device *dev;
1713         struct net *net;
1714         int err;
1715
1716         /* Close race with setup_net() and cleanup_net() */
1717         down_write(&pernet_ops_rwsem);
1718         rtnl_lock();
1719         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1720         if (err)
1721                 goto unlock;
1722
1723         for_each_net(net) {
1724                 for_each_netdev(net, dev) {
1725                         if (dev->flags & IFF_UP) {
1726                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727                                                         dev);
1728                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729                         }
1730                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731                 }
1732         }
1733 unlock:
1734         rtnl_unlock();
1735         up_write(&pernet_ops_rwsem);
1736         return err;
1737 }
1738 EXPORT_SYMBOL(unregister_netdevice_notifier);
1739
1740 /**
1741  *      call_netdevice_notifiers_info - call all network notifier blocks
1742  *      @val: value passed unmodified to notifier function
1743  *      @info: notifier information data
1744  *
1745  *      Call all network notifier blocks.  Parameters and return value
1746  *      are as for raw_notifier_call_chain().
1747  */
1748
1749 static int call_netdevice_notifiers_info(unsigned long val,
1750                                          struct netdev_notifier_info *info)
1751 {
1752         ASSERT_RTNL();
1753         return raw_notifier_call_chain(&netdev_chain, val, info);
1754 }
1755
1756 static int call_netdevice_notifiers_extack(unsigned long val,
1757                                            struct net_device *dev,
1758                                            struct netlink_ext_ack *extack)
1759 {
1760         struct netdev_notifier_info info = {
1761                 .dev = dev,
1762                 .extack = extack,
1763         };
1764
1765         return call_netdevice_notifiers_info(val, &info);
1766 }
1767
1768 /**
1769  *      call_netdevice_notifiers - call all network notifier blocks
1770  *      @val: value passed unmodified to notifier function
1771  *      @dev: net_device pointer passed unmodified to notifier function
1772  *
1773  *      Call all network notifier blocks.  Parameters and return value
1774  *      are as for raw_notifier_call_chain().
1775  */
1776
1777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1778 {
1779         return call_netdevice_notifiers_extack(val, dev, NULL);
1780 }
1781 EXPORT_SYMBOL(call_netdevice_notifiers);
1782
1783 /**
1784  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1785  *      @val: value passed unmodified to notifier function
1786  *      @dev: net_device pointer passed unmodified to notifier function
1787  *      @arg: additional u32 argument passed to the notifier function
1788  *
1789  *      Call all network notifier blocks.  Parameters and return value
1790  *      are as for raw_notifier_call_chain().
1791  */
1792 static int call_netdevice_notifiers_mtu(unsigned long val,
1793                                         struct net_device *dev, u32 arg)
1794 {
1795         struct netdev_notifier_info_ext info = {
1796                 .info.dev = dev,
1797                 .ext.mtu = arg,
1798         };
1799
1800         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1801
1802         return call_netdevice_notifiers_info(val, &info.info);
1803 }
1804
1805 #ifdef CONFIG_NET_INGRESS
1806 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1807
1808 void net_inc_ingress_queue(void)
1809 {
1810         static_branch_inc(&ingress_needed_key);
1811 }
1812 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1813
1814 void net_dec_ingress_queue(void)
1815 {
1816         static_branch_dec(&ingress_needed_key);
1817 }
1818 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1819 #endif
1820
1821 #ifdef CONFIG_NET_EGRESS
1822 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1823
1824 void net_inc_egress_queue(void)
1825 {
1826         static_branch_inc(&egress_needed_key);
1827 }
1828 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1829
1830 void net_dec_egress_queue(void)
1831 {
1832         static_branch_dec(&egress_needed_key);
1833 }
1834 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1835 #endif
1836
1837 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1838 #ifdef CONFIG_JUMP_LABEL
1839 static atomic_t netstamp_needed_deferred;
1840 static atomic_t netstamp_wanted;
1841 static void netstamp_clear(struct work_struct *work)
1842 {
1843         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1844         int wanted;
1845
1846         wanted = atomic_add_return(deferred, &netstamp_wanted);
1847         if (wanted > 0)
1848                 static_branch_enable(&netstamp_needed_key);
1849         else
1850                 static_branch_disable(&netstamp_needed_key);
1851 }
1852 static DECLARE_WORK(netstamp_work, netstamp_clear);
1853 #endif
1854
1855 void net_enable_timestamp(void)
1856 {
1857 #ifdef CONFIG_JUMP_LABEL
1858         int wanted;
1859
1860         while (1) {
1861                 wanted = atomic_read(&netstamp_wanted);
1862                 if (wanted <= 0)
1863                         break;
1864                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1865                         return;
1866         }
1867         atomic_inc(&netstamp_needed_deferred);
1868         schedule_work(&netstamp_work);
1869 #else
1870         static_branch_inc(&netstamp_needed_key);
1871 #endif
1872 }
1873 EXPORT_SYMBOL(net_enable_timestamp);
1874
1875 void net_disable_timestamp(void)
1876 {
1877 #ifdef CONFIG_JUMP_LABEL
1878         int wanted;
1879
1880         while (1) {
1881                 wanted = atomic_read(&netstamp_wanted);
1882                 if (wanted <= 1)
1883                         break;
1884                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1885                         return;
1886         }
1887         atomic_dec(&netstamp_needed_deferred);
1888         schedule_work(&netstamp_work);
1889 #else
1890         static_branch_dec(&netstamp_needed_key);
1891 #endif
1892 }
1893 EXPORT_SYMBOL(net_disable_timestamp);
1894
1895 static inline void net_timestamp_set(struct sk_buff *skb)
1896 {
1897         skb->tstamp = 0;
1898         if (static_branch_unlikely(&netstamp_needed_key))
1899                 __net_timestamp(skb);
1900 }
1901
1902 #define net_timestamp_check(COND, SKB)                          \
1903         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1904                 if ((COND) && !(SKB)->tstamp)                   \
1905                         __net_timestamp(SKB);                   \
1906         }                                                       \
1907
1908 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1909 {
1910         unsigned int len;
1911
1912         if (!(dev->flags & IFF_UP))
1913                 return false;
1914
1915         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1916         if (skb->len <= len)
1917                 return true;
1918
1919         /* if TSO is enabled, we don't care about the length as the packet
1920          * could be forwarded without being segmented before
1921          */
1922         if (skb_is_gso(skb))
1923                 return true;
1924
1925         return false;
1926 }
1927 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1928
1929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1930 {
1931         int ret = ____dev_forward_skb(dev, skb);
1932
1933         if (likely(!ret)) {
1934                 skb->protocol = eth_type_trans(skb, dev);
1935                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936         }
1937
1938         return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1941
1942 /**
1943  * dev_forward_skb - loopback an skb to another netif
1944  *
1945  * @dev: destination network device
1946  * @skb: buffer to forward
1947  *
1948  * return values:
1949  *      NET_RX_SUCCESS  (no congestion)
1950  *      NET_RX_DROP     (packet was dropped, but freed)
1951  *
1952  * dev_forward_skb can be used for injecting an skb from the
1953  * start_xmit function of one device into the receive queue
1954  * of another device.
1955  *
1956  * The receiving device may be in another namespace, so
1957  * we have to clear all information in the skb that could
1958  * impact namespace isolation.
1959  */
1960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1961 {
1962         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1963 }
1964 EXPORT_SYMBOL_GPL(dev_forward_skb);
1965
1966 static inline int deliver_skb(struct sk_buff *skb,
1967                               struct packet_type *pt_prev,
1968                               struct net_device *orig_dev)
1969 {
1970         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1971                 return -ENOMEM;
1972         refcount_inc(&skb->users);
1973         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1974 }
1975
1976 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1977                                           struct packet_type **pt,
1978                                           struct net_device *orig_dev,
1979                                           __be16 type,
1980                                           struct list_head *ptype_list)
1981 {
1982         struct packet_type *ptype, *pt_prev = *pt;
1983
1984         list_for_each_entry_rcu(ptype, ptype_list, list) {
1985                 if (ptype->type != type)
1986                         continue;
1987                 if (pt_prev)
1988                         deliver_skb(skb, pt_prev, orig_dev);
1989                 pt_prev = ptype;
1990         }
1991         *pt = pt_prev;
1992 }
1993
1994 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1995 {
1996         if (!ptype->af_packet_priv || !skb->sk)
1997                 return false;
1998
1999         if (ptype->id_match)
2000                 return ptype->id_match(ptype, skb->sk);
2001         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2002                 return true;
2003
2004         return false;
2005 }
2006
2007 /**
2008  * dev_nit_active - return true if any network interface taps are in use
2009  *
2010  * @dev: network device to check for the presence of taps
2011  */
2012 bool dev_nit_active(struct net_device *dev)
2013 {
2014         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2015 }
2016 EXPORT_SYMBOL_GPL(dev_nit_active);
2017
2018 /*
2019  *      Support routine. Sends outgoing frames to any network
2020  *      taps currently in use.
2021  */
2022
2023 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2024 {
2025         struct packet_type *ptype;
2026         struct sk_buff *skb2 = NULL;
2027         struct packet_type *pt_prev = NULL;
2028         struct list_head *ptype_list = &ptype_all;
2029
2030         rcu_read_lock();
2031 again:
2032         list_for_each_entry_rcu(ptype, ptype_list, list) {
2033                 if (ptype->ignore_outgoing)
2034                         continue;
2035
2036                 /* Never send packets back to the socket
2037                  * they originated from - MvS (miquels@drinkel.ow.org)
2038                  */
2039                 if (skb_loop_sk(ptype, skb))
2040                         continue;
2041
2042                 if (pt_prev) {
2043                         deliver_skb(skb2, pt_prev, skb->dev);
2044                         pt_prev = ptype;
2045                         continue;
2046                 }
2047
2048                 /* need to clone skb, done only once */
2049                 skb2 = skb_clone(skb, GFP_ATOMIC);
2050                 if (!skb2)
2051                         goto out_unlock;
2052
2053                 net_timestamp_set(skb2);
2054
2055                 /* skb->nh should be correctly
2056                  * set by sender, so that the second statement is
2057                  * just protection against buggy protocols.
2058                  */
2059                 skb_reset_mac_header(skb2);
2060
2061                 if (skb_network_header(skb2) < skb2->data ||
2062                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2063                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2064                                              ntohs(skb2->protocol),
2065                                              dev->name);
2066                         skb_reset_network_header(skb2);
2067                 }
2068
2069                 skb2->transport_header = skb2->network_header;
2070                 skb2->pkt_type = PACKET_OUTGOING;
2071                 pt_prev = ptype;
2072         }
2073
2074         if (ptype_list == &ptype_all) {
2075                 ptype_list = &dev->ptype_all;
2076                 goto again;
2077         }
2078 out_unlock:
2079         if (pt_prev) {
2080                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2081                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2082                 else
2083                         kfree_skb(skb2);
2084         }
2085         rcu_read_unlock();
2086 }
2087 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2088
2089 /**
2090  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2091  * @dev: Network device
2092  * @txq: number of queues available
2093  *
2094  * If real_num_tx_queues is changed the tc mappings may no longer be
2095  * valid. To resolve this verify the tc mapping remains valid and if
2096  * not NULL the mapping. With no priorities mapping to this
2097  * offset/count pair it will no longer be used. In the worst case TC0
2098  * is invalid nothing can be done so disable priority mappings. If is
2099  * expected that drivers will fix this mapping if they can before
2100  * calling netif_set_real_num_tx_queues.
2101  */
2102 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2103 {
2104         int i;
2105         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2106
2107         /* If TC0 is invalidated disable TC mapping */
2108         if (tc->offset + tc->count > txq) {
2109                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110                 dev->num_tc = 0;
2111                 return;
2112         }
2113
2114         /* Invalidated prio to tc mappings set to TC0 */
2115         for (i = 1; i < TC_BITMASK + 1; i++) {
2116                 int q = netdev_get_prio_tc_map(dev, i);
2117
2118                 tc = &dev->tc_to_txq[q];
2119                 if (tc->offset + tc->count > txq) {
2120                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2121                                 i, q);
2122                         netdev_set_prio_tc_map(dev, i, 0);
2123                 }
2124         }
2125 }
2126
2127 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2128 {
2129         if (dev->num_tc) {
2130                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2131                 int i;
2132
2133                 /* walk through the TCs and see if it falls into any of them */
2134                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2135                         if ((txq - tc->offset) < tc->count)
2136                                 return i;
2137                 }
2138
2139                 /* didn't find it, just return -1 to indicate no match */
2140                 return -1;
2141         }
2142
2143         return 0;
2144 }
2145 EXPORT_SYMBOL(netdev_txq_to_tc);
2146
2147 #ifdef CONFIG_XPS
2148 struct static_key xps_needed __read_mostly;
2149 EXPORT_SYMBOL(xps_needed);
2150 struct static_key xps_rxqs_needed __read_mostly;
2151 EXPORT_SYMBOL(xps_rxqs_needed);
2152 static DEFINE_MUTEX(xps_map_mutex);
2153 #define xmap_dereference(P)             \
2154         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2155
2156 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2157                              int tci, u16 index)
2158 {
2159         struct xps_map *map = NULL;
2160         int pos;
2161
2162         if (dev_maps)
2163                 map = xmap_dereference(dev_maps->attr_map[tci]);
2164         if (!map)
2165                 return false;
2166
2167         for (pos = map->len; pos--;) {
2168                 if (map->queues[pos] != index)
2169                         continue;
2170
2171                 if (map->len > 1) {
2172                         map->queues[pos] = map->queues[--map->len];
2173                         break;
2174                 }
2175
2176                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2177                 kfree_rcu(map, rcu);
2178                 return false;
2179         }
2180
2181         return true;
2182 }
2183
2184 static bool remove_xps_queue_cpu(struct net_device *dev,
2185                                  struct xps_dev_maps *dev_maps,
2186                                  int cpu, u16 offset, u16 count)
2187 {
2188         int num_tc = dev->num_tc ? : 1;
2189         bool active = false;
2190         int tci;
2191
2192         for (tci = cpu * num_tc; num_tc--; tci++) {
2193                 int i, j;
2194
2195                 for (i = count, j = offset; i--; j++) {
2196                         if (!remove_xps_queue(dev_maps, tci, j))
2197                                 break;
2198                 }
2199
2200                 active |= i < 0;
2201         }
2202
2203         return active;
2204 }
2205
2206 static void reset_xps_maps(struct net_device *dev,
2207                            struct xps_dev_maps *dev_maps,
2208                            bool is_rxqs_map)
2209 {
2210         if (is_rxqs_map) {
2211                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2212                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2213         } else {
2214                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2215         }
2216         static_key_slow_dec_cpuslocked(&xps_needed);
2217         kfree_rcu(dev_maps, rcu);
2218 }
2219
2220 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2221                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2222                            u16 offset, u16 count, bool is_rxqs_map)
2223 {
2224         bool active = false;
2225         int i, j;
2226
2227         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2228              j < nr_ids;)
2229                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2230                                                count);
2231         if (!active)
2232                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2233
2234         if (!is_rxqs_map) {
2235                 for (i = offset + (count - 1); count--; i--) {
2236                         netdev_queue_numa_node_write(
2237                                 netdev_get_tx_queue(dev, i),
2238                                 NUMA_NO_NODE);
2239                 }
2240         }
2241 }
2242
2243 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2244                                    u16 count)
2245 {
2246         const unsigned long *possible_mask = NULL;
2247         struct xps_dev_maps *dev_maps;
2248         unsigned int nr_ids;
2249
2250         if (!static_key_false(&xps_needed))
2251                 return;
2252
2253         cpus_read_lock();
2254         mutex_lock(&xps_map_mutex);
2255
2256         if (static_key_false(&xps_rxqs_needed)) {
2257                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2258                 if (dev_maps) {
2259                         nr_ids = dev->num_rx_queues;
2260                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2261                                        offset, count, true);
2262                 }
2263         }
2264
2265         dev_maps = xmap_dereference(dev->xps_cpus_map);
2266         if (!dev_maps)
2267                 goto out_no_maps;
2268
2269         if (num_possible_cpus() > 1)
2270                 possible_mask = cpumask_bits(cpu_possible_mask);
2271         nr_ids = nr_cpu_ids;
2272         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2273                        false);
2274
2275 out_no_maps:
2276         mutex_unlock(&xps_map_mutex);
2277         cpus_read_unlock();
2278 }
2279
2280 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2281 {
2282         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2283 }
2284
2285 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2286                                       u16 index, bool is_rxqs_map)
2287 {
2288         struct xps_map *new_map;
2289         int alloc_len = XPS_MIN_MAP_ALLOC;
2290         int i, pos;
2291
2292         for (pos = 0; map && pos < map->len; pos++) {
2293                 if (map->queues[pos] != index)
2294                         continue;
2295                 return map;
2296         }
2297
2298         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2299         if (map) {
2300                 if (pos < map->alloc_len)
2301                         return map;
2302
2303                 alloc_len = map->alloc_len * 2;
2304         }
2305
2306         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2307          *  map
2308          */
2309         if (is_rxqs_map)
2310                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2311         else
2312                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2313                                        cpu_to_node(attr_index));
2314         if (!new_map)
2315                 return NULL;
2316
2317         for (i = 0; i < pos; i++)
2318                 new_map->queues[i] = map->queues[i];
2319         new_map->alloc_len = alloc_len;
2320         new_map->len = pos;
2321
2322         return new_map;
2323 }
2324
2325 /* Must be called under cpus_read_lock */
2326 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2327                           u16 index, bool is_rxqs_map)
2328 {
2329         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2330         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2331         int i, j, tci, numa_node_id = -2;
2332         int maps_sz, num_tc = 1, tc = 0;
2333         struct xps_map *map, *new_map;
2334         bool active = false;
2335         unsigned int nr_ids;
2336
2337         if (dev->num_tc) {
2338                 /* Do not allow XPS on subordinate device directly */
2339                 num_tc = dev->num_tc;
2340                 if (num_tc < 0)
2341                         return -EINVAL;
2342
2343                 /* If queue belongs to subordinate dev use its map */
2344                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2345
2346                 tc = netdev_txq_to_tc(dev, index);
2347                 if (tc < 0)
2348                         return -EINVAL;
2349         }
2350
2351         mutex_lock(&xps_map_mutex);
2352         if (is_rxqs_map) {
2353                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2354                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2355                 nr_ids = dev->num_rx_queues;
2356         } else {
2357                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2358                 if (num_possible_cpus() > 1) {
2359                         online_mask = cpumask_bits(cpu_online_mask);
2360                         possible_mask = cpumask_bits(cpu_possible_mask);
2361                 }
2362                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2363                 nr_ids = nr_cpu_ids;
2364         }
2365
2366         if (maps_sz < L1_CACHE_BYTES)
2367                 maps_sz = L1_CACHE_BYTES;
2368
2369         /* allocate memory for queue storage */
2370         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2371              j < nr_ids;) {
2372                 if (!new_dev_maps)
2373                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2374                 if (!new_dev_maps) {
2375                         mutex_unlock(&xps_map_mutex);
2376                         return -ENOMEM;
2377                 }
2378
2379                 tci = j * num_tc + tc;
2380                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2381                                  NULL;
2382
2383                 map = expand_xps_map(map, j, index, is_rxqs_map);
2384                 if (!map)
2385                         goto error;
2386
2387                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2388         }
2389
2390         if (!new_dev_maps)
2391                 goto out_no_new_maps;
2392
2393         if (!dev_maps) {
2394                 /* Increment static keys at most once per type */
2395                 static_key_slow_inc_cpuslocked(&xps_needed);
2396                 if (is_rxqs_map)
2397                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2398         }
2399
2400         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401              j < nr_ids;) {
2402                 /* copy maps belonging to foreign traffic classes */
2403                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2404                         /* fill in the new device map from the old device map */
2405                         map = xmap_dereference(dev_maps->attr_map[tci]);
2406                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2407                 }
2408
2409                 /* We need to explicitly update tci as prevous loop
2410                  * could break out early if dev_maps is NULL.
2411                  */
2412                 tci = j * num_tc + tc;
2413
2414                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2415                     netif_attr_test_online(j, online_mask, nr_ids)) {
2416                         /* add tx-queue to CPU/rx-queue maps */
2417                         int pos = 0;
2418
2419                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2420                         while ((pos < map->len) && (map->queues[pos] != index))
2421                                 pos++;
2422
2423                         if (pos == map->len)
2424                                 map->queues[map->len++] = index;
2425 #ifdef CONFIG_NUMA
2426                         if (!is_rxqs_map) {
2427                                 if (numa_node_id == -2)
2428                                         numa_node_id = cpu_to_node(j);
2429                                 else if (numa_node_id != cpu_to_node(j))
2430                                         numa_node_id = -1;
2431                         }
2432 #endif
2433                 } else if (dev_maps) {
2434                         /* fill in the new device map from the old device map */
2435                         map = xmap_dereference(dev_maps->attr_map[tci]);
2436                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2437                 }
2438
2439                 /* copy maps belonging to foreign traffic classes */
2440                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2441                         /* fill in the new device map from the old device map */
2442                         map = xmap_dereference(dev_maps->attr_map[tci]);
2443                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2444                 }
2445         }
2446
2447         if (is_rxqs_map)
2448                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2449         else
2450                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2451
2452         /* Cleanup old maps */
2453         if (!dev_maps)
2454                 goto out_no_old_maps;
2455
2456         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457              j < nr_ids;) {
2458                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2459                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2460                         map = xmap_dereference(dev_maps->attr_map[tci]);
2461                         if (map && map != new_map)
2462                                 kfree_rcu(map, rcu);
2463                 }
2464         }
2465
2466         kfree_rcu(dev_maps, rcu);
2467
2468 out_no_old_maps:
2469         dev_maps = new_dev_maps;
2470         active = true;
2471
2472 out_no_new_maps:
2473         if (!is_rxqs_map) {
2474                 /* update Tx queue numa node */
2475                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2476                                              (numa_node_id >= 0) ?
2477                                              numa_node_id : NUMA_NO_NODE);
2478         }
2479
2480         if (!dev_maps)
2481                 goto out_no_maps;
2482
2483         /* removes tx-queue from unused CPUs/rx-queues */
2484         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2485              j < nr_ids;) {
2486                 for (i = tc, tci = j * num_tc; i--; tci++)
2487                         active |= remove_xps_queue(dev_maps, tci, index);
2488                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2489                     !netif_attr_test_online(j, online_mask, nr_ids))
2490                         active |= remove_xps_queue(dev_maps, tci, index);
2491                 for (i = num_tc - tc, tci++; --i; tci++)
2492                         active |= remove_xps_queue(dev_maps, tci, index);
2493         }
2494
2495         /* free map if not active */
2496         if (!active)
2497                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2498
2499 out_no_maps:
2500         mutex_unlock(&xps_map_mutex);
2501
2502         return 0;
2503 error:
2504         /* remove any maps that we added */
2505         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506              j < nr_ids;) {
2507                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2509                         map = dev_maps ?
2510                               xmap_dereference(dev_maps->attr_map[tci]) :
2511                               NULL;
2512                         if (new_map && new_map != map)
2513                                 kfree(new_map);
2514                 }
2515         }
2516
2517         mutex_unlock(&xps_map_mutex);
2518
2519         kfree(new_dev_maps);
2520         return -ENOMEM;
2521 }
2522 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2523
2524 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2525                         u16 index)
2526 {
2527         int ret;
2528
2529         cpus_read_lock();
2530         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531         cpus_read_unlock();
2532
2533         return ret;
2534 }
2535 EXPORT_SYMBOL(netif_set_xps_queue);
2536
2537 #endif
2538 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2539 {
2540         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2541
2542         /* Unbind any subordinate channels */
2543         while (txq-- != &dev->_tx[0]) {
2544                 if (txq->sb_dev)
2545                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2546         }
2547 }
2548
2549 void netdev_reset_tc(struct net_device *dev)
2550 {
2551 #ifdef CONFIG_XPS
2552         netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554         netdev_unbind_all_sb_channels(dev);
2555
2556         /* Reset TC configuration of device */
2557         dev->num_tc = 0;
2558         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2559         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2560 }
2561 EXPORT_SYMBOL(netdev_reset_tc);
2562
2563 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2564 {
2565         if (tc >= dev->num_tc)
2566                 return -EINVAL;
2567
2568 #ifdef CONFIG_XPS
2569         netif_reset_xps_queues(dev, offset, count);
2570 #endif
2571         dev->tc_to_txq[tc].count = count;
2572         dev->tc_to_txq[tc].offset = offset;
2573         return 0;
2574 }
2575 EXPORT_SYMBOL(netdev_set_tc_queue);
2576
2577 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2578 {
2579         if (num_tc > TC_MAX_QUEUE)
2580                 return -EINVAL;
2581
2582 #ifdef CONFIG_XPS
2583         netif_reset_xps_queues_gt(dev, 0);
2584 #endif
2585         netdev_unbind_all_sb_channels(dev);
2586
2587         dev->num_tc = num_tc;
2588         return 0;
2589 }
2590 EXPORT_SYMBOL(netdev_set_num_tc);
2591
2592 void netdev_unbind_sb_channel(struct net_device *dev,
2593                               struct net_device *sb_dev)
2594 {
2595         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2596
2597 #ifdef CONFIG_XPS
2598         netif_reset_xps_queues_gt(sb_dev, 0);
2599 #endif
2600         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2601         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2602
2603         while (txq-- != &dev->_tx[0]) {
2604                 if (txq->sb_dev == sb_dev)
2605                         txq->sb_dev = NULL;
2606         }
2607 }
2608 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2609
2610 int netdev_bind_sb_channel_queue(struct net_device *dev,
2611                                  struct net_device *sb_dev,
2612                                  u8 tc, u16 count, u16 offset)
2613 {
2614         /* Make certain the sb_dev and dev are already configured */
2615         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2616                 return -EINVAL;
2617
2618         /* We cannot hand out queues we don't have */
2619         if ((offset + count) > dev->real_num_tx_queues)
2620                 return -EINVAL;
2621
2622         /* Record the mapping */
2623         sb_dev->tc_to_txq[tc].count = count;
2624         sb_dev->tc_to_txq[tc].offset = offset;
2625
2626         /* Provide a way for Tx queue to find the tc_to_txq map or
2627          * XPS map for itself.
2628          */
2629         while (count--)
2630                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2631
2632         return 0;
2633 }
2634 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2635
2636 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2637 {
2638         /* Do not use a multiqueue device to represent a subordinate channel */
2639         if (netif_is_multiqueue(dev))
2640                 return -ENODEV;
2641
2642         /* We allow channels 1 - 32767 to be used for subordinate channels.
2643          * Channel 0 is meant to be "native" mode and used only to represent
2644          * the main root device. We allow writing 0 to reset the device back
2645          * to normal mode after being used as a subordinate channel.
2646          */
2647         if (channel > S16_MAX)
2648                 return -EINVAL;
2649
2650         dev->num_tc = -channel;
2651
2652         return 0;
2653 }
2654 EXPORT_SYMBOL(netdev_set_sb_channel);
2655
2656 /*
2657  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2658  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2659  */
2660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2661 {
2662         bool disabling;
2663         int rc;
2664
2665         disabling = txq < dev->real_num_tx_queues;
2666
2667         if (txq < 1 || txq > dev->num_tx_queues)
2668                 return -EINVAL;
2669
2670         if (dev->reg_state == NETREG_REGISTERED ||
2671             dev->reg_state == NETREG_UNREGISTERING) {
2672                 ASSERT_RTNL();
2673
2674                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2675                                                   txq);
2676                 if (rc)
2677                         return rc;
2678
2679                 if (dev->num_tc)
2680                         netif_setup_tc(dev, txq);
2681
2682                 dev->real_num_tx_queues = txq;
2683
2684                 if (disabling) {
2685                         synchronize_net();
2686                         qdisc_reset_all_tx_gt(dev, txq);
2687 #ifdef CONFIG_XPS
2688                         netif_reset_xps_queues_gt(dev, txq);
2689 #endif
2690                 }
2691         } else {
2692                 dev->real_num_tx_queues = txq;
2693         }
2694
2695         return 0;
2696 }
2697 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2698
2699 #ifdef CONFIG_SYSFS
2700 /**
2701  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2702  *      @dev: Network device
2703  *      @rxq: Actual number of RX queues
2704  *
2705  *      This must be called either with the rtnl_lock held or before
2706  *      registration of the net device.  Returns 0 on success, or a
2707  *      negative error code.  If called before registration, it always
2708  *      succeeds.
2709  */
2710 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2711 {
2712         int rc;
2713
2714         if (rxq < 1 || rxq > dev->num_rx_queues)
2715                 return -EINVAL;
2716
2717         if (dev->reg_state == NETREG_REGISTERED) {
2718                 ASSERT_RTNL();
2719
2720                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2721                                                   rxq);
2722                 if (rc)
2723                         return rc;
2724         }
2725
2726         dev->real_num_rx_queues = rxq;
2727         return 0;
2728 }
2729 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2730 #endif
2731
2732 /**
2733  * netif_get_num_default_rss_queues - default number of RSS queues
2734  *
2735  * This routine should set an upper limit on the number of RSS queues
2736  * used by default by multiqueue devices.
2737  */
2738 int netif_get_num_default_rss_queues(void)
2739 {
2740         return is_kdump_kernel() ?
2741                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2742 }
2743 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2744
2745 static void __netif_reschedule(struct Qdisc *q)
2746 {
2747         struct softnet_data *sd;
2748         unsigned long flags;
2749
2750         local_irq_save(flags);
2751         sd = this_cpu_ptr(&softnet_data);
2752         q->next_sched = NULL;
2753         *sd->output_queue_tailp = q;
2754         sd->output_queue_tailp = &q->next_sched;
2755         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2756         local_irq_restore(flags);
2757 }
2758
2759 void __netif_schedule(struct Qdisc *q)
2760 {
2761         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2762                 __netif_reschedule(q);
2763 }
2764 EXPORT_SYMBOL(__netif_schedule);
2765
2766 struct dev_kfree_skb_cb {
2767         enum skb_free_reason reason;
2768 };
2769
2770 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2771 {
2772         return (struct dev_kfree_skb_cb *)skb->cb;
2773 }
2774
2775 void netif_schedule_queue(struct netdev_queue *txq)
2776 {
2777         rcu_read_lock();
2778         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2779                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2780
2781                 __netif_schedule(q);
2782         }
2783         rcu_read_unlock();
2784 }
2785 EXPORT_SYMBOL(netif_schedule_queue);
2786
2787 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2788 {
2789         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2790                 struct Qdisc *q;
2791
2792                 rcu_read_lock();
2793                 q = rcu_dereference(dev_queue->qdisc);
2794                 __netif_schedule(q);
2795                 rcu_read_unlock();
2796         }
2797 }
2798 EXPORT_SYMBOL(netif_tx_wake_queue);
2799
2800 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2801 {
2802         unsigned long flags;
2803
2804         if (unlikely(!skb))
2805                 return;
2806
2807         if (likely(refcount_read(&skb->users) == 1)) {
2808                 smp_rmb();
2809                 refcount_set(&skb->users, 0);
2810         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2811                 return;
2812         }
2813         get_kfree_skb_cb(skb)->reason = reason;
2814         local_irq_save(flags);
2815         skb->next = __this_cpu_read(softnet_data.completion_queue);
2816         __this_cpu_write(softnet_data.completion_queue, skb);
2817         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2818         local_irq_restore(flags);
2819 }
2820 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2821
2822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2823 {
2824         if (in_irq() || irqs_disabled())
2825                 __dev_kfree_skb_irq(skb, reason);
2826         else
2827                 dev_kfree_skb(skb);
2828 }
2829 EXPORT_SYMBOL(__dev_kfree_skb_any);
2830
2831
2832 /**
2833  * netif_device_detach - mark device as removed
2834  * @dev: network device
2835  *
2836  * Mark device as removed from system and therefore no longer available.
2837  */
2838 void netif_device_detach(struct net_device *dev)
2839 {
2840         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2841             netif_running(dev)) {
2842                 netif_tx_stop_all_queues(dev);
2843         }
2844 }
2845 EXPORT_SYMBOL(netif_device_detach);
2846
2847 /**
2848  * netif_device_attach - mark device as attached
2849  * @dev: network device
2850  *
2851  * Mark device as attached from system and restart if needed.
2852  */
2853 void netif_device_attach(struct net_device *dev)
2854 {
2855         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2856             netif_running(dev)) {
2857                 netif_tx_wake_all_queues(dev);
2858                 __netdev_watchdog_up(dev);
2859         }
2860 }
2861 EXPORT_SYMBOL(netif_device_attach);
2862
2863 /*
2864  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2865  * to be used as a distribution range.
2866  */
2867 static u16 skb_tx_hash(const struct net_device *dev,
2868                        const struct net_device *sb_dev,
2869                        struct sk_buff *skb)
2870 {
2871         u32 hash;
2872         u16 qoffset = 0;
2873         u16 qcount = dev->real_num_tx_queues;
2874
2875         if (dev->num_tc) {
2876                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2877
2878                 qoffset = sb_dev->tc_to_txq[tc].offset;
2879                 qcount = sb_dev->tc_to_txq[tc].count;
2880         }
2881
2882         if (skb_rx_queue_recorded(skb)) {
2883                 hash = skb_get_rx_queue(skb);
2884                 while (unlikely(hash >= qcount))
2885                         hash -= qcount;
2886                 return hash + qoffset;
2887         }
2888
2889         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2890 }
2891
2892 static void skb_warn_bad_offload(const struct sk_buff *skb)
2893 {
2894         static const netdev_features_t null_features;
2895         struct net_device *dev = skb->dev;
2896         const char *name = "";
2897
2898         if (!net_ratelimit())
2899                 return;
2900
2901         if (dev) {
2902                 if (dev->dev.parent)
2903                         name = dev_driver_string(dev->dev.parent);
2904                 else
2905                         name = netdev_name(dev);
2906         }
2907         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2908              "gso_type=%d ip_summed=%d\n",
2909              name, dev ? &dev->features : &null_features,
2910              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2911              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2912              skb_shinfo(skb)->gso_type, skb->ip_summed);
2913 }
2914
2915 /*
2916  * Invalidate hardware checksum when packet is to be mangled, and
2917  * complete checksum manually on outgoing path.
2918  */
2919 int skb_checksum_help(struct sk_buff *skb)
2920 {
2921         __wsum csum;
2922         int ret = 0, offset;
2923
2924         if (skb->ip_summed == CHECKSUM_COMPLETE)
2925                 goto out_set_summed;
2926
2927         if (unlikely(skb_shinfo(skb)->gso_size)) {
2928                 skb_warn_bad_offload(skb);
2929                 return -EINVAL;
2930         }
2931
2932         /* Before computing a checksum, we should make sure no frag could
2933          * be modified by an external entity : checksum could be wrong.
2934          */
2935         if (skb_has_shared_frag(skb)) {
2936                 ret = __skb_linearize(skb);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         offset = skb_checksum_start_offset(skb);
2942         BUG_ON(offset >= skb_headlen(skb));
2943         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2944
2945         offset += skb->csum_offset;
2946         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2947
2948         if (skb_cloned(skb) &&
2949             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2950                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2951                 if (ret)
2952                         goto out;
2953         }
2954
2955         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2956 out_set_summed:
2957         skb->ip_summed = CHECKSUM_NONE;
2958 out:
2959         return ret;
2960 }
2961 EXPORT_SYMBOL(skb_checksum_help);
2962
2963 int skb_crc32c_csum_help(struct sk_buff *skb)
2964 {
2965         __le32 crc32c_csum;
2966         int ret = 0, offset, start;
2967
2968         if (skb->ip_summed != CHECKSUM_PARTIAL)
2969                 goto out;
2970
2971         if (unlikely(skb_is_gso(skb)))
2972                 goto out;
2973
2974         /* Before computing a checksum, we should make sure no frag could
2975          * be modified by an external entity : checksum could be wrong.
2976          */
2977         if (unlikely(skb_has_shared_frag(skb))) {
2978                 ret = __skb_linearize(skb);
2979                 if (ret)
2980                         goto out;
2981         }
2982         start = skb_checksum_start_offset(skb);
2983         offset = start + offsetof(struct sctphdr, checksum);
2984         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2985                 ret = -EINVAL;
2986                 goto out;
2987         }
2988         if (skb_cloned(skb) &&
2989             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2990                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2991                 if (ret)
2992                         goto out;
2993         }
2994         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2995                                                   skb->len - start, ~(__u32)0,
2996                                                   crc32c_csum_stub));
2997         *(__le32 *)(skb->data + offset) = crc32c_csum;
2998         skb->ip_summed = CHECKSUM_NONE;
2999         skb->csum_not_inet = 0;
3000 out:
3001         return ret;
3002 }
3003
3004 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3005 {
3006         __be16 type = skb->protocol;
3007
3008         /* Tunnel gso handlers can set protocol to ethernet. */
3009         if (type == htons(ETH_P_TEB)) {
3010                 struct ethhdr *eth;
3011
3012                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3013                         return 0;
3014
3015                 eth = (struct ethhdr *)skb->data;
3016                 type = eth->h_proto;
3017         }
3018
3019         return __vlan_get_protocol(skb, type, depth);
3020 }
3021
3022 /**
3023  *      skb_mac_gso_segment - mac layer segmentation handler.
3024  *      @skb: buffer to segment
3025  *      @features: features for the output path (see dev->features)
3026  */
3027 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3028                                     netdev_features_t features)
3029 {
3030         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3031         struct packet_offload *ptype;
3032         int vlan_depth = skb->mac_len;
3033         __be16 type = skb_network_protocol(skb, &vlan_depth);
3034
3035         if (unlikely(!type))
3036                 return ERR_PTR(-EINVAL);
3037
3038         __skb_pull(skb, vlan_depth);
3039
3040         rcu_read_lock();
3041         list_for_each_entry_rcu(ptype, &offload_base, list) {
3042                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3043                         segs = ptype->callbacks.gso_segment(skb, features);
3044                         break;
3045                 }
3046         }
3047         rcu_read_unlock();
3048
3049         __skb_push(skb, skb->data - skb_mac_header(skb));
3050
3051         return segs;
3052 }
3053 EXPORT_SYMBOL(skb_mac_gso_segment);
3054
3055
3056 /* openvswitch calls this on rx path, so we need a different check.
3057  */
3058 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3059 {
3060         if (tx_path)
3061                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3062                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3063
3064         return skb->ip_summed == CHECKSUM_NONE;
3065 }
3066
3067 /**
3068  *      __skb_gso_segment - Perform segmentation on skb.
3069  *      @skb: buffer to segment
3070  *      @features: features for the output path (see dev->features)
3071  *      @tx_path: whether it is called in TX path
3072  *
3073  *      This function segments the given skb and returns a list of segments.
3074  *
3075  *      It may return NULL if the skb requires no segmentation.  This is
3076  *      only possible when GSO is used for verifying header integrity.
3077  *
3078  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3079  */
3080 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3081                                   netdev_features_t features, bool tx_path)
3082 {
3083         struct sk_buff *segs;
3084
3085         if (unlikely(skb_needs_check(skb, tx_path))) {
3086                 int err;
3087
3088                 /* We're going to init ->check field in TCP or UDP header */
3089                 err = skb_cow_head(skb, 0);
3090                 if (err < 0)
3091                         return ERR_PTR(err);
3092         }
3093
3094         /* Only report GSO partial support if it will enable us to
3095          * support segmentation on this frame without needing additional
3096          * work.
3097          */
3098         if (features & NETIF_F_GSO_PARTIAL) {
3099                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3100                 struct net_device *dev = skb->dev;
3101
3102                 partial_features |= dev->features & dev->gso_partial_features;
3103                 if (!skb_gso_ok(skb, features | partial_features))
3104                         features &= ~NETIF_F_GSO_PARTIAL;
3105         }
3106
3107         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3108                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3109
3110         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3111         SKB_GSO_CB(skb)->encap_level = 0;
3112
3113         skb_reset_mac_header(skb);
3114         skb_reset_mac_len(skb);
3115
3116         segs = skb_mac_gso_segment(skb, features);
3117
3118         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3119                 skb_warn_bad_offload(skb);
3120
3121         return segs;
3122 }
3123 EXPORT_SYMBOL(__skb_gso_segment);
3124
3125 /* Take action when hardware reception checksum errors are detected. */
3126 #ifdef CONFIG_BUG
3127 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3128 {
3129         if (net_ratelimit()) {
3130                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3131                 if (dev)
3132                         pr_err("dev features: %pNF\n", &dev->features);
3133                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3134                        skb->len, skb->data_len, skb->pkt_type,
3135                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3136                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3137                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3138                 dump_stack();
3139         }
3140 }
3141 EXPORT_SYMBOL(netdev_rx_csum_fault);
3142 #endif
3143
3144 /* XXX: check that highmem exists at all on the given machine. */
3145 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3146 {
3147 #ifdef CONFIG_HIGHMEM
3148         int i;
3149
3150         if (!(dev->features & NETIF_F_HIGHDMA)) {
3151                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3152                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3153
3154                         if (PageHighMem(skb_frag_page(frag)))
3155                                 return 1;
3156                 }
3157         }
3158 #endif
3159         return 0;
3160 }
3161
3162 /* If MPLS offload request, verify we are testing hardware MPLS features
3163  * instead of standard features for the netdev.
3164  */
3165 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3166 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3167                                            netdev_features_t features,
3168                                            __be16 type)
3169 {
3170         if (eth_p_mpls(type))
3171                 features &= skb->dev->mpls_features;
3172
3173         return features;
3174 }
3175 #else
3176 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3177                                            netdev_features_t features,
3178                                            __be16 type)
3179 {
3180         return features;
3181 }
3182 #endif
3183
3184 static netdev_features_t harmonize_features(struct sk_buff *skb,
3185         netdev_features_t features)
3186 {
3187         int tmp;
3188         __be16 type;
3189
3190         type = skb_network_protocol(skb, &tmp);
3191         features = net_mpls_features(skb, features, type);
3192
3193         if (skb->ip_summed != CHECKSUM_NONE &&
3194             !can_checksum_protocol(features, type)) {
3195                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3196         }
3197         if (illegal_highdma(skb->dev, skb))
3198                 features &= ~NETIF_F_SG;
3199
3200         return features;
3201 }
3202
3203 netdev_features_t passthru_features_check(struct sk_buff *skb,
3204                                           struct net_device *dev,
3205                                           netdev_features_t features)
3206 {
3207         return features;
3208 }
3209 EXPORT_SYMBOL(passthru_features_check);
3210
3211 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3212                                              struct net_device *dev,
3213                                              netdev_features_t features)
3214 {
3215         return vlan_features_check(skb, features);
3216 }
3217
3218 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3219                                             struct net_device *dev,
3220                                             netdev_features_t features)
3221 {
3222         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3223
3224         if (gso_segs > dev->gso_max_segs)
3225                 return features & ~NETIF_F_GSO_MASK;
3226
3227         /* Support for GSO partial features requires software
3228          * intervention before we can actually process the packets
3229          * so we need to strip support for any partial features now
3230          * and we can pull them back in after we have partially
3231          * segmented the frame.
3232          */
3233         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3234                 features &= ~dev->gso_partial_features;
3235
3236         /* Make sure to clear the IPv4 ID mangling feature if the
3237          * IPv4 header has the potential to be fragmented.
3238          */
3239         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3240                 struct iphdr *iph = skb->encapsulation ?
3241                                     inner_ip_hdr(skb) : ip_hdr(skb);
3242
3243                 if (!(iph->frag_off & htons(IP_DF)))
3244                         features &= ~NETIF_F_TSO_MANGLEID;
3245         }
3246
3247         return features;
3248 }
3249
3250 netdev_features_t netif_skb_features(struct sk_buff *skb)
3251 {
3252         struct net_device *dev = skb->dev;
3253         netdev_features_t features = dev->features;
3254
3255         if (skb_is_gso(skb))
3256                 features = gso_features_check(skb, dev, features);
3257
3258         /* If encapsulation offload request, verify we are testing
3259          * hardware encapsulation features instead of standard
3260          * features for the netdev
3261          */
3262         if (skb->encapsulation)
3263                 features &= dev->hw_enc_features;
3264
3265         if (skb_vlan_tagged(skb))
3266                 features = netdev_intersect_features(features,
3267                                                      dev->vlan_features |
3268                                                      NETIF_F_HW_VLAN_CTAG_TX |
3269                                                      NETIF_F_HW_VLAN_STAG_TX);
3270
3271         if (dev->netdev_ops->ndo_features_check)
3272                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3273                                                                 features);
3274         else
3275                 features &= dflt_features_check(skb, dev, features);
3276
3277         return harmonize_features(skb, features);
3278 }
3279 EXPORT_SYMBOL(netif_skb_features);
3280
3281 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3282                     struct netdev_queue *txq, bool more)
3283 {
3284         unsigned int len;
3285         int rc;
3286
3287         if (dev_nit_active(dev))
3288                 dev_queue_xmit_nit(skb, dev);
3289
3290         len = skb->len;
3291         trace_net_dev_start_xmit(skb, dev);
3292         rc = netdev_start_xmit(skb, dev, txq, more);
3293         trace_net_dev_xmit(skb, rc, dev, len);
3294
3295         return rc;
3296 }
3297
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3299                                     struct netdev_queue *txq, int *ret)
3300 {
3301         struct sk_buff *skb = first;
3302         int rc = NETDEV_TX_OK;
3303
3304         while (skb) {
3305                 struct sk_buff *next = skb->next;
3306
3307                 skb_mark_not_on_list(skb);
3308                 rc = xmit_one(skb, dev, txq, next != NULL);
3309                 if (unlikely(!dev_xmit_complete(rc))) {
3310                         skb->next = next;
3311                         goto out;
3312                 }
3313
3314                 skb = next;
3315                 if (netif_tx_queue_stopped(txq) && skb) {
3316                         rc = NETDEV_TX_BUSY;
3317                         break;
3318                 }
3319         }
3320
3321 out:
3322         *ret = rc;
3323         return skb;
3324 }
3325
3326 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3327                                           netdev_features_t features)
3328 {
3329         if (skb_vlan_tag_present(skb) &&
3330             !vlan_hw_offload_capable(features, skb->vlan_proto))
3331                 skb = __vlan_hwaccel_push_inside(skb);
3332         return skb;
3333 }
3334
3335 int skb_csum_hwoffload_help(struct sk_buff *skb,
3336                             const netdev_features_t features)
3337 {
3338         if (unlikely(skb->csum_not_inet))
3339                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3340                         skb_crc32c_csum_help(skb);
3341
3342         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3343 }
3344 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3345
3346 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3347 {
3348         netdev_features_t features;
3349
3350         features = netif_skb_features(skb);
3351         skb = validate_xmit_vlan(skb, features);
3352         if (unlikely(!skb))
3353                 goto out_null;
3354
3355         skb = sk_validate_xmit_skb(skb, dev);
3356         if (unlikely(!skb))
3357                 goto out_null;
3358
3359         if (netif_needs_gso(skb, features)) {
3360                 struct sk_buff *segs;
3361
3362                 segs = skb_gso_segment(skb, features);
3363                 if (IS_ERR(segs)) {
3364                         goto out_kfree_skb;
3365                 } else if (segs) {
3366                         consume_skb(skb);
3367                         skb = segs;
3368                 }
3369         } else {
3370                 if (skb_needs_linearize(skb, features) &&
3371                     __skb_linearize(skb))
3372                         goto out_kfree_skb;
3373
3374                 /* If packet is not checksummed and device does not
3375                  * support checksumming for this protocol, complete
3376                  * checksumming here.
3377                  */
3378                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379                         if (skb->encapsulation)
3380                                 skb_set_inner_transport_header(skb,
3381                                                                skb_checksum_start_offset(skb));
3382                         else
3383                                 skb_set_transport_header(skb,
3384                                                          skb_checksum_start_offset(skb));
3385                         if (skb_csum_hwoffload_help(skb, features))
3386                                 goto out_kfree_skb;
3387                 }
3388         }
3389
3390         skb = validate_xmit_xfrm(skb, features, again);
3391
3392         return skb;
3393
3394 out_kfree_skb:
3395         kfree_skb(skb);
3396 out_null:
3397         atomic_long_inc(&dev->tx_dropped);
3398         return NULL;
3399 }
3400
3401 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3402 {
3403         struct sk_buff *next, *head = NULL, *tail;
3404
3405         for (; skb != NULL; skb = next) {
3406                 next = skb->next;
3407                 skb_mark_not_on_list(skb);
3408
3409                 /* in case skb wont be segmented, point to itself */
3410                 skb->prev = skb;
3411
3412                 skb = validate_xmit_skb(skb, dev, again);
3413                 if (!skb)
3414                         continue;
3415
3416                 if (!head)
3417                         head = skb;
3418                 else
3419                         tail->next = skb;
3420                 /* If skb was segmented, skb->prev points to
3421                  * the last segment. If not, it still contains skb.
3422                  */
3423                 tail = skb->prev;
3424         }
3425         return head;
3426 }
3427 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3428
3429 static void qdisc_pkt_len_init(struct sk_buff *skb)
3430 {
3431         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3432
3433         qdisc_skb_cb(skb)->pkt_len = skb->len;
3434
3435         /* To get more precise estimation of bytes sent on wire,
3436          * we add to pkt_len the headers size of all segments
3437          */
3438         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3439                 unsigned int hdr_len;
3440                 u16 gso_segs = shinfo->gso_segs;
3441
3442                 /* mac layer + network layer */
3443                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3444
3445                 /* + transport layer */
3446                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3447                         const struct tcphdr *th;
3448                         struct tcphdr _tcphdr;
3449
3450                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3451                                                 sizeof(_tcphdr), &_tcphdr);
3452                         if (likely(th))
3453                                 hdr_len += __tcp_hdrlen(th);
3454                 } else {
3455                         struct udphdr _udphdr;
3456
3457                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3458                                                sizeof(_udphdr), &_udphdr))
3459                                 hdr_len += sizeof(struct udphdr);
3460                 }
3461
3462                 if (shinfo->gso_type & SKB_GSO_DODGY)
3463                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3464                                                 shinfo->gso_size);
3465
3466                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3467         }
3468 }
3469
3470 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3471                                  struct net_device *dev,
3472                                  struct netdev_queue *txq)
3473 {
3474         spinlock_t *root_lock = qdisc_lock(q);
3475         struct sk_buff *to_free = NULL;
3476         bool contended;
3477         int rc;
3478
3479         qdisc_calculate_pkt_len(skb, q);
3480
3481         if (q->flags & TCQ_F_NOLOCK) {
3482                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3483                         __qdisc_drop(skb, &to_free);
3484                         rc = NET_XMIT_DROP;
3485                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3486                            qdisc_run_begin(q)) {
3487                         qdisc_bstats_cpu_update(q, skb);
3488
3489                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3490                                 __qdisc_run(q);
3491
3492                         qdisc_run_end(q);
3493                         rc = NET_XMIT_SUCCESS;
3494                 } else {
3495                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496                         qdisc_run(q);
3497                 }
3498
3499                 if (unlikely(to_free))
3500                         kfree_skb_list(to_free);
3501                 return rc;
3502         }
3503
3504         /*
3505          * Heuristic to force contended enqueues to serialize on a
3506          * separate lock before trying to get qdisc main lock.
3507          * This permits qdisc->running owner to get the lock more
3508          * often and dequeue packets faster.
3509          */
3510         contended = qdisc_is_running(q);
3511         if (unlikely(contended))
3512                 spin_lock(&q->busylock);
3513
3514         spin_lock(root_lock);
3515         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3516                 __qdisc_drop(skb, &to_free);
3517                 rc = NET_XMIT_DROP;
3518         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3519                    qdisc_run_begin(q)) {
3520                 /*
3521                  * This is a work-conserving queue; there are no old skbs
3522                  * waiting to be sent out; and the qdisc is not running -
3523                  * xmit the skb directly.
3524                  */
3525
3526                 qdisc_bstats_update(q, skb);
3527
3528                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3529                         if (unlikely(contended)) {
3530                                 spin_unlock(&q->busylock);
3531                                 contended = false;
3532                         }
3533                         __qdisc_run(q);
3534                 }
3535
3536                 qdisc_run_end(q);
3537                 rc = NET_XMIT_SUCCESS;
3538         } else {
3539                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3540                 if (qdisc_run_begin(q)) {
3541                         if (unlikely(contended)) {
3542                                 spin_unlock(&q->busylock);
3543                                 contended = false;
3544                         }
3545                         __qdisc_run(q);
3546                         qdisc_run_end(q);
3547                 }
3548         }
3549         spin_unlock(root_lock);
3550         if (unlikely(to_free))
3551                 kfree_skb_list(to_free);
3552         if (unlikely(contended))
3553                 spin_unlock(&q->busylock);
3554         return rc;
3555 }
3556
3557 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3558 static void skb_update_prio(struct sk_buff *skb)
3559 {
3560         const struct netprio_map *map;
3561         const struct sock *sk;
3562         unsigned int prioidx;
3563
3564         if (skb->priority)
3565                 return;
3566         map = rcu_dereference_bh(skb->dev->priomap);
3567         if (!map)
3568                 return;
3569         sk = skb_to_full_sk(skb);
3570         if (!sk)
3571                 return;
3572
3573         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3574
3575         if (prioidx < map->priomap_len)
3576                 skb->priority = map->priomap[prioidx];
3577 }
3578 #else
3579 #define skb_update_prio(skb)
3580 #endif
3581
3582 /**
3583  *      dev_loopback_xmit - loop back @skb
3584  *      @net: network namespace this loopback is happening in
3585  *      @sk:  sk needed to be a netfilter okfn
3586  *      @skb: buffer to transmit
3587  */
3588 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3589 {
3590         skb_reset_mac_header(skb);
3591         __skb_pull(skb, skb_network_offset(skb));
3592         skb->pkt_type = PACKET_LOOPBACK;
3593         skb->ip_summed = CHECKSUM_UNNECESSARY;
3594         WARN_ON(!skb_dst(skb));
3595         skb_dst_force(skb);
3596         netif_rx_ni(skb);
3597         return 0;
3598 }
3599 EXPORT_SYMBOL(dev_loopback_xmit);
3600
3601 #ifdef CONFIG_NET_EGRESS
3602 static struct sk_buff *
3603 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3604 {
3605         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3606         struct tcf_result cl_res;
3607
3608         if (!miniq)
3609                 return skb;
3610
3611         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3612         mini_qdisc_bstats_cpu_update(miniq, skb);
3613
3614         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3615         case TC_ACT_OK:
3616         case TC_ACT_RECLASSIFY:
3617                 skb->tc_index = TC_H_MIN(cl_res.classid);
3618                 break;
3619         case TC_ACT_SHOT:
3620                 mini_qdisc_qstats_cpu_drop(miniq);
3621                 *ret = NET_XMIT_DROP;
3622                 kfree_skb(skb);
3623                 return NULL;
3624         case TC_ACT_STOLEN:
3625         case TC_ACT_QUEUED:
3626         case TC_ACT_TRAP:
3627                 *ret = NET_XMIT_SUCCESS;
3628                 consume_skb(skb);
3629                 return NULL;
3630         case TC_ACT_REDIRECT:
3631                 /* No need to push/pop skb's mac_header here on egress! */
3632                 skb_do_redirect(skb);
3633                 *ret = NET_XMIT_SUCCESS;
3634                 return NULL;
3635         default:
3636                 break;
3637         }
3638
3639         return skb;
3640 }
3641 #endif /* CONFIG_NET_EGRESS */
3642
3643 #ifdef CONFIG_XPS
3644 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3645                                struct xps_dev_maps *dev_maps, unsigned int tci)
3646 {
3647         struct xps_map *map;
3648         int queue_index = -1;
3649
3650         if (dev->num_tc) {
3651                 tci *= dev->num_tc;
3652                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3653         }
3654
3655         map = rcu_dereference(dev_maps->attr_map[tci]);
3656         if (map) {
3657                 if (map->len == 1)
3658                         queue_index = map->queues[0];
3659                 else
3660                         queue_index = map->queues[reciprocal_scale(
3661                                                 skb_get_hash(skb), map->len)];
3662                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3663                         queue_index = -1;
3664         }
3665         return queue_index;
3666 }
3667 #endif
3668
3669 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3670                          struct sk_buff *skb)
3671 {
3672 #ifdef CONFIG_XPS
3673         struct xps_dev_maps *dev_maps;
3674         struct sock *sk = skb->sk;
3675         int queue_index = -1;
3676
3677         if (!static_key_false(&xps_needed))
3678                 return -1;
3679
3680         rcu_read_lock();
3681         if (!static_key_false(&xps_rxqs_needed))
3682                 goto get_cpus_map;
3683
3684         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3685         if (dev_maps) {
3686                 int tci = sk_rx_queue_get(sk);
3687
3688                 if (tci >= 0 && tci < dev->num_rx_queues)
3689                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690                                                           tci);
3691         }
3692
3693 get_cpus_map:
3694         if (queue_index < 0) {
3695                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3696                 if (dev_maps) {
3697                         unsigned int tci = skb->sender_cpu - 1;
3698
3699                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3700                                                           tci);
3701                 }
3702         }
3703         rcu_read_unlock();
3704
3705         return queue_index;
3706 #else
3707         return -1;
3708 #endif
3709 }
3710
3711 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3712                      struct net_device *sb_dev)
3713 {
3714         return 0;
3715 }
3716 EXPORT_SYMBOL(dev_pick_tx_zero);
3717
3718 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3719                        struct net_device *sb_dev)
3720 {
3721         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3722 }
3723 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3724
3725 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3726                      struct net_device *sb_dev)
3727 {
3728         struct sock *sk = skb->sk;
3729         int queue_index = sk_tx_queue_get(sk);
3730
3731         sb_dev = sb_dev ? : dev;
3732
3733         if (queue_index < 0 || skb->ooo_okay ||
3734             queue_index >= dev->real_num_tx_queues) {
3735                 int new_index = get_xps_queue(dev, sb_dev, skb);
3736
3737                 if (new_index < 0)
3738                         new_index = skb_tx_hash(dev, sb_dev, skb);
3739
3740                 if (queue_index != new_index && sk &&
3741                     sk_fullsock(sk) &&
3742                     rcu_access_pointer(sk->sk_dst_cache))
3743                         sk_tx_queue_set(sk, new_index);
3744
3745                 queue_index = new_index;
3746         }
3747
3748         return queue_index;
3749 }
3750 EXPORT_SYMBOL(netdev_pick_tx);
3751
3752 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3753                                          struct sk_buff *skb,
3754                                          struct net_device *sb_dev)
3755 {
3756         int queue_index = 0;
3757
3758 #ifdef CONFIG_XPS
3759         u32 sender_cpu = skb->sender_cpu - 1;
3760
3761         if (sender_cpu >= (u32)NR_CPUS)
3762                 skb->sender_cpu = raw_smp_processor_id() + 1;
3763 #endif
3764
3765         if (dev->real_num_tx_queues != 1) {
3766                 const struct net_device_ops *ops = dev->netdev_ops;
3767
3768                 if (ops->ndo_select_queue)
3769                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3770                 else
3771                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3772
3773                 queue_index = netdev_cap_txqueue(dev, queue_index);
3774         }
3775
3776         skb_set_queue_mapping(skb, queue_index);
3777         return netdev_get_tx_queue(dev, queue_index);
3778 }
3779
3780 /**
3781  *      __dev_queue_xmit - transmit a buffer
3782  *      @skb: buffer to transmit
3783  *      @sb_dev: suboordinate device used for L2 forwarding offload
3784  *
3785  *      Queue a buffer for transmission to a network device. The caller must
3786  *      have set the device and priority and built the buffer before calling
3787  *      this function. The function can be called from an interrupt.
3788  *
3789  *      A negative errno code is returned on a failure. A success does not
3790  *      guarantee the frame will be transmitted as it may be dropped due
3791  *      to congestion or traffic shaping.
3792  *
3793  * -----------------------------------------------------------------------------------
3794  *      I notice this method can also return errors from the queue disciplines,
3795  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3796  *      be positive.
3797  *
3798  *      Regardless of the return value, the skb is consumed, so it is currently
3799  *      difficult to retry a send to this method.  (You can bump the ref count
3800  *      before sending to hold a reference for retry if you are careful.)
3801  *
3802  *      When calling this method, interrupts MUST be enabled.  This is because
3803  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3804  *          --BLG
3805  */
3806 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3807 {
3808         struct net_device *dev = skb->dev;
3809         struct netdev_queue *txq;
3810         struct Qdisc *q;
3811         int rc = -ENOMEM;
3812         bool again = false;
3813
3814         skb_reset_mac_header(skb);
3815
3816         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3817                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3818
3819         /* Disable soft irqs for various locks below. Also
3820          * stops preemption for RCU.
3821          */
3822         rcu_read_lock_bh();
3823
3824         skb_update_prio(skb);
3825
3826         qdisc_pkt_len_init(skb);
3827 #ifdef CONFIG_NET_CLS_ACT
3828         skb->tc_at_ingress = 0;
3829 # ifdef CONFIG_NET_EGRESS
3830         if (static_branch_unlikely(&egress_needed_key)) {
3831                 skb = sch_handle_egress(skb, &rc, dev);
3832                 if (!skb)
3833                         goto out;
3834         }
3835 # endif
3836 #endif
3837         /* If device/qdisc don't need skb->dst, release it right now while
3838          * its hot in this cpu cache.
3839          */
3840         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3841                 skb_dst_drop(skb);
3842         else
3843                 skb_dst_force(skb);
3844
3845         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3846         q = rcu_dereference_bh(txq->qdisc);
3847
3848         trace_net_dev_queue(skb);
3849         if (q->enqueue) {
3850                 rc = __dev_xmit_skb(skb, q, dev, txq);
3851                 goto out;
3852         }
3853
3854         /* The device has no queue. Common case for software devices:
3855          * loopback, all the sorts of tunnels...
3856
3857          * Really, it is unlikely that netif_tx_lock protection is necessary
3858          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3859          * counters.)
3860          * However, it is possible, that they rely on protection
3861          * made by us here.
3862
3863          * Check this and shot the lock. It is not prone from deadlocks.
3864          *Either shot noqueue qdisc, it is even simpler 8)
3865          */
3866         if (dev->flags & IFF_UP) {
3867                 int cpu = smp_processor_id(); /* ok because BHs are off */
3868
3869                 if (txq->xmit_lock_owner != cpu) {
3870                         if (dev_xmit_recursion())
3871                                 goto recursion_alert;
3872
3873                         skb = validate_xmit_skb(skb, dev, &again);
3874                         if (!skb)
3875                                 goto out;
3876
3877                         HARD_TX_LOCK(dev, txq, cpu);
3878
3879                         if (!netif_xmit_stopped(txq)) {
3880                                 dev_xmit_recursion_inc();
3881                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3882                                 dev_xmit_recursion_dec();
3883                                 if (dev_xmit_complete(rc)) {
3884                                         HARD_TX_UNLOCK(dev, txq);
3885                                         goto out;
3886                                 }
3887                         }
3888                         HARD_TX_UNLOCK(dev, txq);
3889                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3890                                              dev->name);
3891                 } else {
3892                         /* Recursion is detected! It is possible,
3893                          * unfortunately
3894                          */
3895 recursion_alert:
3896                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3897                                              dev->name);
3898                 }
3899         }
3900
3901         rc = -ENETDOWN;
3902         rcu_read_unlock_bh();
3903
3904         atomic_long_inc(&dev->tx_dropped);
3905         kfree_skb_list(skb);
3906         return rc;
3907 out:
3908         rcu_read_unlock_bh();
3909         return rc;
3910 }
3911
3912 int dev_queue_xmit(struct sk_buff *skb)
3913 {
3914         return __dev_queue_xmit(skb, NULL);
3915 }
3916 EXPORT_SYMBOL(dev_queue_xmit);
3917
3918 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3919 {
3920         return __dev_queue_xmit(skb, sb_dev);
3921 }
3922 EXPORT_SYMBOL(dev_queue_xmit_accel);
3923
3924 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3925 {
3926         struct net_device *dev = skb->dev;
3927         struct sk_buff *orig_skb = skb;
3928         struct netdev_queue *txq;
3929         int ret = NETDEV_TX_BUSY;
3930         bool again = false;
3931
3932         if (unlikely(!netif_running(dev) ||
3933                      !netif_carrier_ok(dev)))
3934                 goto drop;
3935
3936         skb = validate_xmit_skb_list(skb, dev, &again);
3937         if (skb != orig_skb)
3938                 goto drop;
3939
3940         skb_set_queue_mapping(skb, queue_id);
3941         txq = skb_get_tx_queue(dev, skb);
3942
3943         local_bh_disable();
3944
3945         HARD_TX_LOCK(dev, txq, smp_processor_id());
3946         if (!netif_xmit_frozen_or_drv_stopped(txq))
3947                 ret = netdev_start_xmit(skb, dev, txq, false);
3948         HARD_TX_UNLOCK(dev, txq);
3949
3950         local_bh_enable();
3951
3952         if (!dev_xmit_complete(ret))
3953                 kfree_skb(skb);
3954
3955         return ret;
3956 drop:
3957         atomic_long_inc(&dev->tx_dropped);
3958         kfree_skb_list(skb);
3959         return NET_XMIT_DROP;
3960 }
3961 EXPORT_SYMBOL(dev_direct_xmit);
3962
3963 /*************************************************************************
3964  *                      Receiver routines
3965  *************************************************************************/
3966
3967 int netdev_max_backlog __read_mostly = 1000;
3968 EXPORT_SYMBOL(netdev_max_backlog);
3969
3970 int netdev_tstamp_prequeue __read_mostly = 1;
3971 int netdev_budget __read_mostly = 300;
3972 unsigned int __read_mostly netdev_budget_usecs = 2000;
3973 int weight_p __read_mostly = 64;           /* old backlog weight */
3974 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3975 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3976 int dev_rx_weight __read_mostly = 64;
3977 int dev_tx_weight __read_mostly = 64;
3978
3979 /* Called with irq disabled */
3980 static inline void ____napi_schedule(struct softnet_data *sd,
3981                                      struct napi_struct *napi)
3982 {
3983         list_add_tail(&napi->poll_list, &sd->poll_list);
3984         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3985 }
3986
3987 #ifdef CONFIG_RPS
3988
3989 /* One global table that all flow-based protocols share. */
3990 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3991 EXPORT_SYMBOL(rps_sock_flow_table);
3992 u32 rps_cpu_mask __read_mostly;
3993 EXPORT_SYMBOL(rps_cpu_mask);
3994
3995 struct static_key_false rps_needed __read_mostly;
3996 EXPORT_SYMBOL(rps_needed);
3997 struct static_key_false rfs_needed __read_mostly;
3998 EXPORT_SYMBOL(rfs_needed);
3999
4000 static struct rps_dev_flow *
4001 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4002             struct rps_dev_flow *rflow, u16 next_cpu)
4003 {
4004         if (next_cpu < nr_cpu_ids) {
4005 #ifdef CONFIG_RFS_ACCEL
4006                 struct netdev_rx_queue *rxqueue;
4007                 struct rps_dev_flow_table *flow_table;
4008                 struct rps_dev_flow *old_rflow;
4009                 u32 flow_id;
4010                 u16 rxq_index;
4011                 int rc;
4012
4013                 /* Should we steer this flow to a different hardware queue? */
4014                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4015                     !(dev->features & NETIF_F_NTUPLE))
4016                         goto out;
4017                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4018                 if (rxq_index == skb_get_rx_queue(skb))
4019                         goto out;
4020
4021                 rxqueue = dev->_rx + rxq_index;
4022                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4023                 if (!flow_table)
4024                         goto out;
4025                 flow_id = skb_get_hash(skb) & flow_table->mask;
4026                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4027                                                         rxq_index, flow_id);
4028                 if (rc < 0)
4029                         goto out;
4030                 old_rflow = rflow;
4031                 rflow = &flow_table->flows[flow_id];
4032                 rflow->filter = rc;
4033                 if (old_rflow->filter == rflow->filter)
4034                         old_rflow->filter = RPS_NO_FILTER;
4035         out:
4036 #endif
4037                 rflow->last_qtail =
4038                         per_cpu(softnet_data, next_cpu).input_queue_head;
4039         }
4040
4041         rflow->cpu = next_cpu;
4042         return rflow;
4043 }
4044
4045 /*
4046  * get_rps_cpu is called from netif_receive_skb and returns the target
4047  * CPU from the RPS map of the receiving queue for a given skb.
4048  * rcu_read_lock must be held on entry.
4049  */
4050 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4051                        struct rps_dev_flow **rflowp)
4052 {
4053         const struct rps_sock_flow_table *sock_flow_table;
4054         struct netdev_rx_queue *rxqueue = dev->_rx;
4055         struct rps_dev_flow_table *flow_table;
4056         struct rps_map *map;
4057         int cpu = -1;
4058         u32 tcpu;
4059         u32 hash;
4060
4061         if (skb_rx_queue_recorded(skb)) {
4062                 u16 index = skb_get_rx_queue(skb);
4063
4064                 if (unlikely(index >= dev->real_num_rx_queues)) {
4065                         WARN_ONCE(dev->real_num_rx_queues > 1,
4066                                   "%s received packet on queue %u, but number "
4067                                   "of RX queues is %u\n",
4068                                   dev->name, index, dev->real_num_rx_queues);
4069                         goto done;
4070                 }
4071                 rxqueue += index;
4072         }
4073
4074         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4075
4076         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4077         map = rcu_dereference(rxqueue->rps_map);
4078         if (!flow_table && !map)
4079                 goto done;
4080
4081         skb_reset_network_header(skb);
4082         hash = skb_get_hash(skb);
4083         if (!hash)
4084                 goto done;
4085
4086         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4087         if (flow_table && sock_flow_table) {
4088                 struct rps_dev_flow *rflow;
4089                 u32 next_cpu;
4090                 u32 ident;
4091
4092                 /* First check into global flow table if there is a match */
4093                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4094                 if ((ident ^ hash) & ~rps_cpu_mask)
4095                         goto try_rps;
4096
4097                 next_cpu = ident & rps_cpu_mask;
4098
4099                 /* OK, now we know there is a match,
4100                  * we can look at the local (per receive queue) flow table
4101                  */
4102                 rflow = &flow_table->flows[hash & flow_table->mask];
4103                 tcpu = rflow->cpu;
4104
4105                 /*
4106                  * If the desired CPU (where last recvmsg was done) is
4107                  * different from current CPU (one in the rx-queue flow
4108                  * table entry), switch if one of the following holds:
4109                  *   - Current CPU is unset (>= nr_cpu_ids).
4110                  *   - Current CPU is offline.
4111                  *   - The current CPU's queue tail has advanced beyond the
4112                  *     last packet that was enqueued using this table entry.
4113                  *     This guarantees that all previous packets for the flow
4114                  *     have been dequeued, thus preserving in order delivery.
4115                  */
4116                 if (unlikely(tcpu != next_cpu) &&
4117                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4118                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4119                       rflow->last_qtail)) >= 0)) {
4120                         tcpu = next_cpu;
4121                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4122                 }
4123
4124                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4125                         *rflowp = rflow;
4126                         cpu = tcpu;
4127                         goto done;
4128                 }
4129         }
4130
4131 try_rps:
4132
4133         if (map) {
4134                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4135                 if (cpu_online(tcpu)) {
4136                         cpu = tcpu;
4137                         goto done;
4138                 }
4139         }
4140
4141 done:
4142         return cpu;
4143 }
4144
4145 #ifdef CONFIG_RFS_ACCEL
4146
4147 /**
4148  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4149  * @dev: Device on which the filter was set
4150  * @rxq_index: RX queue index
4151  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4152  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4153  *
4154  * Drivers that implement ndo_rx_flow_steer() should periodically call
4155  * this function for each installed filter and remove the filters for
4156  * which it returns %true.
4157  */
4158 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4159                          u32 flow_id, u16 filter_id)
4160 {
4161         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4162         struct rps_dev_flow_table *flow_table;
4163         struct rps_dev_flow *rflow;
4164         bool expire = true;
4165         unsigned int cpu;
4166
4167         rcu_read_lock();
4168         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4169         if (flow_table && flow_id <= flow_table->mask) {
4170                 rflow = &flow_table->flows[flow_id];
4171                 cpu = READ_ONCE(rflow->cpu);
4172                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4173                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4174                            rflow->last_qtail) <
4175                      (int)(10 * flow_table->mask)))
4176                         expire = false;
4177         }
4178         rcu_read_unlock();
4179         return expire;
4180 }
4181 EXPORT_SYMBOL(rps_may_expire_flow);
4182
4183 #endif /* CONFIG_RFS_ACCEL */
4184
4185 /* Called from hardirq (IPI) context */
4186 static void rps_trigger_softirq(void *data)
4187 {
4188         struct softnet_data *sd = data;
4189
4190         ____napi_schedule(sd, &sd->backlog);
4191         sd->received_rps++;
4192 }
4193
4194 #endif /* CONFIG_RPS */
4195
4196 /*
4197  * Check if this softnet_data structure is another cpu one
4198  * If yes, queue it to our IPI list and return 1
4199  * If no, return 0
4200  */
4201 static int rps_ipi_queued(struct softnet_data *sd)
4202 {
4203 #ifdef CONFIG_RPS
4204         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4205
4206         if (sd != mysd) {
4207                 sd->rps_ipi_next = mysd->rps_ipi_list;
4208                 mysd->rps_ipi_list = sd;
4209
4210                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4211                 return 1;
4212         }
4213 #endif /* CONFIG_RPS */
4214         return 0;
4215 }
4216
4217 #ifdef CONFIG_NET_FLOW_LIMIT
4218 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4219 #endif
4220
4221 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4222 {
4223 #ifdef CONFIG_NET_FLOW_LIMIT
4224         struct sd_flow_limit *fl;
4225         struct softnet_data *sd;
4226         unsigned int old_flow, new_flow;
4227
4228         if (qlen < (netdev_max_backlog >> 1))
4229                 return false;
4230
4231         sd = this_cpu_ptr(&softnet_data);
4232
4233         rcu_read_lock();
4234         fl = rcu_dereference(sd->flow_limit);
4235         if (fl) {
4236                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4237                 old_flow = fl->history[fl->history_head];
4238                 fl->history[fl->history_head] = new_flow;
4239
4240                 fl->history_head++;
4241                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4242
4243                 if (likely(fl->buckets[old_flow]))
4244                         fl->buckets[old_flow]--;
4245
4246                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4247                         fl->count++;
4248                         rcu_read_unlock();
4249                         return true;
4250                 }
4251         }
4252         rcu_read_unlock();
4253 #endif
4254         return false;
4255 }
4256
4257 /*
4258  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4259  * queue (may be a remote CPU queue).
4260  */
4261 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4262                               unsigned int *qtail)
4263 {
4264         struct softnet_data *sd;
4265         unsigned long flags;
4266         unsigned int qlen;
4267
4268         sd = &per_cpu(softnet_data, cpu);
4269
4270         local_irq_save(flags);
4271
4272         rps_lock(sd);
4273         if (!netif_running(skb->dev))
4274                 goto drop;
4275         qlen = skb_queue_len(&sd->input_pkt_queue);
4276         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4277                 if (qlen) {
4278 enqueue:
4279                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4280                         input_queue_tail_incr_save(sd, qtail);
4281                         rps_unlock(sd);
4282                         local_irq_restore(flags);
4283                         return NET_RX_SUCCESS;
4284                 }
4285
4286                 /* Schedule NAPI for backlog device
4287                  * We can use non atomic operation since we own the queue lock
4288                  */
4289                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4290                         if (!rps_ipi_queued(sd))
4291                                 ____napi_schedule(sd, &sd->backlog);
4292                 }
4293                 goto enqueue;
4294         }
4295
4296 drop:
4297         sd->dropped++;
4298         rps_unlock(sd);
4299
4300         local_irq_restore(flags);
4301
4302         atomic_long_inc(&skb->dev->rx_dropped);
4303         kfree_skb(skb);
4304         return NET_RX_DROP;
4305 }
4306
4307 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4308 {
4309         struct net_device *dev = skb->dev;
4310         struct netdev_rx_queue *rxqueue;
4311
4312         rxqueue = dev->_rx;
4313
4314         if (skb_rx_queue_recorded(skb)) {
4315                 u16 index = skb_get_rx_queue(skb);
4316
4317                 if (unlikely(index >= dev->real_num_rx_queues)) {
4318                         WARN_ONCE(dev->real_num_rx_queues > 1,
4319                                   "%s received packet on queue %u, but number "
4320                                   "of RX queues is %u\n",
4321                                   dev->name, index, dev->real_num_rx_queues);
4322
4323                         return rxqueue; /* Return first rxqueue */
4324                 }
4325                 rxqueue += index;
4326         }
4327         return rxqueue;
4328 }
4329
4330 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4331                                      struct xdp_buff *xdp,
4332                                      struct bpf_prog *xdp_prog)
4333 {
4334         struct netdev_rx_queue *rxqueue;
4335         void *orig_data, *orig_data_end;
4336         u32 metalen, act = XDP_DROP;
4337         __be16 orig_eth_type;
4338         struct ethhdr *eth;
4339         bool orig_bcast;
4340         int hlen, off;
4341         u32 mac_len;
4342
4343         /* Reinjected packets coming from act_mirred or similar should
4344          * not get XDP generic processing.
4345          */
4346         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4347                 return XDP_PASS;
4348
4349         /* XDP packets must be linear and must have sufficient headroom
4350          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4351          * native XDP provides, thus we need to do it here as well.
4352          */
4353         if (skb_is_nonlinear(skb) ||
4354             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4355                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4356                 int troom = skb->tail + skb->data_len - skb->end;
4357
4358                 /* In case we have to go down the path and also linearize,
4359                  * then lets do the pskb_expand_head() work just once here.
4360                  */
4361                 if (pskb_expand_head(skb,
4362                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4363                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4364                         goto do_drop;
4365                 if (skb_linearize(skb))
4366                         goto do_drop;
4367         }
4368
4369         /* The XDP program wants to see the packet starting at the MAC
4370          * header.
4371          */
4372         mac_len = skb->data - skb_mac_header(skb);
4373         hlen = skb_headlen(skb) + mac_len;
4374         xdp->data = skb->data - mac_len;
4375         xdp->data_meta = xdp->data;
4376         xdp->data_end = xdp->data + hlen;
4377         xdp->data_hard_start = skb->data - skb_headroom(skb);
4378         orig_data_end = xdp->data_end;
4379         orig_data = xdp->data;
4380         eth = (struct ethhdr *)xdp->data;
4381         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4382         orig_eth_type = eth->h_proto;
4383
4384         rxqueue = netif_get_rxqueue(skb);
4385         xdp->rxq = &rxqueue->xdp_rxq;
4386
4387         act = bpf_prog_run_xdp(xdp_prog, xdp);
4388
4389         off = xdp->data - orig_data;
4390         if (off > 0)
4391                 __skb_pull(skb, off);
4392         else if (off < 0)
4393                 __skb_push(skb, -off);
4394         skb->mac_header += off;
4395
4396         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4397          * pckt.
4398          */
4399         off = orig_data_end - xdp->data_end;
4400         if (off != 0) {
4401                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4402                 skb->len -= off;
4403
4404         }
4405
4406         /* check if XDP changed eth hdr such SKB needs update */
4407         eth = (struct ethhdr *)xdp->data;
4408         if ((orig_eth_type != eth->h_proto) ||
4409             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4410                 __skb_push(skb, ETH_HLEN);
4411                 skb->protocol = eth_type_trans(skb, skb->dev);
4412         }
4413
4414         switch (act) {
4415         case XDP_REDIRECT:
4416         case XDP_TX:
4417                 __skb_push(skb, mac_len);
4418                 break;
4419         case XDP_PASS:
4420                 metalen = xdp->data - xdp->data_meta;
4421                 if (metalen)
4422                         skb_metadata_set(skb, metalen);
4423                 break;
4424         default:
4425                 bpf_warn_invalid_xdp_action(act);
4426                 /* fall through */
4427         case XDP_ABORTED:
4428                 trace_xdp_exception(skb->dev, xdp_prog, act);
4429                 /* fall through */
4430         case XDP_DROP:
4431         do_drop:
4432                 kfree_skb(skb);
4433                 break;
4434         }
4435
4436         return act;
4437 }
4438
4439 /* When doing generic XDP we have to bypass the qdisc layer and the
4440  * network taps in order to match in-driver-XDP behavior.
4441  */
4442 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4443 {
4444         struct net_device *dev = skb->dev;
4445         struct netdev_queue *txq;
4446         bool free_skb = true;
4447         int cpu, rc;
4448
4449         txq = netdev_core_pick_tx(dev, skb, NULL);
4450         cpu = smp_processor_id();
4451         HARD_TX_LOCK(dev, txq, cpu);
4452         if (!netif_xmit_stopped(txq)) {
4453                 rc = netdev_start_xmit(skb, dev, txq, 0);
4454                 if (dev_xmit_complete(rc))
4455                         free_skb = false;
4456         }
4457         HARD_TX_UNLOCK(dev, txq);
4458         if (free_skb) {
4459                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4460                 kfree_skb(skb);
4461         }
4462 }
4463 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4464
4465 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4466
4467 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4468 {
4469         if (xdp_prog) {
4470                 struct xdp_buff xdp;
4471                 u32 act;
4472                 int err;
4473
4474                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4475                 if (act != XDP_PASS) {
4476                         switch (act) {
4477                         case XDP_REDIRECT:
4478                                 err = xdp_do_generic_redirect(skb->dev, skb,
4479                                                               &xdp, xdp_prog);
4480                                 if (err)
4481                                         goto out_redir;
4482                                 break;
4483                         case XDP_TX:
4484                                 generic_xdp_tx(skb, xdp_prog);
4485                                 break;
4486                         }
4487                         return XDP_DROP;
4488                 }
4489         }
4490         return XDP_PASS;
4491 out_redir:
4492         kfree_skb(skb);
4493         return XDP_DROP;
4494 }
4495 EXPORT_SYMBOL_GPL(do_xdp_generic);
4496
4497 static int netif_rx_internal(struct sk_buff *skb)
4498 {
4499         int ret;
4500
4501         net_timestamp_check(netdev_tstamp_prequeue, skb);
4502
4503         trace_netif_rx(skb);
4504
4505         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4506                 int ret;
4507
4508                 preempt_disable();
4509                 rcu_read_lock();
4510                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4511                 rcu_read_unlock();
4512                 preempt_enable();
4513
4514                 /* Consider XDP consuming the packet a success from
4515                  * the netdev point of view we do not want to count
4516                  * this as an error.
4517                  */
4518                 if (ret != XDP_PASS)
4519                         return NET_RX_SUCCESS;
4520         }
4521
4522 #ifdef CONFIG_RPS
4523         if (static_branch_unlikely(&rps_needed)) {
4524                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4525                 int cpu;
4526
4527                 preempt_disable();
4528                 rcu_read_lock();
4529
4530                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4531                 if (cpu < 0)
4532                         cpu = smp_processor_id();
4533
4534                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4535
4536                 rcu_read_unlock();
4537                 preempt_enable();
4538         } else
4539 #endif
4540         {
4541                 unsigned int qtail;
4542
4543                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4544                 put_cpu();
4545         }
4546         return ret;
4547 }
4548
4549 /**
4550  *      netif_rx        -       post buffer to the network code
4551  *      @skb: buffer to post
4552  *
4553  *      This function receives a packet from a device driver and queues it for
4554  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4555  *      may be dropped during processing for congestion control or by the
4556  *      protocol layers.
4557  *
4558  *      return values:
4559  *      NET_RX_SUCCESS  (no congestion)
4560  *      NET_RX_DROP     (packet was dropped)
4561  *
4562  */
4563
4564 int netif_rx(struct sk_buff *skb)
4565 {
4566         int ret;
4567
4568         trace_netif_rx_entry(skb);
4569
4570         ret = netif_rx_internal(skb);
4571         trace_netif_rx_exit(ret);
4572
4573         return ret;
4574 }
4575 EXPORT_SYMBOL(netif_rx);
4576
4577 int netif_rx_ni(struct sk_buff *skb)
4578 {
4579         int err;
4580
4581         trace_netif_rx_ni_entry(skb);
4582
4583         preempt_disable();
4584         err = netif_rx_internal(skb);
4585         if (local_softirq_pending())
4586                 do_softirq();
4587         preempt_enable();
4588         trace_netif_rx_ni_exit(err);
4589
4590         return err;
4591 }
4592 EXPORT_SYMBOL(netif_rx_ni);
4593
4594 static __latent_entropy void net_tx_action(struct softirq_action *h)
4595 {
4596         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4597
4598         if (sd->completion_queue) {
4599                 struct sk_buff *clist;
4600
4601                 local_irq_disable();
4602                 clist = sd->completion_queue;
4603                 sd->completion_queue = NULL;
4604                 local_irq_enable();
4605
4606                 while (clist) {
4607                         struct sk_buff *skb = clist;
4608
4609                         clist = clist->next;
4610
4611                         WARN_ON(refcount_read(&skb->users));
4612                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4613                                 trace_consume_skb(skb);
4614                         else
4615                                 trace_kfree_skb(skb, net_tx_action);
4616
4617                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4618                                 __kfree_skb(skb);
4619                         else
4620                                 __kfree_skb_defer(skb);
4621                 }
4622
4623                 __kfree_skb_flush();
4624         }
4625
4626         if (sd->output_queue) {
4627                 struct Qdisc *head;
4628
4629                 local_irq_disable();
4630                 head = sd->output_queue;
4631                 sd->output_queue = NULL;
4632                 sd->output_queue_tailp = &sd->output_queue;
4633                 local_irq_enable();
4634
4635                 while (head) {
4636                         struct Qdisc *q = head;
4637                         spinlock_t *root_lock = NULL;
4638
4639                         head = head->next_sched;
4640
4641                         if (!(q->flags & TCQ_F_NOLOCK)) {
4642                                 root_lock = qdisc_lock(q);
4643                                 spin_lock(root_lock);
4644                         }
4645                         /* We need to make sure head->next_sched is read
4646                          * before clearing __QDISC_STATE_SCHED
4647                          */
4648                         smp_mb__before_atomic();
4649                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4650                         qdisc_run(q);
4651                         if (root_lock)
4652                                 spin_unlock(root_lock);
4653                 }
4654         }
4655
4656         xfrm_dev_backlog(sd);
4657 }
4658
4659 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4660 /* This hook is defined here for ATM LANE */
4661 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4662                              unsigned char *addr) __read_mostly;
4663 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4664 #endif
4665
4666 static inline struct sk_buff *
4667 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4668                    struct net_device *orig_dev)
4669 {
4670 #ifdef CONFIG_NET_CLS_ACT
4671         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4672         struct tcf_result cl_res;
4673
4674         /* If there's at least one ingress present somewhere (so
4675          * we get here via enabled static key), remaining devices
4676          * that are not configured with an ingress qdisc will bail
4677          * out here.
4678          */
4679         if (!miniq)
4680                 return skb;
4681
4682         if (*pt_prev) {
4683                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4684                 *pt_prev = NULL;
4685         }
4686
4687         qdisc_skb_cb(skb)->pkt_len = skb->len;
4688         skb->tc_at_ingress = 1;
4689         mini_qdisc_bstats_cpu_update(miniq, skb);
4690
4691         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4692         case TC_ACT_OK:
4693         case TC_ACT_RECLASSIFY:
4694                 skb->tc_index = TC_H_MIN(cl_res.classid);
4695                 break;
4696         case TC_ACT_SHOT:
4697                 mini_qdisc_qstats_cpu_drop(miniq);
4698                 kfree_skb(skb);
4699                 return NULL;
4700         case TC_ACT_STOLEN:
4701         case TC_ACT_QUEUED:
4702         case TC_ACT_TRAP:
4703                 consume_skb(skb);
4704                 return NULL;
4705         case TC_ACT_REDIRECT:
4706                 /* skb_mac_header check was done by cls/act_bpf, so
4707                  * we can safely push the L2 header back before
4708                  * redirecting to another netdev
4709                  */
4710                 __skb_push(skb, skb->mac_len);
4711                 skb_do_redirect(skb);
4712                 return NULL;
4713         case TC_ACT_REINSERT:
4714                 /* this does not scrub the packet, and updates stats on error */
4715                 skb_tc_reinsert(skb, &cl_res);
4716                 return NULL;
4717         default:
4718                 break;
4719         }
4720 #endif /* CONFIG_NET_CLS_ACT */
4721         return skb;
4722 }
4723
4724 /**
4725  *      netdev_is_rx_handler_busy - check if receive handler is registered
4726  *      @dev: device to check
4727  *
4728  *      Check if a receive handler is already registered for a given device.
4729  *      Return true if there one.
4730  *
4731  *      The caller must hold the rtnl_mutex.
4732  */
4733 bool netdev_is_rx_handler_busy(struct net_device *dev)
4734 {
4735         ASSERT_RTNL();
4736         return dev && rtnl_dereference(dev->rx_handler);
4737 }
4738 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4739
4740 /**
4741  *      netdev_rx_handler_register - register receive handler
4742  *      @dev: device to register a handler for
4743  *      @rx_handler: receive handler to register
4744  *      @rx_handler_data: data pointer that is used by rx handler
4745  *
4746  *      Register a receive handler for a device. This handler will then be
4747  *      called from __netif_receive_skb. A negative errno code is returned
4748  *      on a failure.
4749  *
4750  *      The caller must hold the rtnl_mutex.
4751  *
4752  *      For a general description of rx_handler, see enum rx_handler_result.
4753  */
4754 int netdev_rx_handler_register(struct net_device *dev,
4755                                rx_handler_func_t *rx_handler,
4756                                void *rx_handler_data)
4757 {
4758         if (netdev_is_rx_handler_busy(dev))
4759                 return -EBUSY;
4760
4761         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4762                 return -EINVAL;
4763
4764         /* Note: rx_handler_data must be set before rx_handler */
4765         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4766         rcu_assign_pointer(dev->rx_handler, rx_handler);
4767
4768         return 0;
4769 }
4770 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4771
4772 /**
4773  *      netdev_rx_handler_unregister - unregister receive handler
4774  *      @dev: device to unregister a handler from
4775  *
4776  *      Unregister a receive handler from a device.
4777  *
4778  *      The caller must hold the rtnl_mutex.
4779  */
4780 void netdev_rx_handler_unregister(struct net_device *dev)
4781 {
4782
4783         ASSERT_RTNL();
4784         RCU_INIT_POINTER(dev->rx_handler, NULL);
4785         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4786          * section has a guarantee to see a non NULL rx_handler_data
4787          * as well.
4788          */
4789         synchronize_net();
4790         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4791 }
4792 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4793
4794 /*
4795  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4796  * the special handling of PFMEMALLOC skbs.
4797  */
4798 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4799 {
4800         switch (skb->protocol) {
4801         case htons(ETH_P_ARP):
4802         case htons(ETH_P_IP):
4803         case htons(ETH_P_IPV6):
4804         case htons(ETH_P_8021Q):
4805         case htons(ETH_P_8021AD):
4806                 return true;
4807         default:
4808                 return false;
4809         }
4810 }
4811
4812 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4813                              int *ret, struct net_device *orig_dev)
4814 {
4815 #ifdef CONFIG_NETFILTER_INGRESS
4816         if (nf_hook_ingress_active(skb)) {
4817                 int ingress_retval;
4818
4819                 if (*pt_prev) {
4820                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4821                         *pt_prev = NULL;
4822                 }
4823
4824                 rcu_read_lock();
4825                 ingress_retval = nf_hook_ingress(skb);
4826                 rcu_read_unlock();
4827                 return ingress_retval;
4828         }
4829 #endif /* CONFIG_NETFILTER_INGRESS */
4830         return 0;
4831 }
4832
4833 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4834                                     struct packet_type **ppt_prev)
4835 {
4836         struct packet_type *ptype, *pt_prev;
4837         rx_handler_func_t *rx_handler;
4838         struct net_device *orig_dev;
4839         bool deliver_exact = false;
4840         int ret = NET_RX_DROP;
4841         __be16 type;
4842
4843         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4844
4845         trace_netif_receive_skb(skb);
4846
4847         orig_dev = skb->dev;
4848
4849         skb_reset_network_header(skb);
4850         if (!skb_transport_header_was_set(skb))
4851                 skb_reset_transport_header(skb);
4852         skb_reset_mac_len(skb);
4853
4854         pt_prev = NULL;
4855
4856 another_round:
4857         skb->skb_iif = skb->dev->ifindex;
4858
4859         __this_cpu_inc(softnet_data.processed);
4860
4861         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4862             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4863                 skb = skb_vlan_untag(skb);
4864                 if (unlikely(!skb))
4865                         goto out;
4866         }
4867
4868         if (skb_skip_tc_classify(skb))
4869                 goto skip_classify;
4870
4871         if (pfmemalloc)
4872                 goto skip_taps;
4873
4874         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4875                 if (pt_prev)
4876                         ret = deliver_skb(skb, pt_prev, orig_dev);
4877                 pt_prev = ptype;
4878         }
4879
4880         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4881                 if (pt_prev)
4882                         ret = deliver_skb(skb, pt_prev, orig_dev);
4883                 pt_prev = ptype;
4884         }
4885
4886 skip_taps:
4887 #ifdef CONFIG_NET_INGRESS
4888         if (static_branch_unlikely(&ingress_needed_key)) {
4889                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4890                 if (!skb)
4891                         goto out;
4892
4893                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4894                         goto out;
4895         }
4896 #endif
4897         skb_reset_tc(skb);
4898 skip_classify:
4899         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4900                 goto drop;
4901
4902         if (skb_vlan_tag_present(skb)) {
4903                 if (pt_prev) {
4904                         ret = deliver_skb(skb, pt_prev, orig_dev);
4905                         pt_prev = NULL;
4906                 }
4907                 if (vlan_do_receive(&skb))
4908                         goto another_round;
4909                 else if (unlikely(!skb))
4910                         goto out;
4911         }
4912
4913         rx_handler = rcu_dereference(skb->dev->rx_handler);
4914         if (rx_handler) {
4915                 if (pt_prev) {
4916                         ret = deliver_skb(skb, pt_prev, orig_dev);
4917                         pt_prev = NULL;
4918                 }
4919                 switch (rx_handler(&skb)) {
4920                 case RX_HANDLER_CONSUMED:
4921                         ret = NET_RX_SUCCESS;
4922                         goto out;
4923                 case RX_HANDLER_ANOTHER:
4924                         goto another_round;
4925                 case RX_HANDLER_EXACT:
4926                         deliver_exact = true;
4927                 case RX_HANDLER_PASS:
4928                         break;
4929                 default:
4930                         BUG();
4931                 }
4932         }
4933
4934         if (unlikely(skb_vlan_tag_present(skb))) {
4935                 if (skb_vlan_tag_get_id(skb))
4936                         skb->pkt_type = PACKET_OTHERHOST;
4937                 /* Note: we might in the future use prio bits
4938                  * and set skb->priority like in vlan_do_receive()
4939                  * For the time being, just ignore Priority Code Point
4940                  */
4941                 __vlan_hwaccel_clear_tag(skb);
4942         }
4943
4944         type = skb->protocol;
4945
4946         /* deliver only exact match when indicated */
4947         if (likely(!deliver_exact)) {
4948                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949                                        &ptype_base[ntohs(type) &
4950                                                    PTYPE_HASH_MASK]);
4951         }
4952
4953         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4954                                &orig_dev->ptype_specific);
4955
4956         if (unlikely(skb->dev != orig_dev)) {
4957                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4958                                        &skb->dev->ptype_specific);
4959         }
4960
4961         if (pt_prev) {
4962                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4963                         goto drop;
4964                 *ppt_prev = pt_prev;
4965         } else {
4966 drop:
4967                 if (!deliver_exact)
4968                         atomic_long_inc(&skb->dev->rx_dropped);
4969                 else
4970                         atomic_long_inc(&skb->dev->rx_nohandler);
4971                 kfree_skb(skb);
4972                 /* Jamal, now you will not able to escape explaining
4973                  * me how you were going to use this. :-)
4974                  */
4975                 ret = NET_RX_DROP;
4976         }
4977
4978 out:
4979         return ret;
4980 }
4981
4982 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4983 {
4984         struct net_device *orig_dev = skb->dev;
4985         struct packet_type *pt_prev = NULL;
4986         int ret;
4987
4988         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4989         if (pt_prev)
4990                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4991                                          skb->dev, pt_prev, orig_dev);
4992         return ret;
4993 }
4994
4995 /**
4996  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4997  *      @skb: buffer to process
4998  *
4999  *      More direct receive version of netif_receive_skb().  It should
5000  *      only be used by callers that have a need to skip RPS and Generic XDP.
5001  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5002  *
5003  *      This function may only be called from softirq context and interrupts
5004  *      should be enabled.
5005  *
5006  *      Return values (usually ignored):
5007  *      NET_RX_SUCCESS: no congestion
5008  *      NET_RX_DROP: packet was dropped
5009  */
5010 int netif_receive_skb_core(struct sk_buff *skb)
5011 {
5012         int ret;
5013
5014         rcu_read_lock();
5015         ret = __netif_receive_skb_one_core(skb, false);
5016         rcu_read_unlock();
5017
5018         return ret;
5019 }
5020 EXPORT_SYMBOL(netif_receive_skb_core);
5021
5022 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5023                                                   struct packet_type *pt_prev,
5024                                                   struct net_device *orig_dev)
5025 {
5026         struct sk_buff *skb, *next;
5027
5028         if (!pt_prev)
5029                 return;
5030         if (list_empty(head))
5031                 return;
5032         if (pt_prev->list_func != NULL)
5033                 pt_prev->list_func(head, pt_prev, orig_dev);
5034         else
5035                 list_for_each_entry_safe(skb, next, head, list) {
5036                         skb_list_del_init(skb);
5037                         INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5038                                            skb->dev, pt_prev, orig_dev);
5039                 }
5040 }
5041
5042 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5043 {
5044         /* Fast-path assumptions:
5045          * - There is no RX handler.
5046          * - Only one packet_type matches.
5047          * If either of these fails, we will end up doing some per-packet
5048          * processing in-line, then handling the 'last ptype' for the whole
5049          * sublist.  This can't cause out-of-order delivery to any single ptype,
5050          * because the 'last ptype' must be constant across the sublist, and all
5051          * other ptypes are handled per-packet.
5052          */
5053         /* Current (common) ptype of sublist */
5054         struct packet_type *pt_curr = NULL;
5055         /* Current (common) orig_dev of sublist */
5056         struct net_device *od_curr = NULL;
5057         struct list_head sublist;
5058         struct sk_buff *skb, *next;
5059
5060         INIT_LIST_HEAD(&sublist);
5061         list_for_each_entry_safe(skb, next, head, list) {
5062                 struct net_device *orig_dev = skb->dev;
5063                 struct packet_type *pt_prev = NULL;
5064
5065                 skb_list_del_init(skb);
5066                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5067                 if (!pt_prev)
5068                         continue;
5069                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5070                         /* dispatch old sublist */
5071                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5072                         /* start new sublist */
5073                         INIT_LIST_HEAD(&sublist);
5074                         pt_curr = pt_prev;
5075                         od_curr = orig_dev;
5076                 }
5077                 list_add_tail(&skb->list, &sublist);
5078         }
5079
5080         /* dispatch final sublist */
5081         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5082 }
5083
5084 static int __netif_receive_skb(struct sk_buff *skb)
5085 {
5086         int ret;
5087
5088         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5089                 unsigned int noreclaim_flag;
5090
5091                 /*
5092                  * PFMEMALLOC skbs are special, they should
5093                  * - be delivered to SOCK_MEMALLOC sockets only
5094                  * - stay away from userspace
5095                  * - have bounded memory usage
5096                  *
5097                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5098                  * context down to all allocation sites.
5099                  */
5100                 noreclaim_flag = memalloc_noreclaim_save();
5101                 ret = __netif_receive_skb_one_core(skb, true);
5102                 memalloc_noreclaim_restore(noreclaim_flag);
5103         } else
5104                 ret = __netif_receive_skb_one_core(skb, false);
5105
5106         return ret;
5107 }
5108
5109 static void __netif_receive_skb_list(struct list_head *head)
5110 {
5111         unsigned long noreclaim_flag = 0;
5112         struct sk_buff *skb, *next;
5113         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5114
5115         list_for_each_entry_safe(skb, next, head, list) {
5116                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5117                         struct list_head sublist;
5118
5119                         /* Handle the previous sublist */
5120                         list_cut_before(&sublist, head, &skb->list);
5121                         if (!list_empty(&sublist))
5122                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5123                         pfmemalloc = !pfmemalloc;
5124                         /* See comments in __netif_receive_skb */
5125                         if (pfmemalloc)
5126                                 noreclaim_flag = memalloc_noreclaim_save();
5127                         else
5128                                 memalloc_noreclaim_restore(noreclaim_flag);
5129                 }
5130         }
5131         /* Handle the remaining sublist */
5132         if (!list_empty(head))
5133                 __netif_receive_skb_list_core(head, pfmemalloc);
5134         /* Restore pflags */
5135         if (pfmemalloc)
5136                 memalloc_noreclaim_restore(noreclaim_flag);
5137 }
5138
5139 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5140 {
5141         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5142         struct bpf_prog *new = xdp->prog;
5143         int ret = 0;
5144
5145         switch (xdp->command) {
5146         case XDP_SETUP_PROG:
5147                 rcu_assign_pointer(dev->xdp_prog, new);
5148                 if (old)
5149                         bpf_prog_put(old);
5150
5151                 if (old && !new) {
5152                         static_branch_dec(&generic_xdp_needed_key);
5153                 } else if (new && !old) {
5154                         static_branch_inc(&generic_xdp_needed_key);
5155                         dev_disable_lro(dev);
5156                         dev_disable_gro_hw(dev);
5157                 }
5158                 break;
5159
5160         case XDP_QUERY_PROG:
5161                 xdp->prog_id = old ? old->aux->id : 0;
5162                 break;
5163
5164         default:
5165                 ret = -EINVAL;
5166                 break;
5167         }
5168
5169         return ret;
5170 }
5171
5172 static int netif_receive_skb_internal(struct sk_buff *skb)
5173 {
5174         int ret;
5175
5176         net_timestamp_check(netdev_tstamp_prequeue, skb);
5177
5178         if (skb_defer_rx_timestamp(skb))
5179                 return NET_RX_SUCCESS;
5180
5181         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5182                 int ret;
5183
5184                 preempt_disable();
5185                 rcu_read_lock();
5186                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5187                 rcu_read_unlock();
5188                 preempt_enable();
5189
5190                 if (ret != XDP_PASS)
5191                         return NET_RX_DROP;
5192         }
5193
5194         rcu_read_lock();
5195 #ifdef CONFIG_RPS
5196         if (static_branch_unlikely(&rps_needed)) {
5197                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5198                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5199
5200                 if (cpu >= 0) {
5201                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5202                         rcu_read_unlock();
5203                         return ret;
5204                 }
5205         }
5206 #endif
5207         ret = __netif_receive_skb(skb);
5208         rcu_read_unlock();
5209         return ret;
5210 }
5211
5212 static void netif_receive_skb_list_internal(struct list_head *head)
5213 {
5214         struct bpf_prog *xdp_prog = NULL;
5215         struct sk_buff *skb, *next;
5216         struct list_head sublist;
5217
5218         INIT_LIST_HEAD(&sublist);
5219         list_for_each_entry_safe(skb, next, head, list) {
5220                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5221                 skb_list_del_init(skb);
5222                 if (!skb_defer_rx_timestamp(skb))
5223                         list_add_tail(&skb->list, &sublist);
5224         }
5225         list_splice_init(&sublist, head);
5226
5227         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5228                 preempt_disable();
5229                 rcu_read_lock();
5230                 list_for_each_entry_safe(skb, next, head, list) {
5231                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5232                         skb_list_del_init(skb);
5233                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5234                                 list_add_tail(&skb->list, &sublist);
5235                 }
5236                 rcu_read_unlock();
5237                 preempt_enable();
5238                 /* Put passed packets back on main list */
5239                 list_splice_init(&sublist, head);
5240         }
5241
5242         rcu_read_lock();
5243 #ifdef CONFIG_RPS
5244         if (static_branch_unlikely(&rps_needed)) {
5245                 list_for_each_entry_safe(skb, next, head, list) {
5246                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5247                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5248
5249                         if (cpu >= 0) {
5250                                 /* Will be handled, remove from list */
5251                                 skb_list_del_init(skb);
5252                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5253                         }
5254                 }
5255         }
5256 #endif
5257         __netif_receive_skb_list(head);
5258         rcu_read_unlock();
5259 }
5260
5261 /**
5262  *      netif_receive_skb - process receive buffer from network
5263  *      @skb: buffer to process
5264  *
5265  *      netif_receive_skb() is the main receive data processing function.
5266  *      It always succeeds. The buffer may be dropped during processing
5267  *      for congestion control or by the protocol layers.
5268  *
5269  *      This function may only be called from softirq context and interrupts
5270  *      should be enabled.
5271  *
5272  *      Return values (usually ignored):
5273  *      NET_RX_SUCCESS: no congestion
5274  *      NET_RX_DROP: packet was dropped
5275  */
5276 int netif_receive_skb(struct sk_buff *skb)
5277 {
5278         int ret;
5279
5280         trace_netif_receive_skb_entry(skb);
5281
5282         ret = netif_receive_skb_internal(skb);
5283         trace_netif_receive_skb_exit(ret);
5284
5285         return ret;
5286 }
5287 EXPORT_SYMBOL(netif_receive_skb);
5288
5289 /**
5290  *      netif_receive_skb_list - process many receive buffers from network
5291  *      @head: list of skbs to process.
5292  *
5293  *      Since return value of netif_receive_skb() is normally ignored, and
5294  *      wouldn't be meaningful for a list, this function returns void.
5295  *
5296  *      This function may only be called from softirq context and interrupts
5297  *      should be enabled.
5298  */
5299 void netif_receive_skb_list(struct list_head *head)
5300 {
5301         struct sk_buff *skb;
5302
5303         if (list_empty(head))
5304                 return;
5305         if (trace_netif_receive_skb_list_entry_enabled()) {
5306                 list_for_each_entry(skb, head, list)
5307                         trace_netif_receive_skb_list_entry(skb);
5308         }
5309         netif_receive_skb_list_internal(head);
5310         trace_netif_receive_skb_list_exit(0);
5311 }
5312 EXPORT_SYMBOL(netif_receive_skb_list);
5313
5314 DEFINE_PER_CPU(struct work_struct, flush_works);
5315
5316 /* Network device is going away, flush any packets still pending */
5317 static void flush_backlog(struct work_struct *work)
5318 {
5319         struct sk_buff *skb, *tmp;
5320         struct softnet_data *sd;
5321
5322         local_bh_disable();
5323         sd = this_cpu_ptr(&softnet_data);
5324
5325         local_irq_disable();
5326         rps_lock(sd);
5327         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5328                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5329                         __skb_unlink(skb, &sd->input_pkt_queue);
5330                         kfree_skb(skb);
5331                         input_queue_head_incr(sd);
5332                 }
5333         }
5334         rps_unlock(sd);
5335         local_irq_enable();
5336
5337         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5338                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5339                         __skb_unlink(skb, &sd->process_queue);
5340                         kfree_skb(skb);
5341                         input_queue_head_incr(sd);
5342                 }
5343         }
5344         local_bh_enable();
5345 }
5346
5347 static void flush_all_backlogs(void)
5348 {
5349         unsigned int cpu;
5350
5351         get_online_cpus();
5352
5353         for_each_online_cpu(cpu)
5354                 queue_work_on(cpu, system_highpri_wq,
5355                               per_cpu_ptr(&flush_works, cpu));
5356
5357         for_each_online_cpu(cpu)
5358                 flush_work(per_cpu_ptr(&flush_works, cpu));
5359
5360         put_online_cpus();
5361 }
5362
5363 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5364 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5365 static int napi_gro_complete(struct sk_buff *skb)
5366 {
5367         struct packet_offload *ptype;
5368         __be16 type = skb->protocol;
5369         struct list_head *head = &offload_base;
5370         int err = -ENOENT;
5371
5372         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5373
5374         if (NAPI_GRO_CB(skb)->count == 1) {
5375                 skb_shinfo(skb)->gso_size = 0;
5376                 goto out;
5377         }
5378
5379         rcu_read_lock();
5380         list_for_each_entry_rcu(ptype, head, list) {
5381                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5382                         continue;
5383
5384                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5385                                          ipv6_gro_complete, inet_gro_complete,
5386                                          skb, 0);
5387                 break;
5388         }
5389         rcu_read_unlock();
5390
5391         if (err) {
5392                 WARN_ON(&ptype->list == head);
5393                 kfree_skb(skb);
5394                 return NET_RX_SUCCESS;
5395         }
5396
5397 out:
5398         return netif_receive_skb_internal(skb);
5399 }
5400
5401 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5402                                    bool flush_old)
5403 {
5404         struct list_head *head = &napi->gro_hash[index].list;
5405         struct sk_buff *skb, *p;
5406
5407         list_for_each_entry_safe_reverse(skb, p, head, list) {
5408                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5409                         return;
5410                 skb_list_del_init(skb);
5411                 napi_gro_complete(skb);
5412                 napi->gro_hash[index].count--;
5413         }
5414
5415         if (!napi->gro_hash[index].count)
5416                 __clear_bit(index, &napi->gro_bitmask);
5417 }
5418
5419 /* napi->gro_hash[].list contains packets ordered by age.
5420  * youngest packets at the head of it.
5421  * Complete skbs in reverse order to reduce latencies.
5422  */
5423 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5424 {
5425         unsigned long bitmask = napi->gro_bitmask;
5426         unsigned int i, base = ~0U;
5427
5428         while ((i = ffs(bitmask)) != 0) {
5429                 bitmask >>= i;
5430                 base += i;
5431                 __napi_gro_flush_chain(napi, base, flush_old);
5432         }
5433 }
5434 EXPORT_SYMBOL(napi_gro_flush);
5435
5436 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5437                                           struct sk_buff *skb)
5438 {
5439         unsigned int maclen = skb->dev->hard_header_len;
5440         u32 hash = skb_get_hash_raw(skb);
5441         struct list_head *head;
5442         struct sk_buff *p;
5443
5444         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5445         list_for_each_entry(p, head, list) {
5446                 unsigned long diffs;
5447
5448                 NAPI_GRO_CB(p)->flush = 0;
5449
5450                 if (hash != skb_get_hash_raw(p)) {
5451                         NAPI_GRO_CB(p)->same_flow = 0;
5452                         continue;
5453                 }
5454
5455                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5456                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5457                 if (skb_vlan_tag_present(p))
5458                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5459                 diffs |= skb_metadata_dst_cmp(p, skb);
5460                 diffs |= skb_metadata_differs(p, skb);
5461                 if (maclen == ETH_HLEN)
5462                         diffs |= compare_ether_header(skb_mac_header(p),
5463                                                       skb_mac_header(skb));
5464                 else if (!diffs)
5465                         diffs = memcmp(skb_mac_header(p),
5466                                        skb_mac_header(skb),
5467                                        maclen);
5468                 NAPI_GRO_CB(p)->same_flow = !diffs;
5469         }
5470
5471         return head;
5472 }
5473
5474 static void skb_gro_reset_offset(struct sk_buff *skb)
5475 {
5476         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5477         const skb_frag_t *frag0 = &pinfo->frags[0];
5478
5479         NAPI_GRO_CB(skb)->data_offset = 0;
5480         NAPI_GRO_CB(skb)->frag0 = NULL;
5481         NAPI_GRO_CB(skb)->frag0_len = 0;
5482
5483         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5484             pinfo->nr_frags &&
5485             !PageHighMem(skb_frag_page(frag0))) {
5486                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5487                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5488                                                     skb_frag_size(frag0),
5489                                                     skb->end - skb->tail);
5490         }
5491 }
5492
5493 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5494 {
5495         struct skb_shared_info *pinfo = skb_shinfo(skb);
5496
5497         BUG_ON(skb->end - skb->tail < grow);
5498
5499         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5500
5501         skb->data_len -= grow;
5502         skb->tail += grow;
5503
5504         pinfo->frags[0].page_offset += grow;
5505         skb_frag_size_sub(&pinfo->frags[0], grow);
5506
5507         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5508                 skb_frag_unref(skb, 0);
5509                 memmove(pinfo->frags, pinfo->frags + 1,
5510                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5511         }
5512 }
5513
5514 static void gro_flush_oldest(struct list_head *head)
5515 {
5516         struct sk_buff *oldest;
5517
5518         oldest = list_last_entry(head, struct sk_buff, list);
5519
5520         /* We are called with head length >= MAX_GRO_SKBS, so this is
5521          * impossible.
5522          */
5523         if (WARN_ON_ONCE(!oldest))
5524                 return;
5525
5526         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5527          * SKB to the chain.
5528          */
5529         skb_list_del_init(oldest);
5530         napi_gro_complete(oldest);
5531 }
5532
5533 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5534                                                            struct sk_buff *));
5535 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5536                                                            struct sk_buff *));
5537 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5538 {
5539         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5540         struct list_head *head = &offload_base;
5541         struct packet_offload *ptype;
5542         __be16 type = skb->protocol;
5543         struct list_head *gro_head;
5544         struct sk_buff *pp = NULL;
5545         enum gro_result ret;
5546         int same_flow;
5547         int grow;
5548
5549         if (netif_elide_gro(skb->dev))
5550                 goto normal;
5551
5552         gro_head = gro_list_prepare(napi, skb);
5553
5554         rcu_read_lock();
5555         list_for_each_entry_rcu(ptype, head, list) {
5556                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5557                         continue;
5558
5559                 skb_set_network_header(skb, skb_gro_offset(skb));
5560                 skb_reset_mac_len(skb);
5561                 NAPI_GRO_CB(skb)->same_flow = 0;
5562                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5563                 NAPI_GRO_CB(skb)->free = 0;
5564                 NAPI_GRO_CB(skb)->encap_mark = 0;
5565                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5566                 NAPI_GRO_CB(skb)->is_fou = 0;
5567                 NAPI_GRO_CB(skb)->is_atomic = 1;
5568                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5569
5570                 /* Setup for GRO checksum validation */
5571                 switch (skb->ip_summed) {
5572                 case CHECKSUM_COMPLETE:
5573                         NAPI_GRO_CB(skb)->csum = skb->csum;
5574                         NAPI_GRO_CB(skb)->csum_valid = 1;
5575                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5576                         break;
5577                 case CHECKSUM_UNNECESSARY:
5578                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5579                         NAPI_GRO_CB(skb)->csum_valid = 0;
5580                         break;
5581                 default:
5582                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5583                         NAPI_GRO_CB(skb)->csum_valid = 0;
5584                 }
5585
5586                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5587                                         ipv6_gro_receive, inet_gro_receive,
5588                                         gro_head, skb);
5589                 break;
5590         }
5591         rcu_read_unlock();
5592
5593         if (&ptype->list == head)
5594                 goto normal;
5595
5596         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5597                 ret = GRO_CONSUMED;
5598                 goto ok;
5599         }
5600
5601         same_flow = NAPI_GRO_CB(skb)->same_flow;
5602         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5603
5604         if (pp) {
5605                 skb_list_del_init(pp);
5606                 napi_gro_complete(pp);
5607                 napi->gro_hash[hash].count--;
5608         }
5609
5610         if (same_flow)
5611                 goto ok;
5612
5613         if (NAPI_GRO_CB(skb)->flush)
5614                 goto normal;
5615
5616         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5617                 gro_flush_oldest(gro_head);
5618         } else {
5619                 napi->gro_hash[hash].count++;
5620         }
5621         NAPI_GRO_CB(skb)->count = 1;
5622         NAPI_GRO_CB(skb)->age = jiffies;
5623         NAPI_GRO_CB(skb)->last = skb;
5624         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5625         list_add(&skb->list, gro_head);
5626         ret = GRO_HELD;
5627
5628 pull:
5629         grow = skb_gro_offset(skb) - skb_headlen(skb);
5630         if (grow > 0)
5631                 gro_pull_from_frag0(skb, grow);
5632 ok:
5633         if (napi->gro_hash[hash].count) {
5634                 if (!test_bit(hash, &napi->gro_bitmask))
5635                         __set_bit(hash, &napi->gro_bitmask);
5636         } else if (test_bit(hash, &napi->gro_bitmask)) {
5637                 __clear_bit(hash, &napi->gro_bitmask);
5638         }
5639
5640         return ret;
5641
5642 normal:
5643         ret = GRO_NORMAL;
5644         goto pull;
5645 }
5646
5647 struct packet_offload *gro_find_receive_by_type(__be16 type)
5648 {
5649         struct list_head *offload_head = &offload_base;
5650         struct packet_offload *ptype;
5651
5652         list_for_each_entry_rcu(ptype, offload_head, list) {
5653                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5654                         continue;
5655                 return ptype;
5656         }
5657         return NULL;
5658 }
5659 EXPORT_SYMBOL(gro_find_receive_by_type);
5660
5661 struct packet_offload *gro_find_complete_by_type(__be16 type)
5662 {
5663         struct list_head *offload_head = &offload_base;
5664         struct packet_offload *ptype;
5665
5666         list_for_each_entry_rcu(ptype, offload_head, list) {
5667                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5668                         continue;
5669                 return ptype;
5670         }
5671         return NULL;
5672 }
5673 EXPORT_SYMBOL(gro_find_complete_by_type);
5674
5675 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5676 {
5677         skb_dst_drop(skb);
5678         secpath_reset(skb);
5679         kmem_cache_free(skbuff_head_cache, skb);
5680 }
5681
5682 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5683 {
5684         switch (ret) {
5685         case GRO_NORMAL:
5686                 if (netif_receive_skb_internal(skb))
5687                         ret = GRO_DROP;
5688                 break;
5689
5690         case GRO_DROP:
5691                 kfree_skb(skb);
5692                 break;
5693
5694         case GRO_MERGED_FREE:
5695                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5696                         napi_skb_free_stolen_head(skb);
5697                 else
5698                         __kfree_skb(skb);
5699                 break;
5700
5701         case GRO_HELD:
5702         case GRO_MERGED:
5703         case GRO_CONSUMED:
5704                 break;
5705         }
5706
5707         return ret;
5708 }
5709
5710 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5711 {
5712         gro_result_t ret;
5713
5714         skb_mark_napi_id(skb, napi);
5715         trace_napi_gro_receive_entry(skb);
5716
5717         skb_gro_reset_offset(skb);
5718
5719         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5720         trace_napi_gro_receive_exit(ret);
5721
5722         return ret;
5723 }
5724 EXPORT_SYMBOL(napi_gro_receive);
5725
5726 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728         if (unlikely(skb->pfmemalloc)) {
5729                 consume_skb(skb);
5730                 return;
5731         }
5732         __skb_pull(skb, skb_headlen(skb));
5733         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5734         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5735         __vlan_hwaccel_clear_tag(skb);
5736         skb->dev = napi->dev;
5737         skb->skb_iif = 0;
5738
5739         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5740         skb->pkt_type = PACKET_HOST;
5741
5742         skb->encapsulation = 0;
5743         skb_shinfo(skb)->gso_type = 0;
5744         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5745         secpath_reset(skb);
5746
5747         napi->skb = skb;
5748 }
5749
5750 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5751 {
5752         struct sk_buff *skb = napi->skb;
5753
5754         if (!skb) {
5755                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5756                 if (skb) {
5757                         napi->skb = skb;
5758                         skb_mark_napi_id(skb, napi);
5759                 }
5760         }
5761         return skb;
5762 }
5763 EXPORT_SYMBOL(napi_get_frags);
5764
5765 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5766                                       struct sk_buff *skb,
5767                                       gro_result_t ret)
5768 {
5769         switch (ret) {
5770         case GRO_NORMAL:
5771         case GRO_HELD:
5772                 __skb_push(skb, ETH_HLEN);
5773                 skb->protocol = eth_type_trans(skb, skb->dev);
5774                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5775                         ret = GRO_DROP;
5776                 break;
5777
5778         case GRO_DROP:
5779                 napi_reuse_skb(napi, skb);
5780                 break;
5781
5782         case GRO_MERGED_FREE:
5783                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5784                         napi_skb_free_stolen_head(skb);
5785                 else
5786                         napi_reuse_skb(napi, skb);
5787                 break;
5788
5789         case GRO_MERGED:
5790         case GRO_CONSUMED:
5791                 break;
5792         }
5793
5794         return ret;
5795 }
5796
5797 /* Upper GRO stack assumes network header starts at gro_offset=0
5798  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5799  * We copy ethernet header into skb->data to have a common layout.
5800  */
5801 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5802 {
5803         struct sk_buff *skb = napi->skb;
5804         const struct ethhdr *eth;
5805         unsigned int hlen = sizeof(*eth);
5806
5807         napi->skb = NULL;
5808
5809         skb_reset_mac_header(skb);
5810         skb_gro_reset_offset(skb);
5811
5812         eth = skb_gro_header_fast(skb, 0);
5813         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5814                 eth = skb_gro_header_slow(skb, hlen, 0);
5815                 if (unlikely(!eth)) {
5816                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5817                                              __func__, napi->dev->name);
5818                         napi_reuse_skb(napi, skb);
5819                         return NULL;
5820                 }
5821         } else {
5822                 gro_pull_from_frag0(skb, hlen);
5823                 NAPI_GRO_CB(skb)->frag0 += hlen;
5824                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5825         }
5826         __skb_pull(skb, hlen);
5827
5828         /*
5829          * This works because the only protocols we care about don't require
5830          * special handling.
5831          * We'll fix it up properly in napi_frags_finish()
5832          */
5833         skb->protocol = eth->h_proto;
5834
5835         return skb;
5836 }
5837
5838 gro_result_t napi_gro_frags(struct napi_struct *napi)
5839 {
5840         gro_result_t ret;
5841         struct sk_buff *skb = napi_frags_skb(napi);
5842
5843         if (!skb)
5844                 return GRO_DROP;
5845
5846         trace_napi_gro_frags_entry(skb);
5847
5848         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5849         trace_napi_gro_frags_exit(ret);
5850
5851         return ret;
5852 }
5853 EXPORT_SYMBOL(napi_gro_frags);
5854
5855 /* Compute the checksum from gro_offset and return the folded value
5856  * after adding in any pseudo checksum.
5857  */
5858 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5859 {
5860         __wsum wsum;
5861         __sum16 sum;
5862
5863         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5864
5865         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5866         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5867         /* See comments in __skb_checksum_complete(). */
5868         if (likely(!sum)) {
5869                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5870                     !skb->csum_complete_sw)
5871                         netdev_rx_csum_fault(skb->dev, skb);
5872         }
5873
5874         NAPI_GRO_CB(skb)->csum = wsum;
5875         NAPI_GRO_CB(skb)->csum_valid = 1;
5876
5877         return sum;
5878 }
5879 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5880
5881 static void net_rps_send_ipi(struct softnet_data *remsd)
5882 {
5883 #ifdef CONFIG_RPS
5884         while (remsd) {
5885                 struct softnet_data *next = remsd->rps_ipi_next;
5886
5887                 if (cpu_online(remsd->cpu))
5888                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5889                 remsd = next;
5890         }
5891 #endif
5892 }
5893
5894 /*
5895  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5896  * Note: called with local irq disabled, but exits with local irq enabled.
5897  */
5898 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5899 {
5900 #ifdef CONFIG_RPS
5901         struct softnet_data *remsd = sd->rps_ipi_list;
5902
5903         if (remsd) {
5904                 sd->rps_ipi_list = NULL;
5905
5906                 local_irq_enable();
5907
5908                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5909                 net_rps_send_ipi(remsd);
5910         } else
5911 #endif
5912                 local_irq_enable();
5913 }
5914
5915 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5916 {
5917 #ifdef CONFIG_RPS
5918         return sd->rps_ipi_list != NULL;
5919 #else
5920         return false;
5921 #endif
5922 }
5923
5924 static int process_backlog(struct napi_struct *napi, int quota)
5925 {
5926         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5927         bool again = true;
5928         int work = 0;
5929
5930         /* Check if we have pending ipi, its better to send them now,
5931          * not waiting net_rx_action() end.
5932          */
5933         if (sd_has_rps_ipi_waiting(sd)) {
5934                 local_irq_disable();
5935                 net_rps_action_and_irq_enable(sd);
5936         }
5937
5938         napi->weight = dev_rx_weight;
5939         while (again) {
5940                 struct sk_buff *skb;
5941
5942                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5943                         rcu_read_lock();
5944                         __netif_receive_skb(skb);
5945                         rcu_read_unlock();
5946                         input_queue_head_incr(sd);
5947                         if (++work >= quota)
5948                                 return work;
5949
5950                 }
5951
5952                 local_irq_disable();
5953                 rps_lock(sd);
5954                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5955                         /*
5956                          * Inline a custom version of __napi_complete().
5957                          * only current cpu owns and manipulates this napi,
5958                          * and NAPI_STATE_SCHED is the only possible flag set
5959                          * on backlog.
5960                          * We can use a plain write instead of clear_bit(),
5961                          * and we dont need an smp_mb() memory barrier.
5962                          */
5963                         napi->state = 0;
5964                         again = false;
5965                 } else {
5966                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5967                                                    &sd->process_queue);
5968                 }
5969                 rps_unlock(sd);
5970                 local_irq_enable();
5971         }
5972
5973         return work;
5974 }
5975
5976 /**
5977  * __napi_schedule - schedule for receive
5978  * @n: entry to schedule
5979  *
5980  * The entry's receive function will be scheduled to run.
5981  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5982  */
5983 void __napi_schedule(struct napi_struct *n)
5984 {
5985         unsigned long flags;
5986
5987         local_irq_save(flags);
5988         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5989         local_irq_restore(flags);
5990 }
5991 EXPORT_SYMBOL(__napi_schedule);
5992
5993 /**
5994  *      napi_schedule_prep - check if napi can be scheduled
5995  *      @n: napi context
5996  *
5997  * Test if NAPI routine is already running, and if not mark
5998  * it as running.  This is used as a condition variable
5999  * insure only one NAPI poll instance runs.  We also make
6000  * sure there is no pending NAPI disable.
6001  */
6002 bool napi_schedule_prep(struct napi_struct *n)
6003 {
6004         unsigned long val, new;
6005
6006         do {
6007                 val = READ_ONCE(n->state);
6008                 if (unlikely(val & NAPIF_STATE_DISABLE))
6009                         return false;
6010                 new = val | NAPIF_STATE_SCHED;
6011
6012                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6013                  * This was suggested by Alexander Duyck, as compiler
6014                  * emits better code than :
6015                  * if (val & NAPIF_STATE_SCHED)
6016                  *     new |= NAPIF_STATE_MISSED;
6017                  */
6018                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6019                                                    NAPIF_STATE_MISSED;
6020         } while (cmpxchg(&n->state, val, new) != val);
6021
6022         return !(val & NAPIF_STATE_SCHED);
6023 }
6024 EXPORT_SYMBOL(napi_schedule_prep);
6025
6026 /**
6027  * __napi_schedule_irqoff - schedule for receive
6028  * @n: entry to schedule
6029  *
6030  * Variant of __napi_schedule() assuming hard irqs are masked
6031  */
6032 void __napi_schedule_irqoff(struct napi_struct *n)
6033 {
6034         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6035 }
6036 EXPORT_SYMBOL(__napi_schedule_irqoff);
6037
6038 bool napi_complete_done(struct napi_struct *n, int work_done)
6039 {
6040         unsigned long flags, val, new;
6041
6042         /*
6043          * 1) Don't let napi dequeue from the cpu poll list
6044          *    just in case its running on a different cpu.
6045          * 2) If we are busy polling, do nothing here, we have
6046          *    the guarantee we will be called later.
6047          */
6048         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6049                                  NAPIF_STATE_IN_BUSY_POLL)))
6050                 return false;
6051
6052         if (n->gro_bitmask) {
6053                 unsigned long timeout = 0;
6054
6055                 if (work_done)
6056                         timeout = n->dev->gro_flush_timeout;
6057
6058                 /* When the NAPI instance uses a timeout and keeps postponing
6059                  * it, we need to bound somehow the time packets are kept in
6060                  * the GRO layer
6061                  */
6062                 napi_gro_flush(n, !!timeout);
6063                 if (timeout)
6064                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6065                                       HRTIMER_MODE_REL_PINNED);
6066         }
6067         if (unlikely(!list_empty(&n->poll_list))) {
6068                 /* If n->poll_list is not empty, we need to mask irqs */
6069                 local_irq_save(flags);
6070                 list_del_init(&n->poll_list);
6071                 local_irq_restore(flags);
6072         }
6073
6074         do {
6075                 val = READ_ONCE(n->state);
6076
6077                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6078
6079                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6080
6081                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6082                  * because we will call napi->poll() one more time.
6083                  * This C code was suggested by Alexander Duyck to help gcc.
6084                  */
6085                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6086                                                     NAPIF_STATE_SCHED;
6087         } while (cmpxchg(&n->state, val, new) != val);
6088
6089         if (unlikely(val & NAPIF_STATE_MISSED)) {
6090                 __napi_schedule(n);
6091                 return false;
6092         }
6093
6094         return true;
6095 }
6096 EXPORT_SYMBOL(napi_complete_done);
6097
6098 /* must be called under rcu_read_lock(), as we dont take a reference */
6099 static struct napi_struct *napi_by_id(unsigned int napi_id)
6100 {
6101         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102         struct napi_struct *napi;
6103
6104         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105                 if (napi->napi_id == napi_id)
6106                         return napi;
6107
6108         return NULL;
6109 }
6110
6111 #if defined(CONFIG_NET_RX_BUSY_POLL)
6112
6113 #define BUSY_POLL_BUDGET 8
6114
6115 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6116 {
6117         int rc;
6118
6119         /* Busy polling means there is a high chance device driver hard irq
6120          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6121          * set in napi_schedule_prep().
6122          * Since we are about to call napi->poll() once more, we can safely
6123          * clear NAPI_STATE_MISSED.
6124          *
6125          * Note: x86 could use a single "lock and ..." instruction
6126          * to perform these two clear_bit()
6127          */
6128         clear_bit(NAPI_STATE_MISSED, &napi->state);
6129         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6130
6131         local_bh_disable();
6132
6133         /* All we really want here is to re-enable device interrupts.
6134          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6135          */
6136         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6137         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6138         netpoll_poll_unlock(have_poll_lock);
6139         if (rc == BUSY_POLL_BUDGET)
6140                 __napi_schedule(napi);
6141         local_bh_enable();
6142 }
6143
6144 void napi_busy_loop(unsigned int napi_id,
6145                     bool (*loop_end)(void *, unsigned long),
6146                     void *loop_end_arg)
6147 {
6148         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6149         int (*napi_poll)(struct napi_struct *napi, int budget);
6150         void *have_poll_lock = NULL;
6151         struct napi_struct *napi;
6152
6153 restart:
6154         napi_poll = NULL;
6155
6156         rcu_read_lock();
6157
6158         napi = napi_by_id(napi_id);
6159         if (!napi)
6160                 goto out;
6161
6162         preempt_disable();
6163         for (;;) {
6164                 int work = 0;
6165
6166                 local_bh_disable();
6167                 if (!napi_poll) {
6168                         unsigned long val = READ_ONCE(napi->state);
6169
6170                         /* If multiple threads are competing for this napi,
6171                          * we avoid dirtying napi->state as much as we can.
6172                          */
6173                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6174                                    NAPIF_STATE_IN_BUSY_POLL))
6175                                 goto count;
6176                         if (cmpxchg(&napi->state, val,
6177                                     val | NAPIF_STATE_IN_BUSY_POLL |
6178                                           NAPIF_STATE_SCHED) != val)
6179                                 goto count;
6180                         have_poll_lock = netpoll_poll_lock(napi);
6181                         napi_poll = napi->poll;
6182                 }
6183                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6184                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6185 count:
6186                 if (work > 0)
6187                         __NET_ADD_STATS(dev_net(napi->dev),
6188                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6189                 local_bh_enable();
6190
6191                 if (!loop_end || loop_end(loop_end_arg, start_time))
6192                         break;
6193
6194                 if (unlikely(need_resched())) {
6195                         if (napi_poll)
6196                                 busy_poll_stop(napi, have_poll_lock);
6197                         preempt_enable();
6198                         rcu_read_unlock();
6199                         cond_resched();
6200                         if (loop_end(loop_end_arg, start_time))
6201                                 return;
6202                         goto restart;
6203                 }
6204                 cpu_relax();
6205         }
6206         if (napi_poll)
6207                 busy_poll_stop(napi, have_poll_lock);
6208         preempt_enable();
6209 out:
6210         rcu_read_unlock();
6211 }
6212 EXPORT_SYMBOL(napi_busy_loop);
6213
6214 #endif /* CONFIG_NET_RX_BUSY_POLL */
6215
6216 static void napi_hash_add(struct napi_struct *napi)
6217 {
6218         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6219             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6220                 return;
6221
6222         spin_lock(&napi_hash_lock);
6223
6224         /* 0..NR_CPUS range is reserved for sender_cpu use */
6225         do {
6226                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6227                         napi_gen_id = MIN_NAPI_ID;
6228         } while (napi_by_id(napi_gen_id));
6229         napi->napi_id = napi_gen_id;
6230
6231         hlist_add_head_rcu(&napi->napi_hash_node,
6232                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6233
6234         spin_unlock(&napi_hash_lock);
6235 }
6236
6237 /* Warning : caller is responsible to make sure rcu grace period
6238  * is respected before freeing memory containing @napi
6239  */
6240 bool napi_hash_del(struct napi_struct *napi)
6241 {
6242         bool rcu_sync_needed = false;
6243
6244         spin_lock(&napi_hash_lock);
6245
6246         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6247                 rcu_sync_needed = true;
6248                 hlist_del_rcu(&napi->napi_hash_node);
6249         }
6250         spin_unlock(&napi_hash_lock);
6251         return rcu_sync_needed;
6252 }
6253 EXPORT_SYMBOL_GPL(napi_hash_del);
6254
6255 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6256 {
6257         struct napi_struct *napi;
6258
6259         napi = container_of(timer, struct napi_struct, timer);
6260
6261         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6262          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6263          */
6264         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6265             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6266                 __napi_schedule_irqoff(napi);
6267
6268         return HRTIMER_NORESTART;
6269 }
6270
6271 static void init_gro_hash(struct napi_struct *napi)
6272 {
6273         int i;
6274
6275         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6276                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6277                 napi->gro_hash[i].count = 0;
6278         }
6279         napi->gro_bitmask = 0;
6280 }
6281
6282 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6283                     int (*poll)(struct napi_struct *, int), int weight)
6284 {
6285         INIT_LIST_HEAD(&napi->poll_list);
6286         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6287         napi->timer.function = napi_watchdog;
6288         init_gro_hash(napi);
6289         napi->skb = NULL;
6290         napi->poll = poll;
6291         if (weight > NAPI_POLL_WEIGHT)
6292                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6293                                 weight);
6294         napi->weight = weight;
6295         list_add(&napi->dev_list, &dev->napi_list);
6296         napi->dev = dev;
6297 #ifdef CONFIG_NETPOLL
6298         napi->poll_owner = -1;
6299 #endif
6300         set_bit(NAPI_STATE_SCHED, &napi->state);
6301         napi_hash_add(napi);
6302 }
6303 EXPORT_SYMBOL(netif_napi_add);
6304
6305 void napi_disable(struct napi_struct *n)
6306 {
6307         might_sleep();
6308         set_bit(NAPI_STATE_DISABLE, &n->state);
6309
6310         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6311                 msleep(1);
6312         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6313                 msleep(1);
6314
6315         hrtimer_cancel(&n->timer);
6316
6317         clear_bit(NAPI_STATE_DISABLE, &n->state);
6318 }
6319 EXPORT_SYMBOL(napi_disable);
6320
6321 static void flush_gro_hash(struct napi_struct *napi)
6322 {
6323         int i;
6324
6325         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6326                 struct sk_buff *skb, *n;
6327
6328                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6329                         kfree_skb(skb);
6330                 napi->gro_hash[i].count = 0;
6331         }
6332 }
6333
6334 /* Must be called in process context */
6335 void netif_napi_del(struct napi_struct *napi)
6336 {
6337         might_sleep();
6338         if (napi_hash_del(napi))
6339                 synchronize_net();
6340         list_del_init(&napi->dev_list);
6341         napi_free_frags(napi);
6342
6343         flush_gro_hash(napi);
6344         napi->gro_bitmask = 0;
6345 }
6346 EXPORT_SYMBOL(netif_napi_del);
6347
6348 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6349 {
6350         void *have;
6351         int work, weight;
6352
6353         list_del_init(&n->poll_list);
6354
6355         have = netpoll_poll_lock(n);
6356
6357         weight = n->weight;
6358
6359         /* This NAPI_STATE_SCHED test is for avoiding a race
6360          * with netpoll's poll_napi().  Only the entity which
6361          * obtains the lock and sees NAPI_STATE_SCHED set will
6362          * actually make the ->poll() call.  Therefore we avoid
6363          * accidentally calling ->poll() when NAPI is not scheduled.
6364          */
6365         work = 0;
6366         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6367                 work = n->poll(n, weight);
6368                 trace_napi_poll(n, work, weight);
6369         }
6370
6371         WARN_ON_ONCE(work > weight);
6372
6373         if (likely(work < weight))
6374                 goto out_unlock;
6375
6376         /* Drivers must not modify the NAPI state if they
6377          * consume the entire weight.  In such cases this code
6378          * still "owns" the NAPI instance and therefore can
6379          * move the instance around on the list at-will.
6380          */
6381         if (unlikely(napi_disable_pending(n))) {
6382                 napi_complete(n);
6383                 goto out_unlock;
6384         }
6385
6386         if (n->gro_bitmask) {
6387                 /* flush too old packets
6388                  * If HZ < 1000, flush all packets.
6389                  */
6390                 napi_gro_flush(n, HZ >= 1000);
6391         }
6392
6393         /* Some drivers may have called napi_schedule
6394          * prior to exhausting their budget.
6395          */
6396         if (unlikely(!list_empty(&n->poll_list))) {
6397                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6398                              n->dev ? n->dev->name : "backlog");
6399                 goto out_unlock;
6400         }
6401
6402         list_add_tail(&n->poll_list, repoll);
6403
6404 out_unlock:
6405         netpoll_poll_unlock(have);
6406
6407         return work;
6408 }
6409
6410 static __latent_entropy void net_rx_action(struct softirq_action *h)
6411 {
6412         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6413         unsigned long time_limit = jiffies +
6414                 usecs_to_jiffies(netdev_budget_usecs);
6415         int budget = netdev_budget;
6416         LIST_HEAD(list);
6417         LIST_HEAD(repoll);
6418
6419         local_irq_disable();
6420         list_splice_init(&sd->poll_list, &list);
6421         local_irq_enable();
6422
6423         for (;;) {
6424                 struct napi_struct *n;
6425
6426                 if (list_empty(&list)) {
6427                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6428                                 goto out;
6429                         break;
6430                 }
6431
6432                 n = list_first_entry(&list, struct napi_struct, poll_list);
6433                 budget -= napi_poll(n, &repoll);
6434
6435                 /* If softirq window is exhausted then punt.
6436                  * Allow this to run for 2 jiffies since which will allow
6437                  * an average latency of 1.5/HZ.
6438                  */
6439                 if (unlikely(budget <= 0 ||
6440                              time_after_eq(jiffies, time_limit))) {
6441                         sd->time_squeeze++;
6442                         break;
6443                 }
6444         }
6445
6446         local_irq_disable();
6447
6448         list_splice_tail_init(&sd->poll_list, &list);
6449         list_splice_tail(&repoll, &list);
6450         list_splice(&list, &sd->poll_list);
6451         if (!list_empty(&sd->poll_list))
6452                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6453
6454         net_rps_action_and_irq_enable(sd);
6455 out:
6456         __kfree_skb_flush();
6457 }
6458
6459 struct netdev_adjacent {
6460         struct net_device *dev;
6461
6462         /* upper master flag, there can only be one master device per list */
6463         bool master;
6464
6465         /* counter for the number of times this device was added to us */
6466         u16 ref_nr;
6467
6468         /* private field for the users */
6469         void *private;
6470
6471         struct list_head list;
6472         struct rcu_head rcu;
6473 };
6474
6475 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6476                                                  struct list_head *adj_list)
6477 {
6478         struct netdev_adjacent *adj;
6479
6480         list_for_each_entry(adj, adj_list, list) {
6481                 if (adj->dev == adj_dev)
6482                         return adj;
6483         }
6484         return NULL;
6485 }
6486
6487 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6488 {
6489         struct net_device *dev = data;
6490
6491         return upper_dev == dev;
6492 }
6493
6494 /**
6495  * netdev_has_upper_dev - Check if device is linked to an upper device
6496  * @dev: device
6497  * @upper_dev: upper device to check
6498  *
6499  * Find out if a device is linked to specified upper device and return true
6500  * in case it is. Note that this checks only immediate upper device,
6501  * not through a complete stack of devices. The caller must hold the RTNL lock.
6502  */
6503 bool netdev_has_upper_dev(struct net_device *dev,
6504                           struct net_device *upper_dev)
6505 {
6506         ASSERT_RTNL();
6507
6508         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6509                                              upper_dev);
6510 }
6511 EXPORT_SYMBOL(netdev_has_upper_dev);
6512
6513 /**
6514  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6515  * @dev: device
6516  * @upper_dev: upper device to check
6517  *
6518  * Find out if a device is linked to specified upper device and return true
6519  * in case it is. Note that this checks the entire upper device chain.
6520  * The caller must hold rcu lock.
6521  */
6522
6523 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6524                                   struct net_device *upper_dev)
6525 {
6526         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6527                                                upper_dev);
6528 }
6529 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6530
6531 /**
6532  * netdev_has_any_upper_dev - Check if device is linked to some device
6533  * @dev: device
6534  *
6535  * Find out if a device is linked to an upper device and return true in case
6536  * it is. The caller must hold the RTNL lock.
6537  */
6538 bool netdev_has_any_upper_dev(struct net_device *dev)
6539 {
6540         ASSERT_RTNL();
6541
6542         return !list_empty(&dev->adj_list.upper);
6543 }
6544 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6545
6546 /**
6547  * netdev_master_upper_dev_get - Get master upper device
6548  * @dev: device
6549  *
6550  * Find a master upper device and return pointer to it or NULL in case
6551  * it's not there. The caller must hold the RTNL lock.
6552  */
6553 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6554 {
6555         struct netdev_adjacent *upper;
6556
6557         ASSERT_RTNL();
6558
6559         if (list_empty(&dev->adj_list.upper))
6560                 return NULL;
6561
6562         upper = list_first_entry(&dev->adj_list.upper,
6563                                  struct netdev_adjacent, list);
6564         if (likely(upper->master))
6565                 return upper->dev;
6566         return NULL;
6567 }
6568 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6569
6570 /**
6571  * netdev_has_any_lower_dev - Check if device is linked to some device
6572  * @dev: device
6573  *
6574  * Find out if a device is linked to a lower device and return true in case
6575  * it is. The caller must hold the RTNL lock.
6576  */
6577 static bool netdev_has_any_lower_dev(struct net_device *dev)
6578 {
6579         ASSERT_RTNL();
6580
6581         return !list_empty(&dev->adj_list.lower);
6582 }
6583
6584 void *netdev_adjacent_get_private(struct list_head *adj_list)
6585 {
6586         struct netdev_adjacent *adj;
6587
6588         adj = list_entry(adj_list, struct netdev_adjacent, list);
6589
6590         return adj->private;
6591 }
6592 EXPORT_SYMBOL(netdev_adjacent_get_private);
6593
6594 /**
6595  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6596  * @dev: device
6597  * @iter: list_head ** of the current position
6598  *
6599  * Gets the next device from the dev's upper list, starting from iter
6600  * position. The caller must hold RCU read lock.
6601  */
6602 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6603                                                  struct list_head **iter)
6604 {
6605         struct netdev_adjacent *upper;
6606
6607         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608
6609         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610
6611         if (&upper->list == &dev->adj_list.upper)
6612                 return NULL;
6613
6614         *iter = &upper->list;
6615
6616         return upper->dev;
6617 }
6618 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6619
6620 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6621                                                     struct list_head **iter)
6622 {
6623         struct netdev_adjacent *upper;
6624
6625         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6626
6627         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6628
6629         if (&upper->list == &dev->adj_list.upper)
6630                 return NULL;
6631
6632         *iter = &upper->list;
6633
6634         return upper->dev;
6635 }
6636
6637 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6638                                   int (*fn)(struct net_device *dev,
6639                                             void *data),
6640                                   void *data)
6641 {
6642         struct net_device *udev;
6643         struct list_head *iter;
6644         int ret;
6645
6646         for (iter = &dev->adj_list.upper,
6647              udev = netdev_next_upper_dev_rcu(dev, &iter);
6648              udev;
6649              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6650                 /* first is the upper device itself */
6651                 ret = fn(udev, data);
6652                 if (ret)
6653                         return ret;
6654
6655                 /* then look at all of its upper devices */
6656                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6657                 if (ret)
6658                         return ret;
6659         }
6660
6661         return 0;
6662 }
6663 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6664
6665 /**
6666  * netdev_lower_get_next_private - Get the next ->private from the
6667  *                                 lower neighbour list
6668  * @dev: device
6669  * @iter: list_head ** of the current position
6670  *
6671  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6672  * list, starting from iter position. The caller must hold either hold the
6673  * RTNL lock or its own locking that guarantees that the neighbour lower
6674  * list will remain unchanged.
6675  */
6676 void *netdev_lower_get_next_private(struct net_device *dev,
6677                                     struct list_head **iter)
6678 {
6679         struct netdev_adjacent *lower;
6680
6681         lower = list_entry(*iter, struct netdev_adjacent, list);
6682
6683         if (&lower->list == &dev->adj_list.lower)
6684                 return NULL;
6685
6686         *iter = lower->list.next;
6687
6688         return lower->private;
6689 }
6690 EXPORT_SYMBOL(netdev_lower_get_next_private);
6691
6692 /**
6693  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6694  *                                     lower neighbour list, RCU
6695  *                                     variant
6696  * @dev: device
6697  * @iter: list_head ** of the current position
6698  *
6699  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6700  * list, starting from iter position. The caller must hold RCU read lock.
6701  */
6702 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6703                                         struct list_head **iter)
6704 {
6705         struct netdev_adjacent *lower;
6706
6707         WARN_ON_ONCE(!rcu_read_lock_held());
6708
6709         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6710
6711         if (&lower->list == &dev->adj_list.lower)
6712                 return NULL;
6713
6714         *iter = &lower->list;
6715
6716         return lower->private;
6717 }
6718 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6719
6720 /**
6721  * netdev_lower_get_next - Get the next device from the lower neighbour
6722  *                         list
6723  * @dev: device
6724  * @iter: list_head ** of the current position
6725  *
6726  * Gets the next netdev_adjacent from the dev's lower neighbour
6727  * list, starting from iter position. The caller must hold RTNL lock or
6728  * its own locking that guarantees that the neighbour lower
6729  * list will remain unchanged.
6730  */
6731 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6732 {
6733         struct netdev_adjacent *lower;
6734
6735         lower = list_entry(*iter, struct netdev_adjacent, list);
6736
6737         if (&lower->list == &dev->adj_list.lower)
6738                 return NULL;
6739
6740         *iter = lower->list.next;
6741
6742         return lower->dev;
6743 }
6744 EXPORT_SYMBOL(netdev_lower_get_next);
6745
6746 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6747                                                 struct list_head **iter)
6748 {
6749         struct netdev_adjacent *lower;
6750
6751         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6752
6753         if (&lower->list == &dev->adj_list.lower)
6754                 return NULL;
6755
6756         *iter = &lower->list;
6757
6758         return lower->dev;
6759 }
6760
6761 int netdev_walk_all_lower_dev(struct net_device *dev,
6762                               int (*fn)(struct net_device *dev,
6763                                         void *data),
6764                               void *data)
6765 {
6766         struct net_device *ldev;
6767         struct list_head *iter;
6768         int ret;
6769
6770         for (iter = &dev->adj_list.lower,
6771              ldev = netdev_next_lower_dev(dev, &iter);
6772              ldev;
6773              ldev = netdev_next_lower_dev(dev, &iter)) {
6774                 /* first is the lower device itself */
6775                 ret = fn(ldev, data);
6776                 if (ret)
6777                         return ret;
6778
6779                 /* then look at all of its lower devices */
6780                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6781                 if (ret)
6782                         return ret;
6783         }
6784
6785         return 0;
6786 }
6787 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6788
6789 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6790                                                     struct list_head **iter)
6791 {
6792         struct netdev_adjacent *lower;
6793
6794         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6795         if (&lower->list == &dev->adj_list.lower)
6796                 return NULL;
6797
6798         *iter = &lower->list;
6799
6800         return lower->dev;
6801 }
6802
6803 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6804                                   int (*fn)(struct net_device *dev,
6805                                             void *data),
6806                                   void *data)
6807 {
6808         struct net_device *ldev;
6809         struct list_head *iter;
6810         int ret;
6811
6812         for (iter = &dev->adj_list.lower,
6813              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6814              ldev;
6815              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6816                 /* first is the lower device itself */
6817                 ret = fn(ldev, data);
6818                 if (ret)
6819                         return ret;
6820
6821                 /* then look at all of its lower devices */
6822                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6823                 if (ret)
6824                         return ret;
6825         }
6826
6827         return 0;
6828 }
6829 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6830
6831 /**
6832  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6833  *                                     lower neighbour list, RCU
6834  *                                     variant
6835  * @dev: device
6836  *
6837  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6838  * list. The caller must hold RCU read lock.
6839  */
6840 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6841 {
6842         struct netdev_adjacent *lower;
6843
6844         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6845                         struct netdev_adjacent, list);
6846         if (lower)
6847                 return lower->private;
6848         return NULL;
6849 }
6850 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6851
6852 /**
6853  * netdev_master_upper_dev_get_rcu - Get master upper device
6854  * @dev: device
6855  *
6856  * Find a master upper device and return pointer to it or NULL in case
6857  * it's not there. The caller must hold the RCU read lock.
6858  */
6859 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6860 {
6861         struct netdev_adjacent *upper;
6862
6863         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6864                                        struct netdev_adjacent, list);
6865         if (upper && likely(upper->master))
6866                 return upper->dev;
6867         return NULL;
6868 }
6869 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6870
6871 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6872                               struct net_device *adj_dev,
6873                               struct list_head *dev_list)
6874 {
6875         char linkname[IFNAMSIZ+7];
6876
6877         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6878                 "upper_%s" : "lower_%s", adj_dev->name);
6879         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6880                                  linkname);
6881 }
6882 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6883                                char *name,
6884                                struct list_head *dev_list)
6885 {
6886         char linkname[IFNAMSIZ+7];
6887
6888         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6889                 "upper_%s" : "lower_%s", name);
6890         sysfs_remove_link(&(dev->dev.kobj), linkname);
6891 }
6892
6893 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6894                                                  struct net_device *adj_dev,
6895                                                  struct list_head *dev_list)
6896 {
6897         return (dev_list == &dev->adj_list.upper ||
6898                 dev_list == &dev->adj_list.lower) &&
6899                 net_eq(dev_net(dev), dev_net(adj_dev));
6900 }
6901
6902 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6903                                         struct net_device *adj_dev,
6904                                         struct list_head *dev_list,
6905                                         void *private, bool master)
6906 {
6907         struct netdev_adjacent *adj;
6908         int ret;
6909
6910         adj = __netdev_find_adj(adj_dev, dev_list);
6911
6912         if (adj) {
6913                 adj->ref_nr += 1;
6914                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6915                          dev->name, adj_dev->name, adj->ref_nr);
6916
6917                 return 0;
6918         }
6919
6920         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6921         if (!adj)
6922                 return -ENOMEM;
6923
6924         adj->dev = adj_dev;
6925         adj->master = master;
6926         adj->ref_nr = 1;
6927         adj->private = private;
6928         dev_hold(adj_dev);
6929
6930         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6931                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6932
6933         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6934                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6935                 if (ret)
6936                         goto free_adj;
6937         }
6938
6939         /* Ensure that master link is always the first item in list. */
6940         if (master) {
6941                 ret = sysfs_create_link(&(dev->dev.kobj),
6942                                         &(adj_dev->dev.kobj), "master");
6943                 if (ret)
6944                         goto remove_symlinks;
6945
6946                 list_add_rcu(&adj->list, dev_list);
6947         } else {
6948                 list_add_tail_rcu(&adj->list, dev_list);
6949         }
6950
6951         return 0;
6952
6953 remove_symlinks:
6954         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6955                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6956 free_adj:
6957         kfree(adj);
6958         dev_put(adj_dev);
6959
6960         return ret;
6961 }
6962
6963 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6964                                          struct net_device *adj_dev,
6965                                          u16 ref_nr,
6966                                          struct list_head *dev_list)
6967 {
6968         struct netdev_adjacent *adj;
6969
6970         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6971                  dev->name, adj_dev->name, ref_nr);
6972
6973         adj = __netdev_find_adj(adj_dev, dev_list);
6974
6975         if (!adj) {
6976                 pr_err("Adjacency does not exist for device %s from %s\n",
6977                        dev->name, adj_dev->name);
6978                 WARN_ON(1);
6979                 return;
6980         }
6981
6982         if (adj->ref_nr > ref_nr) {
6983                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6984                          dev->name, adj_dev->name, ref_nr,
6985                          adj->ref_nr - ref_nr);
6986                 adj->ref_nr -= ref_nr;
6987                 return;
6988         }
6989
6990         if (adj->master)
6991                 sysfs_remove_link(&(dev->dev.kobj), "master");
6992
6993         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6994                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6995
6996         list_del_rcu(&adj->list);
6997         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6998                  adj_dev->name, dev->name, adj_dev->name);
6999         dev_put(adj_dev);
7000         kfree_rcu(adj, rcu);
7001 }
7002
7003 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7004                                             struct net_device *upper_dev,
7005                                             struct list_head *up_list,
7006                                             struct list_head *down_list,
7007                                             void *private, bool master)
7008 {
7009         int ret;
7010
7011         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7012                                            private, master);
7013         if (ret)
7014                 return ret;
7015
7016         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7017                                            private, false);
7018         if (ret) {
7019                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7020                 return ret;
7021         }
7022
7023         return 0;
7024 }
7025
7026 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7027                                                struct net_device *upper_dev,
7028                                                u16 ref_nr,
7029                                                struct list_head *up_list,
7030                                                struct list_head *down_list)
7031 {
7032         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7033         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7034 }
7035
7036 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7037                                                 struct net_device *upper_dev,
7038                                                 void *private, bool master)
7039 {
7040         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7041                                                 &dev->adj_list.upper,
7042                                                 &upper_dev->adj_list.lower,
7043                                                 private, master);
7044 }
7045
7046 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7047                                                    struct net_device *upper_dev)
7048 {
7049         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7050                                            &dev->adj_list.upper,
7051                                            &upper_dev->adj_list.lower);
7052 }
7053
7054 static int __netdev_upper_dev_link(struct net_device *dev,
7055                                    struct net_device *upper_dev, bool master,
7056                                    void *upper_priv, void *upper_info,
7057                                    struct netlink_ext_ack *extack)
7058 {
7059         struct netdev_notifier_changeupper_info changeupper_info = {
7060                 .info = {
7061                         .dev = dev,
7062                         .extack = extack,
7063                 },
7064                 .upper_dev = upper_dev,
7065                 .master = master,
7066                 .linking = true,
7067                 .upper_info = upper_info,
7068         };
7069         struct net_device *master_dev;
7070         int ret = 0;
7071
7072         ASSERT_RTNL();
7073
7074         if (dev == upper_dev)
7075                 return -EBUSY;
7076
7077         /* To prevent loops, check if dev is not upper device to upper_dev. */
7078         if (netdev_has_upper_dev(upper_dev, dev))
7079                 return -EBUSY;
7080
7081         if (!master) {
7082                 if (netdev_has_upper_dev(dev, upper_dev))
7083                         return -EEXIST;
7084         } else {
7085                 master_dev = netdev_master_upper_dev_get(dev);
7086                 if (master_dev)
7087                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7088         }
7089
7090         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7091                                             &changeupper_info.info);
7092         ret = notifier_to_errno(ret);
7093         if (ret)
7094                 return ret;
7095
7096         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7097                                                    master);
7098         if (ret)
7099                 return ret;
7100
7101         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7102                                             &changeupper_info.info);
7103         ret = notifier_to_errno(ret);
7104         if (ret)
7105                 goto rollback;
7106
7107         return 0;
7108
7109 rollback:
7110         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7111
7112         return ret;
7113 }
7114
7115 /**
7116  * netdev_upper_dev_link - Add a link to the upper device
7117  * @dev: device
7118  * @upper_dev: new upper device
7119  * @extack: netlink extended ack
7120  *
7121  * Adds a link to device which is upper to this one. The caller must hold
7122  * the RTNL lock. On a failure a negative errno code is returned.
7123  * On success the reference counts are adjusted and the function
7124  * returns zero.
7125  */
7126 int netdev_upper_dev_link(struct net_device *dev,
7127                           struct net_device *upper_dev,
7128                           struct netlink_ext_ack *extack)
7129 {
7130         return __netdev_upper_dev_link(dev, upper_dev, false,
7131                                        NULL, NULL, extack);
7132 }
7133 EXPORT_SYMBOL(netdev_upper_dev_link);
7134
7135 /**
7136  * netdev_master_upper_dev_link - Add a master link to the upper device
7137  * @dev: device
7138  * @upper_dev: new upper device
7139  * @upper_priv: upper device private
7140  * @upper_info: upper info to be passed down via notifier
7141  * @extack: netlink extended ack
7142  *
7143  * Adds a link to device which is upper to this one. In this case, only
7144  * one master upper device can be linked, although other non-master devices
7145  * might be linked as well. The caller must hold the RTNL lock.
7146  * On a failure a negative errno code is returned. On success the reference
7147  * counts are adjusted and the function returns zero.
7148  */
7149 int netdev_master_upper_dev_link(struct net_device *dev,
7150                                  struct net_device *upper_dev,
7151                                  void *upper_priv, void *upper_info,
7152                                  struct netlink_ext_ack *extack)
7153 {
7154         return __netdev_upper_dev_link(dev, upper_dev, true,
7155                                        upper_priv, upper_info, extack);
7156 }
7157 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7158
7159 /**
7160  * netdev_upper_dev_unlink - Removes a link to upper device
7161  * @dev: device
7162  * @upper_dev: new upper device
7163  *
7164  * Removes a link to device which is upper to this one. The caller must hold
7165  * the RTNL lock.
7166  */
7167 void netdev_upper_dev_unlink(struct net_device *dev,
7168                              struct net_device *upper_dev)
7169 {
7170         struct netdev_notifier_changeupper_info changeupper_info = {
7171                 .info = {
7172                         .dev = dev,
7173                 },
7174                 .upper_dev = upper_dev,
7175                 .linking = false,
7176         };
7177
7178         ASSERT_RTNL();
7179
7180         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7181
7182         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7183                                       &changeupper_info.info);
7184
7185         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7186
7187         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7188                                       &changeupper_info.info);
7189 }
7190 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7191
7192 /**
7193  * netdev_bonding_info_change - Dispatch event about slave change
7194  * @dev: device
7195  * @bonding_info: info to dispatch
7196  *
7197  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7198  * The caller must hold the RTNL lock.
7199  */
7200 void netdev_bonding_info_change(struct net_device *dev,
7201                                 struct netdev_bonding_info *bonding_info)
7202 {
7203         struct netdev_notifier_bonding_info info = {
7204                 .info.dev = dev,
7205         };
7206
7207         memcpy(&info.bonding_info, bonding_info,
7208                sizeof(struct netdev_bonding_info));
7209         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7210                                       &info.info);
7211 }
7212 EXPORT_SYMBOL(netdev_bonding_info_change);
7213
7214 static void netdev_adjacent_add_links(struct net_device *dev)
7215 {
7216         struct netdev_adjacent *iter;
7217
7218         struct net *net = dev_net(dev);
7219
7220         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7221                 if (!net_eq(net, dev_net(iter->dev)))
7222                         continue;
7223                 netdev_adjacent_sysfs_add(iter->dev, dev,
7224                                           &iter->dev->adj_list.lower);
7225                 netdev_adjacent_sysfs_add(dev, iter->dev,
7226                                           &dev->adj_list.upper);
7227         }
7228
7229         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7230                 if (!net_eq(net, dev_net(iter->dev)))
7231                         continue;
7232                 netdev_adjacent_sysfs_add(iter->dev, dev,
7233                                           &iter->dev->adj_list.upper);
7234                 netdev_adjacent_sysfs_add(dev, iter->dev,
7235                                           &dev->adj_list.lower);
7236         }
7237 }
7238
7239 static void netdev_adjacent_del_links(struct net_device *dev)
7240 {
7241         struct netdev_adjacent *iter;
7242
7243         struct net *net = dev_net(dev);
7244
7245         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7246                 if (!net_eq(net, dev_net(iter->dev)))
7247                         continue;
7248                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7249                                           &iter->dev->adj_list.lower);
7250                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7251                                           &dev->adj_list.upper);
7252         }
7253
7254         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7255                 if (!net_eq(net, dev_net(iter->dev)))
7256                         continue;
7257                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7258                                           &iter->dev->adj_list.upper);
7259                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7260                                           &dev->adj_list.lower);
7261         }
7262 }
7263
7264 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7265 {
7266         struct netdev_adjacent *iter;
7267
7268         struct net *net = dev_net(dev);
7269
7270         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7271                 if (!net_eq(net, dev_net(iter->dev)))
7272                         continue;
7273                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7274                                           &iter->dev->adj_list.lower);
7275                 netdev_adjacent_sysfs_add(iter->dev, dev,
7276                                           &iter->dev->adj_list.lower);
7277         }
7278
7279         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7280                 if (!net_eq(net, dev_net(iter->dev)))
7281                         continue;
7282                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7283                                           &iter->dev->adj_list.upper);
7284                 netdev_adjacent_sysfs_add(iter->dev, dev,
7285                                           &iter->dev->adj_list.upper);
7286         }
7287 }
7288
7289 void *netdev_lower_dev_get_private(struct net_device *dev,
7290                                    struct net_device *lower_dev)
7291 {
7292         struct netdev_adjacent *lower;
7293
7294         if (!lower_dev)
7295                 return NULL;
7296         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7297         if (!lower)
7298                 return NULL;
7299
7300         return lower->private;
7301 }
7302 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7303
7304
7305 int dev_get_nest_level(struct net_device *dev)
7306 {
7307         struct net_device *lower = NULL;
7308         struct list_head *iter;
7309         int max_nest = -1;
7310         int nest;
7311
7312         ASSERT_RTNL();
7313
7314         netdev_for_each_lower_dev(dev, lower, iter) {
7315                 nest = dev_get_nest_level(lower);
7316                 if (max_nest < nest)
7317                         max_nest = nest;
7318         }
7319
7320         return max_nest + 1;
7321 }
7322 EXPORT_SYMBOL(dev_get_nest_level);
7323
7324 /**
7325  * netdev_lower_change - Dispatch event about lower device state change
7326  * @lower_dev: device
7327  * @lower_state_info: state to dispatch
7328  *
7329  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7330  * The caller must hold the RTNL lock.
7331  */
7332 void netdev_lower_state_changed(struct net_device *lower_dev,
7333                                 void *lower_state_info)
7334 {
7335         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7336                 .info.dev = lower_dev,
7337         };
7338
7339         ASSERT_RTNL();
7340         changelowerstate_info.lower_state_info = lower_state_info;
7341         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7342                                       &changelowerstate_info.info);
7343 }
7344 EXPORT_SYMBOL(netdev_lower_state_changed);
7345
7346 static void dev_change_rx_flags(struct net_device *dev, int flags)
7347 {
7348         const struct net_device_ops *ops = dev->netdev_ops;
7349
7350         if (ops->ndo_change_rx_flags)
7351                 ops->ndo_change_rx_flags(dev, flags);
7352 }
7353
7354 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7355 {
7356         unsigned int old_flags = dev->flags;
7357         kuid_t uid;
7358         kgid_t gid;
7359
7360         ASSERT_RTNL();
7361
7362         dev->flags |= IFF_PROMISC;
7363         dev->promiscuity += inc;
7364         if (dev->promiscuity == 0) {
7365                 /*
7366                  * Avoid overflow.
7367                  * If inc causes overflow, untouch promisc and return error.
7368                  */
7369                 if (inc < 0)
7370                         dev->flags &= ~IFF_PROMISC;
7371                 else {
7372                         dev->promiscuity -= inc;
7373                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7374                                 dev->name);
7375                         return -EOVERFLOW;
7376                 }
7377         }
7378         if (dev->flags != old_flags) {
7379                 pr_info("device %s %s promiscuous mode\n",
7380                         dev->name,
7381                         dev->flags & IFF_PROMISC ? "entered" : "left");
7382                 if (audit_enabled) {
7383                         current_uid_gid(&uid, &gid);
7384                         audit_log(audit_context(), GFP_ATOMIC,
7385                                   AUDIT_ANOM_PROMISCUOUS,
7386                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7387                                   dev->name, (dev->flags & IFF_PROMISC),
7388                                   (old_flags & IFF_PROMISC),
7389                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7390                                   from_kuid(&init_user_ns, uid),
7391                                   from_kgid(&init_user_ns, gid),
7392                                   audit_get_sessionid(current));
7393                 }
7394
7395                 dev_change_rx_flags(dev, IFF_PROMISC);
7396         }
7397         if (notify)
7398                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7399         return 0;
7400 }
7401
7402 /**
7403  *      dev_set_promiscuity     - update promiscuity count on a device
7404  *      @dev: device
7405  *      @inc: modifier
7406  *
7407  *      Add or remove promiscuity from a device. While the count in the device
7408  *      remains above zero the interface remains promiscuous. Once it hits zero
7409  *      the device reverts back to normal filtering operation. A negative inc
7410  *      value is used to drop promiscuity on the device.
7411  *      Return 0 if successful or a negative errno code on error.
7412  */
7413 int dev_set_promiscuity(struct net_device *dev, int inc)
7414 {
7415         unsigned int old_flags = dev->flags;
7416         int err;
7417
7418         err = __dev_set_promiscuity(dev, inc, true);
7419         if (err < 0)
7420                 return err;
7421         if (dev->flags != old_flags)
7422                 dev_set_rx_mode(dev);
7423         return err;
7424 }
7425 EXPORT_SYMBOL(dev_set_promiscuity);
7426
7427 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7428 {
7429         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7430
7431         ASSERT_RTNL();
7432
7433         dev->flags |= IFF_ALLMULTI;
7434         dev->allmulti += inc;
7435         if (dev->allmulti == 0) {
7436                 /*
7437                  * Avoid overflow.
7438                  * If inc causes overflow, untouch allmulti and return error.
7439                  */
7440                 if (inc < 0)
7441                         dev->flags &= ~IFF_ALLMULTI;
7442                 else {
7443                         dev->allmulti -= inc;
7444                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7445                                 dev->name);
7446                         return -EOVERFLOW;
7447                 }
7448         }
7449         if (dev->flags ^ old_flags) {
7450                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7451                 dev_set_rx_mode(dev);
7452                 if (notify)
7453                         __dev_notify_flags(dev, old_flags,
7454                                            dev->gflags ^ old_gflags);
7455         }
7456         return 0;
7457 }
7458
7459 /**
7460  *      dev_set_allmulti        - update allmulti count on a device
7461  *      @dev: device
7462  *      @inc: modifier
7463  *
7464  *      Add or remove reception of all multicast frames to a device. While the
7465  *      count in the device remains above zero the interface remains listening
7466  *      to all interfaces. Once it hits zero the device reverts back to normal
7467  *      filtering operation. A negative @inc value is used to drop the counter
7468  *      when releasing a resource needing all multicasts.
7469  *      Return 0 if successful or a negative errno code on error.
7470  */
7471
7472 int dev_set_allmulti(struct net_device *dev, int inc)
7473 {
7474         return __dev_set_allmulti(dev, inc, true);
7475 }
7476 EXPORT_SYMBOL(dev_set_allmulti);
7477
7478 /*
7479  *      Upload unicast and multicast address lists to device and
7480  *      configure RX filtering. When the device doesn't support unicast
7481  *      filtering it is put in promiscuous mode while unicast addresses
7482  *      are present.
7483  */
7484 void __dev_set_rx_mode(struct net_device *dev)
7485 {
7486         const struct net_device_ops *ops = dev->netdev_ops;
7487
7488         /* dev_open will call this function so the list will stay sane. */
7489         if (!(dev->flags&IFF_UP))
7490                 return;
7491
7492         if (!netif_device_present(dev))
7493                 return;
7494
7495         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7496                 /* Unicast addresses changes may only happen under the rtnl,
7497                  * therefore calling __dev_set_promiscuity here is safe.
7498                  */
7499                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7500                         __dev_set_promiscuity(dev, 1, false);
7501                         dev->uc_promisc = true;
7502                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7503                         __dev_set_promiscuity(dev, -1, false);
7504                         dev->uc_promisc = false;
7505                 }
7506         }
7507
7508         if (ops->ndo_set_rx_mode)
7509                 ops->ndo_set_rx_mode(dev);
7510 }
7511
7512 void dev_set_rx_mode(struct net_device *dev)
7513 {
7514         netif_addr_lock_bh(dev);
7515         __dev_set_rx_mode(dev);
7516         netif_addr_unlock_bh(dev);
7517 }
7518
7519 /**
7520  *      dev_get_flags - get flags reported to userspace
7521  *      @dev: device
7522  *
7523  *      Get the combination of flag bits exported through APIs to userspace.
7524  */
7525 unsigned int dev_get_flags(const struct net_device *dev)
7526 {
7527         unsigned int flags;
7528
7529         flags = (dev->flags & ~(IFF_PROMISC |
7530                                 IFF_ALLMULTI |
7531                                 IFF_RUNNING |
7532                                 IFF_LOWER_UP |
7533                                 IFF_DORMANT)) |
7534                 (dev->gflags & (IFF_PROMISC |
7535                                 IFF_ALLMULTI));
7536
7537         if (netif_running(dev)) {
7538                 if (netif_oper_up(dev))
7539                         flags |= IFF_RUNNING;
7540                 if (netif_carrier_ok(dev))
7541                         flags |= IFF_LOWER_UP;
7542                 if (netif_dormant(dev))
7543                         flags |= IFF_DORMANT;
7544         }
7545
7546         return flags;
7547 }
7548 EXPORT_SYMBOL(dev_get_flags);
7549
7550 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7551                        struct netlink_ext_ack *extack)
7552 {
7553         unsigned int old_flags = dev->flags;
7554         int ret;
7555
7556         ASSERT_RTNL();
7557
7558         /*
7559          *      Set the flags on our device.
7560          */
7561
7562         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7563                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7564                                IFF_AUTOMEDIA)) |
7565                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7566                                     IFF_ALLMULTI));
7567
7568         /*
7569          *      Load in the correct multicast list now the flags have changed.
7570          */
7571
7572         if ((old_flags ^ flags) & IFF_MULTICAST)
7573                 dev_change_rx_flags(dev, IFF_MULTICAST);
7574
7575         dev_set_rx_mode(dev);
7576
7577         /*
7578          *      Have we downed the interface. We handle IFF_UP ourselves
7579          *      according to user attempts to set it, rather than blindly
7580          *      setting it.
7581          */
7582
7583         ret = 0;
7584         if ((old_flags ^ flags) & IFF_UP) {
7585                 if (old_flags & IFF_UP)
7586                         __dev_close(dev);
7587                 else
7588                         ret = __dev_open(dev, extack);
7589         }
7590
7591         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7592                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7593                 unsigned int old_flags = dev->flags;
7594
7595                 dev->gflags ^= IFF_PROMISC;
7596
7597                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7598                         if (dev->flags != old_flags)
7599                                 dev_set_rx_mode(dev);
7600         }
7601
7602         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7603          * is important. Some (broken) drivers set IFF_PROMISC, when
7604          * IFF_ALLMULTI is requested not asking us and not reporting.
7605          */
7606         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7607                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7608
7609                 dev->gflags ^= IFF_ALLMULTI;
7610                 __dev_set_allmulti(dev, inc, false);
7611         }
7612
7613         return ret;
7614 }
7615
7616 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7617                         unsigned int gchanges)
7618 {
7619         unsigned int changes = dev->flags ^ old_flags;
7620
7621         if (gchanges)
7622                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7623
7624         if (changes & IFF_UP) {
7625                 if (dev->flags & IFF_UP)
7626                         call_netdevice_notifiers(NETDEV_UP, dev);
7627                 else
7628                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7629         }
7630
7631         if (dev->flags & IFF_UP &&
7632             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7633                 struct netdev_notifier_change_info change_info = {
7634                         .info = {
7635                                 .dev = dev,
7636                         },
7637                         .flags_changed = changes,
7638                 };
7639
7640                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7641         }
7642 }
7643
7644 /**
7645  *      dev_change_flags - change device settings
7646  *      @dev: device
7647  *      @flags: device state flags
7648  *      @extack: netlink extended ack
7649  *
7650  *      Change settings on device based state flags. The flags are
7651  *      in the userspace exported format.
7652  */
7653 int dev_change_flags(struct net_device *dev, unsigned int flags,
7654                      struct netlink_ext_ack *extack)
7655 {
7656         int ret;
7657         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7658
7659         ret = __dev_change_flags(dev, flags, extack);
7660         if (ret < 0)
7661                 return ret;
7662
7663         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7664         __dev_notify_flags(dev, old_flags, changes);
7665         return ret;
7666 }
7667 EXPORT_SYMBOL(dev_change_flags);
7668
7669 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7670 {
7671         const struct net_device_ops *ops = dev->netdev_ops;
7672
7673         if (ops->ndo_change_mtu)
7674                 return ops->ndo_change_mtu(dev, new_mtu);
7675
7676         dev->mtu = new_mtu;
7677         return 0;
7678 }
7679 EXPORT_SYMBOL(__dev_set_mtu);
7680
7681 /**
7682  *      dev_set_mtu_ext - Change maximum transfer unit
7683  *      @dev: device
7684  *      @new_mtu: new transfer unit
7685  *      @extack: netlink extended ack
7686  *
7687  *      Change the maximum transfer size of the network device.
7688  */
7689 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7690                     struct netlink_ext_ack *extack)
7691 {
7692         int err, orig_mtu;
7693
7694         if (new_mtu == dev->mtu)
7695                 return 0;
7696
7697         /* MTU must be positive, and in range */
7698         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7699                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7700                 return -EINVAL;
7701         }
7702
7703         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7704                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7705                 return -EINVAL;
7706         }
7707
7708         if (!netif_device_present(dev))
7709                 return -ENODEV;
7710
7711         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7712         err = notifier_to_errno(err);
7713         if (err)
7714                 return err;
7715
7716         orig_mtu = dev->mtu;
7717         err = __dev_set_mtu(dev, new_mtu);
7718
7719         if (!err) {
7720                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7721                                                    orig_mtu);
7722                 err = notifier_to_errno(err);
7723                 if (err) {
7724                         /* setting mtu back and notifying everyone again,
7725                          * so that they have a chance to revert changes.
7726                          */
7727                         __dev_set_mtu(dev, orig_mtu);
7728                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7729                                                      new_mtu);
7730                 }
7731         }
7732         return err;
7733 }
7734
7735 int dev_set_mtu(struct net_device *dev, int new_mtu)
7736 {
7737         struct netlink_ext_ack extack;
7738         int err;
7739
7740         memset(&extack, 0, sizeof(extack));
7741         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7742         if (err && extack._msg)
7743                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7744         return err;
7745 }
7746 EXPORT_SYMBOL(dev_set_mtu);
7747
7748 /**
7749  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7750  *      @dev: device
7751  *      @new_len: new tx queue length
7752  */
7753 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7754 {
7755         unsigned int orig_len = dev->tx_queue_len;
7756         int res;
7757
7758         if (new_len != (unsigned int)new_len)
7759                 return -ERANGE;
7760
7761         if (new_len != orig_len) {
7762                 dev->tx_queue_len = new_len;
7763                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7764                 res = notifier_to_errno(res);
7765                 if (res)
7766                         goto err_rollback;
7767                 res = dev_qdisc_change_tx_queue_len(dev);
7768                 if (res)
7769                         goto err_rollback;
7770         }
7771
7772         return 0;
7773
7774 err_rollback:
7775         netdev_err(dev, "refused to change device tx_queue_len\n");
7776         dev->tx_queue_len = orig_len;
7777         return res;
7778 }
7779
7780 /**
7781  *      dev_set_group - Change group this device belongs to
7782  *      @dev: device
7783  *      @new_group: group this device should belong to
7784  */
7785 void dev_set_group(struct net_device *dev, int new_group)
7786 {
7787         dev->group = new_group;
7788 }
7789 EXPORT_SYMBOL(dev_set_group);
7790
7791 /**
7792  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7793  *      @dev: device
7794  *      @addr: new address
7795  *      @extack: netlink extended ack
7796  */
7797 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7798                               struct netlink_ext_ack *extack)
7799 {
7800         struct netdev_notifier_pre_changeaddr_info info = {
7801                 .info.dev = dev,
7802                 .info.extack = extack,
7803                 .dev_addr = addr,
7804         };
7805         int rc;
7806
7807         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7808         return notifier_to_errno(rc);
7809 }
7810 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7811
7812 /**
7813  *      dev_set_mac_address - Change Media Access Control Address
7814  *      @dev: device
7815  *      @sa: new address
7816  *      @extack: netlink extended ack
7817  *
7818  *      Change the hardware (MAC) address of the device
7819  */
7820 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7821                         struct netlink_ext_ack *extack)
7822 {
7823         const struct net_device_ops *ops = dev->netdev_ops;
7824         int err;
7825
7826         if (!ops->ndo_set_mac_address)
7827                 return -EOPNOTSUPP;
7828         if (sa->sa_family != dev->type)
7829                 return -EINVAL;
7830         if (!netif_device_present(dev))
7831                 return -ENODEV;
7832         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7833         if (err)
7834                 return err;
7835         err = ops->ndo_set_mac_address(dev, sa);
7836         if (err)
7837                 return err;
7838         dev->addr_assign_type = NET_ADDR_SET;
7839         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7840         add_device_randomness(dev->dev_addr, dev->addr_len);
7841         return 0;
7842 }
7843 EXPORT_SYMBOL(dev_set_mac_address);
7844
7845 /**
7846  *      dev_change_carrier - Change device carrier
7847  *      @dev: device
7848  *      @new_carrier: new value
7849  *
7850  *      Change device carrier
7851  */
7852 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7853 {
7854         const struct net_device_ops *ops = dev->netdev_ops;
7855
7856         if (!ops->ndo_change_carrier)
7857                 return -EOPNOTSUPP;
7858         if (!netif_device_present(dev))
7859                 return -ENODEV;
7860         return ops->ndo_change_carrier(dev, new_carrier);
7861 }
7862 EXPORT_SYMBOL(dev_change_carrier);
7863
7864 /**
7865  *      dev_get_phys_port_id - Get device physical port ID
7866  *      @dev: device
7867  *      @ppid: port ID
7868  *
7869  *      Get device physical port ID
7870  */
7871 int dev_get_phys_port_id(struct net_device *dev,
7872                          struct netdev_phys_item_id *ppid)
7873 {
7874         const struct net_device_ops *ops = dev->netdev_ops;
7875
7876         if (!ops->ndo_get_phys_port_id)
7877                 return -EOPNOTSUPP;
7878         return ops->ndo_get_phys_port_id(dev, ppid);
7879 }
7880 EXPORT_SYMBOL(dev_get_phys_port_id);
7881
7882 /**
7883  *      dev_get_phys_port_name - Get device physical port name
7884  *      @dev: device
7885  *      @name: port name
7886  *      @len: limit of bytes to copy to name
7887  *
7888  *      Get device physical port name
7889  */
7890 int dev_get_phys_port_name(struct net_device *dev,
7891                            char *name, size_t len)
7892 {
7893         const struct net_device_ops *ops = dev->netdev_ops;
7894         int err;
7895
7896         if (ops->ndo_get_phys_port_name) {
7897                 err = ops->ndo_get_phys_port_name(dev, name, len);
7898                 if (err != -EOPNOTSUPP)
7899                         return err;
7900         }
7901         return devlink_compat_phys_port_name_get(dev, name, len);
7902 }
7903 EXPORT_SYMBOL(dev_get_phys_port_name);
7904
7905 /**
7906  *      dev_get_port_parent_id - Get the device's port parent identifier
7907  *      @dev: network device
7908  *      @ppid: pointer to a storage for the port's parent identifier
7909  *      @recurse: allow/disallow recursion to lower devices
7910  *
7911  *      Get the devices's port parent identifier
7912  */
7913 int dev_get_port_parent_id(struct net_device *dev,
7914                            struct netdev_phys_item_id *ppid,
7915                            bool recurse)
7916 {
7917         const struct net_device_ops *ops = dev->netdev_ops;
7918         struct netdev_phys_item_id first = { };
7919         struct net_device *lower_dev;
7920         struct list_head *iter;
7921         int err;
7922
7923         if (ops->ndo_get_port_parent_id) {
7924                 err = ops->ndo_get_port_parent_id(dev, ppid);
7925                 if (err != -EOPNOTSUPP)
7926                         return err;
7927         }
7928
7929         err = devlink_compat_switch_id_get(dev, ppid);
7930         if (!err || err != -EOPNOTSUPP)
7931                 return err;
7932
7933         if (!recurse)
7934                 return -EOPNOTSUPP;
7935
7936         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7937                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7938                 if (err)
7939                         break;
7940                 if (!first.id_len)
7941                         first = *ppid;
7942                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7943                         return -ENODATA;
7944         }
7945
7946         return err;
7947 }
7948 EXPORT_SYMBOL(dev_get_port_parent_id);
7949
7950 /**
7951  *      netdev_port_same_parent_id - Indicate if two network devices have
7952  *      the same port parent identifier
7953  *      @a: first network device
7954  *      @b: second network device
7955  */
7956 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7957 {
7958         struct netdev_phys_item_id a_id = { };
7959         struct netdev_phys_item_id b_id = { };
7960
7961         if (dev_get_port_parent_id(a, &a_id, true) ||
7962             dev_get_port_parent_id(b, &b_id, true))
7963                 return false;
7964
7965         return netdev_phys_item_id_same(&a_id, &b_id);
7966 }
7967 EXPORT_SYMBOL(netdev_port_same_parent_id);
7968
7969 /**
7970  *      dev_change_proto_down - update protocol port state information
7971  *      @dev: device
7972  *      @proto_down: new value
7973  *
7974  *      This info can be used by switch drivers to set the phys state of the
7975  *      port.
7976  */
7977 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7978 {
7979         const struct net_device_ops *ops = dev->netdev_ops;
7980
7981         if (!ops->ndo_change_proto_down)
7982                 return -EOPNOTSUPP;
7983         if (!netif_device_present(dev))
7984                 return -ENODEV;
7985         return ops->ndo_change_proto_down(dev, proto_down);
7986 }
7987 EXPORT_SYMBOL(dev_change_proto_down);
7988
7989 /**
7990  *      dev_change_proto_down_generic - generic implementation for
7991  *      ndo_change_proto_down that sets carrier according to
7992  *      proto_down.
7993  *
7994  *      @dev: device
7995  *      @proto_down: new value
7996  */
7997 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7998 {
7999         if (proto_down)
8000                 netif_carrier_off(dev);
8001         else
8002                 netif_carrier_on(dev);
8003         dev->proto_down = proto_down;
8004         return 0;
8005 }
8006 EXPORT_SYMBOL(dev_change_proto_down_generic);
8007
8008 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8009                     enum bpf_netdev_command cmd)
8010 {
8011         struct netdev_bpf xdp;
8012
8013         if (!bpf_op)
8014                 return 0;
8015
8016         memset(&xdp, 0, sizeof(xdp));
8017         xdp.command = cmd;
8018
8019         /* Query must always succeed. */
8020         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8021
8022         return xdp.prog_id;
8023 }
8024
8025 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8026                            struct netlink_ext_ack *extack, u32 flags,
8027                            struct bpf_prog *prog)
8028 {
8029         struct netdev_bpf xdp;
8030
8031         memset(&xdp, 0, sizeof(xdp));
8032         if (flags & XDP_FLAGS_HW_MODE)
8033                 xdp.command = XDP_SETUP_PROG_HW;
8034         else
8035                 xdp.command = XDP_SETUP_PROG;
8036         xdp.extack = extack;
8037         xdp.flags = flags;
8038         xdp.prog = prog;
8039
8040         return bpf_op(dev, &xdp);
8041 }
8042
8043 static void dev_xdp_uninstall(struct net_device *dev)
8044 {
8045         struct netdev_bpf xdp;
8046         bpf_op_t ndo_bpf;
8047
8048         /* Remove generic XDP */
8049         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8050
8051         /* Remove from the driver */
8052         ndo_bpf = dev->netdev_ops->ndo_bpf;
8053         if (!ndo_bpf)
8054                 return;
8055
8056         memset(&xdp, 0, sizeof(xdp));
8057         xdp.command = XDP_QUERY_PROG;
8058         WARN_ON(ndo_bpf(dev, &xdp));
8059         if (xdp.prog_id)
8060                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8061                                         NULL));
8062
8063         /* Remove HW offload */
8064         memset(&xdp, 0, sizeof(xdp));
8065         xdp.command = XDP_QUERY_PROG_HW;
8066         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8067                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8068                                         NULL));
8069 }
8070
8071 /**
8072  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8073  *      @dev: device
8074  *      @extack: netlink extended ack
8075  *      @fd: new program fd or negative value to clear
8076  *      @flags: xdp-related flags
8077  *
8078  *      Set or clear a bpf program for a device
8079  */
8080 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8081                       int fd, u32 flags)
8082 {
8083         const struct net_device_ops *ops = dev->netdev_ops;
8084         enum bpf_netdev_command query;
8085         struct bpf_prog *prog = NULL;
8086         bpf_op_t bpf_op, bpf_chk;
8087         bool offload;
8088         int err;
8089
8090         ASSERT_RTNL();
8091
8092         offload = flags & XDP_FLAGS_HW_MODE;
8093         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8094
8095         bpf_op = bpf_chk = ops->ndo_bpf;
8096         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8097                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8098                 return -EOPNOTSUPP;
8099         }
8100         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8101                 bpf_op = generic_xdp_install;
8102         if (bpf_op == bpf_chk)
8103                 bpf_chk = generic_xdp_install;
8104
8105         if (fd >= 0) {
8106                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8107                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8108                         return -EEXIST;
8109                 }
8110                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8111                     __dev_xdp_query(dev, bpf_op, query)) {
8112                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8113                         return -EBUSY;
8114                 }
8115
8116                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8117                                              bpf_op == ops->ndo_bpf);
8118                 if (IS_ERR(prog))
8119                         return PTR_ERR(prog);
8120
8121                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8122                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8123                         bpf_prog_put(prog);
8124                         return -EINVAL;
8125                 }
8126         }
8127
8128         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8129         if (err < 0 && prog)
8130                 bpf_prog_put(prog);
8131
8132         return err;
8133 }
8134
8135 /**
8136  *      dev_new_index   -       allocate an ifindex
8137  *      @net: the applicable net namespace
8138  *
8139  *      Returns a suitable unique value for a new device interface
8140  *      number.  The caller must hold the rtnl semaphore or the
8141  *      dev_base_lock to be sure it remains unique.
8142  */
8143 static int dev_new_index(struct net *net)
8144 {
8145         int ifindex = net->ifindex;
8146
8147         for (;;) {
8148                 if (++ifindex <= 0)
8149                         ifindex = 1;
8150                 if (!__dev_get_by_index(net, ifindex))
8151                         return net->ifindex = ifindex;
8152         }
8153 }
8154
8155 /* Delayed registration/unregisteration */
8156 static LIST_HEAD(net_todo_list);
8157 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8158
8159 static void net_set_todo(struct net_device *dev)
8160 {
8161         list_add_tail(&dev->todo_list, &net_todo_list);
8162         dev_net(dev)->dev_unreg_count++;
8163 }
8164
8165 static void rollback_registered_many(struct list_head *head)
8166 {
8167         struct net_device *dev, *tmp;
8168         LIST_HEAD(close_head);
8169
8170         BUG_ON(dev_boot_phase);
8171         ASSERT_RTNL();
8172
8173         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8174                 /* Some devices call without registering
8175                  * for initialization unwind. Remove those
8176                  * devices and proceed with the remaining.
8177                  */
8178                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8179                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8180                                  dev->name, dev);
8181
8182                         WARN_ON(1);
8183                         list_del(&dev->unreg_list);
8184                         continue;
8185                 }
8186                 dev->dismantle = true;
8187                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8188         }
8189
8190         /* If device is running, close it first. */
8191         list_for_each_entry(dev, head, unreg_list)
8192                 list_add_tail(&dev->close_list, &close_head);
8193         dev_close_many(&close_head, true);
8194
8195         list_for_each_entry(dev, head, unreg_list) {
8196                 /* And unlink it from device chain. */
8197                 unlist_netdevice(dev);
8198
8199                 dev->reg_state = NETREG_UNREGISTERING;
8200         }
8201         flush_all_backlogs();
8202
8203         synchronize_net();
8204
8205         list_for_each_entry(dev, head, unreg_list) {
8206                 struct sk_buff *skb = NULL;
8207
8208                 /* Shutdown queueing discipline. */
8209                 dev_shutdown(dev);
8210
8211                 dev_xdp_uninstall(dev);
8212
8213                 /* Notify protocols, that we are about to destroy
8214                  * this device. They should clean all the things.
8215                  */
8216                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8217
8218                 if (!dev->rtnl_link_ops ||
8219                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8220                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8221                                                      GFP_KERNEL, NULL, 0);
8222
8223                 /*
8224                  *      Flush the unicast and multicast chains
8225                  */
8226                 dev_uc_flush(dev);
8227                 dev_mc_flush(dev);
8228
8229                 if (dev->netdev_ops->ndo_uninit)
8230                         dev->netdev_ops->ndo_uninit(dev);
8231
8232                 if (skb)
8233                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8234
8235                 /* Notifier chain MUST detach us all upper devices. */
8236                 WARN_ON(netdev_has_any_upper_dev(dev));
8237                 WARN_ON(netdev_has_any_lower_dev(dev));
8238
8239                 /* Remove entries from kobject tree */
8240                 netdev_unregister_kobject(dev);
8241 #ifdef CONFIG_XPS
8242                 /* Remove XPS queueing entries */
8243                 netif_reset_xps_queues_gt(dev, 0);
8244 #endif
8245         }
8246
8247         synchronize_net();
8248
8249         list_for_each_entry(dev, head, unreg_list)
8250                 dev_put(dev);
8251 }
8252
8253 static void rollback_registered(struct net_device *dev)
8254 {
8255         LIST_HEAD(single);
8256
8257         list_add(&dev->unreg_list, &single);
8258         rollback_registered_many(&single);
8259         list_del(&single);
8260 }
8261
8262 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8263         struct net_device *upper, netdev_features_t features)
8264 {
8265         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266         netdev_features_t feature;
8267         int feature_bit;
8268
8269         for_each_netdev_feature(upper_disables, feature_bit) {
8270                 feature = __NETIF_F_BIT(feature_bit);
8271                 if (!(upper->wanted_features & feature)
8272                     && (features & feature)) {
8273                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8274                                    &feature, upper->name);
8275                         features &= ~feature;
8276                 }
8277         }
8278
8279         return features;
8280 }
8281
8282 static void netdev_sync_lower_features(struct net_device *upper,
8283         struct net_device *lower, netdev_features_t features)
8284 {
8285         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8286         netdev_features_t feature;
8287         int feature_bit;
8288
8289         for_each_netdev_feature(upper_disables, feature_bit) {
8290                 feature = __NETIF_F_BIT(feature_bit);
8291                 if (!(features & feature) && (lower->features & feature)) {
8292                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8293                                    &feature, lower->name);
8294                         lower->wanted_features &= ~feature;
8295                         netdev_update_features(lower);
8296
8297                         if (unlikely(lower->features & feature))
8298                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8299                                             &feature, lower->name);
8300                 }
8301         }
8302 }
8303
8304 static netdev_features_t netdev_fix_features(struct net_device *dev,
8305         netdev_features_t features)
8306 {
8307         /* Fix illegal checksum combinations */
8308         if ((features & NETIF_F_HW_CSUM) &&
8309             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8310                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8311                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8312         }
8313
8314         /* TSO requires that SG is present as well. */
8315         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8316                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8317                 features &= ~NETIF_F_ALL_TSO;
8318         }
8319
8320         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8321                                         !(features & NETIF_F_IP_CSUM)) {
8322                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8323                 features &= ~NETIF_F_TSO;
8324                 features &= ~NETIF_F_TSO_ECN;
8325         }
8326
8327         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8328                                          !(features & NETIF_F_IPV6_CSUM)) {
8329                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8330                 features &= ~NETIF_F_TSO6;
8331         }
8332
8333         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8334         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8335                 features &= ~NETIF_F_TSO_MANGLEID;
8336
8337         /* TSO ECN requires that TSO is present as well. */
8338         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8339                 features &= ~NETIF_F_TSO_ECN;
8340
8341         /* Software GSO depends on SG. */
8342         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8343                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8344                 features &= ~NETIF_F_GSO;
8345         }
8346
8347         /* GSO partial features require GSO partial be set */
8348         if ((features & dev->gso_partial_features) &&
8349             !(features & NETIF_F_GSO_PARTIAL)) {
8350                 netdev_dbg(dev,
8351                            "Dropping partially supported GSO features since no GSO partial.\n");
8352                 features &= ~dev->gso_partial_features;
8353         }
8354
8355         if (!(features & NETIF_F_RXCSUM)) {
8356                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8357                  * successfully merged by hardware must also have the
8358                  * checksum verified by hardware.  If the user does not
8359                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8360                  */
8361                 if (features & NETIF_F_GRO_HW) {
8362                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8363                         features &= ~NETIF_F_GRO_HW;
8364                 }
8365         }
8366
8367         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8368         if (features & NETIF_F_RXFCS) {
8369                 if (features & NETIF_F_LRO) {
8370                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8371                         features &= ~NETIF_F_LRO;
8372                 }
8373
8374                 if (features & NETIF_F_GRO_HW) {
8375                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8376                         features &= ~NETIF_F_GRO_HW;
8377                 }
8378         }
8379
8380         return features;
8381 }
8382
8383 int __netdev_update_features(struct net_device *dev)
8384 {
8385         struct net_device *upper, *lower;
8386         netdev_features_t features;
8387         struct list_head *iter;
8388         int err = -1;
8389
8390         ASSERT_RTNL();
8391
8392         features = netdev_get_wanted_features(dev);
8393
8394         if (dev->netdev_ops->ndo_fix_features)
8395                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8396
8397         /* driver might be less strict about feature dependencies */
8398         features = netdev_fix_features(dev, features);
8399
8400         /* some features can't be enabled if they're off an an upper device */
8401         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8402                 features = netdev_sync_upper_features(dev, upper, features);
8403
8404         if (dev->features == features)
8405                 goto sync_lower;
8406
8407         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8408                 &dev->features, &features);
8409
8410         if (dev->netdev_ops->ndo_set_features)
8411                 err = dev->netdev_ops->ndo_set_features(dev, features);
8412         else
8413                 err = 0;
8414
8415         if (unlikely(err < 0)) {
8416                 netdev_err(dev,
8417                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8418                         err, &features, &dev->features);
8419                 /* return non-0 since some features might have changed and
8420                  * it's better to fire a spurious notification than miss it
8421                  */
8422                 return -1;
8423         }
8424
8425 sync_lower:
8426         /* some features must be disabled on lower devices when disabled
8427          * on an upper device (think: bonding master or bridge)
8428          */
8429         netdev_for_each_lower_dev(dev, lower, iter)
8430                 netdev_sync_lower_features(dev, lower, features);
8431
8432         if (!err) {
8433                 netdev_features_t diff = features ^ dev->features;
8434
8435                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8436                         /* udp_tunnel_{get,drop}_rx_info both need
8437                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8438                          * device, or they won't do anything.
8439                          * Thus we need to update dev->features
8440                          * *before* calling udp_tunnel_get_rx_info,
8441                          * but *after* calling udp_tunnel_drop_rx_info.
8442                          */
8443                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8444                                 dev->features = features;
8445                                 udp_tunnel_get_rx_info(dev);
8446                         } else {
8447                                 udp_tunnel_drop_rx_info(dev);
8448                         }
8449                 }
8450
8451                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8452                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8453                                 dev->features = features;
8454                                 err |= vlan_get_rx_ctag_filter_info(dev);
8455                         } else {
8456                                 vlan_drop_rx_ctag_filter_info(dev);
8457                         }
8458                 }
8459
8460                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8461                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8462                                 dev->features = features;
8463                                 err |= vlan_get_rx_stag_filter_info(dev);
8464                         } else {
8465                                 vlan_drop_rx_stag_filter_info(dev);
8466                         }
8467                 }
8468
8469                 dev->features = features;
8470         }
8471
8472         return err < 0 ? 0 : 1;
8473 }
8474
8475 /**
8476  *      netdev_update_features - recalculate device features
8477  *      @dev: the device to check
8478  *
8479  *      Recalculate dev->features set and send notifications if it
8480  *      has changed. Should be called after driver or hardware dependent
8481  *      conditions might have changed that influence the features.
8482  */
8483 void netdev_update_features(struct net_device *dev)
8484 {
8485         if (__netdev_update_features(dev))
8486                 netdev_features_change(dev);
8487 }
8488 EXPORT_SYMBOL(netdev_update_features);
8489
8490 /**
8491  *      netdev_change_features - recalculate device features
8492  *      @dev: the device to check
8493  *
8494  *      Recalculate dev->features set and send notifications even
8495  *      if they have not changed. Should be called instead of
8496  *      netdev_update_features() if also dev->vlan_features might
8497  *      have changed to allow the changes to be propagated to stacked
8498  *      VLAN devices.
8499  */
8500 void netdev_change_features(struct net_device *dev)
8501 {
8502         __netdev_update_features(dev);
8503         netdev_features_change(dev);
8504 }
8505 EXPORT_SYMBOL(netdev_change_features);
8506
8507 /**
8508  *      netif_stacked_transfer_operstate -      transfer operstate
8509  *      @rootdev: the root or lower level device to transfer state from
8510  *      @dev: the device to transfer operstate to
8511  *
8512  *      Transfer operational state from root to device. This is normally
8513  *      called when a stacking relationship exists between the root
8514  *      device and the device(a leaf device).
8515  */
8516 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8517                                         struct net_device *dev)
8518 {
8519         if (rootdev->operstate == IF_OPER_DORMANT)
8520                 netif_dormant_on(dev);
8521         else
8522                 netif_dormant_off(dev);
8523
8524         if (netif_carrier_ok(rootdev))
8525                 netif_carrier_on(dev);
8526         else
8527                 netif_carrier_off(dev);
8528 }
8529 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8530
8531 static int netif_alloc_rx_queues(struct net_device *dev)
8532 {
8533         unsigned int i, count = dev->num_rx_queues;
8534         struct netdev_rx_queue *rx;
8535         size_t sz = count * sizeof(*rx);
8536         int err = 0;
8537
8538         BUG_ON(count < 1);
8539
8540         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8541         if (!rx)
8542                 return -ENOMEM;
8543
8544         dev->_rx = rx;
8545
8546         for (i = 0; i < count; i++) {
8547                 rx[i].dev = dev;
8548
8549                 /* XDP RX-queue setup */
8550                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8551                 if (err < 0)
8552                         goto err_rxq_info;
8553         }
8554         return 0;
8555
8556 err_rxq_info:
8557         /* Rollback successful reg's and free other resources */
8558         while (i--)
8559                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8560         kvfree(dev->_rx);
8561         dev->_rx = NULL;
8562         return err;
8563 }
8564
8565 static void netif_free_rx_queues(struct net_device *dev)
8566 {
8567         unsigned int i, count = dev->num_rx_queues;
8568
8569         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8570         if (!dev->_rx)
8571                 return;
8572
8573         for (i = 0; i < count; i++)
8574                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8575
8576         kvfree(dev->_rx);
8577 }
8578
8579 static void netdev_init_one_queue(struct net_device *dev,
8580                                   struct netdev_queue *queue, void *_unused)
8581 {
8582         /* Initialize queue lock */
8583         spin_lock_init(&queue->_xmit_lock);
8584         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8585         queue->xmit_lock_owner = -1;
8586         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8587         queue->dev = dev;
8588 #ifdef CONFIG_BQL
8589         dql_init(&queue->dql, HZ);
8590 #endif
8591 }
8592
8593 static void netif_free_tx_queues(struct net_device *dev)
8594 {
8595         kvfree(dev->_tx);
8596 }
8597
8598 static int netif_alloc_netdev_queues(struct net_device *dev)
8599 {
8600         unsigned int count = dev->num_tx_queues;
8601         struct netdev_queue *tx;
8602         size_t sz = count * sizeof(*tx);
8603
8604         if (count < 1 || count > 0xffff)
8605                 return -EINVAL;
8606
8607         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8608         if (!tx)
8609                 return -ENOMEM;
8610
8611         dev->_tx = tx;
8612
8613         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8614         spin_lock_init(&dev->tx_global_lock);
8615
8616         return 0;
8617 }
8618
8619 void netif_tx_stop_all_queues(struct net_device *dev)
8620 {
8621         unsigned int i;
8622
8623         for (i = 0; i < dev->num_tx_queues; i++) {
8624                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8625
8626                 netif_tx_stop_queue(txq);
8627         }
8628 }
8629 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8630
8631 /**
8632  *      register_netdevice      - register a network device
8633  *      @dev: device to register
8634  *
8635  *      Take a completed network device structure and add it to the kernel
8636  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8637  *      chain. 0 is returned on success. A negative errno code is returned
8638  *      on a failure to set up the device, or if the name is a duplicate.
8639  *
8640  *      Callers must hold the rtnl semaphore. You may want
8641  *      register_netdev() instead of this.
8642  *
8643  *      BUGS:
8644  *      The locking appears insufficient to guarantee two parallel registers
8645  *      will not get the same name.
8646  */
8647
8648 int register_netdevice(struct net_device *dev)
8649 {
8650         int ret;
8651         struct net *net = dev_net(dev);
8652
8653         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8654                      NETDEV_FEATURE_COUNT);
8655         BUG_ON(dev_boot_phase);
8656         ASSERT_RTNL();
8657
8658         might_sleep();
8659
8660         /* When net_device's are persistent, this will be fatal. */
8661         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8662         BUG_ON(!net);
8663
8664         spin_lock_init(&dev->addr_list_lock);
8665         netdev_set_addr_lockdep_class(dev);
8666
8667         ret = dev_get_valid_name(net, dev, dev->name);
8668         if (ret < 0)
8669                 goto out;
8670
8671         /* Init, if this function is available */
8672         if (dev->netdev_ops->ndo_init) {
8673                 ret = dev->netdev_ops->ndo_init(dev);
8674                 if (ret) {
8675                         if (ret > 0)
8676                                 ret = -EIO;
8677                         goto out;
8678                 }
8679         }
8680
8681         if (((dev->hw_features | dev->features) &
8682              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8683             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8684              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8685                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8686                 ret = -EINVAL;
8687                 goto err_uninit;
8688         }
8689
8690         ret = -EBUSY;
8691         if (!dev->ifindex)
8692                 dev->ifindex = dev_new_index(net);
8693         else if (__dev_get_by_index(net, dev->ifindex))
8694                 goto err_uninit;
8695
8696         /* Transfer changeable features to wanted_features and enable
8697          * software offloads (GSO and GRO).
8698          */
8699         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8700         dev->features |= NETIF_F_SOFT_FEATURES;
8701
8702         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8703                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8704                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8705         }
8706
8707         dev->wanted_features = dev->features & dev->hw_features;
8708
8709         if (!(dev->flags & IFF_LOOPBACK))
8710                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8711
8712         /* If IPv4 TCP segmentation offload is supported we should also
8713          * allow the device to enable segmenting the frame with the option
8714          * of ignoring a static IP ID value.  This doesn't enable the
8715          * feature itself but allows the user to enable it later.
8716          */
8717         if (dev->hw_features & NETIF_F_TSO)
8718                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8719         if (dev->vlan_features & NETIF_F_TSO)
8720                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8721         if (dev->mpls_features & NETIF_F_TSO)
8722                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8723         if (dev->hw_enc_features & NETIF_F_TSO)
8724                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8725
8726         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8727          */
8728         dev->vlan_features |= NETIF_F_HIGHDMA;
8729
8730         /* Make NETIF_F_SG inheritable to tunnel devices.
8731          */
8732         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8733
8734         /* Make NETIF_F_SG inheritable to MPLS.
8735          */
8736         dev->mpls_features |= NETIF_F_SG;
8737
8738         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8739         ret = notifier_to_errno(ret);
8740         if (ret)
8741                 goto err_uninit;
8742
8743         ret = netdev_register_kobject(dev);
8744         if (ret)
8745                 goto err_uninit;
8746         dev->reg_state = NETREG_REGISTERED;
8747
8748         __netdev_update_features(dev);
8749
8750         /*
8751          *      Default initial state at registry is that the
8752          *      device is present.
8753          */
8754
8755         set_bit(__LINK_STATE_PRESENT, &dev->state);
8756
8757         linkwatch_init_dev(dev);
8758
8759         dev_init_scheduler(dev);
8760         dev_hold(dev);
8761         list_netdevice(dev);
8762         add_device_randomness(dev->dev_addr, dev->addr_len);
8763
8764         /* If the device has permanent device address, driver should
8765          * set dev_addr and also addr_assign_type should be set to
8766          * NET_ADDR_PERM (default value).
8767          */
8768         if (dev->addr_assign_type == NET_ADDR_PERM)
8769                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8770
8771         /* Notify protocols, that a new device appeared. */
8772         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8773         ret = notifier_to_errno(ret);
8774         if (ret) {
8775                 rollback_registered(dev);
8776                 dev->reg_state = NETREG_UNREGISTERED;
8777         }
8778         /*
8779          *      Prevent userspace races by waiting until the network
8780          *      device is fully setup before sending notifications.
8781          */
8782         if (!dev->rtnl_link_ops ||
8783             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8784                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8785
8786 out:
8787         return ret;
8788
8789 err_uninit:
8790         if (dev->netdev_ops->ndo_uninit)
8791                 dev->netdev_ops->ndo_uninit(dev);
8792         if (dev->priv_destructor)
8793                 dev->priv_destructor(dev);
8794         goto out;
8795 }
8796 EXPORT_SYMBOL(register_netdevice);
8797
8798 /**
8799  *      init_dummy_netdev       - init a dummy network device for NAPI
8800  *      @dev: device to init
8801  *
8802  *      This takes a network device structure and initialize the minimum
8803  *      amount of fields so it can be used to schedule NAPI polls without
8804  *      registering a full blown interface. This is to be used by drivers
8805  *      that need to tie several hardware interfaces to a single NAPI
8806  *      poll scheduler due to HW limitations.
8807  */
8808 int init_dummy_netdev(struct net_device *dev)
8809 {
8810         /* Clear everything. Note we don't initialize spinlocks
8811          * are they aren't supposed to be taken by any of the
8812          * NAPI code and this dummy netdev is supposed to be
8813          * only ever used for NAPI polls
8814          */
8815         memset(dev, 0, sizeof(struct net_device));
8816
8817         /* make sure we BUG if trying to hit standard
8818          * register/unregister code path
8819          */
8820         dev->reg_state = NETREG_DUMMY;
8821
8822         /* NAPI wants this */
8823         INIT_LIST_HEAD(&dev->napi_list);
8824
8825         /* a dummy interface is started by default */
8826         set_bit(__LINK_STATE_PRESENT, &dev->state);
8827         set_bit(__LINK_STATE_START, &dev->state);
8828
8829         /* napi_busy_loop stats accounting wants this */
8830         dev_net_set(dev, &init_net);
8831
8832         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8833          * because users of this 'device' dont need to change
8834          * its refcount.
8835          */
8836
8837         return 0;
8838 }
8839 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8840
8841
8842 /**
8843  *      register_netdev - register a network device
8844  *      @dev: device to register
8845  *
8846  *      Take a completed network device structure and add it to the kernel
8847  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8848  *      chain. 0 is returned on success. A negative errno code is returned
8849  *      on a failure to set up the device, or if the name is a duplicate.
8850  *
8851  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8852  *      and expands the device name if you passed a format string to
8853  *      alloc_netdev.
8854  */
8855 int register_netdev(struct net_device *dev)
8856 {
8857         int err;
8858
8859         if (rtnl_lock_killable())
8860                 return -EINTR;
8861         err = register_netdevice(dev);
8862         rtnl_unlock();
8863         return err;
8864 }
8865 EXPORT_SYMBOL(register_netdev);
8866
8867 int netdev_refcnt_read(const struct net_device *dev)
8868 {
8869         int i, refcnt = 0;
8870
8871         for_each_possible_cpu(i)
8872                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8873         return refcnt;
8874 }
8875 EXPORT_SYMBOL(netdev_refcnt_read);
8876
8877 /**
8878  * netdev_wait_allrefs - wait until all references are gone.
8879  * @dev: target net_device
8880  *
8881  * This is called when unregistering network devices.
8882  *
8883  * Any protocol or device that holds a reference should register
8884  * for netdevice notification, and cleanup and put back the
8885  * reference if they receive an UNREGISTER event.
8886  * We can get stuck here if buggy protocols don't correctly
8887  * call dev_put.
8888  */
8889 static void netdev_wait_allrefs(struct net_device *dev)
8890 {
8891         unsigned long rebroadcast_time, warning_time;
8892         int refcnt;
8893
8894         linkwatch_forget_dev(dev);
8895
8896         rebroadcast_time = warning_time = jiffies;
8897         refcnt = netdev_refcnt_read(dev);
8898
8899         while (refcnt != 0) {
8900                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8901                         rtnl_lock();
8902
8903                         /* Rebroadcast unregister notification */
8904                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8905
8906                         __rtnl_unlock();
8907                         rcu_barrier();
8908                         rtnl_lock();
8909
8910                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8911                                      &dev->state)) {
8912                                 /* We must not have linkwatch events
8913                                  * pending on unregister. If this
8914                                  * happens, we simply run the queue
8915                                  * unscheduled, resulting in a noop
8916                                  * for this device.
8917                                  */
8918                                 linkwatch_run_queue();
8919                         }
8920
8921                         __rtnl_unlock();
8922
8923                         rebroadcast_time = jiffies;
8924                 }
8925
8926                 msleep(250);
8927
8928                 refcnt = netdev_refcnt_read(dev);
8929
8930                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8931                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8932                                  dev->name, refcnt);
8933                         warning_time = jiffies;
8934                 }
8935         }
8936 }
8937
8938 /* The sequence is:
8939  *
8940  *      rtnl_lock();
8941  *      ...
8942  *      register_netdevice(x1);
8943  *      register_netdevice(x2);
8944  *      ...
8945  *      unregister_netdevice(y1);
8946  *      unregister_netdevice(y2);
8947  *      ...
8948  *      rtnl_unlock();
8949  *      free_netdev(y1);
8950  *      free_netdev(y2);
8951  *
8952  * We are invoked by rtnl_unlock().
8953  * This allows us to deal with problems:
8954  * 1) We can delete sysfs objects which invoke hotplug
8955  *    without deadlocking with linkwatch via keventd.
8956  * 2) Since we run with the RTNL semaphore not held, we can sleep
8957  *    safely in order to wait for the netdev refcnt to drop to zero.
8958  *
8959  * We must not return until all unregister events added during
8960  * the interval the lock was held have been completed.
8961  */
8962 void netdev_run_todo(void)
8963 {
8964         struct list_head list;
8965
8966         /* Snapshot list, allow later requests */
8967         list_replace_init(&net_todo_list, &list);
8968
8969         __rtnl_unlock();
8970
8971
8972         /* Wait for rcu callbacks to finish before next phase */
8973         if (!list_empty(&list))
8974                 rcu_barrier();
8975
8976         while (!list_empty(&list)) {
8977                 struct net_device *dev
8978                         = list_first_entry(&list, struct net_device, todo_list);
8979                 list_del(&dev->todo_list);
8980
8981                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8982                         pr_err("network todo '%s' but state %d\n",
8983                                dev->name, dev->reg_state);
8984                         dump_stack();
8985                         continue;
8986                 }
8987
8988                 dev->reg_state = NETREG_UNREGISTERED;
8989
8990                 netdev_wait_allrefs(dev);
8991
8992                 /* paranoia */
8993                 BUG_ON(netdev_refcnt_read(dev));
8994                 BUG_ON(!list_empty(&dev->ptype_all));
8995                 BUG_ON(!list_empty(&dev->ptype_specific));
8996                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8997                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8998 #if IS_ENABLED(CONFIG_DECNET)
8999                 WARN_ON(dev->dn_ptr);
9000 #endif
9001                 if (dev->priv_destructor)
9002                         dev->priv_destructor(dev);
9003                 if (dev->needs_free_netdev)
9004                         free_netdev(dev);
9005
9006                 /* Report a network device has been unregistered */
9007                 rtnl_lock();
9008                 dev_net(dev)->dev_unreg_count--;
9009                 __rtnl_unlock();
9010                 wake_up(&netdev_unregistering_wq);
9011
9012                 /* Free network device */
9013                 kobject_put(&dev->dev.kobj);
9014         }
9015 }
9016
9017 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9018  * all the same fields in the same order as net_device_stats, with only
9019  * the type differing, but rtnl_link_stats64 may have additional fields
9020  * at the end for newer counters.
9021  */
9022 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9023                              const struct net_device_stats *netdev_stats)
9024 {
9025 #if BITS_PER_LONG == 64
9026         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9027         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9028         /* zero out counters that only exist in rtnl_link_stats64 */
9029         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9030                sizeof(*stats64) - sizeof(*netdev_stats));
9031 #else
9032         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9033         const unsigned long *src = (const unsigned long *)netdev_stats;
9034         u64 *dst = (u64 *)stats64;
9035
9036         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9037         for (i = 0; i < n; i++)
9038                 dst[i] = src[i];
9039         /* zero out counters that only exist in rtnl_link_stats64 */
9040         memset((char *)stats64 + n * sizeof(u64), 0,
9041                sizeof(*stats64) - n * sizeof(u64));
9042 #endif
9043 }
9044 EXPORT_SYMBOL(netdev_stats_to_stats64);
9045
9046 /**
9047  *      dev_get_stats   - get network device statistics
9048  *      @dev: device to get statistics from
9049  *      @storage: place to store stats
9050  *
9051  *      Get network statistics from device. Return @storage.
9052  *      The device driver may provide its own method by setting
9053  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9054  *      otherwise the internal statistics structure is used.
9055  */
9056 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9057                                         struct rtnl_link_stats64 *storage)
9058 {
9059         const struct net_device_ops *ops = dev->netdev_ops;
9060
9061         if (ops->ndo_get_stats64) {
9062                 memset(storage, 0, sizeof(*storage));
9063                 ops->ndo_get_stats64(dev, storage);
9064         } else if (ops->ndo_get_stats) {
9065                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9066         } else {
9067                 netdev_stats_to_stats64(storage, &dev->stats);
9068         }
9069         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9070         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9071         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9072         return storage;
9073 }
9074 EXPORT_SYMBOL(dev_get_stats);
9075
9076 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9077 {
9078         struct netdev_queue *queue = dev_ingress_queue(dev);
9079
9080 #ifdef CONFIG_NET_CLS_ACT
9081         if (queue)
9082                 return queue;
9083         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9084         if (!queue)
9085                 return NULL;
9086         netdev_init_one_queue(dev, queue, NULL);
9087         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9088         queue->qdisc_sleeping = &noop_qdisc;
9089         rcu_assign_pointer(dev->ingress_queue, queue);
9090 #endif
9091         return queue;
9092 }
9093
9094 static const struct ethtool_ops default_ethtool_ops;
9095
9096 void netdev_set_default_ethtool_ops(struct net_device *dev,
9097                                     const struct ethtool_ops *ops)
9098 {
9099         if (dev->ethtool_ops == &default_ethtool_ops)
9100                 dev->ethtool_ops = ops;
9101 }
9102 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9103
9104 void netdev_freemem(struct net_device *dev)
9105 {
9106         char *addr = (char *)dev - dev->padded;
9107
9108         kvfree(addr);
9109 }
9110
9111 /**
9112  * alloc_netdev_mqs - allocate network device
9113  * @sizeof_priv: size of private data to allocate space for
9114  * @name: device name format string
9115  * @name_assign_type: origin of device name
9116  * @setup: callback to initialize device
9117  * @txqs: the number of TX subqueues to allocate
9118  * @rxqs: the number of RX subqueues to allocate
9119  *
9120  * Allocates a struct net_device with private data area for driver use
9121  * and performs basic initialization.  Also allocates subqueue structs
9122  * for each queue on the device.
9123  */
9124 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9125                 unsigned char name_assign_type,
9126                 void (*setup)(struct net_device *),
9127                 unsigned int txqs, unsigned int rxqs)
9128 {
9129         struct net_device *dev;
9130         unsigned int alloc_size;
9131         struct net_device *p;
9132
9133         BUG_ON(strlen(name) >= sizeof(dev->name));
9134
9135         if (txqs < 1) {
9136                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9137                 return NULL;
9138         }
9139
9140         if (rxqs < 1) {
9141                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9142                 return NULL;
9143         }
9144
9145         alloc_size = sizeof(struct net_device);
9146         if (sizeof_priv) {
9147                 /* ensure 32-byte alignment of private area */
9148                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9149                 alloc_size += sizeof_priv;
9150         }
9151         /* ensure 32-byte alignment of whole construct */
9152         alloc_size += NETDEV_ALIGN - 1;
9153
9154         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9155         if (!p)
9156                 return NULL;
9157
9158         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9159         dev->padded = (char *)dev - (char *)p;
9160
9161         dev->pcpu_refcnt = alloc_percpu(int);
9162         if (!dev->pcpu_refcnt)
9163                 goto free_dev;
9164
9165         if (dev_addr_init(dev))
9166                 goto free_pcpu;
9167
9168         dev_mc_init(dev);
9169         dev_uc_init(dev);
9170
9171         dev_net_set(dev, &init_net);
9172
9173         dev->gso_max_size = GSO_MAX_SIZE;
9174         dev->gso_max_segs = GSO_MAX_SEGS;
9175
9176         INIT_LIST_HEAD(&dev->napi_list);
9177         INIT_LIST_HEAD(&dev->unreg_list);
9178         INIT_LIST_HEAD(&dev->close_list);
9179         INIT_LIST_HEAD(&dev->link_watch_list);
9180         INIT_LIST_HEAD(&dev->adj_list.upper);
9181         INIT_LIST_HEAD(&dev->adj_list.lower);
9182         INIT_LIST_HEAD(&dev->ptype_all);
9183         INIT_LIST_HEAD(&dev->ptype_specific);
9184 #ifdef CONFIG_NET_SCHED
9185         hash_init(dev->qdisc_hash);
9186 #endif
9187         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9188         setup(dev);
9189
9190         if (!dev->tx_queue_len) {
9191                 dev->priv_flags |= IFF_NO_QUEUE;
9192                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9193         }
9194
9195         dev->num_tx_queues = txqs;
9196         dev->real_num_tx_queues = txqs;
9197         if (netif_alloc_netdev_queues(dev))
9198                 goto free_all;
9199
9200         dev->num_rx_queues = rxqs;
9201         dev->real_num_rx_queues = rxqs;
9202         if (netif_alloc_rx_queues(dev))
9203                 goto free_all;
9204
9205         strcpy(dev->name, name);
9206         dev->name_assign_type = name_assign_type;
9207         dev->group = INIT_NETDEV_GROUP;
9208         if (!dev->ethtool_ops)
9209                 dev->ethtool_ops = &default_ethtool_ops;
9210
9211         nf_hook_ingress_init(dev);
9212
9213         return dev;
9214
9215 free_all:
9216         free_netdev(dev);
9217         return NULL;
9218
9219 free_pcpu:
9220         free_percpu(dev->pcpu_refcnt);
9221 free_dev:
9222         netdev_freemem(dev);
9223         return NULL;
9224 }
9225 EXPORT_SYMBOL(alloc_netdev_mqs);
9226
9227 /**
9228  * free_netdev - free network device
9229  * @dev: device
9230  *
9231  * This function does the last stage of destroying an allocated device
9232  * interface. The reference to the device object is released. If this
9233  * is the last reference then it will be freed.Must be called in process
9234  * context.
9235  */
9236 void free_netdev(struct net_device *dev)
9237 {
9238         struct napi_struct *p, *n;
9239
9240         might_sleep();
9241         netif_free_tx_queues(dev);
9242         netif_free_rx_queues(dev);
9243
9244         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9245
9246         /* Flush device addresses */
9247         dev_addr_flush(dev);
9248
9249         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9250                 netif_napi_del(p);
9251
9252         free_percpu(dev->pcpu_refcnt);
9253         dev->pcpu_refcnt = NULL;
9254
9255         /*  Compatibility with error handling in drivers */
9256         if (dev->reg_state == NETREG_UNINITIALIZED) {
9257                 netdev_freemem(dev);
9258                 return;
9259         }
9260
9261         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9262         dev->reg_state = NETREG_RELEASED;
9263
9264         /* will free via device release */
9265         put_device(&dev->dev);
9266 }
9267 EXPORT_SYMBOL(free_netdev);
9268
9269 /**
9270  *      synchronize_net -  Synchronize with packet receive processing
9271  *
9272  *      Wait for packets currently being received to be done.
9273  *      Does not block later packets from starting.
9274  */
9275 void synchronize_net(void)
9276 {
9277         might_sleep();
9278         if (rtnl_is_locked())
9279                 synchronize_rcu_expedited();
9280         else
9281                 synchronize_rcu();
9282 }
9283 EXPORT_SYMBOL(synchronize_net);
9284
9285 /**
9286  *      unregister_netdevice_queue - remove device from the kernel
9287  *      @dev: device
9288  *      @head: list
9289  *
9290  *      This function shuts down a device interface and removes it
9291  *      from the kernel tables.
9292  *      If head not NULL, device is queued to be unregistered later.
9293  *
9294  *      Callers must hold the rtnl semaphore.  You may want
9295  *      unregister_netdev() instead of this.
9296  */
9297
9298 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9299 {
9300         ASSERT_RTNL();
9301
9302         if (head) {
9303                 list_move_tail(&dev->unreg_list, head);
9304         } else {
9305                 rollback_registered(dev);
9306                 /* Finish processing unregister after unlock */
9307                 net_set_todo(dev);
9308         }
9309 }
9310 EXPORT_SYMBOL(unregister_netdevice_queue);
9311
9312 /**
9313  *      unregister_netdevice_many - unregister many devices
9314  *      @head: list of devices
9315  *
9316  *  Note: As most callers use a stack allocated list_head,
9317  *  we force a list_del() to make sure stack wont be corrupted later.
9318  */
9319 void unregister_netdevice_many(struct list_head *head)
9320 {
9321         struct net_device *dev;
9322
9323         if (!list_empty(head)) {
9324                 rollback_registered_many(head);
9325                 list_for_each_entry(dev, head, unreg_list)
9326                         net_set_todo(dev);
9327                 list_del(head);
9328         }
9329 }
9330 EXPORT_SYMBOL(unregister_netdevice_many);
9331
9332 /**
9333  *      unregister_netdev - remove device from the kernel
9334  *      @dev: device
9335  *
9336  *      This function shuts down a device interface and removes it
9337  *      from the kernel tables.
9338  *
9339  *      This is just a wrapper for unregister_netdevice that takes
9340  *      the rtnl semaphore.  In general you want to use this and not
9341  *      unregister_netdevice.
9342  */
9343 void unregister_netdev(struct net_device *dev)
9344 {
9345         rtnl_lock();
9346         unregister_netdevice(dev);
9347         rtnl_unlock();
9348 }
9349 EXPORT_SYMBOL(unregister_netdev);
9350
9351 /**
9352  *      dev_change_net_namespace - move device to different nethost namespace
9353  *      @dev: device
9354  *      @net: network namespace
9355  *      @pat: If not NULL name pattern to try if the current device name
9356  *            is already taken in the destination network namespace.
9357  *
9358  *      This function shuts down a device interface and moves it
9359  *      to a new network namespace. On success 0 is returned, on
9360  *      a failure a netagive errno code is returned.
9361  *
9362  *      Callers must hold the rtnl semaphore.
9363  */
9364
9365 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9366 {
9367         int err, new_nsid, new_ifindex;
9368
9369         ASSERT_RTNL();
9370
9371         /* Don't allow namespace local devices to be moved. */
9372         err = -EINVAL;
9373         if (dev->features & NETIF_F_NETNS_LOCAL)
9374                 goto out;
9375
9376         /* Ensure the device has been registrered */
9377         if (dev->reg_state != NETREG_REGISTERED)
9378                 goto out;
9379
9380         /* Get out if there is nothing todo */
9381         err = 0;
9382         if (net_eq(dev_net(dev), net))
9383                 goto out;
9384
9385         /* Pick the destination device name, and ensure
9386          * we can use it in the destination network namespace.
9387          */
9388         err = -EEXIST;
9389         if (__dev_get_by_name(net, dev->name)) {
9390                 /* We get here if we can't use the current device name */
9391                 if (!pat)
9392                         goto out;
9393                 err = dev_get_valid_name(net, dev, pat);
9394                 if (err < 0)
9395                         goto out;
9396         }
9397
9398         /*
9399          * And now a mini version of register_netdevice unregister_netdevice.
9400          */
9401
9402         /* If device is running close it first. */
9403         dev_close(dev);
9404
9405         /* And unlink it from device chain */
9406         unlist_netdevice(dev);
9407
9408         synchronize_net();
9409
9410         /* Shutdown queueing discipline. */
9411         dev_shutdown(dev);
9412
9413         /* Notify protocols, that we are about to destroy
9414          * this device. They should clean all the things.
9415          *
9416          * Note that dev->reg_state stays at NETREG_REGISTERED.
9417          * This is wanted because this way 8021q and macvlan know
9418          * the device is just moving and can keep their slaves up.
9419          */
9420         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9421         rcu_barrier();
9422
9423         new_nsid = peernet2id_alloc(dev_net(dev), net);
9424         /* If there is an ifindex conflict assign a new one */
9425         if (__dev_get_by_index(net, dev->ifindex))
9426                 new_ifindex = dev_new_index(net);
9427         else
9428                 new_ifindex = dev->ifindex;
9429
9430         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9431                             new_ifindex);
9432
9433         /*
9434          *      Flush the unicast and multicast chains
9435          */
9436         dev_uc_flush(dev);
9437         dev_mc_flush(dev);
9438
9439         /* Send a netdev-removed uevent to the old namespace */
9440         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9441         netdev_adjacent_del_links(dev);
9442
9443         /* Actually switch the network namespace */
9444         dev_net_set(dev, net);
9445         dev->ifindex = new_ifindex;
9446
9447         /* Send a netdev-add uevent to the new namespace */
9448         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9449         netdev_adjacent_add_links(dev);
9450
9451         /* Fixup kobjects */
9452         err = device_rename(&dev->dev, dev->name);
9453         WARN_ON(err);
9454
9455         /* Add the device back in the hashes */
9456         list_netdevice(dev);
9457
9458         /* Notify protocols, that a new device appeared. */
9459         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9460
9461         /*
9462          *      Prevent userspace races by waiting until the network
9463          *      device is fully setup before sending notifications.
9464          */
9465         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9466
9467         synchronize_net();
9468         err = 0;
9469 out:
9470         return err;
9471 }
9472 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9473
9474 static int dev_cpu_dead(unsigned int oldcpu)
9475 {
9476         struct sk_buff **list_skb;
9477         struct sk_buff *skb;
9478         unsigned int cpu;
9479         struct softnet_data *sd, *oldsd, *remsd = NULL;
9480
9481         local_irq_disable();
9482         cpu = smp_processor_id();
9483         sd = &per_cpu(softnet_data, cpu);
9484         oldsd = &per_cpu(softnet_data, oldcpu);
9485
9486         /* Find end of our completion_queue. */
9487         list_skb = &sd->completion_queue;
9488         while (*list_skb)
9489                 list_skb = &(*list_skb)->next;
9490         /* Append completion queue from offline CPU. */
9491         *list_skb = oldsd->completion_queue;
9492         oldsd->completion_queue = NULL;
9493
9494         /* Append output queue from offline CPU. */
9495         if (oldsd->output_queue) {
9496                 *sd->output_queue_tailp = oldsd->output_queue;
9497                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9498                 oldsd->output_queue = NULL;
9499                 oldsd->output_queue_tailp = &oldsd->output_queue;
9500         }
9501         /* Append NAPI poll list from offline CPU, with one exception :
9502          * process_backlog() must be called by cpu owning percpu backlog.
9503          * We properly handle process_queue & input_pkt_queue later.
9504          */
9505         while (!list_empty(&oldsd->poll_list)) {
9506                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9507                                                             struct napi_struct,
9508                                                             poll_list);
9509
9510                 list_del_init(&napi->poll_list);
9511                 if (napi->poll == process_backlog)
9512                         napi->state = 0;
9513                 else
9514                         ____napi_schedule(sd, napi);
9515         }
9516
9517         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9518         local_irq_enable();
9519
9520 #ifdef CONFIG_RPS
9521         remsd = oldsd->rps_ipi_list;
9522         oldsd->rps_ipi_list = NULL;
9523 #endif
9524         /* send out pending IPI's on offline CPU */
9525         net_rps_send_ipi(remsd);
9526
9527         /* Process offline CPU's input_pkt_queue */
9528         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9529                 netif_rx_ni(skb);
9530                 input_queue_head_incr(oldsd);
9531         }
9532         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9533                 netif_rx_ni(skb);
9534                 input_queue_head_incr(oldsd);
9535         }
9536
9537         return 0;
9538 }
9539
9540 /**
9541  *      netdev_increment_features - increment feature set by one
9542  *      @all: current feature set
9543  *      @one: new feature set
9544  *      @mask: mask feature set
9545  *
9546  *      Computes a new feature set after adding a device with feature set
9547  *      @one to the master device with current feature set @all.  Will not
9548  *      enable anything that is off in @mask. Returns the new feature set.
9549  */
9550 netdev_features_t netdev_increment_features(netdev_features_t all,
9551         netdev_features_t one, netdev_features_t mask)
9552 {
9553         if (mask & NETIF_F_HW_CSUM)
9554                 mask |= NETIF_F_CSUM_MASK;
9555         mask |= NETIF_F_VLAN_CHALLENGED;
9556
9557         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9558         all &= one | ~NETIF_F_ALL_FOR_ALL;
9559
9560         /* If one device supports hw checksumming, set for all. */
9561         if (all & NETIF_F_HW_CSUM)
9562                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9563
9564         return all;
9565 }
9566 EXPORT_SYMBOL(netdev_increment_features);
9567
9568 static struct hlist_head * __net_init netdev_create_hash(void)
9569 {
9570         int i;
9571         struct hlist_head *hash;
9572
9573         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9574         if (hash != NULL)
9575                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9576                         INIT_HLIST_HEAD(&hash[i]);
9577
9578         return hash;
9579 }
9580
9581 /* Initialize per network namespace state */
9582 static int __net_init netdev_init(struct net *net)
9583 {
9584         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9585                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9586
9587         if (net != &init_net)
9588                 INIT_LIST_HEAD(&net->dev_base_head);
9589
9590         net->dev_name_head = netdev_create_hash();
9591         if (net->dev_name_head == NULL)
9592                 goto err_name;
9593
9594         net->dev_index_head = netdev_create_hash();
9595         if (net->dev_index_head == NULL)
9596                 goto err_idx;
9597
9598         return 0;
9599
9600 err_idx:
9601         kfree(net->dev_name_head);
9602 err_name:
9603         return -ENOMEM;
9604 }
9605
9606 /**
9607  *      netdev_drivername - network driver for the device
9608  *      @dev: network device
9609  *
9610  *      Determine network driver for device.
9611  */
9612 const char *netdev_drivername(const struct net_device *dev)
9613 {
9614         const struct device_driver *driver;
9615         const struct device *parent;
9616         const char *empty = "";
9617
9618         parent = dev->dev.parent;
9619         if (!parent)
9620                 return empty;
9621
9622         driver = parent->driver;
9623         if (driver && driver->name)
9624                 return driver->name;
9625         return empty;
9626 }
9627
9628 static void __netdev_printk(const char *level, const struct net_device *dev,
9629                             struct va_format *vaf)
9630 {
9631         if (dev && dev->dev.parent) {
9632                 dev_printk_emit(level[1] - '0',
9633                                 dev->dev.parent,
9634                                 "%s %s %s%s: %pV",
9635                                 dev_driver_string(dev->dev.parent),
9636                                 dev_name(dev->dev.parent),
9637                                 netdev_name(dev), netdev_reg_state(dev),
9638                                 vaf);
9639         } else if (dev) {
9640                 printk("%s%s%s: %pV",
9641                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9642         } else {
9643                 printk("%s(NULL net_device): %pV", level, vaf);
9644         }
9645 }
9646
9647 void netdev_printk(const char *level, const struct net_device *dev,
9648                    const char *format, ...)
9649 {
9650         struct va_format vaf;
9651         va_list args;
9652
9653         va_start(args, format);
9654
9655         vaf.fmt = format;
9656         vaf.va = &args;
9657
9658         __netdev_printk(level, dev, &vaf);
9659
9660         va_end(args);
9661 }
9662 EXPORT_SYMBOL(netdev_printk);
9663
9664 #define define_netdev_printk_level(func, level)                 \
9665 void func(const struct net_device *dev, const char *fmt, ...)   \
9666 {                                                               \
9667         struct va_format vaf;                                   \
9668         va_list args;                                           \
9669                                                                 \
9670         va_start(args, fmt);                                    \
9671                                                                 \
9672         vaf.fmt = fmt;                                          \
9673         vaf.va = &args;                                         \
9674                                                                 \
9675         __netdev_printk(level, dev, &vaf);                      \
9676                                                                 \
9677         va_end(args);                                           \
9678 }                                                               \
9679 EXPORT_SYMBOL(func);
9680
9681 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9682 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9683 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9684 define_netdev_printk_level(netdev_err, KERN_ERR);
9685 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9686 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9687 define_netdev_printk_level(netdev_info, KERN_INFO);
9688
9689 static void __net_exit netdev_exit(struct net *net)
9690 {
9691         kfree(net->dev_name_head);
9692         kfree(net->dev_index_head);
9693         if (net != &init_net)
9694                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9695 }
9696
9697 static struct pernet_operations __net_initdata netdev_net_ops = {
9698         .init = netdev_init,
9699         .exit = netdev_exit,
9700 };
9701
9702 static void __net_exit default_device_exit(struct net *net)
9703 {
9704         struct net_device *dev, *aux;
9705         /*
9706          * Push all migratable network devices back to the
9707          * initial network namespace
9708          */
9709         rtnl_lock();
9710         for_each_netdev_safe(net, dev, aux) {
9711                 int err;
9712                 char fb_name[IFNAMSIZ];
9713
9714                 /* Ignore unmoveable devices (i.e. loopback) */
9715                 if (dev->features & NETIF_F_NETNS_LOCAL)
9716                         continue;
9717
9718                 /* Leave virtual devices for the generic cleanup */
9719                 if (dev->rtnl_link_ops)
9720                         continue;
9721
9722                 /* Push remaining network devices to init_net */
9723                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9724                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9725                 if (err) {
9726                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9727                                  __func__, dev->name, err);
9728                         BUG();
9729                 }
9730         }
9731         rtnl_unlock();
9732 }
9733
9734 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9735 {
9736         /* Return with the rtnl_lock held when there are no network
9737          * devices unregistering in any network namespace in net_list.
9738          */
9739         struct net *net;
9740         bool unregistering;
9741         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9742
9743         add_wait_queue(&netdev_unregistering_wq, &wait);
9744         for (;;) {
9745                 unregistering = false;
9746                 rtnl_lock();
9747                 list_for_each_entry(net, net_list, exit_list) {
9748                         if (net->dev_unreg_count > 0) {
9749                                 unregistering = true;
9750                                 break;
9751                         }
9752                 }
9753                 if (!unregistering)
9754                         break;
9755                 __rtnl_unlock();
9756
9757                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9758         }
9759         remove_wait_queue(&netdev_unregistering_wq, &wait);
9760 }
9761
9762 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9763 {
9764         /* At exit all network devices most be removed from a network
9765          * namespace.  Do this in the reverse order of registration.
9766          * Do this across as many network namespaces as possible to
9767          * improve batching efficiency.
9768          */
9769         struct net_device *dev;
9770         struct net *net;
9771         LIST_HEAD(dev_kill_list);
9772
9773         /* To prevent network device cleanup code from dereferencing
9774          * loopback devices or network devices that have been freed
9775          * wait here for all pending unregistrations to complete,
9776          * before unregistring the loopback device and allowing the
9777          * network namespace be freed.
9778          *
9779          * The netdev todo list containing all network devices
9780          * unregistrations that happen in default_device_exit_batch
9781          * will run in the rtnl_unlock() at the end of
9782          * default_device_exit_batch.
9783          */
9784         rtnl_lock_unregistering(net_list);
9785         list_for_each_entry(net, net_list, exit_list) {
9786                 for_each_netdev_reverse(net, dev) {
9787                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9788                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9789                         else
9790                                 unregister_netdevice_queue(dev, &dev_kill_list);
9791                 }
9792         }
9793         unregister_netdevice_many(&dev_kill_list);
9794         rtnl_unlock();
9795 }
9796
9797 static struct pernet_operations __net_initdata default_device_ops = {
9798         .exit = default_device_exit,
9799         .exit_batch = default_device_exit_batch,
9800 };
9801
9802 /*
9803  *      Initialize the DEV module. At boot time this walks the device list and
9804  *      unhooks any devices that fail to initialise (normally hardware not
9805  *      present) and leaves us with a valid list of present and active devices.
9806  *
9807  */
9808
9809 /*
9810  *       This is called single threaded during boot, so no need
9811  *       to take the rtnl semaphore.
9812  */
9813 static int __init net_dev_init(void)
9814 {
9815         int i, rc = -ENOMEM;
9816
9817         BUG_ON(!dev_boot_phase);
9818
9819         if (dev_proc_init())
9820                 goto out;
9821
9822         if (netdev_kobject_init())
9823                 goto out;
9824
9825         INIT_LIST_HEAD(&ptype_all);
9826         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9827                 INIT_LIST_HEAD(&ptype_base[i]);
9828
9829         INIT_LIST_HEAD(&offload_base);
9830
9831         if (register_pernet_subsys(&netdev_net_ops))
9832                 goto out;
9833
9834         /*
9835          *      Initialise the packet receive queues.
9836          */
9837
9838         for_each_possible_cpu(i) {
9839                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9840                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9841
9842                 INIT_WORK(flush, flush_backlog);
9843
9844                 skb_queue_head_init(&sd->input_pkt_queue);
9845                 skb_queue_head_init(&sd->process_queue);
9846 #ifdef CONFIG_XFRM_OFFLOAD
9847                 skb_queue_head_init(&sd->xfrm_backlog);
9848 #endif
9849                 INIT_LIST_HEAD(&sd->poll_list);
9850                 sd->output_queue_tailp = &sd->output_queue;
9851 #ifdef CONFIG_RPS
9852                 sd->csd.func = rps_trigger_softirq;
9853                 sd->csd.info = sd;
9854                 sd->cpu = i;
9855 #endif
9856
9857                 init_gro_hash(&sd->backlog);
9858                 sd->backlog.poll = process_backlog;
9859                 sd->backlog.weight = weight_p;
9860         }
9861
9862         dev_boot_phase = 0;
9863
9864         /* The loopback device is special if any other network devices
9865          * is present in a network namespace the loopback device must
9866          * be present. Since we now dynamically allocate and free the
9867          * loopback device ensure this invariant is maintained by
9868          * keeping the loopback device as the first device on the
9869          * list of network devices.  Ensuring the loopback devices
9870          * is the first device that appears and the last network device
9871          * that disappears.
9872          */
9873         if (register_pernet_device(&loopback_net_ops))
9874                 goto out;
9875
9876         if (register_pernet_device(&default_device_ops))
9877                 goto out;
9878
9879         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9880         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9881
9882         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9883                                        NULL, dev_cpu_dead);
9884         WARN_ON(rc < 0);
9885         rc = 0;
9886 out:
9887         return rc;
9888 }
9889
9890 subsys_initcall(net_dev_init);