0a2d464240690795e6b347157a31400dfb5654e5
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         write_seqcount_begin(&devnet_rename_seq);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 write_seqcount_end(&devnet_rename_seq);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 write_seqcount_end(&devnet_rename_seq);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 write_seqcount_end(&devnet_rename_seq);
1215                 return ret;
1216         }
1217
1218         write_seqcount_end(&devnet_rename_seq);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         write_seqcount_begin(&devnet_rename_seq);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         struct dev_ifalias *new_alias = NULL;
1265
1266         if (len >= IFALIASZ)
1267                 return -EINVAL;
1268
1269         if (len) {
1270                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                 if (!new_alias)
1272                         return -ENOMEM;
1273
1274                 memcpy(new_alias->ifalias, alias, len);
1275                 new_alias->ifalias[len] = 0;
1276         }
1277
1278         mutex_lock(&ifalias_mutex);
1279         rcu_swap_protected(dev->ifalias, new_alias,
1280                            mutex_is_locked(&ifalias_mutex));
1281         mutex_unlock(&ifalias_mutex);
1282
1283         if (new_alias)
1284                 kfree_rcu(new_alias, rcuhead);
1285
1286         return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289
1290 /**
1291  *      dev_get_alias - get ifalias of a device
1292  *      @dev: device
1293  *      @name: buffer to store name of ifalias
1294  *      @len: size of buffer
1295  *
1296  *      get ifalias for a device.  Caller must make sure dev cannot go
1297  *      away,  e.g. rcu read lock or own a reference count to device.
1298  */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301         const struct dev_ifalias *alias;
1302         int ret = 0;
1303
1304         rcu_read_lock();
1305         alias = rcu_dereference(dev->ifalias);
1306         if (alias)
1307                 ret = snprintf(name, len, "%s", alias->ifalias);
1308         rcu_read_unlock();
1309
1310         return ret;
1311 }
1312
1313 /**
1314  *      netdev_features_change - device changes features
1315  *      @dev: device to cause notification
1316  *
1317  *      Called to indicate a device has changed features.
1318  */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324
1325 /**
1326  *      netdev_state_change - device changes state
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed state. This function calls
1330  *      the notifier chains for netdev_chain and sends a NEWLINK message
1331  *      to the routing socket.
1332  */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335         if (dev->flags & IFF_UP) {
1336                 struct netdev_notifier_change_info change_info = {
1337                         .info.dev = dev,
1338                 };
1339
1340                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1341                                               &change_info.info);
1342                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343         }
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346
1347 /**
1348  * netdev_notify_peers - notify network peers about existence of @dev
1349  * @dev: network device
1350  *
1351  * Generate traffic such that interested network peers are aware of
1352  * @dev, such as by generating a gratuitous ARP. This may be used when
1353  * a device wants to inform the rest of the network about some sort of
1354  * reconfiguration such as a failover event or virtual machine
1355  * migration.
1356  */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359         rtnl_lock();
1360         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362         rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365
1366 static int __dev_open(struct net_device *dev)
1367 {
1368         const struct net_device_ops *ops = dev->netdev_ops;
1369         int ret;
1370
1371         ASSERT_RTNL();
1372
1373         if (!netif_device_present(dev))
1374                 return -ENODEV;
1375
1376         /* Block netpoll from trying to do any rx path servicing.
1377          * If we don't do this there is a chance ndo_poll_controller
1378          * or ndo_poll may be running while we open the device
1379          */
1380         netpoll_poll_disable(dev);
1381
1382         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383         ret = notifier_to_errno(ret);
1384         if (ret)
1385                 return ret;
1386
1387         set_bit(__LINK_STATE_START, &dev->state);
1388
1389         if (ops->ndo_validate_addr)
1390                 ret = ops->ndo_validate_addr(dev);
1391
1392         if (!ret && ops->ndo_open)
1393                 ret = ops->ndo_open(dev);
1394
1395         netpoll_poll_enable(dev);
1396
1397         if (ret)
1398                 clear_bit(__LINK_STATE_START, &dev->state);
1399         else {
1400                 dev->flags |= IFF_UP;
1401                 dev_set_rx_mode(dev);
1402                 dev_activate(dev);
1403                 add_device_randomness(dev->dev_addr, dev->addr_len);
1404         }
1405
1406         return ret;
1407 }
1408
1409 /**
1410  *      dev_open        - prepare an interface for use.
1411  *      @dev:   device to open
1412  *
1413  *      Takes a device from down to up state. The device's private open
1414  *      function is invoked and then the multicast lists are loaded. Finally
1415  *      the device is moved into the up state and a %NETDEV_UP message is
1416  *      sent to the netdev notifier chain.
1417  *
1418  *      Calling this function on an active interface is a nop. On a failure
1419  *      a negative errno code is returned.
1420  */
1421 int dev_open(struct net_device *dev)
1422 {
1423         int ret;
1424
1425         if (dev->flags & IFF_UP)
1426                 return 0;
1427
1428         ret = __dev_open(dev);
1429         if (ret < 0)
1430                 return ret;
1431
1432         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433         call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435         return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441         struct net_device *dev;
1442
1443         ASSERT_RTNL();
1444         might_sleep();
1445
1446         list_for_each_entry(dev, head, close_list) {
1447                 /* Temporarily disable netpoll until the interface is down */
1448                 netpoll_poll_disable(dev);
1449
1450                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452                 clear_bit(__LINK_STATE_START, &dev->state);
1453
1454                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1455                  * can be even on different cpu. So just clear netif_running().
1456                  *
1457                  * dev->stop() will invoke napi_disable() on all of it's
1458                  * napi_struct instances on this device.
1459                  */
1460                 smp_mb__after_atomic(); /* Commit netif_running(). */
1461         }
1462
1463         dev_deactivate_many(head);
1464
1465         list_for_each_entry(dev, head, close_list) {
1466                 const struct net_device_ops *ops = dev->netdev_ops;
1467
1468                 /*
1469                  *      Call the device specific close. This cannot fail.
1470                  *      Only if device is UP
1471                  *
1472                  *      We allow it to be called even after a DETACH hot-plug
1473                  *      event.
1474                  */
1475                 if (ops->ndo_stop)
1476                         ops->ndo_stop(dev);
1477
1478                 dev->flags &= ~IFF_UP;
1479                 netpoll_poll_enable(dev);
1480         }
1481 }
1482
1483 static void __dev_close(struct net_device *dev)
1484 {
1485         LIST_HEAD(single);
1486
1487         list_add(&dev->close_list, &single);
1488         __dev_close_many(&single);
1489         list_del(&single);
1490 }
1491
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494         struct net_device *dev, *tmp;
1495
1496         /* Remove the devices that don't need to be closed */
1497         list_for_each_entry_safe(dev, tmp, head, close_list)
1498                 if (!(dev->flags & IFF_UP))
1499                         list_del_init(&dev->close_list);
1500
1501         __dev_close_many(head);
1502
1503         list_for_each_entry_safe(dev, tmp, head, close_list) {
1504                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1506                 if (unlink)
1507                         list_del_init(&dev->close_list);
1508         }
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511
1512 /**
1513  *      dev_close - shutdown an interface.
1514  *      @dev: device to shutdown
1515  *
1516  *      This function moves an active device into down state. A
1517  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519  *      chain.
1520  */
1521 void dev_close(struct net_device *dev)
1522 {
1523         if (dev->flags & IFF_UP) {
1524                 LIST_HEAD(single);
1525
1526                 list_add(&dev->close_list, &single);
1527                 dev_close_many(&single, true);
1528                 list_del(&single);
1529         }
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532
1533
1534 /**
1535  *      dev_disable_lro - disable Large Receive Offload on a device
1536  *      @dev: device
1537  *
1538  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1539  *      called under RTNL.  This is needed if received packets may be
1540  *      forwarded to another interface.
1541  */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544         struct net_device *lower_dev;
1545         struct list_head *iter;
1546
1547         dev->wanted_features &= ~NETIF_F_LRO;
1548         netdev_update_features(dev);
1549
1550         if (unlikely(dev->features & NETIF_F_LRO))
1551                 netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553         netdev_for_each_lower_dev(dev, lower_dev, iter)
1554                 dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557
1558 /**
1559  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560  *      @dev: device
1561  *
1562  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563  *      called under RTNL.  This is needed if Generic XDP is installed on
1564  *      the device.
1565  */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568         dev->wanted_features &= ~NETIF_F_GRO_HW;
1569         netdev_update_features(dev);
1570
1571         if (unlikely(dev->features & NETIF_F_GRO_HW))
1572                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val)                                          \
1578         case NETDEV_##val:                              \
1579                 return "NETDEV_" __stringify(val);
1580         switch (cmd) {
1581         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590         }
1591 #undef N
1592         return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597                                    struct net_device *dev)
1598 {
1599         struct netdev_notifier_info info = {
1600                 .dev = dev,
1601         };
1602
1603         return nb->notifier_call(nb, val, &info);
1604 }
1605
1606 static int dev_boot_phase = 1;
1607
1608 /**
1609  * register_netdevice_notifier - register a network notifier block
1610  * @nb: notifier
1611  *
1612  * Register a notifier to be called when network device events occur.
1613  * The notifier passed is linked into the kernel structures and must
1614  * not be reused until it has been unregistered. A negative errno code
1615  * is returned on a failure.
1616  *
1617  * When registered all registration and up events are replayed
1618  * to the new notifier to allow device to have a race free
1619  * view of the network device list.
1620  */
1621
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624         struct net_device *dev;
1625         struct net_device *last;
1626         struct net *net;
1627         int err;
1628
1629         /* Close race with setup_net() and cleanup_net() */
1630         down_write(&pernet_ops_rwsem);
1631         rtnl_lock();
1632         err = raw_notifier_chain_register(&netdev_chain, nb);
1633         if (err)
1634                 goto unlock;
1635         if (dev_boot_phase)
1636                 goto unlock;
1637         for_each_net(net) {
1638                 for_each_netdev(net, dev) {
1639                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640                         err = notifier_to_errno(err);
1641                         if (err)
1642                                 goto rollback;
1643
1644                         if (!(dev->flags & IFF_UP))
1645                                 continue;
1646
1647                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1648                 }
1649         }
1650
1651 unlock:
1652         rtnl_unlock();
1653         up_write(&pernet_ops_rwsem);
1654         return err;
1655
1656 rollback:
1657         last = dev;
1658         for_each_net(net) {
1659                 for_each_netdev(net, dev) {
1660                         if (dev == last)
1661                                 goto outroll;
1662
1663                         if (dev->flags & IFF_UP) {
1664                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665                                                         dev);
1666                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667                         }
1668                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669                 }
1670         }
1671
1672 outroll:
1673         raw_notifier_chain_unregister(&netdev_chain, nb);
1674         goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678 /**
1679  * unregister_netdevice_notifier - unregister a network notifier block
1680  * @nb: notifier
1681  *
1682  * Unregister a notifier previously registered by
1683  * register_netdevice_notifier(). The notifier is unlinked into the
1684  * kernel structures and may then be reused. A negative errno code
1685  * is returned on a failure.
1686  *
1687  * After unregistering unregister and down device events are synthesized
1688  * for all devices on the device list to the removed notifier to remove
1689  * the need for special case cleanup code.
1690  */
1691
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694         struct net_device *dev;
1695         struct net *net;
1696         int err;
1697
1698         /* Close race with setup_net() and cleanup_net() */
1699         down_write(&pernet_ops_rwsem);
1700         rtnl_lock();
1701         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702         if (err)
1703                 goto unlock;
1704
1705         for_each_net(net) {
1706                 for_each_netdev(net, dev) {
1707                         if (dev->flags & IFF_UP) {
1708                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709                                                         dev);
1710                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711                         }
1712                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713                 }
1714         }
1715 unlock:
1716         rtnl_unlock();
1717         up_write(&pernet_ops_rwsem);
1718         return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722 /**
1723  *      call_netdevice_notifiers_info - call all network notifier blocks
1724  *      @val: value passed unmodified to notifier function
1725  *      @info: notifier information data
1726  *
1727  *      Call all network notifier blocks.  Parameters and return value
1728  *      are as for raw_notifier_call_chain().
1729  */
1730
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732                                          struct netdev_notifier_info *info)
1733 {
1734         ASSERT_RTNL();
1735         return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737
1738 /**
1739  *      call_netdevice_notifiers - call all network notifier blocks
1740  *      @val: value passed unmodified to notifier function
1741  *      @dev: net_device pointer passed unmodified to notifier function
1742  *
1743  *      Call all network notifier blocks.  Parameters and return value
1744  *      are as for raw_notifier_call_chain().
1745  */
1746
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749         struct netdev_notifier_info info = {
1750                 .dev = dev,
1751         };
1752
1753         return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757 #ifdef CONFIG_NET_INGRESS
1758 static struct static_key ingress_needed __read_mostly;
1759
1760 void net_inc_ingress_queue(void)
1761 {
1762         static_key_slow_inc(&ingress_needed);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766 void net_dec_ingress_queue(void)
1767 {
1768         static_key_slow_dec(&ingress_needed);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772
1773 #ifdef CONFIG_NET_EGRESS
1774 static struct static_key egress_needed __read_mostly;
1775
1776 void net_inc_egress_queue(void)
1777 {
1778         static_key_slow_inc(&egress_needed);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782 void net_dec_egress_queue(void)
1783 {
1784         static_key_slow_dec(&egress_needed);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788
1789 static struct static_key netstamp_needed __read_mostly;
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796         int wanted;
1797
1798         wanted = atomic_add_return(deferred, &netstamp_wanted);
1799         if (wanted > 0)
1800                 static_key_enable(&netstamp_needed);
1801         else
1802                 static_key_disable(&netstamp_needed);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810         int wanted;
1811
1812         while (1) {
1813                 wanted = atomic_read(&netstamp_wanted);
1814                 if (wanted <= 0)
1815                         break;
1816                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817                         return;
1818         }
1819         atomic_inc(&netstamp_needed_deferred);
1820         schedule_work(&netstamp_work);
1821 #else
1822         static_key_slow_inc(&netstamp_needed);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830         int wanted;
1831
1832         while (1) {
1833                 wanted = atomic_read(&netstamp_wanted);
1834                 if (wanted <= 1)
1835                         break;
1836                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837                         return;
1838         }
1839         atomic_dec(&netstamp_needed_deferred);
1840         schedule_work(&netstamp_work);
1841 #else
1842         static_key_slow_dec(&netstamp_needed);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849         skb->tstamp = 0;
1850         if (static_key_false(&netstamp_needed))
1851                 __net_timestamp(skb);
1852 }
1853
1854 #define net_timestamp_check(COND, SKB)                  \
1855         if (static_key_false(&netstamp_needed)) {               \
1856                 if ((COND) && !(SKB)->tstamp)   \
1857                         __net_timestamp(SKB);           \
1858         }                                               \
1859
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862         unsigned int len;
1863
1864         if (!(dev->flags & IFF_UP))
1865                 return false;
1866
1867         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868         if (skb->len <= len)
1869                 return true;
1870
1871         /* if TSO is enabled, we don't care about the length as the packet
1872          * could be forwarded without being segmented before
1873          */
1874         if (skb_is_gso(skb))
1875                 return true;
1876
1877         return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883         int ret = ____dev_forward_skb(dev, skb);
1884
1885         if (likely(!ret)) {
1886                 skb->protocol = eth_type_trans(skb, dev);
1887                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888         }
1889
1890         return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894 /**
1895  * dev_forward_skb - loopback an skb to another netif
1896  *
1897  * @dev: destination network device
1898  * @skb: buffer to forward
1899  *
1900  * return values:
1901  *      NET_RX_SUCCESS  (no congestion)
1902  *      NET_RX_DROP     (packet was dropped, but freed)
1903  *
1904  * dev_forward_skb can be used for injecting an skb from the
1905  * start_xmit function of one device into the receive queue
1906  * of another device.
1907  *
1908  * The receiving device may be in another namespace, so
1909  * we have to clear all information in the skb that could
1910  * impact namespace isolation.
1911  */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918 static inline int deliver_skb(struct sk_buff *skb,
1919                               struct packet_type *pt_prev,
1920                               struct net_device *orig_dev)
1921 {
1922         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923                 return -ENOMEM;
1924         refcount_inc(&skb->users);
1925         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929                                           struct packet_type **pt,
1930                                           struct net_device *orig_dev,
1931                                           __be16 type,
1932                                           struct list_head *ptype_list)
1933 {
1934         struct packet_type *ptype, *pt_prev = *pt;
1935
1936         list_for_each_entry_rcu(ptype, ptype_list, list) {
1937                 if (ptype->type != type)
1938                         continue;
1939                 if (pt_prev)
1940                         deliver_skb(skb, pt_prev, orig_dev);
1941                 pt_prev = ptype;
1942         }
1943         *pt = pt_prev;
1944 }
1945
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948         if (!ptype->af_packet_priv || !skb->sk)
1949                 return false;
1950
1951         if (ptype->id_match)
1952                 return ptype->id_match(ptype, skb->sk);
1953         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954                 return true;
1955
1956         return false;
1957 }
1958
1959 /*
1960  *      Support routine. Sends outgoing frames to any network
1961  *      taps currently in use.
1962  */
1963
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966         struct packet_type *ptype;
1967         struct sk_buff *skb2 = NULL;
1968         struct packet_type *pt_prev = NULL;
1969         struct list_head *ptype_list = &ptype_all;
1970
1971         rcu_read_lock();
1972 again:
1973         list_for_each_entry_rcu(ptype, ptype_list, list) {
1974                 /* Never send packets back to the socket
1975                  * they originated from - MvS (miquels@drinkel.ow.org)
1976                  */
1977                 if (skb_loop_sk(ptype, skb))
1978                         continue;
1979
1980                 if (pt_prev) {
1981                         deliver_skb(skb2, pt_prev, skb->dev);
1982                         pt_prev = ptype;
1983                         continue;
1984                 }
1985
1986                 /* need to clone skb, done only once */
1987                 skb2 = skb_clone(skb, GFP_ATOMIC);
1988                 if (!skb2)
1989                         goto out_unlock;
1990
1991                 net_timestamp_set(skb2);
1992
1993                 /* skb->nh should be correctly
1994                  * set by sender, so that the second statement is
1995                  * just protection against buggy protocols.
1996                  */
1997                 skb_reset_mac_header(skb2);
1998
1999                 if (skb_network_header(skb2) < skb2->data ||
2000                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002                                              ntohs(skb2->protocol),
2003                                              dev->name);
2004                         skb_reset_network_header(skb2);
2005                 }
2006
2007                 skb2->transport_header = skb2->network_header;
2008                 skb2->pkt_type = PACKET_OUTGOING;
2009                 pt_prev = ptype;
2010         }
2011
2012         if (ptype_list == &ptype_all) {
2013                 ptype_list = &dev->ptype_all;
2014                 goto again;
2015         }
2016 out_unlock:
2017         if (pt_prev) {
2018                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020                 else
2021                         kfree_skb(skb2);
2022         }
2023         rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027 /**
2028  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029  * @dev: Network device
2030  * @txq: number of queues available
2031  *
2032  * If real_num_tx_queues is changed the tc mappings may no longer be
2033  * valid. To resolve this verify the tc mapping remains valid and if
2034  * not NULL the mapping. With no priorities mapping to this
2035  * offset/count pair it will no longer be used. In the worst case TC0
2036  * is invalid nothing can be done so disable priority mappings. If is
2037  * expected that drivers will fix this mapping if they can before
2038  * calling netif_set_real_num_tx_queues.
2039  */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042         int i;
2043         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045         /* If TC0 is invalidated disable TC mapping */
2046         if (tc->offset + tc->count > txq) {
2047                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048                 dev->num_tc = 0;
2049                 return;
2050         }
2051
2052         /* Invalidated prio to tc mappings set to TC0 */
2053         for (i = 1; i < TC_BITMASK + 1; i++) {
2054                 int q = netdev_get_prio_tc_map(dev, i);
2055
2056                 tc = &dev->tc_to_txq[q];
2057                 if (tc->offset + tc->count > txq) {
2058                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059                                 i, q);
2060                         netdev_set_prio_tc_map(dev, i, 0);
2061                 }
2062         }
2063 }
2064
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067         if (dev->num_tc) {
2068                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069                 int i;
2070
2071                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072                         if ((txq - tc->offset) < tc->count)
2073                                 return i;
2074                 }
2075
2076                 return -1;
2077         }
2078
2079         return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P)             \
2086         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089                              int tci, u16 index)
2090 {
2091         struct xps_map *map = NULL;
2092         int pos;
2093
2094         if (dev_maps)
2095                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2096         if (!map)
2097                 return false;
2098
2099         for (pos = map->len; pos--;) {
2100                 if (map->queues[pos] != index)
2101                         continue;
2102
2103                 if (map->len > 1) {
2104                         map->queues[pos] = map->queues[--map->len];
2105                         break;
2106                 }
2107
2108                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109                 kfree_rcu(map, rcu);
2110                 return false;
2111         }
2112
2113         return true;
2114 }
2115
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117                                  struct xps_dev_maps *dev_maps,
2118                                  int cpu, u16 offset, u16 count)
2119 {
2120         int num_tc = dev->num_tc ? : 1;
2121         bool active = false;
2122         int tci;
2123
2124         for (tci = cpu * num_tc; num_tc--; tci++) {
2125                 int i, j;
2126
2127                 for (i = count, j = offset; i--; j++) {
2128                         if (!remove_xps_queue(dev_maps, cpu, j))
2129                                 break;
2130                 }
2131
2132                 active |= i < 0;
2133         }
2134
2135         return active;
2136 }
2137
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139                                    u16 count)
2140 {
2141         struct xps_dev_maps *dev_maps;
2142         int cpu, i;
2143         bool active = false;
2144
2145         mutex_lock(&xps_map_mutex);
2146         dev_maps = xmap_dereference(dev->xps_maps);
2147
2148         if (!dev_maps)
2149                 goto out_no_maps;
2150
2151         for_each_possible_cpu(cpu)
2152                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153                                                offset, count);
2154
2155         if (!active) {
2156                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2157                 kfree_rcu(dev_maps, rcu);
2158         }
2159
2160         for (i = offset + (count - 1); count--; i--)
2161                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162                                              NUMA_NO_NODE);
2163
2164 out_no_maps:
2165         mutex_unlock(&xps_map_mutex);
2166 }
2167
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174                                       int cpu, u16 index)
2175 {
2176         struct xps_map *new_map;
2177         int alloc_len = XPS_MIN_MAP_ALLOC;
2178         int i, pos;
2179
2180         for (pos = 0; map && pos < map->len; pos++) {
2181                 if (map->queues[pos] != index)
2182                         continue;
2183                 return map;
2184         }
2185
2186         /* Need to add queue to this CPU's existing map */
2187         if (map) {
2188                 if (pos < map->alloc_len)
2189                         return map;
2190
2191                 alloc_len = map->alloc_len * 2;
2192         }
2193
2194         /* Need to allocate new map to store queue on this CPU's map */
2195         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196                                cpu_to_node(cpu));
2197         if (!new_map)
2198                 return NULL;
2199
2200         for (i = 0; i < pos; i++)
2201                 new_map->queues[i] = map->queues[i];
2202         new_map->alloc_len = alloc_len;
2203         new_map->len = pos;
2204
2205         return new_map;
2206 }
2207
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209                         u16 index)
2210 {
2211         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212         int i, cpu, tci, numa_node_id = -2;
2213         int maps_sz, num_tc = 1, tc = 0;
2214         struct xps_map *map, *new_map;
2215         bool active = false;
2216
2217         if (dev->num_tc) {
2218                 num_tc = dev->num_tc;
2219                 tc = netdev_txq_to_tc(dev, index);
2220                 if (tc < 0)
2221                         return -EINVAL;
2222         }
2223
2224         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225         if (maps_sz < L1_CACHE_BYTES)
2226                 maps_sz = L1_CACHE_BYTES;
2227
2228         mutex_lock(&xps_map_mutex);
2229
2230         dev_maps = xmap_dereference(dev->xps_maps);
2231
2232         /* allocate memory for queue storage */
2233         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234                 if (!new_dev_maps)
2235                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236                 if (!new_dev_maps) {
2237                         mutex_unlock(&xps_map_mutex);
2238                         return -ENOMEM;
2239                 }
2240
2241                 tci = cpu * num_tc + tc;
2242                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243                                  NULL;
2244
2245                 map = expand_xps_map(map, cpu, index);
2246                 if (!map)
2247                         goto error;
2248
2249                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250         }
2251
2252         if (!new_dev_maps)
2253                 goto out_no_new_maps;
2254
2255         for_each_possible_cpu(cpu) {
2256                 /* copy maps belonging to foreign traffic classes */
2257                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258                         /* fill in the new device map from the old device map */
2259                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2260                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261                 }
2262
2263                 /* We need to explicitly update tci as prevous loop
2264                  * could break out early if dev_maps is NULL.
2265                  */
2266                 tci = cpu * num_tc + tc;
2267
2268                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269                         /* add queue to CPU maps */
2270                         int pos = 0;
2271
2272                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273                         while ((pos < map->len) && (map->queues[pos] != index))
2274                                 pos++;
2275
2276                         if (pos == map->len)
2277                                 map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279                         if (numa_node_id == -2)
2280                                 numa_node_id = cpu_to_node(cpu);
2281                         else if (numa_node_id != cpu_to_node(cpu))
2282                                 numa_node_id = -1;
2283 #endif
2284                 } else if (dev_maps) {
2285                         /* fill in the new device map from the old device map */
2286                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2287                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288                 }
2289
2290                 /* copy maps belonging to foreign traffic classes */
2291                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292                         /* fill in the new device map from the old device map */
2293                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2294                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295                 }
2296         }
2297
2298         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299
2300         /* Cleanup old maps */
2301         if (!dev_maps)
2302                 goto out_no_old_maps;
2303
2304         for_each_possible_cpu(cpu) {
2305                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2308                         if (map && map != new_map)
2309                                 kfree_rcu(map, rcu);
2310                 }
2311         }
2312
2313         kfree_rcu(dev_maps, rcu);
2314
2315 out_no_old_maps:
2316         dev_maps = new_dev_maps;
2317         active = true;
2318
2319 out_no_new_maps:
2320         /* update Tx queue numa node */
2321         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322                                      (numa_node_id >= 0) ? numa_node_id :
2323                                      NUMA_NO_NODE);
2324
2325         if (!dev_maps)
2326                 goto out_no_maps;
2327
2328         /* removes queue from unused CPUs */
2329         for_each_possible_cpu(cpu) {
2330                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2331                         active |= remove_xps_queue(dev_maps, tci, index);
2332                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333                         active |= remove_xps_queue(dev_maps, tci, index);
2334                 for (i = num_tc - tc, tci++; --i; tci++)
2335                         active |= remove_xps_queue(dev_maps, tci, index);
2336         }
2337
2338         /* free map if not active */
2339         if (!active) {
2340                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2341                 kfree_rcu(dev_maps, rcu);
2342         }
2343
2344 out_no_maps:
2345         mutex_unlock(&xps_map_mutex);
2346
2347         return 0;
2348 error:
2349         /* remove any maps that we added */
2350         for_each_possible_cpu(cpu) {
2351                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353                         map = dev_maps ?
2354                               xmap_dereference(dev_maps->cpu_map[tci]) :
2355                               NULL;
2356                         if (new_map && new_map != map)
2357                                 kfree(new_map);
2358                 }
2359         }
2360
2361         mutex_unlock(&xps_map_mutex);
2362
2363         kfree(new_dev_maps);
2364         return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372         netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374         dev->num_tc = 0;
2375         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382         if (tc >= dev->num_tc)
2383                 return -EINVAL;
2384
2385 #ifdef CONFIG_XPS
2386         netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388         dev->tc_to_txq[tc].count = count;
2389         dev->tc_to_txq[tc].offset = offset;
2390         return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396         if (num_tc > TC_MAX_QUEUE)
2397                 return -EINVAL;
2398
2399 #ifdef CONFIG_XPS
2400         netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402         dev->num_tc = num_tc;
2403         return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406
2407 /*
2408  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410  */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413         bool disabling;
2414         int rc;
2415
2416         disabling = txq < dev->real_num_tx_queues;
2417
2418         if (txq < 1 || txq > dev->num_tx_queues)
2419                 return -EINVAL;
2420
2421         if (dev->reg_state == NETREG_REGISTERED ||
2422             dev->reg_state == NETREG_UNREGISTERING) {
2423                 ASSERT_RTNL();
2424
2425                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426                                                   txq);
2427                 if (rc)
2428                         return rc;
2429
2430                 if (dev->num_tc)
2431                         netif_setup_tc(dev, txq);
2432
2433                 dev->real_num_tx_queues = txq;
2434
2435                 if (disabling) {
2436                         synchronize_net();
2437                         qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439                         netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441                 }
2442         } else {
2443                 dev->real_num_tx_queues = txq;
2444         }
2445
2446         return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449
2450 #ifdef CONFIG_SYSFS
2451 /**
2452  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2453  *      @dev: Network device
2454  *      @rxq: Actual number of RX queues
2455  *
2456  *      This must be called either with the rtnl_lock held or before
2457  *      registration of the net device.  Returns 0 on success, or a
2458  *      negative error code.  If called before registration, it always
2459  *      succeeds.
2460  */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463         int rc;
2464
2465         if (rxq < 1 || rxq > dev->num_rx_queues)
2466                 return -EINVAL;
2467
2468         if (dev->reg_state == NETREG_REGISTERED) {
2469                 ASSERT_RTNL();
2470
2471                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472                                                   rxq);
2473                 if (rc)
2474                         return rc;
2475         }
2476
2477         dev->real_num_rx_queues = rxq;
2478         return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482
2483 /**
2484  * netif_get_num_default_rss_queues - default number of RSS queues
2485  *
2486  * This routine should set an upper limit on the number of RSS queues
2487  * used by default by multiqueue devices.
2488  */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491         return is_kdump_kernel() ?
2492                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498         struct softnet_data *sd;
2499         unsigned long flags;
2500
2501         local_irq_save(flags);
2502         sd = this_cpu_ptr(&softnet_data);
2503         q->next_sched = NULL;
2504         *sd->output_queue_tailp = q;
2505         sd->output_queue_tailp = &q->next_sched;
2506         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507         local_irq_restore(flags);
2508 }
2509
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513                 __netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516
2517 struct dev_kfree_skb_cb {
2518         enum skb_free_reason reason;
2519 };
2520
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523         return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528         rcu_read_lock();
2529         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2531
2532                 __netif_schedule(q);
2533         }
2534         rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541                 struct Qdisc *q;
2542
2543                 rcu_read_lock();
2544                 q = rcu_dereference(dev_queue->qdisc);
2545                 __netif_schedule(q);
2546                 rcu_read_unlock();
2547         }
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553         unsigned long flags;
2554
2555         if (unlikely(!skb))
2556                 return;
2557
2558         if (likely(refcount_read(&skb->users) == 1)) {
2559                 smp_rmb();
2560                 refcount_set(&skb->users, 0);
2561         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2562                 return;
2563         }
2564         get_kfree_skb_cb(skb)->reason = reason;
2565         local_irq_save(flags);
2566         skb->next = __this_cpu_read(softnet_data.completion_queue);
2567         __this_cpu_write(softnet_data.completion_queue, skb);
2568         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569         local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575         if (in_irq() || irqs_disabled())
2576                 __dev_kfree_skb_irq(skb, reason);
2577         else
2578                 dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581
2582
2583 /**
2584  * netif_device_detach - mark device as removed
2585  * @dev: network device
2586  *
2587  * Mark device as removed from system and therefore no longer available.
2588  */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592             netif_running(dev)) {
2593                 netif_tx_stop_all_queues(dev);
2594         }
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597
2598 /**
2599  * netif_device_attach - mark device as attached
2600  * @dev: network device
2601  *
2602  * Mark device as attached from system and restart if needed.
2603  */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607             netif_running(dev)) {
2608                 netif_tx_wake_all_queues(dev);
2609                 __netdev_watchdog_up(dev);
2610         }
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613
2614 /*
2615  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616  * to be used as a distribution range.
2617  */
2618 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2619                   unsigned int num_tx_queues)
2620 {
2621         u32 hash;
2622         u16 qoffset = 0;
2623         u16 qcount = num_tx_queues;
2624
2625         if (skb_rx_queue_recorded(skb)) {
2626                 hash = skb_get_rx_queue(skb);
2627                 while (unlikely(hash >= num_tx_queues))
2628                         hash -= num_tx_queues;
2629                 return hash;
2630         }
2631
2632         if (dev->num_tc) {
2633                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2634
2635                 qoffset = dev->tc_to_txq[tc].offset;
2636                 qcount = dev->tc_to_txq[tc].count;
2637         }
2638
2639         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2640 }
2641 EXPORT_SYMBOL(__skb_tx_hash);
2642
2643 static void skb_warn_bad_offload(const struct sk_buff *skb)
2644 {
2645         static const netdev_features_t null_features;
2646         struct net_device *dev = skb->dev;
2647         const char *name = "";
2648
2649         if (!net_ratelimit())
2650                 return;
2651
2652         if (dev) {
2653                 if (dev->dev.parent)
2654                         name = dev_driver_string(dev->dev.parent);
2655                 else
2656                         name = netdev_name(dev);
2657         }
2658         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2659              "gso_type=%d ip_summed=%d\n",
2660              name, dev ? &dev->features : &null_features,
2661              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2662              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2663              skb_shinfo(skb)->gso_type, skb->ip_summed);
2664 }
2665
2666 /*
2667  * Invalidate hardware checksum when packet is to be mangled, and
2668  * complete checksum manually on outgoing path.
2669  */
2670 int skb_checksum_help(struct sk_buff *skb)
2671 {
2672         __wsum csum;
2673         int ret = 0, offset;
2674
2675         if (skb->ip_summed == CHECKSUM_COMPLETE)
2676                 goto out_set_summed;
2677
2678         if (unlikely(skb_shinfo(skb)->gso_size)) {
2679                 skb_warn_bad_offload(skb);
2680                 return -EINVAL;
2681         }
2682
2683         /* Before computing a checksum, we should make sure no frag could
2684          * be modified by an external entity : checksum could be wrong.
2685          */
2686         if (skb_has_shared_frag(skb)) {
2687                 ret = __skb_linearize(skb);
2688                 if (ret)
2689                         goto out;
2690         }
2691
2692         offset = skb_checksum_start_offset(skb);
2693         BUG_ON(offset >= skb_headlen(skb));
2694         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2695
2696         offset += skb->csum_offset;
2697         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2698
2699         if (skb_cloned(skb) &&
2700             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2701                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2702                 if (ret)
2703                         goto out;
2704         }
2705
2706         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2707 out_set_summed:
2708         skb->ip_summed = CHECKSUM_NONE;
2709 out:
2710         return ret;
2711 }
2712 EXPORT_SYMBOL(skb_checksum_help);
2713
2714 int skb_crc32c_csum_help(struct sk_buff *skb)
2715 {
2716         __le32 crc32c_csum;
2717         int ret = 0, offset, start;
2718
2719         if (skb->ip_summed != CHECKSUM_PARTIAL)
2720                 goto out;
2721
2722         if (unlikely(skb_is_gso(skb)))
2723                 goto out;
2724
2725         /* Before computing a checksum, we should make sure no frag could
2726          * be modified by an external entity : checksum could be wrong.
2727          */
2728         if (unlikely(skb_has_shared_frag(skb))) {
2729                 ret = __skb_linearize(skb);
2730                 if (ret)
2731                         goto out;
2732         }
2733         start = skb_checksum_start_offset(skb);
2734         offset = start + offsetof(struct sctphdr, checksum);
2735         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2736                 ret = -EINVAL;
2737                 goto out;
2738         }
2739         if (skb_cloned(skb) &&
2740             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2741                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2742                 if (ret)
2743                         goto out;
2744         }
2745         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2746                                                   skb->len - start, ~(__u32)0,
2747                                                   crc32c_csum_stub));
2748         *(__le32 *)(skb->data + offset) = crc32c_csum;
2749         skb->ip_summed = CHECKSUM_NONE;
2750         skb->csum_not_inet = 0;
2751 out:
2752         return ret;
2753 }
2754
2755 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2756 {
2757         __be16 type = skb->protocol;
2758
2759         /* Tunnel gso handlers can set protocol to ethernet. */
2760         if (type == htons(ETH_P_TEB)) {
2761                 struct ethhdr *eth;
2762
2763                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2764                         return 0;
2765
2766                 eth = (struct ethhdr *)skb->data;
2767                 type = eth->h_proto;
2768         }
2769
2770         return __vlan_get_protocol(skb, type, depth);
2771 }
2772
2773 /**
2774  *      skb_mac_gso_segment - mac layer segmentation handler.
2775  *      @skb: buffer to segment
2776  *      @features: features for the output path (see dev->features)
2777  */
2778 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2779                                     netdev_features_t features)
2780 {
2781         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2782         struct packet_offload *ptype;
2783         int vlan_depth = skb->mac_len;
2784         __be16 type = skb_network_protocol(skb, &vlan_depth);
2785
2786         if (unlikely(!type))
2787                 return ERR_PTR(-EINVAL);
2788
2789         __skb_pull(skb, vlan_depth);
2790
2791         rcu_read_lock();
2792         list_for_each_entry_rcu(ptype, &offload_base, list) {
2793                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2794                         segs = ptype->callbacks.gso_segment(skb, features);
2795                         break;
2796                 }
2797         }
2798         rcu_read_unlock();
2799
2800         __skb_push(skb, skb->data - skb_mac_header(skb));
2801
2802         return segs;
2803 }
2804 EXPORT_SYMBOL(skb_mac_gso_segment);
2805
2806
2807 /* openvswitch calls this on rx path, so we need a different check.
2808  */
2809 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2810 {
2811         if (tx_path)
2812                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2813                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2814
2815         return skb->ip_summed == CHECKSUM_NONE;
2816 }
2817
2818 /**
2819  *      __skb_gso_segment - Perform segmentation on skb.
2820  *      @skb: buffer to segment
2821  *      @features: features for the output path (see dev->features)
2822  *      @tx_path: whether it is called in TX path
2823  *
2824  *      This function segments the given skb and returns a list of segments.
2825  *
2826  *      It may return NULL if the skb requires no segmentation.  This is
2827  *      only possible when GSO is used for verifying header integrity.
2828  *
2829  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2830  */
2831 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2832                                   netdev_features_t features, bool tx_path)
2833 {
2834         struct sk_buff *segs;
2835
2836         if (unlikely(skb_needs_check(skb, tx_path))) {
2837                 int err;
2838
2839                 /* We're going to init ->check field in TCP or UDP header */
2840                 err = skb_cow_head(skb, 0);
2841                 if (err < 0)
2842                         return ERR_PTR(err);
2843         }
2844
2845         /* Only report GSO partial support if it will enable us to
2846          * support segmentation on this frame without needing additional
2847          * work.
2848          */
2849         if (features & NETIF_F_GSO_PARTIAL) {
2850                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2851                 struct net_device *dev = skb->dev;
2852
2853                 partial_features |= dev->features & dev->gso_partial_features;
2854                 if (!skb_gso_ok(skb, features | partial_features))
2855                         features &= ~NETIF_F_GSO_PARTIAL;
2856         }
2857
2858         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2859                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2860
2861         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2862         SKB_GSO_CB(skb)->encap_level = 0;
2863
2864         skb_reset_mac_header(skb);
2865         skb_reset_mac_len(skb);
2866
2867         segs = skb_mac_gso_segment(skb, features);
2868
2869         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2870                 skb_warn_bad_offload(skb);
2871
2872         return segs;
2873 }
2874 EXPORT_SYMBOL(__skb_gso_segment);
2875
2876 /* Take action when hardware reception checksum errors are detected. */
2877 #ifdef CONFIG_BUG
2878 void netdev_rx_csum_fault(struct net_device *dev)
2879 {
2880         if (net_ratelimit()) {
2881                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2882                 dump_stack();
2883         }
2884 }
2885 EXPORT_SYMBOL(netdev_rx_csum_fault);
2886 #endif
2887
2888 /* Actually, we should eliminate this check as soon as we know, that:
2889  * 1. IOMMU is present and allows to map all the memory.
2890  * 2. No high memory really exists on this machine.
2891  */
2892
2893 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2894 {
2895 #ifdef CONFIG_HIGHMEM
2896         int i;
2897
2898         if (!(dev->features & NETIF_F_HIGHDMA)) {
2899                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2900                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2901
2902                         if (PageHighMem(skb_frag_page(frag)))
2903                                 return 1;
2904                 }
2905         }
2906
2907         if (PCI_DMA_BUS_IS_PHYS) {
2908                 struct device *pdev = dev->dev.parent;
2909
2910                 if (!pdev)
2911                         return 0;
2912                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2913                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2914                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2915
2916                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2917                                 return 1;
2918                 }
2919         }
2920 #endif
2921         return 0;
2922 }
2923
2924 /* If MPLS offload request, verify we are testing hardware MPLS features
2925  * instead of standard features for the netdev.
2926  */
2927 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2928 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2929                                            netdev_features_t features,
2930                                            __be16 type)
2931 {
2932         if (eth_p_mpls(type))
2933                 features &= skb->dev->mpls_features;
2934
2935         return features;
2936 }
2937 #else
2938 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2939                                            netdev_features_t features,
2940                                            __be16 type)
2941 {
2942         return features;
2943 }
2944 #endif
2945
2946 static netdev_features_t harmonize_features(struct sk_buff *skb,
2947         netdev_features_t features)
2948 {
2949         int tmp;
2950         __be16 type;
2951
2952         type = skb_network_protocol(skb, &tmp);
2953         features = net_mpls_features(skb, features, type);
2954
2955         if (skb->ip_summed != CHECKSUM_NONE &&
2956             !can_checksum_protocol(features, type)) {
2957                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2958         }
2959         if (illegal_highdma(skb->dev, skb))
2960                 features &= ~NETIF_F_SG;
2961
2962         return features;
2963 }
2964
2965 netdev_features_t passthru_features_check(struct sk_buff *skb,
2966                                           struct net_device *dev,
2967                                           netdev_features_t features)
2968 {
2969         return features;
2970 }
2971 EXPORT_SYMBOL(passthru_features_check);
2972
2973 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2974                                              struct net_device *dev,
2975                                              netdev_features_t features)
2976 {
2977         return vlan_features_check(skb, features);
2978 }
2979
2980 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2981                                             struct net_device *dev,
2982                                             netdev_features_t features)
2983 {
2984         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2985
2986         if (gso_segs > dev->gso_max_segs)
2987                 return features & ~NETIF_F_GSO_MASK;
2988
2989         /* Support for GSO partial features requires software
2990          * intervention before we can actually process the packets
2991          * so we need to strip support for any partial features now
2992          * and we can pull them back in after we have partially
2993          * segmented the frame.
2994          */
2995         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2996                 features &= ~dev->gso_partial_features;
2997
2998         /* Make sure to clear the IPv4 ID mangling feature if the
2999          * IPv4 header has the potential to be fragmented.
3000          */
3001         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3002                 struct iphdr *iph = skb->encapsulation ?
3003                                     inner_ip_hdr(skb) : ip_hdr(skb);
3004
3005                 if (!(iph->frag_off & htons(IP_DF)))
3006                         features &= ~NETIF_F_TSO_MANGLEID;
3007         }
3008
3009         return features;
3010 }
3011
3012 netdev_features_t netif_skb_features(struct sk_buff *skb)
3013 {
3014         struct net_device *dev = skb->dev;
3015         netdev_features_t features = dev->features;
3016
3017         if (skb_is_gso(skb))
3018                 features = gso_features_check(skb, dev, features);
3019
3020         /* If encapsulation offload request, verify we are testing
3021          * hardware encapsulation features instead of standard
3022          * features for the netdev
3023          */
3024         if (skb->encapsulation)
3025                 features &= dev->hw_enc_features;
3026
3027         if (skb_vlan_tagged(skb))
3028                 features = netdev_intersect_features(features,
3029                                                      dev->vlan_features |
3030                                                      NETIF_F_HW_VLAN_CTAG_TX |
3031                                                      NETIF_F_HW_VLAN_STAG_TX);
3032
3033         if (dev->netdev_ops->ndo_features_check)
3034                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3035                                                                 features);
3036         else
3037                 features &= dflt_features_check(skb, dev, features);
3038
3039         return harmonize_features(skb, features);
3040 }
3041 EXPORT_SYMBOL(netif_skb_features);
3042
3043 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3044                     struct netdev_queue *txq, bool more)
3045 {
3046         unsigned int len;
3047         int rc;
3048
3049         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3050                 dev_queue_xmit_nit(skb, dev);
3051
3052         len = skb->len;
3053         trace_net_dev_start_xmit(skb, dev);
3054         rc = netdev_start_xmit(skb, dev, txq, more);
3055         trace_net_dev_xmit(skb, rc, dev, len);
3056
3057         return rc;
3058 }
3059
3060 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3061                                     struct netdev_queue *txq, int *ret)
3062 {
3063         struct sk_buff *skb = first;
3064         int rc = NETDEV_TX_OK;
3065
3066         while (skb) {
3067                 struct sk_buff *next = skb->next;
3068
3069                 skb->next = NULL;
3070                 rc = xmit_one(skb, dev, txq, next != NULL);
3071                 if (unlikely(!dev_xmit_complete(rc))) {
3072                         skb->next = next;
3073                         goto out;
3074                 }
3075
3076                 skb = next;
3077                 if (netif_xmit_stopped(txq) && skb) {
3078                         rc = NETDEV_TX_BUSY;
3079                         break;
3080                 }
3081         }
3082
3083 out:
3084         *ret = rc;
3085         return skb;
3086 }
3087
3088 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3089                                           netdev_features_t features)
3090 {
3091         if (skb_vlan_tag_present(skb) &&
3092             !vlan_hw_offload_capable(features, skb->vlan_proto))
3093                 skb = __vlan_hwaccel_push_inside(skb);
3094         return skb;
3095 }
3096
3097 int skb_csum_hwoffload_help(struct sk_buff *skb,
3098                             const netdev_features_t features)
3099 {
3100         if (unlikely(skb->csum_not_inet))
3101                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3102                         skb_crc32c_csum_help(skb);
3103
3104         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3105 }
3106 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3107
3108 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3109 {
3110         netdev_features_t features;
3111
3112         features = netif_skb_features(skb);
3113         skb = validate_xmit_vlan(skb, features);
3114         if (unlikely(!skb))
3115                 goto out_null;
3116
3117         if (netif_needs_gso(skb, features)) {
3118                 struct sk_buff *segs;
3119
3120                 segs = skb_gso_segment(skb, features);
3121                 if (IS_ERR(segs)) {
3122                         goto out_kfree_skb;
3123                 } else if (segs) {
3124                         consume_skb(skb);
3125                         skb = segs;
3126                 }
3127         } else {
3128                 if (skb_needs_linearize(skb, features) &&
3129                     __skb_linearize(skb))
3130                         goto out_kfree_skb;
3131
3132                 /* If packet is not checksummed and device does not
3133                  * support checksumming for this protocol, complete
3134                  * checksumming here.
3135                  */
3136                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3137                         if (skb->encapsulation)
3138                                 skb_set_inner_transport_header(skb,
3139                                                                skb_checksum_start_offset(skb));
3140                         else
3141                                 skb_set_transport_header(skb,
3142                                                          skb_checksum_start_offset(skb));
3143                         if (skb_csum_hwoffload_help(skb, features))
3144                                 goto out_kfree_skb;
3145                 }
3146         }
3147
3148         skb = validate_xmit_xfrm(skb, features, again);
3149
3150         return skb;
3151
3152 out_kfree_skb:
3153         kfree_skb(skb);
3154 out_null:
3155         atomic_long_inc(&dev->tx_dropped);
3156         return NULL;
3157 }
3158
3159 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3160 {
3161         struct sk_buff *next, *head = NULL, *tail;
3162
3163         for (; skb != NULL; skb = next) {
3164                 next = skb->next;
3165                 skb->next = NULL;
3166
3167                 /* in case skb wont be segmented, point to itself */
3168                 skb->prev = skb;
3169
3170                 skb = validate_xmit_skb(skb, dev, again);
3171                 if (!skb)
3172                         continue;
3173
3174                 if (!head)
3175                         head = skb;
3176                 else
3177                         tail->next = skb;
3178                 /* If skb was segmented, skb->prev points to
3179                  * the last segment. If not, it still contains skb.
3180                  */
3181                 tail = skb->prev;
3182         }
3183         return head;
3184 }
3185 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3186
3187 static void qdisc_pkt_len_init(struct sk_buff *skb)
3188 {
3189         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3190
3191         qdisc_skb_cb(skb)->pkt_len = skb->len;
3192
3193         /* To get more precise estimation of bytes sent on wire,
3194          * we add to pkt_len the headers size of all segments
3195          */
3196         if (shinfo->gso_size)  {
3197                 unsigned int hdr_len;
3198                 u16 gso_segs = shinfo->gso_segs;
3199
3200                 /* mac layer + network layer */
3201                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3202
3203                 /* + transport layer */
3204                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3205                         const struct tcphdr *th;
3206                         struct tcphdr _tcphdr;
3207
3208                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3209                                                 sizeof(_tcphdr), &_tcphdr);
3210                         if (likely(th))
3211                                 hdr_len += __tcp_hdrlen(th);
3212                 } else {
3213                         struct udphdr _udphdr;
3214
3215                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3216                                                sizeof(_udphdr), &_udphdr))
3217                                 hdr_len += sizeof(struct udphdr);
3218                 }
3219
3220                 if (shinfo->gso_type & SKB_GSO_DODGY)
3221                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3222                                                 shinfo->gso_size);
3223
3224                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3225         }
3226 }
3227
3228 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3229                                  struct net_device *dev,
3230                                  struct netdev_queue *txq)
3231 {
3232         spinlock_t *root_lock = qdisc_lock(q);
3233         struct sk_buff *to_free = NULL;
3234         bool contended;
3235         int rc;
3236
3237         qdisc_calculate_pkt_len(skb, q);
3238
3239         if (q->flags & TCQ_F_NOLOCK) {
3240                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3241                         __qdisc_drop(skb, &to_free);
3242                         rc = NET_XMIT_DROP;
3243                 } else {
3244                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3245                         __qdisc_run(q);
3246                 }
3247
3248                 if (unlikely(to_free))
3249                         kfree_skb_list(to_free);
3250                 return rc;
3251         }
3252
3253         /*
3254          * Heuristic to force contended enqueues to serialize on a
3255          * separate lock before trying to get qdisc main lock.
3256          * This permits qdisc->running owner to get the lock more
3257          * often and dequeue packets faster.
3258          */
3259         contended = qdisc_is_running(q);
3260         if (unlikely(contended))
3261                 spin_lock(&q->busylock);
3262
3263         spin_lock(root_lock);
3264         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3265                 __qdisc_drop(skb, &to_free);
3266                 rc = NET_XMIT_DROP;
3267         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3268                    qdisc_run_begin(q)) {
3269                 /*
3270                  * This is a work-conserving queue; there are no old skbs
3271                  * waiting to be sent out; and the qdisc is not running -
3272                  * xmit the skb directly.
3273                  */
3274
3275                 qdisc_bstats_update(q, skb);
3276
3277                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3278                         if (unlikely(contended)) {
3279                                 spin_unlock(&q->busylock);
3280                                 contended = false;
3281                         }
3282                         __qdisc_run(q);
3283                 }
3284
3285                 qdisc_run_end(q);
3286                 rc = NET_XMIT_SUCCESS;
3287         } else {
3288                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3289                 if (qdisc_run_begin(q)) {
3290                         if (unlikely(contended)) {
3291                                 spin_unlock(&q->busylock);
3292                                 contended = false;
3293                         }
3294                         __qdisc_run(q);
3295                         qdisc_run_end(q);
3296                 }
3297         }
3298         spin_unlock(root_lock);
3299         if (unlikely(to_free))
3300                 kfree_skb_list(to_free);
3301         if (unlikely(contended))
3302                 spin_unlock(&q->busylock);
3303         return rc;
3304 }
3305
3306 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3307 static void skb_update_prio(struct sk_buff *skb)
3308 {
3309         const struct netprio_map *map;
3310         const struct sock *sk;
3311         unsigned int prioidx;
3312
3313         if (skb->priority)
3314                 return;
3315         map = rcu_dereference_bh(skb->dev->priomap);
3316         if (!map)
3317                 return;
3318         sk = skb_to_full_sk(skb);
3319         if (!sk)
3320                 return;
3321
3322         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3323
3324         if (prioidx < map->priomap_len)
3325                 skb->priority = map->priomap[prioidx];
3326 }
3327 #else
3328 #define skb_update_prio(skb)
3329 #endif
3330
3331 DEFINE_PER_CPU(int, xmit_recursion);
3332 EXPORT_SYMBOL(xmit_recursion);
3333
3334 /**
3335  *      dev_loopback_xmit - loop back @skb
3336  *      @net: network namespace this loopback is happening in
3337  *      @sk:  sk needed to be a netfilter okfn
3338  *      @skb: buffer to transmit
3339  */
3340 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3341 {
3342         skb_reset_mac_header(skb);
3343         __skb_pull(skb, skb_network_offset(skb));
3344         skb->pkt_type = PACKET_LOOPBACK;
3345         skb->ip_summed = CHECKSUM_UNNECESSARY;
3346         WARN_ON(!skb_dst(skb));
3347         skb_dst_force(skb);
3348         netif_rx_ni(skb);
3349         return 0;
3350 }
3351 EXPORT_SYMBOL(dev_loopback_xmit);
3352
3353 #ifdef CONFIG_NET_EGRESS
3354 static struct sk_buff *
3355 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3356 {
3357         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3358         struct tcf_result cl_res;
3359
3360         if (!miniq)
3361                 return skb;
3362
3363         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3364         mini_qdisc_bstats_cpu_update(miniq, skb);
3365
3366         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3367         case TC_ACT_OK:
3368         case TC_ACT_RECLASSIFY:
3369                 skb->tc_index = TC_H_MIN(cl_res.classid);
3370                 break;
3371         case TC_ACT_SHOT:
3372                 mini_qdisc_qstats_cpu_drop(miniq);
3373                 *ret = NET_XMIT_DROP;
3374                 kfree_skb(skb);
3375                 return NULL;
3376         case TC_ACT_STOLEN:
3377         case TC_ACT_QUEUED:
3378         case TC_ACT_TRAP:
3379                 *ret = NET_XMIT_SUCCESS;
3380                 consume_skb(skb);
3381                 return NULL;
3382         case TC_ACT_REDIRECT:
3383                 /* No need to push/pop skb's mac_header here on egress! */
3384                 skb_do_redirect(skb);
3385                 *ret = NET_XMIT_SUCCESS;
3386                 return NULL;
3387         default:
3388                 break;
3389         }
3390
3391         return skb;
3392 }
3393 #endif /* CONFIG_NET_EGRESS */
3394
3395 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3396 {
3397 #ifdef CONFIG_XPS
3398         struct xps_dev_maps *dev_maps;
3399         struct xps_map *map;
3400         int queue_index = -1;
3401
3402         rcu_read_lock();
3403         dev_maps = rcu_dereference(dev->xps_maps);
3404         if (dev_maps) {
3405                 unsigned int tci = skb->sender_cpu - 1;
3406
3407                 if (dev->num_tc) {
3408                         tci *= dev->num_tc;
3409                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3410                 }
3411
3412                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3413                 if (map) {
3414                         if (map->len == 1)
3415                                 queue_index = map->queues[0];
3416                         else
3417                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3418                                                                            map->len)];
3419                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3420                                 queue_index = -1;
3421                 }
3422         }
3423         rcu_read_unlock();
3424
3425         return queue_index;
3426 #else
3427         return -1;
3428 #endif
3429 }
3430
3431 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3432 {
3433         struct sock *sk = skb->sk;
3434         int queue_index = sk_tx_queue_get(sk);
3435
3436         if (queue_index < 0 || skb->ooo_okay ||
3437             queue_index >= dev->real_num_tx_queues) {
3438                 int new_index = get_xps_queue(dev, skb);
3439
3440                 if (new_index < 0)
3441                         new_index = skb_tx_hash(dev, skb);
3442
3443                 if (queue_index != new_index && sk &&
3444                     sk_fullsock(sk) &&
3445                     rcu_access_pointer(sk->sk_dst_cache))
3446                         sk_tx_queue_set(sk, new_index);
3447
3448                 queue_index = new_index;
3449         }
3450
3451         return queue_index;
3452 }
3453
3454 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3455                                     struct sk_buff *skb,
3456                                     void *accel_priv)
3457 {
3458         int queue_index = 0;
3459
3460 #ifdef CONFIG_XPS
3461         u32 sender_cpu = skb->sender_cpu - 1;
3462
3463         if (sender_cpu >= (u32)NR_CPUS)
3464                 skb->sender_cpu = raw_smp_processor_id() + 1;
3465 #endif
3466
3467         if (dev->real_num_tx_queues != 1) {
3468                 const struct net_device_ops *ops = dev->netdev_ops;
3469
3470                 if (ops->ndo_select_queue)
3471                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3472                                                             __netdev_pick_tx);
3473                 else
3474                         queue_index = __netdev_pick_tx(dev, skb);
3475
3476                 queue_index = netdev_cap_txqueue(dev, queue_index);
3477         }
3478
3479         skb_set_queue_mapping(skb, queue_index);
3480         return netdev_get_tx_queue(dev, queue_index);
3481 }
3482
3483 /**
3484  *      __dev_queue_xmit - transmit a buffer
3485  *      @skb: buffer to transmit
3486  *      @accel_priv: private data used for L2 forwarding offload
3487  *
3488  *      Queue a buffer for transmission to a network device. The caller must
3489  *      have set the device and priority and built the buffer before calling
3490  *      this function. The function can be called from an interrupt.
3491  *
3492  *      A negative errno code is returned on a failure. A success does not
3493  *      guarantee the frame will be transmitted as it may be dropped due
3494  *      to congestion or traffic shaping.
3495  *
3496  * -----------------------------------------------------------------------------------
3497  *      I notice this method can also return errors from the queue disciplines,
3498  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3499  *      be positive.
3500  *
3501  *      Regardless of the return value, the skb is consumed, so it is currently
3502  *      difficult to retry a send to this method.  (You can bump the ref count
3503  *      before sending to hold a reference for retry if you are careful.)
3504  *
3505  *      When calling this method, interrupts MUST be enabled.  This is because
3506  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3507  *          --BLG
3508  */
3509 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3510 {
3511         struct net_device *dev = skb->dev;
3512         struct netdev_queue *txq;
3513         struct Qdisc *q;
3514         int rc = -ENOMEM;
3515         bool again = false;
3516
3517         skb_reset_mac_header(skb);
3518
3519         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3520                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3521
3522         /* Disable soft irqs for various locks below. Also
3523          * stops preemption for RCU.
3524          */
3525         rcu_read_lock_bh();
3526
3527         skb_update_prio(skb);
3528
3529         qdisc_pkt_len_init(skb);
3530 #ifdef CONFIG_NET_CLS_ACT
3531         skb->tc_at_ingress = 0;
3532 # ifdef CONFIG_NET_EGRESS
3533         if (static_key_false(&egress_needed)) {
3534                 skb = sch_handle_egress(skb, &rc, dev);
3535                 if (!skb)
3536                         goto out;
3537         }
3538 # endif
3539 #endif
3540         /* If device/qdisc don't need skb->dst, release it right now while
3541          * its hot in this cpu cache.
3542          */
3543         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3544                 skb_dst_drop(skb);
3545         else
3546                 skb_dst_force(skb);
3547
3548         txq = netdev_pick_tx(dev, skb, accel_priv);
3549         q = rcu_dereference_bh(txq->qdisc);
3550
3551         trace_net_dev_queue(skb);
3552         if (q->enqueue) {
3553                 rc = __dev_xmit_skb(skb, q, dev, txq);
3554                 goto out;
3555         }
3556
3557         /* The device has no queue. Common case for software devices:
3558          * loopback, all the sorts of tunnels...
3559
3560          * Really, it is unlikely that netif_tx_lock protection is necessary
3561          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3562          * counters.)
3563          * However, it is possible, that they rely on protection
3564          * made by us here.
3565
3566          * Check this and shot the lock. It is not prone from deadlocks.
3567          *Either shot noqueue qdisc, it is even simpler 8)
3568          */
3569         if (dev->flags & IFF_UP) {
3570                 int cpu = smp_processor_id(); /* ok because BHs are off */
3571
3572                 if (txq->xmit_lock_owner != cpu) {
3573                         if (unlikely(__this_cpu_read(xmit_recursion) >
3574                                      XMIT_RECURSION_LIMIT))
3575                                 goto recursion_alert;
3576
3577                         skb = validate_xmit_skb(skb, dev, &again);
3578                         if (!skb)
3579                                 goto out;
3580
3581                         HARD_TX_LOCK(dev, txq, cpu);
3582
3583                         if (!netif_xmit_stopped(txq)) {
3584                                 __this_cpu_inc(xmit_recursion);
3585                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3586                                 __this_cpu_dec(xmit_recursion);
3587                                 if (dev_xmit_complete(rc)) {
3588                                         HARD_TX_UNLOCK(dev, txq);
3589                                         goto out;
3590                                 }
3591                         }
3592                         HARD_TX_UNLOCK(dev, txq);
3593                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3594                                              dev->name);
3595                 } else {
3596                         /* Recursion is detected! It is possible,
3597                          * unfortunately
3598                          */
3599 recursion_alert:
3600                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3601                                              dev->name);
3602                 }
3603         }
3604
3605         rc = -ENETDOWN;
3606         rcu_read_unlock_bh();
3607
3608         atomic_long_inc(&dev->tx_dropped);
3609         kfree_skb_list(skb);
3610         return rc;
3611 out:
3612         rcu_read_unlock_bh();
3613         return rc;
3614 }
3615
3616 int dev_queue_xmit(struct sk_buff *skb)
3617 {
3618         return __dev_queue_xmit(skb, NULL);
3619 }
3620 EXPORT_SYMBOL(dev_queue_xmit);
3621
3622 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3623 {
3624         return __dev_queue_xmit(skb, accel_priv);
3625 }
3626 EXPORT_SYMBOL(dev_queue_xmit_accel);
3627
3628
3629 /*************************************************************************
3630  *                      Receiver routines
3631  *************************************************************************/
3632
3633 int netdev_max_backlog __read_mostly = 1000;
3634 EXPORT_SYMBOL(netdev_max_backlog);
3635
3636 int netdev_tstamp_prequeue __read_mostly = 1;
3637 int netdev_budget __read_mostly = 300;
3638 unsigned int __read_mostly netdev_budget_usecs = 2000;
3639 int weight_p __read_mostly = 64;           /* old backlog weight */
3640 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3641 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3642 int dev_rx_weight __read_mostly = 64;
3643 int dev_tx_weight __read_mostly = 64;
3644
3645 /* Called with irq disabled */
3646 static inline void ____napi_schedule(struct softnet_data *sd,
3647                                      struct napi_struct *napi)
3648 {
3649         list_add_tail(&napi->poll_list, &sd->poll_list);
3650         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3651 }
3652
3653 #ifdef CONFIG_RPS
3654
3655 /* One global table that all flow-based protocols share. */
3656 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3657 EXPORT_SYMBOL(rps_sock_flow_table);
3658 u32 rps_cpu_mask __read_mostly;
3659 EXPORT_SYMBOL(rps_cpu_mask);
3660
3661 struct static_key rps_needed __read_mostly;
3662 EXPORT_SYMBOL(rps_needed);
3663 struct static_key rfs_needed __read_mostly;
3664 EXPORT_SYMBOL(rfs_needed);
3665
3666 static struct rps_dev_flow *
3667 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3668             struct rps_dev_flow *rflow, u16 next_cpu)
3669 {
3670         if (next_cpu < nr_cpu_ids) {
3671 #ifdef CONFIG_RFS_ACCEL
3672                 struct netdev_rx_queue *rxqueue;
3673                 struct rps_dev_flow_table *flow_table;
3674                 struct rps_dev_flow *old_rflow;
3675                 u32 flow_id;
3676                 u16 rxq_index;
3677                 int rc;
3678
3679                 /* Should we steer this flow to a different hardware queue? */
3680                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3681                     !(dev->features & NETIF_F_NTUPLE))
3682                         goto out;
3683                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3684                 if (rxq_index == skb_get_rx_queue(skb))
3685                         goto out;
3686
3687                 rxqueue = dev->_rx + rxq_index;
3688                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3689                 if (!flow_table)
3690                         goto out;
3691                 flow_id = skb_get_hash(skb) & flow_table->mask;
3692                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3693                                                         rxq_index, flow_id);
3694                 if (rc < 0)
3695                         goto out;
3696                 old_rflow = rflow;
3697                 rflow = &flow_table->flows[flow_id];
3698                 rflow->filter = rc;
3699                 if (old_rflow->filter == rflow->filter)
3700                         old_rflow->filter = RPS_NO_FILTER;
3701         out:
3702 #endif
3703                 rflow->last_qtail =
3704                         per_cpu(softnet_data, next_cpu).input_queue_head;
3705         }
3706
3707         rflow->cpu = next_cpu;
3708         return rflow;
3709 }
3710
3711 /*
3712  * get_rps_cpu is called from netif_receive_skb and returns the target
3713  * CPU from the RPS map of the receiving queue for a given skb.
3714  * rcu_read_lock must be held on entry.
3715  */
3716 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3717                        struct rps_dev_flow **rflowp)
3718 {
3719         const struct rps_sock_flow_table *sock_flow_table;
3720         struct netdev_rx_queue *rxqueue = dev->_rx;
3721         struct rps_dev_flow_table *flow_table;
3722         struct rps_map *map;
3723         int cpu = -1;
3724         u32 tcpu;
3725         u32 hash;
3726
3727         if (skb_rx_queue_recorded(skb)) {
3728                 u16 index = skb_get_rx_queue(skb);
3729
3730                 if (unlikely(index >= dev->real_num_rx_queues)) {
3731                         WARN_ONCE(dev->real_num_rx_queues > 1,
3732                                   "%s received packet on queue %u, but number "
3733                                   "of RX queues is %u\n",
3734                                   dev->name, index, dev->real_num_rx_queues);
3735                         goto done;
3736                 }
3737                 rxqueue += index;
3738         }
3739
3740         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3741
3742         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3743         map = rcu_dereference(rxqueue->rps_map);
3744         if (!flow_table && !map)
3745                 goto done;
3746
3747         skb_reset_network_header(skb);
3748         hash = skb_get_hash(skb);
3749         if (!hash)
3750                 goto done;
3751
3752         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3753         if (flow_table && sock_flow_table) {
3754                 struct rps_dev_flow *rflow;
3755                 u32 next_cpu;
3756                 u32 ident;
3757
3758                 /* First check into global flow table if there is a match */
3759                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3760                 if ((ident ^ hash) & ~rps_cpu_mask)
3761                         goto try_rps;
3762
3763                 next_cpu = ident & rps_cpu_mask;
3764
3765                 /* OK, now we know there is a match,
3766                  * we can look at the local (per receive queue) flow table
3767                  */
3768                 rflow = &flow_table->flows[hash & flow_table->mask];
3769                 tcpu = rflow->cpu;
3770
3771                 /*
3772                  * If the desired CPU (where last recvmsg was done) is
3773                  * different from current CPU (one in the rx-queue flow
3774                  * table entry), switch if one of the following holds:
3775                  *   - Current CPU is unset (>= nr_cpu_ids).
3776                  *   - Current CPU is offline.
3777                  *   - The current CPU's queue tail has advanced beyond the
3778                  *     last packet that was enqueued using this table entry.
3779                  *     This guarantees that all previous packets for the flow
3780                  *     have been dequeued, thus preserving in order delivery.
3781                  */
3782                 if (unlikely(tcpu != next_cpu) &&
3783                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3784                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3785                       rflow->last_qtail)) >= 0)) {
3786                         tcpu = next_cpu;
3787                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3788                 }
3789
3790                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3791                         *rflowp = rflow;
3792                         cpu = tcpu;
3793                         goto done;
3794                 }
3795         }
3796
3797 try_rps:
3798
3799         if (map) {
3800                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3801                 if (cpu_online(tcpu)) {
3802                         cpu = tcpu;
3803                         goto done;
3804                 }
3805         }
3806
3807 done:
3808         return cpu;
3809 }
3810
3811 #ifdef CONFIG_RFS_ACCEL
3812
3813 /**
3814  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3815  * @dev: Device on which the filter was set
3816  * @rxq_index: RX queue index
3817  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3818  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3819  *
3820  * Drivers that implement ndo_rx_flow_steer() should periodically call
3821  * this function for each installed filter and remove the filters for
3822  * which it returns %true.
3823  */
3824 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3825                          u32 flow_id, u16 filter_id)
3826 {
3827         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3828         struct rps_dev_flow_table *flow_table;
3829         struct rps_dev_flow *rflow;
3830         bool expire = true;
3831         unsigned int cpu;
3832
3833         rcu_read_lock();
3834         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3835         if (flow_table && flow_id <= flow_table->mask) {
3836                 rflow = &flow_table->flows[flow_id];
3837                 cpu = READ_ONCE(rflow->cpu);
3838                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3839                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3840                            rflow->last_qtail) <
3841                      (int)(10 * flow_table->mask)))
3842                         expire = false;
3843         }
3844         rcu_read_unlock();
3845         return expire;
3846 }
3847 EXPORT_SYMBOL(rps_may_expire_flow);
3848
3849 #endif /* CONFIG_RFS_ACCEL */
3850
3851 /* Called from hardirq (IPI) context */
3852 static void rps_trigger_softirq(void *data)
3853 {
3854         struct softnet_data *sd = data;
3855
3856         ____napi_schedule(sd, &sd->backlog);
3857         sd->received_rps++;
3858 }
3859
3860 #endif /* CONFIG_RPS */
3861
3862 /*
3863  * Check if this softnet_data structure is another cpu one
3864  * If yes, queue it to our IPI list and return 1
3865  * If no, return 0
3866  */
3867 static int rps_ipi_queued(struct softnet_data *sd)
3868 {
3869 #ifdef CONFIG_RPS
3870         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3871
3872         if (sd != mysd) {
3873                 sd->rps_ipi_next = mysd->rps_ipi_list;
3874                 mysd->rps_ipi_list = sd;
3875
3876                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3877                 return 1;
3878         }
3879 #endif /* CONFIG_RPS */
3880         return 0;
3881 }
3882
3883 #ifdef CONFIG_NET_FLOW_LIMIT
3884 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3885 #endif
3886
3887 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3888 {
3889 #ifdef CONFIG_NET_FLOW_LIMIT
3890         struct sd_flow_limit *fl;
3891         struct softnet_data *sd;
3892         unsigned int old_flow, new_flow;
3893
3894         if (qlen < (netdev_max_backlog >> 1))
3895                 return false;
3896
3897         sd = this_cpu_ptr(&softnet_data);
3898
3899         rcu_read_lock();
3900         fl = rcu_dereference(sd->flow_limit);
3901         if (fl) {
3902                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3903                 old_flow = fl->history[fl->history_head];
3904                 fl->history[fl->history_head] = new_flow;
3905
3906                 fl->history_head++;
3907                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3908
3909                 if (likely(fl->buckets[old_flow]))
3910                         fl->buckets[old_flow]--;
3911
3912                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3913                         fl->count++;
3914                         rcu_read_unlock();
3915                         return true;
3916                 }
3917         }
3918         rcu_read_unlock();
3919 #endif
3920         return false;
3921 }
3922
3923 /*
3924  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3925  * queue (may be a remote CPU queue).
3926  */
3927 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3928                               unsigned int *qtail)
3929 {
3930         struct softnet_data *sd;
3931         unsigned long flags;
3932         unsigned int qlen;
3933
3934         sd = &per_cpu(softnet_data, cpu);
3935
3936         local_irq_save(flags);
3937
3938         rps_lock(sd);
3939         if (!netif_running(skb->dev))
3940                 goto drop;
3941         qlen = skb_queue_len(&sd->input_pkt_queue);
3942         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3943                 if (qlen) {
3944 enqueue:
3945                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3946                         input_queue_tail_incr_save(sd, qtail);
3947                         rps_unlock(sd);
3948                         local_irq_restore(flags);
3949                         return NET_RX_SUCCESS;
3950                 }
3951
3952                 /* Schedule NAPI for backlog device
3953                  * We can use non atomic operation since we own the queue lock
3954                  */
3955                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3956                         if (!rps_ipi_queued(sd))
3957                                 ____napi_schedule(sd, &sd->backlog);
3958                 }
3959                 goto enqueue;
3960         }
3961
3962 drop:
3963         sd->dropped++;
3964         rps_unlock(sd);
3965
3966         local_irq_restore(flags);
3967
3968         atomic_long_inc(&skb->dev->rx_dropped);
3969         kfree_skb(skb);
3970         return NET_RX_DROP;
3971 }
3972
3973 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3974 {
3975         struct net_device *dev = skb->dev;
3976         struct netdev_rx_queue *rxqueue;
3977
3978         rxqueue = dev->_rx;
3979
3980         if (skb_rx_queue_recorded(skb)) {
3981                 u16 index = skb_get_rx_queue(skb);
3982
3983                 if (unlikely(index >= dev->real_num_rx_queues)) {
3984                         WARN_ONCE(dev->real_num_rx_queues > 1,
3985                                   "%s received packet on queue %u, but number "
3986                                   "of RX queues is %u\n",
3987                                   dev->name, index, dev->real_num_rx_queues);
3988
3989                         return rxqueue; /* Return first rxqueue */
3990                 }
3991                 rxqueue += index;
3992         }
3993         return rxqueue;
3994 }
3995
3996 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3997                                      struct bpf_prog *xdp_prog)
3998 {
3999         struct netdev_rx_queue *rxqueue;
4000         void *orig_data, *orig_data_end;
4001         u32 metalen, act = XDP_DROP;
4002         struct xdp_buff xdp;
4003         int hlen, off;
4004         u32 mac_len;
4005
4006         /* Reinjected packets coming from act_mirred or similar should
4007          * not get XDP generic processing.
4008          */
4009         if (skb_cloned(skb))
4010                 return XDP_PASS;
4011
4012         /* XDP packets must be linear and must have sufficient headroom
4013          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4014          * native XDP provides, thus we need to do it here as well.
4015          */
4016         if (skb_is_nonlinear(skb) ||
4017             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4018                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4019                 int troom = skb->tail + skb->data_len - skb->end;
4020
4021                 /* In case we have to go down the path and also linearize,
4022                  * then lets do the pskb_expand_head() work just once here.
4023                  */
4024                 if (pskb_expand_head(skb,
4025                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4026                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4027                         goto do_drop;
4028                 if (skb_linearize(skb))
4029                         goto do_drop;
4030         }
4031
4032         /* The XDP program wants to see the packet starting at the MAC
4033          * header.
4034          */
4035         mac_len = skb->data - skb_mac_header(skb);
4036         hlen = skb_headlen(skb) + mac_len;
4037         xdp.data = skb->data - mac_len;
4038         xdp.data_meta = xdp.data;
4039         xdp.data_end = xdp.data + hlen;
4040         xdp.data_hard_start = skb->data - skb_headroom(skb);
4041         orig_data_end = xdp.data_end;
4042         orig_data = xdp.data;
4043
4044         rxqueue = netif_get_rxqueue(skb);
4045         xdp.rxq = &rxqueue->xdp_rxq;
4046
4047         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4048
4049         off = xdp.data - orig_data;
4050         if (off > 0)
4051                 __skb_pull(skb, off);
4052         else if (off < 0)
4053                 __skb_push(skb, -off);
4054         skb->mac_header += off;
4055
4056         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4057          * pckt.
4058          */
4059         off = orig_data_end - xdp.data_end;
4060         if (off != 0) {
4061                 skb_set_tail_pointer(skb, xdp.data_end - xdp.data);
4062                 skb->len -= off;
4063         }
4064
4065         switch (act) {
4066         case XDP_REDIRECT:
4067         case XDP_TX:
4068                 __skb_push(skb, mac_len);
4069                 break;
4070         case XDP_PASS:
4071                 metalen = xdp.data - xdp.data_meta;
4072                 if (metalen)
4073                         skb_metadata_set(skb, metalen);
4074                 break;
4075         default:
4076                 bpf_warn_invalid_xdp_action(act);
4077                 /* fall through */
4078         case XDP_ABORTED:
4079                 trace_xdp_exception(skb->dev, xdp_prog, act);
4080                 /* fall through */
4081         case XDP_DROP:
4082         do_drop:
4083                 kfree_skb(skb);
4084                 break;
4085         }
4086
4087         return act;
4088 }
4089
4090 /* When doing generic XDP we have to bypass the qdisc layer and the
4091  * network taps in order to match in-driver-XDP behavior.
4092  */
4093 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4094 {
4095         struct net_device *dev = skb->dev;
4096         struct netdev_queue *txq;
4097         bool free_skb = true;
4098         int cpu, rc;
4099
4100         txq = netdev_pick_tx(dev, skb, NULL);
4101         cpu = smp_processor_id();
4102         HARD_TX_LOCK(dev, txq, cpu);
4103         if (!netif_xmit_stopped(txq)) {
4104                 rc = netdev_start_xmit(skb, dev, txq, 0);
4105                 if (dev_xmit_complete(rc))
4106                         free_skb = false;
4107         }
4108         HARD_TX_UNLOCK(dev, txq);
4109         if (free_skb) {
4110                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4111                 kfree_skb(skb);
4112         }
4113 }
4114 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4115
4116 static struct static_key generic_xdp_needed __read_mostly;
4117
4118 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4119 {
4120         if (xdp_prog) {
4121                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4122                 int err;
4123
4124                 if (act != XDP_PASS) {
4125                         switch (act) {
4126                         case XDP_REDIRECT:
4127                                 err = xdp_do_generic_redirect(skb->dev, skb,
4128                                                               xdp_prog);
4129                                 if (err)
4130                                         goto out_redir;
4131                         /* fallthru to submit skb */
4132                         case XDP_TX:
4133                                 generic_xdp_tx(skb, xdp_prog);
4134                                 break;
4135                         }
4136                         return XDP_DROP;
4137                 }
4138         }
4139         return XDP_PASS;
4140 out_redir:
4141         kfree_skb(skb);
4142         return XDP_DROP;
4143 }
4144 EXPORT_SYMBOL_GPL(do_xdp_generic);
4145
4146 static int netif_rx_internal(struct sk_buff *skb)
4147 {
4148         int ret;
4149
4150         net_timestamp_check(netdev_tstamp_prequeue, skb);
4151
4152         trace_netif_rx(skb);
4153
4154         if (static_key_false(&generic_xdp_needed)) {
4155                 int ret;
4156
4157                 preempt_disable();
4158                 rcu_read_lock();
4159                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4160                 rcu_read_unlock();
4161                 preempt_enable();
4162
4163                 /* Consider XDP consuming the packet a success from
4164                  * the netdev point of view we do not want to count
4165                  * this as an error.
4166                  */
4167                 if (ret != XDP_PASS)
4168                         return NET_RX_SUCCESS;
4169         }
4170
4171 #ifdef CONFIG_RPS
4172         if (static_key_false(&rps_needed)) {
4173                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4174                 int cpu;
4175
4176                 preempt_disable();
4177                 rcu_read_lock();
4178
4179                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4180                 if (cpu < 0)
4181                         cpu = smp_processor_id();
4182
4183                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4184
4185                 rcu_read_unlock();
4186                 preempt_enable();
4187         } else
4188 #endif
4189         {
4190                 unsigned int qtail;
4191
4192                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4193                 put_cpu();
4194         }
4195         return ret;
4196 }
4197
4198 /**
4199  *      netif_rx        -       post buffer to the network code
4200  *      @skb: buffer to post
4201  *
4202  *      This function receives a packet from a device driver and queues it for
4203  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4204  *      may be dropped during processing for congestion control or by the
4205  *      protocol layers.
4206  *
4207  *      return values:
4208  *      NET_RX_SUCCESS  (no congestion)
4209  *      NET_RX_DROP     (packet was dropped)
4210  *
4211  */
4212
4213 int netif_rx(struct sk_buff *skb)
4214 {
4215         trace_netif_rx_entry(skb);
4216
4217         return netif_rx_internal(skb);
4218 }
4219 EXPORT_SYMBOL(netif_rx);
4220
4221 int netif_rx_ni(struct sk_buff *skb)
4222 {
4223         int err;
4224
4225         trace_netif_rx_ni_entry(skb);
4226
4227         preempt_disable();
4228         err = netif_rx_internal(skb);
4229         if (local_softirq_pending())
4230                 do_softirq();
4231         preempt_enable();
4232
4233         return err;
4234 }
4235 EXPORT_SYMBOL(netif_rx_ni);
4236
4237 static __latent_entropy void net_tx_action(struct softirq_action *h)
4238 {
4239         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4240
4241         if (sd->completion_queue) {
4242                 struct sk_buff *clist;
4243
4244                 local_irq_disable();
4245                 clist = sd->completion_queue;
4246                 sd->completion_queue = NULL;
4247                 local_irq_enable();
4248
4249                 while (clist) {
4250                         struct sk_buff *skb = clist;
4251
4252                         clist = clist->next;
4253
4254                         WARN_ON(refcount_read(&skb->users));
4255                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4256                                 trace_consume_skb(skb);
4257                         else
4258                                 trace_kfree_skb(skb, net_tx_action);
4259
4260                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4261                                 __kfree_skb(skb);
4262                         else
4263                                 __kfree_skb_defer(skb);
4264                 }
4265
4266                 __kfree_skb_flush();
4267         }
4268
4269         if (sd->output_queue) {
4270                 struct Qdisc *head;
4271
4272                 local_irq_disable();
4273                 head = sd->output_queue;
4274                 sd->output_queue = NULL;
4275                 sd->output_queue_tailp = &sd->output_queue;
4276                 local_irq_enable();
4277
4278                 while (head) {
4279                         struct Qdisc *q = head;
4280                         spinlock_t *root_lock = NULL;
4281
4282                         head = head->next_sched;
4283
4284                         if (!(q->flags & TCQ_F_NOLOCK)) {
4285                                 root_lock = qdisc_lock(q);
4286                                 spin_lock(root_lock);
4287                         }
4288                         /* We need to make sure head->next_sched is read
4289                          * before clearing __QDISC_STATE_SCHED
4290                          */
4291                         smp_mb__before_atomic();
4292                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4293                         qdisc_run(q);
4294                         if (root_lock)
4295                                 spin_unlock(root_lock);
4296                 }
4297         }
4298
4299         xfrm_dev_backlog(sd);
4300 }
4301
4302 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4303 /* This hook is defined here for ATM LANE */
4304 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4305                              unsigned char *addr) __read_mostly;
4306 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4307 #endif
4308
4309 static inline struct sk_buff *
4310 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4311                    struct net_device *orig_dev)
4312 {
4313 #ifdef CONFIG_NET_CLS_ACT
4314         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4315         struct tcf_result cl_res;
4316
4317         /* If there's at least one ingress present somewhere (so
4318          * we get here via enabled static key), remaining devices
4319          * that are not configured with an ingress qdisc will bail
4320          * out here.
4321          */
4322         if (!miniq)
4323                 return skb;
4324
4325         if (*pt_prev) {
4326                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4327                 *pt_prev = NULL;
4328         }
4329
4330         qdisc_skb_cb(skb)->pkt_len = skb->len;
4331         skb->tc_at_ingress = 1;
4332         mini_qdisc_bstats_cpu_update(miniq, skb);
4333
4334         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4335         case TC_ACT_OK:
4336         case TC_ACT_RECLASSIFY:
4337                 skb->tc_index = TC_H_MIN(cl_res.classid);
4338                 break;
4339         case TC_ACT_SHOT:
4340                 mini_qdisc_qstats_cpu_drop(miniq);
4341                 kfree_skb(skb);
4342                 return NULL;
4343         case TC_ACT_STOLEN:
4344         case TC_ACT_QUEUED:
4345         case TC_ACT_TRAP:
4346                 consume_skb(skb);
4347                 return NULL;
4348         case TC_ACT_REDIRECT:
4349                 /* skb_mac_header check was done by cls/act_bpf, so
4350                  * we can safely push the L2 header back before
4351                  * redirecting to another netdev
4352                  */
4353                 __skb_push(skb, skb->mac_len);
4354                 skb_do_redirect(skb);
4355                 return NULL;
4356         default:
4357                 break;
4358         }
4359 #endif /* CONFIG_NET_CLS_ACT */
4360         return skb;
4361 }
4362
4363 /**
4364  *      netdev_is_rx_handler_busy - check if receive handler is registered
4365  *      @dev: device to check
4366  *
4367  *      Check if a receive handler is already registered for a given device.
4368  *      Return true if there one.
4369  *
4370  *      The caller must hold the rtnl_mutex.
4371  */
4372 bool netdev_is_rx_handler_busy(struct net_device *dev)
4373 {
4374         ASSERT_RTNL();
4375         return dev && rtnl_dereference(dev->rx_handler);
4376 }
4377 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4378
4379 /**
4380  *      netdev_rx_handler_register - register receive handler
4381  *      @dev: device to register a handler for
4382  *      @rx_handler: receive handler to register
4383  *      @rx_handler_data: data pointer that is used by rx handler
4384  *
4385  *      Register a receive handler for a device. This handler will then be
4386  *      called from __netif_receive_skb. A negative errno code is returned
4387  *      on a failure.
4388  *
4389  *      The caller must hold the rtnl_mutex.
4390  *
4391  *      For a general description of rx_handler, see enum rx_handler_result.
4392  */
4393 int netdev_rx_handler_register(struct net_device *dev,
4394                                rx_handler_func_t *rx_handler,
4395                                void *rx_handler_data)
4396 {
4397         if (netdev_is_rx_handler_busy(dev))
4398                 return -EBUSY;
4399
4400         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4401                 return -EINVAL;
4402
4403         /* Note: rx_handler_data must be set before rx_handler */
4404         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4405         rcu_assign_pointer(dev->rx_handler, rx_handler);
4406
4407         return 0;
4408 }
4409 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4410
4411 /**
4412  *      netdev_rx_handler_unregister - unregister receive handler
4413  *      @dev: device to unregister a handler from
4414  *
4415  *      Unregister a receive handler from a device.
4416  *
4417  *      The caller must hold the rtnl_mutex.
4418  */
4419 void netdev_rx_handler_unregister(struct net_device *dev)
4420 {
4421
4422         ASSERT_RTNL();
4423         RCU_INIT_POINTER(dev->rx_handler, NULL);
4424         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4425          * section has a guarantee to see a non NULL rx_handler_data
4426          * as well.
4427          */
4428         synchronize_net();
4429         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4430 }
4431 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4432
4433 /*
4434  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4435  * the special handling of PFMEMALLOC skbs.
4436  */
4437 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4438 {
4439         switch (skb->protocol) {
4440         case htons(ETH_P_ARP):
4441         case htons(ETH_P_IP):
4442         case htons(ETH_P_IPV6):
4443         case htons(ETH_P_8021Q):
4444         case htons(ETH_P_8021AD):
4445                 return true;
4446         default:
4447                 return false;
4448         }
4449 }
4450
4451 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4452                              int *ret, struct net_device *orig_dev)
4453 {
4454 #ifdef CONFIG_NETFILTER_INGRESS
4455         if (nf_hook_ingress_active(skb)) {
4456                 int ingress_retval;
4457
4458                 if (*pt_prev) {
4459                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4460                         *pt_prev = NULL;
4461                 }
4462
4463                 rcu_read_lock();
4464                 ingress_retval = nf_hook_ingress(skb);
4465                 rcu_read_unlock();
4466                 return ingress_retval;
4467         }
4468 #endif /* CONFIG_NETFILTER_INGRESS */
4469         return 0;
4470 }
4471
4472 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4473 {
4474         struct packet_type *ptype, *pt_prev;
4475         rx_handler_func_t *rx_handler;
4476         struct net_device *orig_dev;
4477         bool deliver_exact = false;
4478         int ret = NET_RX_DROP;
4479         __be16 type;
4480
4481         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4482
4483         trace_netif_receive_skb(skb);
4484
4485         orig_dev = skb->dev;
4486
4487         skb_reset_network_header(skb);
4488         if (!skb_transport_header_was_set(skb))
4489                 skb_reset_transport_header(skb);
4490         skb_reset_mac_len(skb);
4491
4492         pt_prev = NULL;
4493
4494 another_round:
4495         skb->skb_iif = skb->dev->ifindex;
4496
4497         __this_cpu_inc(softnet_data.processed);
4498
4499         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4500             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4501                 skb = skb_vlan_untag(skb);
4502                 if (unlikely(!skb))
4503                         goto out;
4504         }
4505
4506         if (skb_skip_tc_classify(skb))
4507                 goto skip_classify;
4508
4509         if (pfmemalloc)
4510                 goto skip_taps;
4511
4512         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4513                 if (pt_prev)
4514                         ret = deliver_skb(skb, pt_prev, orig_dev);
4515                 pt_prev = ptype;
4516         }
4517
4518         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4519                 if (pt_prev)
4520                         ret = deliver_skb(skb, pt_prev, orig_dev);
4521                 pt_prev = ptype;
4522         }
4523
4524 skip_taps:
4525 #ifdef CONFIG_NET_INGRESS
4526         if (static_key_false(&ingress_needed)) {
4527                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4528                 if (!skb)
4529                         goto out;
4530
4531                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4532                         goto out;
4533         }
4534 #endif
4535         skb_reset_tc(skb);
4536 skip_classify:
4537         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4538                 goto drop;
4539
4540         if (skb_vlan_tag_present(skb)) {
4541                 if (pt_prev) {
4542                         ret = deliver_skb(skb, pt_prev, orig_dev);
4543                         pt_prev = NULL;
4544                 }
4545                 if (vlan_do_receive(&skb))
4546                         goto another_round;
4547                 else if (unlikely(!skb))
4548                         goto out;
4549         }
4550
4551         rx_handler = rcu_dereference(skb->dev->rx_handler);
4552         if (rx_handler) {
4553                 if (pt_prev) {
4554                         ret = deliver_skb(skb, pt_prev, orig_dev);
4555                         pt_prev = NULL;
4556                 }
4557                 switch (rx_handler(&skb)) {
4558                 case RX_HANDLER_CONSUMED:
4559                         ret = NET_RX_SUCCESS;
4560                         goto out;
4561                 case RX_HANDLER_ANOTHER:
4562                         goto another_round;
4563                 case RX_HANDLER_EXACT:
4564                         deliver_exact = true;
4565                 case RX_HANDLER_PASS:
4566                         break;
4567                 default:
4568                         BUG();
4569                 }
4570         }
4571
4572         if (unlikely(skb_vlan_tag_present(skb))) {
4573                 if (skb_vlan_tag_get_id(skb))
4574                         skb->pkt_type = PACKET_OTHERHOST;
4575                 /* Note: we might in the future use prio bits
4576                  * and set skb->priority like in vlan_do_receive()
4577                  * For the time being, just ignore Priority Code Point
4578                  */
4579                 skb->vlan_tci = 0;
4580         }
4581
4582         type = skb->protocol;
4583
4584         /* deliver only exact match when indicated */
4585         if (likely(!deliver_exact)) {
4586                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4587                                        &ptype_base[ntohs(type) &
4588                                                    PTYPE_HASH_MASK]);
4589         }
4590
4591         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4592                                &orig_dev->ptype_specific);
4593
4594         if (unlikely(skb->dev != orig_dev)) {
4595                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4596                                        &skb->dev->ptype_specific);
4597         }
4598
4599         if (pt_prev) {
4600                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4601                         goto drop;
4602                 else
4603                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4604         } else {
4605 drop:
4606                 if (!deliver_exact)
4607                         atomic_long_inc(&skb->dev->rx_dropped);
4608                 else
4609                         atomic_long_inc(&skb->dev->rx_nohandler);
4610                 kfree_skb(skb);
4611                 /* Jamal, now you will not able to escape explaining
4612                  * me how you were going to use this. :-)
4613                  */
4614                 ret = NET_RX_DROP;
4615         }
4616
4617 out:
4618         return ret;
4619 }
4620
4621 /**
4622  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4623  *      @skb: buffer to process
4624  *
4625  *      More direct receive version of netif_receive_skb().  It should
4626  *      only be used by callers that have a need to skip RPS and Generic XDP.
4627  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4628  *
4629  *      This function may only be called from softirq context and interrupts
4630  *      should be enabled.
4631  *
4632  *      Return values (usually ignored):
4633  *      NET_RX_SUCCESS: no congestion
4634  *      NET_RX_DROP: packet was dropped
4635  */
4636 int netif_receive_skb_core(struct sk_buff *skb)
4637 {
4638         int ret;
4639
4640         rcu_read_lock();
4641         ret = __netif_receive_skb_core(skb, false);
4642         rcu_read_unlock();
4643
4644         return ret;
4645 }
4646 EXPORT_SYMBOL(netif_receive_skb_core);
4647
4648 static int __netif_receive_skb(struct sk_buff *skb)
4649 {
4650         int ret;
4651
4652         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4653                 unsigned int noreclaim_flag;
4654
4655                 /*
4656                  * PFMEMALLOC skbs are special, they should
4657                  * - be delivered to SOCK_MEMALLOC sockets only
4658                  * - stay away from userspace
4659                  * - have bounded memory usage
4660                  *
4661                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4662                  * context down to all allocation sites.
4663                  */
4664                 noreclaim_flag = memalloc_noreclaim_save();
4665                 ret = __netif_receive_skb_core(skb, true);
4666                 memalloc_noreclaim_restore(noreclaim_flag);
4667         } else
4668                 ret = __netif_receive_skb_core(skb, false);
4669
4670         return ret;
4671 }
4672
4673 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4674 {
4675         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4676         struct bpf_prog *new = xdp->prog;
4677         int ret = 0;
4678
4679         switch (xdp->command) {
4680         case XDP_SETUP_PROG:
4681                 rcu_assign_pointer(dev->xdp_prog, new);
4682                 if (old)
4683                         bpf_prog_put(old);
4684
4685                 if (old && !new) {
4686                         static_key_slow_dec(&generic_xdp_needed);
4687                 } else if (new && !old) {
4688                         static_key_slow_inc(&generic_xdp_needed);
4689                         dev_disable_lro(dev);
4690                         dev_disable_gro_hw(dev);
4691                 }
4692                 break;
4693
4694         case XDP_QUERY_PROG:
4695                 xdp->prog_attached = !!old;
4696                 xdp->prog_id = old ? old->aux->id : 0;
4697                 break;
4698
4699         default:
4700                 ret = -EINVAL;
4701                 break;
4702         }
4703
4704         return ret;
4705 }
4706
4707 static int netif_receive_skb_internal(struct sk_buff *skb)
4708 {
4709         int ret;
4710
4711         net_timestamp_check(netdev_tstamp_prequeue, skb);
4712
4713         if (skb_defer_rx_timestamp(skb))
4714                 return NET_RX_SUCCESS;
4715
4716         if (static_key_false(&generic_xdp_needed)) {
4717                 int ret;
4718
4719                 preempt_disable();
4720                 rcu_read_lock();
4721                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4722                 rcu_read_unlock();
4723                 preempt_enable();
4724
4725                 if (ret != XDP_PASS)
4726                         return NET_RX_DROP;
4727         }
4728
4729         rcu_read_lock();
4730 #ifdef CONFIG_RPS
4731         if (static_key_false(&rps_needed)) {
4732                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4733                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4734
4735                 if (cpu >= 0) {
4736                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4737                         rcu_read_unlock();
4738                         return ret;
4739                 }
4740         }
4741 #endif
4742         ret = __netif_receive_skb(skb);
4743         rcu_read_unlock();
4744         return ret;
4745 }
4746
4747 /**
4748  *      netif_receive_skb - process receive buffer from network
4749  *      @skb: buffer to process
4750  *
4751  *      netif_receive_skb() is the main receive data processing function.
4752  *      It always succeeds. The buffer may be dropped during processing
4753  *      for congestion control or by the protocol layers.
4754  *
4755  *      This function may only be called from softirq context and interrupts
4756  *      should be enabled.
4757  *
4758  *      Return values (usually ignored):
4759  *      NET_RX_SUCCESS: no congestion
4760  *      NET_RX_DROP: packet was dropped
4761  */
4762 int netif_receive_skb(struct sk_buff *skb)
4763 {
4764         trace_netif_receive_skb_entry(skb);
4765
4766         return netif_receive_skb_internal(skb);
4767 }
4768 EXPORT_SYMBOL(netif_receive_skb);
4769
4770 DEFINE_PER_CPU(struct work_struct, flush_works);
4771
4772 /* Network device is going away, flush any packets still pending */
4773 static void flush_backlog(struct work_struct *work)
4774 {
4775         struct sk_buff *skb, *tmp;
4776         struct softnet_data *sd;
4777
4778         local_bh_disable();
4779         sd = this_cpu_ptr(&softnet_data);
4780
4781         local_irq_disable();
4782         rps_lock(sd);
4783         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4784                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4785                         __skb_unlink(skb, &sd->input_pkt_queue);
4786                         kfree_skb(skb);
4787                         input_queue_head_incr(sd);
4788                 }
4789         }
4790         rps_unlock(sd);
4791         local_irq_enable();
4792
4793         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4794                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4795                         __skb_unlink(skb, &sd->process_queue);
4796                         kfree_skb(skb);
4797                         input_queue_head_incr(sd);
4798                 }
4799         }
4800         local_bh_enable();
4801 }
4802
4803 static void flush_all_backlogs(void)
4804 {
4805         unsigned int cpu;
4806
4807         get_online_cpus();
4808
4809         for_each_online_cpu(cpu)
4810                 queue_work_on(cpu, system_highpri_wq,
4811                               per_cpu_ptr(&flush_works, cpu));
4812
4813         for_each_online_cpu(cpu)
4814                 flush_work(per_cpu_ptr(&flush_works, cpu));
4815
4816         put_online_cpus();
4817 }
4818
4819 static int napi_gro_complete(struct sk_buff *skb)
4820 {
4821         struct packet_offload *ptype;
4822         __be16 type = skb->protocol;
4823         struct list_head *head = &offload_base;
4824         int err = -ENOENT;
4825
4826         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4827
4828         if (NAPI_GRO_CB(skb)->count == 1) {
4829                 skb_shinfo(skb)->gso_size = 0;
4830                 goto out;
4831         }
4832
4833         rcu_read_lock();
4834         list_for_each_entry_rcu(ptype, head, list) {
4835                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4836                         continue;
4837
4838                 err = ptype->callbacks.gro_complete(skb, 0);
4839                 break;
4840         }
4841         rcu_read_unlock();
4842
4843         if (err) {
4844                 WARN_ON(&ptype->list == head);
4845                 kfree_skb(skb);
4846                 return NET_RX_SUCCESS;
4847         }
4848
4849 out:
4850         return netif_receive_skb_internal(skb);
4851 }
4852
4853 /* napi->gro_list contains packets ordered by age.
4854  * youngest packets at the head of it.
4855  * Complete skbs in reverse order to reduce latencies.
4856  */
4857 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4858 {
4859         struct sk_buff *skb, *prev = NULL;
4860
4861         /* scan list and build reverse chain */
4862         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4863                 skb->prev = prev;
4864                 prev = skb;
4865         }
4866
4867         for (skb = prev; skb; skb = prev) {
4868                 skb->next = NULL;
4869
4870                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4871                         return;
4872
4873                 prev = skb->prev;
4874                 napi_gro_complete(skb);
4875                 napi->gro_count--;
4876         }
4877
4878         napi->gro_list = NULL;
4879 }
4880 EXPORT_SYMBOL(napi_gro_flush);
4881
4882 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4883 {
4884         struct sk_buff *p;
4885         unsigned int maclen = skb->dev->hard_header_len;
4886         u32 hash = skb_get_hash_raw(skb);
4887
4888         for (p = napi->gro_list; p; p = p->next) {
4889                 unsigned long diffs;
4890
4891                 NAPI_GRO_CB(p)->flush = 0;
4892
4893                 if (hash != skb_get_hash_raw(p)) {
4894                         NAPI_GRO_CB(p)->same_flow = 0;
4895                         continue;
4896                 }
4897
4898                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4899                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4900                 diffs |= skb_metadata_dst_cmp(p, skb);
4901                 diffs |= skb_metadata_differs(p, skb);
4902                 if (maclen == ETH_HLEN)
4903                         diffs |= compare_ether_header(skb_mac_header(p),
4904                                                       skb_mac_header(skb));
4905                 else if (!diffs)
4906                         diffs = memcmp(skb_mac_header(p),
4907                                        skb_mac_header(skb),
4908                                        maclen);
4909                 NAPI_GRO_CB(p)->same_flow = !diffs;
4910         }
4911 }
4912
4913 static void skb_gro_reset_offset(struct sk_buff *skb)
4914 {
4915         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4916         const skb_frag_t *frag0 = &pinfo->frags[0];
4917
4918         NAPI_GRO_CB(skb)->data_offset = 0;
4919         NAPI_GRO_CB(skb)->frag0 = NULL;
4920         NAPI_GRO_CB(skb)->frag0_len = 0;
4921
4922         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4923             pinfo->nr_frags &&
4924             !PageHighMem(skb_frag_page(frag0))) {
4925                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4926                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4927                                                     skb_frag_size(frag0),
4928                                                     skb->end - skb->tail);
4929         }
4930 }
4931
4932 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4933 {
4934         struct skb_shared_info *pinfo = skb_shinfo(skb);
4935
4936         BUG_ON(skb->end - skb->tail < grow);
4937
4938         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4939
4940         skb->data_len -= grow;
4941         skb->tail += grow;
4942
4943         pinfo->frags[0].page_offset += grow;
4944         skb_frag_size_sub(&pinfo->frags[0], grow);
4945
4946         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4947                 skb_frag_unref(skb, 0);
4948                 memmove(pinfo->frags, pinfo->frags + 1,
4949                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4950         }
4951 }
4952
4953 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4954 {
4955         struct sk_buff **pp = NULL;
4956         struct packet_offload *ptype;
4957         __be16 type = skb->protocol;
4958         struct list_head *head = &offload_base;
4959         int same_flow;
4960         enum gro_result ret;
4961         int grow;
4962
4963         if (netif_elide_gro(skb->dev))
4964                 goto normal;
4965
4966         gro_list_prepare(napi, skb);
4967
4968         rcu_read_lock();
4969         list_for_each_entry_rcu(ptype, head, list) {
4970                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4971                         continue;
4972
4973                 skb_set_network_header(skb, skb_gro_offset(skb));
4974                 skb_reset_mac_len(skb);
4975                 NAPI_GRO_CB(skb)->same_flow = 0;
4976                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4977                 NAPI_GRO_CB(skb)->free = 0;
4978                 NAPI_GRO_CB(skb)->encap_mark = 0;
4979                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4980                 NAPI_GRO_CB(skb)->is_fou = 0;
4981                 NAPI_GRO_CB(skb)->is_atomic = 1;
4982                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4983
4984                 /* Setup for GRO checksum validation */
4985                 switch (skb->ip_summed) {
4986                 case CHECKSUM_COMPLETE:
4987                         NAPI_GRO_CB(skb)->csum = skb->csum;
4988                         NAPI_GRO_CB(skb)->csum_valid = 1;
4989                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4990                         break;
4991                 case CHECKSUM_UNNECESSARY:
4992                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4993                         NAPI_GRO_CB(skb)->csum_valid = 0;
4994                         break;
4995                 default:
4996                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4997                         NAPI_GRO_CB(skb)->csum_valid = 0;
4998                 }
4999
5000                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
5001                 break;
5002         }
5003         rcu_read_unlock();
5004
5005         if (&ptype->list == head)
5006                 goto normal;
5007
5008         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5009                 ret = GRO_CONSUMED;
5010                 goto ok;
5011         }
5012
5013         same_flow = NAPI_GRO_CB(skb)->same_flow;
5014         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5015
5016         if (pp) {
5017                 struct sk_buff *nskb = *pp;
5018
5019                 *pp = nskb->next;
5020                 nskb->next = NULL;
5021                 napi_gro_complete(nskb);
5022                 napi->gro_count--;
5023         }
5024
5025         if (same_flow)
5026                 goto ok;
5027
5028         if (NAPI_GRO_CB(skb)->flush)
5029                 goto normal;
5030
5031         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5032                 struct sk_buff *nskb = napi->gro_list;
5033
5034                 /* locate the end of the list to select the 'oldest' flow */
5035                 while (nskb->next) {
5036                         pp = &nskb->next;
5037                         nskb = *pp;
5038                 }
5039                 *pp = NULL;
5040                 nskb->next = NULL;
5041                 napi_gro_complete(nskb);
5042         } else {
5043                 napi->gro_count++;
5044         }
5045         NAPI_GRO_CB(skb)->count = 1;
5046         NAPI_GRO_CB(skb)->age = jiffies;
5047         NAPI_GRO_CB(skb)->last = skb;
5048         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5049         skb->next = napi->gro_list;
5050         napi->gro_list = skb;
5051         ret = GRO_HELD;
5052
5053 pull:
5054         grow = skb_gro_offset(skb) - skb_headlen(skb);
5055         if (grow > 0)
5056                 gro_pull_from_frag0(skb, grow);
5057 ok:
5058         return ret;
5059
5060 normal:
5061         ret = GRO_NORMAL;
5062         goto pull;
5063 }
5064
5065 struct packet_offload *gro_find_receive_by_type(__be16 type)
5066 {
5067         struct list_head *offload_head = &offload_base;
5068         struct packet_offload *ptype;
5069
5070         list_for_each_entry_rcu(ptype, offload_head, list) {
5071                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5072                         continue;
5073                 return ptype;
5074         }
5075         return NULL;
5076 }
5077 EXPORT_SYMBOL(gro_find_receive_by_type);
5078
5079 struct packet_offload *gro_find_complete_by_type(__be16 type)
5080 {
5081         struct list_head *offload_head = &offload_base;
5082         struct packet_offload *ptype;
5083
5084         list_for_each_entry_rcu(ptype, offload_head, list) {
5085                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5086                         continue;
5087                 return ptype;
5088         }
5089         return NULL;
5090 }
5091 EXPORT_SYMBOL(gro_find_complete_by_type);
5092
5093 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5094 {
5095         skb_dst_drop(skb);
5096         secpath_reset(skb);
5097         kmem_cache_free(skbuff_head_cache, skb);
5098 }
5099
5100 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5101 {
5102         switch (ret) {
5103         case GRO_NORMAL:
5104                 if (netif_receive_skb_internal(skb))
5105                         ret = GRO_DROP;
5106                 break;
5107
5108         case GRO_DROP:
5109                 kfree_skb(skb);
5110                 break;
5111
5112         case GRO_MERGED_FREE:
5113                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5114                         napi_skb_free_stolen_head(skb);
5115                 else
5116                         __kfree_skb(skb);
5117                 break;
5118
5119         case GRO_HELD:
5120         case GRO_MERGED:
5121         case GRO_CONSUMED:
5122                 break;
5123         }
5124
5125         return ret;
5126 }
5127
5128 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5129 {
5130         skb_mark_napi_id(skb, napi);
5131         trace_napi_gro_receive_entry(skb);
5132
5133         skb_gro_reset_offset(skb);
5134
5135         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5136 }
5137 EXPORT_SYMBOL(napi_gro_receive);
5138
5139 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5140 {
5141         if (unlikely(skb->pfmemalloc)) {
5142                 consume_skb(skb);
5143                 return;
5144         }
5145         __skb_pull(skb, skb_headlen(skb));
5146         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5147         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5148         skb->vlan_tci = 0;
5149         skb->dev = napi->dev;
5150         skb->skb_iif = 0;
5151         skb->encapsulation = 0;
5152         skb_shinfo(skb)->gso_type = 0;
5153         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5154         secpath_reset(skb);
5155
5156         napi->skb = skb;
5157 }
5158
5159 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5160 {
5161         struct sk_buff *skb = napi->skb;
5162
5163         if (!skb) {
5164                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5165                 if (skb) {
5166                         napi->skb = skb;
5167                         skb_mark_napi_id(skb, napi);
5168                 }
5169         }
5170         return skb;
5171 }
5172 EXPORT_SYMBOL(napi_get_frags);
5173
5174 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5175                                       struct sk_buff *skb,
5176                                       gro_result_t ret)
5177 {
5178         switch (ret) {
5179         case GRO_NORMAL:
5180         case GRO_HELD:
5181                 __skb_push(skb, ETH_HLEN);
5182                 skb->protocol = eth_type_trans(skb, skb->dev);
5183                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5184                         ret = GRO_DROP;
5185                 break;
5186
5187         case GRO_DROP:
5188                 napi_reuse_skb(napi, skb);
5189                 break;
5190
5191         case GRO_MERGED_FREE:
5192                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5193                         napi_skb_free_stolen_head(skb);
5194                 else
5195                         napi_reuse_skb(napi, skb);
5196                 break;
5197
5198         case GRO_MERGED:
5199         case GRO_CONSUMED:
5200                 break;
5201         }
5202
5203         return ret;
5204 }
5205
5206 /* Upper GRO stack assumes network header starts at gro_offset=0
5207  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5208  * We copy ethernet header into skb->data to have a common layout.
5209  */
5210 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5211 {
5212         struct sk_buff *skb = napi->skb;
5213         const struct ethhdr *eth;
5214         unsigned int hlen = sizeof(*eth);
5215
5216         napi->skb = NULL;
5217
5218         skb_reset_mac_header(skb);
5219         skb_gro_reset_offset(skb);
5220
5221         eth = skb_gro_header_fast(skb, 0);
5222         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5223                 eth = skb_gro_header_slow(skb, hlen, 0);
5224                 if (unlikely(!eth)) {
5225                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5226                                              __func__, napi->dev->name);
5227                         napi_reuse_skb(napi, skb);
5228                         return NULL;
5229                 }
5230         } else {
5231                 gro_pull_from_frag0(skb, hlen);
5232                 NAPI_GRO_CB(skb)->frag0 += hlen;
5233                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5234         }
5235         __skb_pull(skb, hlen);
5236
5237         /*
5238          * This works because the only protocols we care about don't require
5239          * special handling.
5240          * We'll fix it up properly in napi_frags_finish()
5241          */
5242         skb->protocol = eth->h_proto;
5243
5244         return skb;
5245 }
5246
5247 gro_result_t napi_gro_frags(struct napi_struct *napi)
5248 {
5249         struct sk_buff *skb = napi_frags_skb(napi);
5250
5251         if (!skb)
5252                 return GRO_DROP;
5253
5254         trace_napi_gro_frags_entry(skb);
5255
5256         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5257 }
5258 EXPORT_SYMBOL(napi_gro_frags);
5259
5260 /* Compute the checksum from gro_offset and return the folded value
5261  * after adding in any pseudo checksum.
5262  */
5263 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5264 {
5265         __wsum wsum;
5266         __sum16 sum;
5267
5268         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5269
5270         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5271         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5272         if (likely(!sum)) {
5273                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5274                     !skb->csum_complete_sw)
5275                         netdev_rx_csum_fault(skb->dev);
5276         }
5277
5278         NAPI_GRO_CB(skb)->csum = wsum;
5279         NAPI_GRO_CB(skb)->csum_valid = 1;
5280
5281         return sum;
5282 }
5283 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5284
5285 static void net_rps_send_ipi(struct softnet_data *remsd)
5286 {
5287 #ifdef CONFIG_RPS
5288         while (remsd) {
5289                 struct softnet_data *next = remsd->rps_ipi_next;
5290
5291                 if (cpu_online(remsd->cpu))
5292                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5293                 remsd = next;
5294         }
5295 #endif
5296 }
5297
5298 /*
5299  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5300  * Note: called with local irq disabled, but exits with local irq enabled.
5301  */
5302 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5303 {
5304 #ifdef CONFIG_RPS
5305         struct softnet_data *remsd = sd->rps_ipi_list;
5306
5307         if (remsd) {
5308                 sd->rps_ipi_list = NULL;
5309
5310                 local_irq_enable();
5311
5312                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5313                 net_rps_send_ipi(remsd);
5314         } else
5315 #endif
5316                 local_irq_enable();
5317 }
5318
5319 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5320 {
5321 #ifdef CONFIG_RPS
5322         return sd->rps_ipi_list != NULL;
5323 #else
5324         return false;
5325 #endif
5326 }
5327
5328 static int process_backlog(struct napi_struct *napi, int quota)
5329 {
5330         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5331         bool again = true;
5332         int work = 0;
5333
5334         /* Check if we have pending ipi, its better to send them now,
5335          * not waiting net_rx_action() end.
5336          */
5337         if (sd_has_rps_ipi_waiting(sd)) {
5338                 local_irq_disable();
5339                 net_rps_action_and_irq_enable(sd);
5340         }
5341
5342         napi->weight = dev_rx_weight;
5343         while (again) {
5344                 struct sk_buff *skb;
5345
5346                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5347                         rcu_read_lock();
5348                         __netif_receive_skb(skb);
5349                         rcu_read_unlock();
5350                         input_queue_head_incr(sd);
5351                         if (++work >= quota)
5352                                 return work;
5353
5354                 }
5355
5356                 local_irq_disable();
5357                 rps_lock(sd);
5358                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5359                         /*
5360                          * Inline a custom version of __napi_complete().
5361                          * only current cpu owns and manipulates this napi,
5362                          * and NAPI_STATE_SCHED is the only possible flag set
5363                          * on backlog.
5364                          * We can use a plain write instead of clear_bit(),
5365                          * and we dont need an smp_mb() memory barrier.
5366                          */
5367                         napi->state = 0;
5368                         again = false;
5369                 } else {
5370                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5371                                                    &sd->process_queue);
5372                 }
5373                 rps_unlock(sd);
5374                 local_irq_enable();
5375         }
5376
5377         return work;
5378 }
5379
5380 /**
5381  * __napi_schedule - schedule for receive
5382  * @n: entry to schedule
5383  *
5384  * The entry's receive function will be scheduled to run.
5385  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5386  */
5387 void __napi_schedule(struct napi_struct *n)
5388 {
5389         unsigned long flags;
5390
5391         local_irq_save(flags);
5392         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5393         local_irq_restore(flags);
5394 }
5395 EXPORT_SYMBOL(__napi_schedule);
5396
5397 /**
5398  *      napi_schedule_prep - check if napi can be scheduled
5399  *      @n: napi context
5400  *
5401  * Test if NAPI routine is already running, and if not mark
5402  * it as running.  This is used as a condition variable
5403  * insure only one NAPI poll instance runs.  We also make
5404  * sure there is no pending NAPI disable.
5405  */
5406 bool napi_schedule_prep(struct napi_struct *n)
5407 {
5408         unsigned long val, new;
5409
5410         do {
5411                 val = READ_ONCE(n->state);
5412                 if (unlikely(val & NAPIF_STATE_DISABLE))
5413                         return false;
5414                 new = val | NAPIF_STATE_SCHED;
5415
5416                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5417                  * This was suggested by Alexander Duyck, as compiler
5418                  * emits better code than :
5419                  * if (val & NAPIF_STATE_SCHED)
5420                  *     new |= NAPIF_STATE_MISSED;
5421                  */
5422                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5423                                                    NAPIF_STATE_MISSED;
5424         } while (cmpxchg(&n->state, val, new) != val);
5425
5426         return !(val & NAPIF_STATE_SCHED);
5427 }
5428 EXPORT_SYMBOL(napi_schedule_prep);
5429
5430 /**
5431  * __napi_schedule_irqoff - schedule for receive
5432  * @n: entry to schedule
5433  *
5434  * Variant of __napi_schedule() assuming hard irqs are masked
5435  */
5436 void __napi_schedule_irqoff(struct napi_struct *n)
5437 {
5438         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5439 }
5440 EXPORT_SYMBOL(__napi_schedule_irqoff);
5441
5442 bool napi_complete_done(struct napi_struct *n, int work_done)
5443 {
5444         unsigned long flags, val, new;
5445
5446         /*
5447          * 1) Don't let napi dequeue from the cpu poll list
5448          *    just in case its running on a different cpu.
5449          * 2) If we are busy polling, do nothing here, we have
5450          *    the guarantee we will be called later.
5451          */
5452         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5453                                  NAPIF_STATE_IN_BUSY_POLL)))
5454                 return false;
5455
5456         if (n->gro_list) {
5457                 unsigned long timeout = 0;
5458
5459                 if (work_done)
5460                         timeout = n->dev->gro_flush_timeout;
5461
5462                 if (timeout)
5463                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5464                                       HRTIMER_MODE_REL_PINNED);
5465                 else
5466                         napi_gro_flush(n, false);
5467         }
5468         if (unlikely(!list_empty(&n->poll_list))) {
5469                 /* If n->poll_list is not empty, we need to mask irqs */
5470                 local_irq_save(flags);
5471                 list_del_init(&n->poll_list);
5472                 local_irq_restore(flags);
5473         }
5474
5475         do {
5476                 val = READ_ONCE(n->state);
5477
5478                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5479
5480                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5481
5482                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5483                  * because we will call napi->poll() one more time.
5484                  * This C code was suggested by Alexander Duyck to help gcc.
5485                  */
5486                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5487                                                     NAPIF_STATE_SCHED;
5488         } while (cmpxchg(&n->state, val, new) != val);
5489
5490         if (unlikely(val & NAPIF_STATE_MISSED)) {
5491                 __napi_schedule(n);
5492                 return false;
5493         }
5494
5495         return true;
5496 }
5497 EXPORT_SYMBOL(napi_complete_done);
5498
5499 /* must be called under rcu_read_lock(), as we dont take a reference */
5500 static struct napi_struct *napi_by_id(unsigned int napi_id)
5501 {
5502         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5503         struct napi_struct *napi;
5504
5505         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5506                 if (napi->napi_id == napi_id)
5507                         return napi;
5508
5509         return NULL;
5510 }
5511
5512 #if defined(CONFIG_NET_RX_BUSY_POLL)
5513
5514 #define BUSY_POLL_BUDGET 8
5515
5516 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5517 {
5518         int rc;
5519
5520         /* Busy polling means there is a high chance device driver hard irq
5521          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5522          * set in napi_schedule_prep().
5523          * Since we are about to call napi->poll() once more, we can safely
5524          * clear NAPI_STATE_MISSED.
5525          *
5526          * Note: x86 could use a single "lock and ..." instruction
5527          * to perform these two clear_bit()
5528          */
5529         clear_bit(NAPI_STATE_MISSED, &napi->state);
5530         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5531
5532         local_bh_disable();
5533
5534         /* All we really want here is to re-enable device interrupts.
5535          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5536          */
5537         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5538         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5539         netpoll_poll_unlock(have_poll_lock);
5540         if (rc == BUSY_POLL_BUDGET)
5541                 __napi_schedule(napi);
5542         local_bh_enable();
5543 }
5544
5545 void napi_busy_loop(unsigned int napi_id,
5546                     bool (*loop_end)(void *, unsigned long),
5547                     void *loop_end_arg)
5548 {
5549         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5550         int (*napi_poll)(struct napi_struct *napi, int budget);
5551         void *have_poll_lock = NULL;
5552         struct napi_struct *napi;
5553
5554 restart:
5555         napi_poll = NULL;
5556
5557         rcu_read_lock();
5558
5559         napi = napi_by_id(napi_id);
5560         if (!napi)
5561                 goto out;
5562
5563         preempt_disable();
5564         for (;;) {
5565                 int work = 0;
5566
5567                 local_bh_disable();
5568                 if (!napi_poll) {
5569                         unsigned long val = READ_ONCE(napi->state);
5570
5571                         /* If multiple threads are competing for this napi,
5572                          * we avoid dirtying napi->state as much as we can.
5573                          */
5574                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5575                                    NAPIF_STATE_IN_BUSY_POLL))
5576                                 goto count;
5577                         if (cmpxchg(&napi->state, val,
5578                                     val | NAPIF_STATE_IN_BUSY_POLL |
5579                                           NAPIF_STATE_SCHED) != val)
5580                                 goto count;
5581                         have_poll_lock = netpoll_poll_lock(napi);
5582                         napi_poll = napi->poll;
5583                 }
5584                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5585                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5586 count:
5587                 if (work > 0)
5588                         __NET_ADD_STATS(dev_net(napi->dev),
5589                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5590                 local_bh_enable();
5591
5592                 if (!loop_end || loop_end(loop_end_arg, start_time))
5593                         break;
5594
5595                 if (unlikely(need_resched())) {
5596                         if (napi_poll)
5597                                 busy_poll_stop(napi, have_poll_lock);
5598                         preempt_enable();
5599                         rcu_read_unlock();
5600                         cond_resched();
5601                         if (loop_end(loop_end_arg, start_time))
5602                                 return;
5603                         goto restart;
5604                 }
5605                 cpu_relax();
5606         }
5607         if (napi_poll)
5608                 busy_poll_stop(napi, have_poll_lock);
5609         preempt_enable();
5610 out:
5611         rcu_read_unlock();
5612 }
5613 EXPORT_SYMBOL(napi_busy_loop);
5614
5615 #endif /* CONFIG_NET_RX_BUSY_POLL */
5616
5617 static void napi_hash_add(struct napi_struct *napi)
5618 {
5619         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5620             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5621                 return;
5622
5623         spin_lock(&napi_hash_lock);
5624
5625         /* 0..NR_CPUS range is reserved for sender_cpu use */
5626         do {
5627                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5628                         napi_gen_id = MIN_NAPI_ID;
5629         } while (napi_by_id(napi_gen_id));
5630         napi->napi_id = napi_gen_id;
5631
5632         hlist_add_head_rcu(&napi->napi_hash_node,
5633                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5634
5635         spin_unlock(&napi_hash_lock);
5636 }
5637
5638 /* Warning : caller is responsible to make sure rcu grace period
5639  * is respected before freeing memory containing @napi
5640  */
5641 bool napi_hash_del(struct napi_struct *napi)
5642 {
5643         bool rcu_sync_needed = false;
5644
5645         spin_lock(&napi_hash_lock);
5646
5647         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5648                 rcu_sync_needed = true;
5649                 hlist_del_rcu(&napi->napi_hash_node);
5650         }
5651         spin_unlock(&napi_hash_lock);
5652         return rcu_sync_needed;
5653 }
5654 EXPORT_SYMBOL_GPL(napi_hash_del);
5655
5656 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5657 {
5658         struct napi_struct *napi;
5659
5660         napi = container_of(timer, struct napi_struct, timer);
5661
5662         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5663          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5664          */
5665         if (napi->gro_list && !napi_disable_pending(napi) &&
5666             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5667                 __napi_schedule_irqoff(napi);
5668
5669         return HRTIMER_NORESTART;
5670 }
5671
5672 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5673                     int (*poll)(struct napi_struct *, int), int weight)
5674 {
5675         INIT_LIST_HEAD(&napi->poll_list);
5676         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5677         napi->timer.function = napi_watchdog;
5678         napi->gro_count = 0;
5679         napi->gro_list = NULL;
5680         napi->skb = NULL;
5681         napi->poll = poll;
5682         if (weight > NAPI_POLL_WEIGHT)
5683                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5684                             weight, dev->name);
5685         napi->weight = weight;
5686         list_add(&napi->dev_list, &dev->napi_list);
5687         napi->dev = dev;
5688 #ifdef CONFIG_NETPOLL
5689         napi->poll_owner = -1;
5690 #endif
5691         set_bit(NAPI_STATE_SCHED, &napi->state);
5692         napi_hash_add(napi);
5693 }
5694 EXPORT_SYMBOL(netif_napi_add);
5695
5696 void napi_disable(struct napi_struct *n)
5697 {
5698         might_sleep();
5699         set_bit(NAPI_STATE_DISABLE, &n->state);
5700
5701         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5702                 msleep(1);
5703         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5704                 msleep(1);
5705
5706         hrtimer_cancel(&n->timer);
5707
5708         clear_bit(NAPI_STATE_DISABLE, &n->state);
5709 }
5710 EXPORT_SYMBOL(napi_disable);
5711
5712 /* Must be called in process context */
5713 void netif_napi_del(struct napi_struct *napi)
5714 {
5715         might_sleep();
5716         if (napi_hash_del(napi))
5717                 synchronize_net();
5718         list_del_init(&napi->dev_list);
5719         napi_free_frags(napi);
5720
5721         kfree_skb_list(napi->gro_list);
5722         napi->gro_list = NULL;
5723         napi->gro_count = 0;
5724 }
5725 EXPORT_SYMBOL(netif_napi_del);
5726
5727 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5728 {
5729         void *have;
5730         int work, weight;
5731
5732         list_del_init(&n->poll_list);
5733
5734         have = netpoll_poll_lock(n);
5735
5736         weight = n->weight;
5737
5738         /* This NAPI_STATE_SCHED test is for avoiding a race
5739          * with netpoll's poll_napi().  Only the entity which
5740          * obtains the lock and sees NAPI_STATE_SCHED set will
5741          * actually make the ->poll() call.  Therefore we avoid
5742          * accidentally calling ->poll() when NAPI is not scheduled.
5743          */
5744         work = 0;
5745         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5746                 work = n->poll(n, weight);
5747                 trace_napi_poll(n, work, weight);
5748         }
5749
5750         WARN_ON_ONCE(work > weight);
5751
5752         if (likely(work < weight))
5753                 goto out_unlock;
5754
5755         /* Drivers must not modify the NAPI state if they
5756          * consume the entire weight.  In such cases this code
5757          * still "owns" the NAPI instance and therefore can
5758          * move the instance around on the list at-will.
5759          */
5760         if (unlikely(napi_disable_pending(n))) {
5761                 napi_complete(n);
5762                 goto out_unlock;
5763         }
5764
5765         if (n->gro_list) {
5766                 /* flush too old packets
5767                  * If HZ < 1000, flush all packets.
5768                  */
5769                 napi_gro_flush(n, HZ >= 1000);
5770         }
5771
5772         /* Some drivers may have called napi_schedule
5773          * prior to exhausting their budget.
5774          */
5775         if (unlikely(!list_empty(&n->poll_list))) {
5776                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5777                              n->dev ? n->dev->name : "backlog");
5778                 goto out_unlock;
5779         }
5780
5781         list_add_tail(&n->poll_list, repoll);
5782
5783 out_unlock:
5784         netpoll_poll_unlock(have);
5785
5786         return work;
5787 }
5788
5789 static __latent_entropy void net_rx_action(struct softirq_action *h)
5790 {
5791         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5792         unsigned long time_limit = jiffies +
5793                 usecs_to_jiffies(netdev_budget_usecs);
5794         int budget = netdev_budget;
5795         LIST_HEAD(list);
5796         LIST_HEAD(repoll);
5797
5798         local_irq_disable();
5799         list_splice_init(&sd->poll_list, &list);
5800         local_irq_enable();
5801
5802         for (;;) {
5803                 struct napi_struct *n;
5804
5805                 if (list_empty(&list)) {
5806                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5807                                 goto out;
5808                         break;
5809                 }
5810
5811                 n = list_first_entry(&list, struct napi_struct, poll_list);
5812                 budget -= napi_poll(n, &repoll);
5813
5814                 /* If softirq window is exhausted then punt.
5815                  * Allow this to run for 2 jiffies since which will allow
5816                  * an average latency of 1.5/HZ.
5817                  */
5818                 if (unlikely(budget <= 0 ||
5819                              time_after_eq(jiffies, time_limit))) {
5820                         sd->time_squeeze++;
5821                         break;
5822                 }
5823         }
5824
5825         local_irq_disable();
5826
5827         list_splice_tail_init(&sd->poll_list, &list);
5828         list_splice_tail(&repoll, &list);
5829         list_splice(&list, &sd->poll_list);
5830         if (!list_empty(&sd->poll_list))
5831                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5832
5833         net_rps_action_and_irq_enable(sd);
5834 out:
5835         __kfree_skb_flush();
5836 }
5837
5838 struct netdev_adjacent {
5839         struct net_device *dev;
5840
5841         /* upper master flag, there can only be one master device per list */
5842         bool master;
5843
5844         /* counter for the number of times this device was added to us */
5845         u16 ref_nr;
5846
5847         /* private field for the users */
5848         void *private;
5849
5850         struct list_head list;
5851         struct rcu_head rcu;
5852 };
5853
5854 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5855                                                  struct list_head *adj_list)
5856 {
5857         struct netdev_adjacent *adj;
5858
5859         list_for_each_entry(adj, adj_list, list) {
5860                 if (adj->dev == adj_dev)
5861                         return adj;
5862         }
5863         return NULL;
5864 }
5865
5866 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5867 {
5868         struct net_device *dev = data;
5869
5870         return upper_dev == dev;
5871 }
5872
5873 /**
5874  * netdev_has_upper_dev - Check if device is linked to an upper device
5875  * @dev: device
5876  * @upper_dev: upper device to check
5877  *
5878  * Find out if a device is linked to specified upper device and return true
5879  * in case it is. Note that this checks only immediate upper device,
5880  * not through a complete stack of devices. The caller must hold the RTNL lock.
5881  */
5882 bool netdev_has_upper_dev(struct net_device *dev,
5883                           struct net_device *upper_dev)
5884 {
5885         ASSERT_RTNL();
5886
5887         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5888                                              upper_dev);
5889 }
5890 EXPORT_SYMBOL(netdev_has_upper_dev);
5891
5892 /**
5893  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5894  * @dev: device
5895  * @upper_dev: upper device to check
5896  *
5897  * Find out if a device is linked to specified upper device and return true
5898  * in case it is. Note that this checks the entire upper device chain.
5899  * The caller must hold rcu lock.
5900  */
5901
5902 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5903                                   struct net_device *upper_dev)
5904 {
5905         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5906                                                upper_dev);
5907 }
5908 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5909
5910 /**
5911  * netdev_has_any_upper_dev - Check if device is linked to some device
5912  * @dev: device
5913  *
5914  * Find out if a device is linked to an upper device and return true in case
5915  * it is. The caller must hold the RTNL lock.
5916  */
5917 bool netdev_has_any_upper_dev(struct net_device *dev)
5918 {
5919         ASSERT_RTNL();
5920
5921         return !list_empty(&dev->adj_list.upper);
5922 }
5923 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5924
5925 /**
5926  * netdev_master_upper_dev_get - Get master upper device
5927  * @dev: device
5928  *
5929  * Find a master upper device and return pointer to it or NULL in case
5930  * it's not there. The caller must hold the RTNL lock.
5931  */
5932 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5933 {
5934         struct netdev_adjacent *upper;
5935
5936         ASSERT_RTNL();
5937
5938         if (list_empty(&dev->adj_list.upper))
5939                 return NULL;
5940
5941         upper = list_first_entry(&dev->adj_list.upper,
5942                                  struct netdev_adjacent, list);
5943         if (likely(upper->master))
5944                 return upper->dev;
5945         return NULL;
5946 }
5947 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5948
5949 /**
5950  * netdev_has_any_lower_dev - Check if device is linked to some device
5951  * @dev: device
5952  *
5953  * Find out if a device is linked to a lower device and return true in case
5954  * it is. The caller must hold the RTNL lock.
5955  */
5956 static bool netdev_has_any_lower_dev(struct net_device *dev)
5957 {
5958         ASSERT_RTNL();
5959
5960         return !list_empty(&dev->adj_list.lower);
5961 }
5962
5963 void *netdev_adjacent_get_private(struct list_head *adj_list)
5964 {
5965         struct netdev_adjacent *adj;
5966
5967         adj = list_entry(adj_list, struct netdev_adjacent, list);
5968
5969         return adj->private;
5970 }
5971 EXPORT_SYMBOL(netdev_adjacent_get_private);
5972
5973 /**
5974  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5975  * @dev: device
5976  * @iter: list_head ** of the current position
5977  *
5978  * Gets the next device from the dev's upper list, starting from iter
5979  * position. The caller must hold RCU read lock.
5980  */
5981 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5982                                                  struct list_head **iter)
5983 {
5984         struct netdev_adjacent *upper;
5985
5986         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5987
5988         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5989
5990         if (&upper->list == &dev->adj_list.upper)
5991                 return NULL;
5992
5993         *iter = &upper->list;
5994
5995         return upper->dev;
5996 }
5997 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5998
5999 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6000                                                     struct list_head **iter)
6001 {
6002         struct netdev_adjacent *upper;
6003
6004         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6005
6006         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6007
6008         if (&upper->list == &dev->adj_list.upper)
6009                 return NULL;
6010
6011         *iter = &upper->list;
6012
6013         return upper->dev;
6014 }
6015
6016 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6017                                   int (*fn)(struct net_device *dev,
6018                                             void *data),
6019                                   void *data)
6020 {
6021         struct net_device *udev;
6022         struct list_head *iter;
6023         int ret;
6024
6025         for (iter = &dev->adj_list.upper,
6026              udev = netdev_next_upper_dev_rcu(dev, &iter);
6027              udev;
6028              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6029                 /* first is the upper device itself */
6030                 ret = fn(udev, data);
6031                 if (ret)
6032                         return ret;
6033
6034                 /* then look at all of its upper devices */
6035                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6036                 if (ret)
6037                         return ret;
6038         }
6039
6040         return 0;
6041 }
6042 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6043
6044 /**
6045  * netdev_lower_get_next_private - Get the next ->private from the
6046  *                                 lower neighbour list
6047  * @dev: device
6048  * @iter: list_head ** of the current position
6049  *
6050  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6051  * list, starting from iter position. The caller must hold either hold the
6052  * RTNL lock or its own locking that guarantees that the neighbour lower
6053  * list will remain unchanged.
6054  */
6055 void *netdev_lower_get_next_private(struct net_device *dev,
6056                                     struct list_head **iter)
6057 {
6058         struct netdev_adjacent *lower;
6059
6060         lower = list_entry(*iter, struct netdev_adjacent, list);
6061
6062         if (&lower->list == &dev->adj_list.lower)
6063                 return NULL;
6064
6065         *iter = lower->list.next;
6066
6067         return lower->private;
6068 }
6069 EXPORT_SYMBOL(netdev_lower_get_next_private);
6070
6071 /**
6072  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6073  *                                     lower neighbour list, RCU
6074  *                                     variant
6075  * @dev: device
6076  * @iter: list_head ** of the current position
6077  *
6078  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6079  * list, starting from iter position. The caller must hold RCU read lock.
6080  */
6081 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6082                                         struct list_head **iter)
6083 {
6084         struct netdev_adjacent *lower;
6085
6086         WARN_ON_ONCE(!rcu_read_lock_held());
6087
6088         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6089
6090         if (&lower->list == &dev->adj_list.lower)
6091                 return NULL;
6092
6093         *iter = &lower->list;
6094
6095         return lower->private;
6096 }
6097 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6098
6099 /**
6100  * netdev_lower_get_next - Get the next device from the lower neighbour
6101  *                         list
6102  * @dev: device
6103  * @iter: list_head ** of the current position
6104  *
6105  * Gets the next netdev_adjacent from the dev's lower neighbour
6106  * list, starting from iter position. The caller must hold RTNL lock or
6107  * its own locking that guarantees that the neighbour lower
6108  * list will remain unchanged.
6109  */
6110 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6111 {
6112         struct netdev_adjacent *lower;
6113
6114         lower = list_entry(*iter, struct netdev_adjacent, list);
6115
6116         if (&lower->list == &dev->adj_list.lower)
6117                 return NULL;
6118
6119         *iter = lower->list.next;
6120
6121         return lower->dev;
6122 }
6123 EXPORT_SYMBOL(netdev_lower_get_next);
6124
6125 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6126                                                 struct list_head **iter)
6127 {
6128         struct netdev_adjacent *lower;
6129
6130         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6131
6132         if (&lower->list == &dev->adj_list.lower)
6133                 return NULL;
6134
6135         *iter = &lower->list;
6136
6137         return lower->dev;
6138 }
6139
6140 int netdev_walk_all_lower_dev(struct net_device *dev,
6141                               int (*fn)(struct net_device *dev,
6142                                         void *data),
6143                               void *data)
6144 {
6145         struct net_device *ldev;
6146         struct list_head *iter;
6147         int ret;
6148
6149         for (iter = &dev->adj_list.lower,
6150              ldev = netdev_next_lower_dev(dev, &iter);
6151              ldev;
6152              ldev = netdev_next_lower_dev(dev, &iter)) {
6153                 /* first is the lower device itself */
6154                 ret = fn(ldev, data);
6155                 if (ret)
6156                         return ret;
6157
6158                 /* then look at all of its lower devices */
6159                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6160                 if (ret)
6161                         return ret;
6162         }
6163
6164         return 0;
6165 }
6166 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6167
6168 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6169                                                     struct list_head **iter)
6170 {
6171         struct netdev_adjacent *lower;
6172
6173         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6174         if (&lower->list == &dev->adj_list.lower)
6175                 return NULL;
6176
6177         *iter = &lower->list;
6178
6179         return lower->dev;
6180 }
6181
6182 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6183                                   int (*fn)(struct net_device *dev,
6184                                             void *data),
6185                                   void *data)
6186 {
6187         struct net_device *ldev;
6188         struct list_head *iter;
6189         int ret;
6190
6191         for (iter = &dev->adj_list.lower,
6192              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6193              ldev;
6194              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6195                 /* first is the lower device itself */
6196                 ret = fn(ldev, data);
6197                 if (ret)
6198                         return ret;
6199
6200                 /* then look at all of its lower devices */
6201                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6202                 if (ret)
6203                         return ret;
6204         }
6205
6206         return 0;
6207 }
6208 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6209
6210 /**
6211  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6212  *                                     lower neighbour list, RCU
6213  *                                     variant
6214  * @dev: device
6215  *
6216  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6217  * list. The caller must hold RCU read lock.
6218  */
6219 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6220 {
6221         struct netdev_adjacent *lower;
6222
6223         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6224                         struct netdev_adjacent, list);
6225         if (lower)
6226                 return lower->private;
6227         return NULL;
6228 }
6229 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6230
6231 /**
6232  * netdev_master_upper_dev_get_rcu - Get master upper device
6233  * @dev: device
6234  *
6235  * Find a master upper device and return pointer to it or NULL in case
6236  * it's not there. The caller must hold the RCU read lock.
6237  */
6238 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6239 {
6240         struct netdev_adjacent *upper;
6241
6242         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6243                                        struct netdev_adjacent, list);
6244         if (upper && likely(upper->master))
6245                 return upper->dev;
6246         return NULL;
6247 }
6248 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6249
6250 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6251                               struct net_device *adj_dev,
6252                               struct list_head *dev_list)
6253 {
6254         char linkname[IFNAMSIZ+7];
6255
6256         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6257                 "upper_%s" : "lower_%s", adj_dev->name);
6258         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6259                                  linkname);
6260 }
6261 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6262                                char *name,
6263                                struct list_head *dev_list)
6264 {
6265         char linkname[IFNAMSIZ+7];
6266
6267         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6268                 "upper_%s" : "lower_%s", name);
6269         sysfs_remove_link(&(dev->dev.kobj), linkname);
6270 }
6271
6272 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6273                                                  struct net_device *adj_dev,
6274                                                  struct list_head *dev_list)
6275 {
6276         return (dev_list == &dev->adj_list.upper ||
6277                 dev_list == &dev->adj_list.lower) &&
6278                 net_eq(dev_net(dev), dev_net(adj_dev));
6279 }
6280
6281 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6282                                         struct net_device *adj_dev,
6283                                         struct list_head *dev_list,
6284                                         void *private, bool master)
6285 {
6286         struct netdev_adjacent *adj;
6287         int ret;
6288
6289         adj = __netdev_find_adj(adj_dev, dev_list);
6290
6291         if (adj) {
6292                 adj->ref_nr += 1;
6293                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6294                          dev->name, adj_dev->name, adj->ref_nr);
6295
6296                 return 0;
6297         }
6298
6299         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6300         if (!adj)
6301                 return -ENOMEM;
6302
6303         adj->dev = adj_dev;
6304         adj->master = master;
6305         adj->ref_nr = 1;
6306         adj->private = private;
6307         dev_hold(adj_dev);
6308
6309         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6310                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6311
6312         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6313                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6314                 if (ret)
6315                         goto free_adj;
6316         }
6317
6318         /* Ensure that master link is always the first item in list. */
6319         if (master) {
6320                 ret = sysfs_create_link(&(dev->dev.kobj),
6321                                         &(adj_dev->dev.kobj), "master");
6322                 if (ret)
6323                         goto remove_symlinks;
6324
6325                 list_add_rcu(&adj->list, dev_list);
6326         } else {
6327                 list_add_tail_rcu(&adj->list, dev_list);
6328         }
6329
6330         return 0;
6331
6332 remove_symlinks:
6333         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6334                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6335 free_adj:
6336         kfree(adj);
6337         dev_put(adj_dev);
6338
6339         return ret;
6340 }
6341
6342 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6343                                          struct net_device *adj_dev,
6344                                          u16 ref_nr,
6345                                          struct list_head *dev_list)
6346 {
6347         struct netdev_adjacent *adj;
6348
6349         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6350                  dev->name, adj_dev->name, ref_nr);
6351
6352         adj = __netdev_find_adj(adj_dev, dev_list);
6353
6354         if (!adj) {
6355                 pr_err("Adjacency does not exist for device %s from %s\n",
6356                        dev->name, adj_dev->name);
6357                 WARN_ON(1);
6358                 return;
6359         }
6360
6361         if (adj->ref_nr > ref_nr) {
6362                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6363                          dev->name, adj_dev->name, ref_nr,
6364                          adj->ref_nr - ref_nr);
6365                 adj->ref_nr -= ref_nr;
6366                 return;
6367         }
6368
6369         if (adj->master)
6370                 sysfs_remove_link(&(dev->dev.kobj), "master");
6371
6372         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6373                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6374
6375         list_del_rcu(&adj->list);
6376         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6377                  adj_dev->name, dev->name, adj_dev->name);
6378         dev_put(adj_dev);
6379         kfree_rcu(adj, rcu);
6380 }
6381
6382 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6383                                             struct net_device *upper_dev,
6384                                             struct list_head *up_list,
6385                                             struct list_head *down_list,
6386                                             void *private, bool master)
6387 {
6388         int ret;
6389
6390         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6391                                            private, master);
6392         if (ret)
6393                 return ret;
6394
6395         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6396                                            private, false);
6397         if (ret) {
6398                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6399                 return ret;
6400         }
6401
6402         return 0;
6403 }
6404
6405 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6406                                                struct net_device *upper_dev,
6407                                                u16 ref_nr,
6408                                                struct list_head *up_list,
6409                                                struct list_head *down_list)
6410 {
6411         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6412         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6413 }
6414
6415 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6416                                                 struct net_device *upper_dev,
6417                                                 void *private, bool master)
6418 {
6419         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6420                                                 &dev->adj_list.upper,
6421                                                 &upper_dev->adj_list.lower,
6422                                                 private, master);
6423 }
6424
6425 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6426                                                    struct net_device *upper_dev)
6427 {
6428         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6429                                            &dev->adj_list.upper,
6430                                            &upper_dev->adj_list.lower);
6431 }
6432
6433 static int __netdev_upper_dev_link(struct net_device *dev,
6434                                    struct net_device *upper_dev, bool master,
6435                                    void *upper_priv, void *upper_info,
6436                                    struct netlink_ext_ack *extack)
6437 {
6438         struct netdev_notifier_changeupper_info changeupper_info = {
6439                 .info = {
6440                         .dev = dev,
6441                         .extack = extack,
6442                 },
6443                 .upper_dev = upper_dev,
6444                 .master = master,
6445                 .linking = true,
6446                 .upper_info = upper_info,
6447         };
6448         struct net_device *master_dev;
6449         int ret = 0;
6450
6451         ASSERT_RTNL();
6452
6453         if (dev == upper_dev)
6454                 return -EBUSY;
6455
6456         /* To prevent loops, check if dev is not upper device to upper_dev. */
6457         if (netdev_has_upper_dev(upper_dev, dev))
6458                 return -EBUSY;
6459
6460         if (!master) {
6461                 if (netdev_has_upper_dev(dev, upper_dev))
6462                         return -EEXIST;
6463         } else {
6464                 master_dev = netdev_master_upper_dev_get(dev);
6465                 if (master_dev)
6466                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6467         }
6468
6469         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6470                                             &changeupper_info.info);
6471         ret = notifier_to_errno(ret);
6472         if (ret)
6473                 return ret;
6474
6475         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6476                                                    master);
6477         if (ret)
6478                 return ret;
6479
6480         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6481                                             &changeupper_info.info);
6482         ret = notifier_to_errno(ret);
6483         if (ret)
6484                 goto rollback;
6485
6486         return 0;
6487
6488 rollback:
6489         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6490
6491         return ret;
6492 }
6493
6494 /**
6495  * netdev_upper_dev_link - Add a link to the upper device
6496  * @dev: device
6497  * @upper_dev: new upper device
6498  * @extack: netlink extended ack
6499  *
6500  * Adds a link to device which is upper to this one. The caller must hold
6501  * the RTNL lock. On a failure a negative errno code is returned.
6502  * On success the reference counts are adjusted and the function
6503  * returns zero.
6504  */
6505 int netdev_upper_dev_link(struct net_device *dev,
6506                           struct net_device *upper_dev,
6507                           struct netlink_ext_ack *extack)
6508 {
6509         return __netdev_upper_dev_link(dev, upper_dev, false,
6510                                        NULL, NULL, extack);
6511 }
6512 EXPORT_SYMBOL(netdev_upper_dev_link);
6513
6514 /**
6515  * netdev_master_upper_dev_link - Add a master link to the upper device
6516  * @dev: device
6517  * @upper_dev: new upper device
6518  * @upper_priv: upper device private
6519  * @upper_info: upper info to be passed down via notifier
6520  * @extack: netlink extended ack
6521  *
6522  * Adds a link to device which is upper to this one. In this case, only
6523  * one master upper device can be linked, although other non-master devices
6524  * might be linked as well. The caller must hold the RTNL lock.
6525  * On a failure a negative errno code is returned. On success the reference
6526  * counts are adjusted and the function returns zero.
6527  */
6528 int netdev_master_upper_dev_link(struct net_device *dev,
6529                                  struct net_device *upper_dev,
6530                                  void *upper_priv, void *upper_info,
6531                                  struct netlink_ext_ack *extack)
6532 {
6533         return __netdev_upper_dev_link(dev, upper_dev, true,
6534                                        upper_priv, upper_info, extack);
6535 }
6536 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6537
6538 /**
6539  * netdev_upper_dev_unlink - Removes a link to upper device
6540  * @dev: device
6541  * @upper_dev: new upper device
6542  *
6543  * Removes a link to device which is upper to this one. The caller must hold
6544  * the RTNL lock.
6545  */
6546 void netdev_upper_dev_unlink(struct net_device *dev,
6547                              struct net_device *upper_dev)
6548 {
6549         struct netdev_notifier_changeupper_info changeupper_info = {
6550                 .info = {
6551                         .dev = dev,
6552                 },
6553                 .upper_dev = upper_dev,
6554                 .linking = false,
6555         };
6556
6557         ASSERT_RTNL();
6558
6559         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6560
6561         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6562                                       &changeupper_info.info);
6563
6564         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6565
6566         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6567                                       &changeupper_info.info);
6568 }
6569 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6570
6571 /**
6572  * netdev_bonding_info_change - Dispatch event about slave change
6573  * @dev: device
6574  * @bonding_info: info to dispatch
6575  *
6576  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6577  * The caller must hold the RTNL lock.
6578  */
6579 void netdev_bonding_info_change(struct net_device *dev,
6580                                 struct netdev_bonding_info *bonding_info)
6581 {
6582         struct netdev_notifier_bonding_info info = {
6583                 .info.dev = dev,
6584         };
6585
6586         memcpy(&info.bonding_info, bonding_info,
6587                sizeof(struct netdev_bonding_info));
6588         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6589                                       &info.info);
6590 }
6591 EXPORT_SYMBOL(netdev_bonding_info_change);
6592
6593 static void netdev_adjacent_add_links(struct net_device *dev)
6594 {
6595         struct netdev_adjacent *iter;
6596
6597         struct net *net = dev_net(dev);
6598
6599         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6600                 if (!net_eq(net, dev_net(iter->dev)))
6601                         continue;
6602                 netdev_adjacent_sysfs_add(iter->dev, dev,
6603                                           &iter->dev->adj_list.lower);
6604                 netdev_adjacent_sysfs_add(dev, iter->dev,
6605                                           &dev->adj_list.upper);
6606         }
6607
6608         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6609                 if (!net_eq(net, dev_net(iter->dev)))
6610                         continue;
6611                 netdev_adjacent_sysfs_add(iter->dev, dev,
6612                                           &iter->dev->adj_list.upper);
6613                 netdev_adjacent_sysfs_add(dev, iter->dev,
6614                                           &dev->adj_list.lower);
6615         }
6616 }
6617
6618 static void netdev_adjacent_del_links(struct net_device *dev)
6619 {
6620         struct netdev_adjacent *iter;
6621
6622         struct net *net = dev_net(dev);
6623
6624         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6625                 if (!net_eq(net, dev_net(iter->dev)))
6626                         continue;
6627                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6628                                           &iter->dev->adj_list.lower);
6629                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6630                                           &dev->adj_list.upper);
6631         }
6632
6633         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6634                 if (!net_eq(net, dev_net(iter->dev)))
6635                         continue;
6636                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6637                                           &iter->dev->adj_list.upper);
6638                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6639                                           &dev->adj_list.lower);
6640         }
6641 }
6642
6643 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6644 {
6645         struct netdev_adjacent *iter;
6646
6647         struct net *net = dev_net(dev);
6648
6649         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6650                 if (!net_eq(net, dev_net(iter->dev)))
6651                         continue;
6652                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6653                                           &iter->dev->adj_list.lower);
6654                 netdev_adjacent_sysfs_add(iter->dev, dev,
6655                                           &iter->dev->adj_list.lower);
6656         }
6657
6658         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6659                 if (!net_eq(net, dev_net(iter->dev)))
6660                         continue;
6661                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6662                                           &iter->dev->adj_list.upper);
6663                 netdev_adjacent_sysfs_add(iter->dev, dev,
6664                                           &iter->dev->adj_list.upper);
6665         }
6666 }
6667
6668 void *netdev_lower_dev_get_private(struct net_device *dev,
6669                                    struct net_device *lower_dev)
6670 {
6671         struct netdev_adjacent *lower;
6672
6673         if (!lower_dev)
6674                 return NULL;
6675         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6676         if (!lower)
6677                 return NULL;
6678
6679         return lower->private;
6680 }
6681 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6682
6683
6684 int dev_get_nest_level(struct net_device *dev)
6685 {
6686         struct net_device *lower = NULL;
6687         struct list_head *iter;
6688         int max_nest = -1;
6689         int nest;
6690
6691         ASSERT_RTNL();
6692
6693         netdev_for_each_lower_dev(dev, lower, iter) {
6694                 nest = dev_get_nest_level(lower);
6695                 if (max_nest < nest)
6696                         max_nest = nest;
6697         }
6698
6699         return max_nest + 1;
6700 }
6701 EXPORT_SYMBOL(dev_get_nest_level);
6702
6703 /**
6704  * netdev_lower_change - Dispatch event about lower device state change
6705  * @lower_dev: device
6706  * @lower_state_info: state to dispatch
6707  *
6708  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6709  * The caller must hold the RTNL lock.
6710  */
6711 void netdev_lower_state_changed(struct net_device *lower_dev,
6712                                 void *lower_state_info)
6713 {
6714         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6715                 .info.dev = lower_dev,
6716         };
6717
6718         ASSERT_RTNL();
6719         changelowerstate_info.lower_state_info = lower_state_info;
6720         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6721                                       &changelowerstate_info.info);
6722 }
6723 EXPORT_SYMBOL(netdev_lower_state_changed);
6724
6725 static void dev_change_rx_flags(struct net_device *dev, int flags)
6726 {
6727         const struct net_device_ops *ops = dev->netdev_ops;
6728
6729         if (ops->ndo_change_rx_flags)
6730                 ops->ndo_change_rx_flags(dev, flags);
6731 }
6732
6733 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6734 {
6735         unsigned int old_flags = dev->flags;
6736         kuid_t uid;
6737         kgid_t gid;
6738
6739         ASSERT_RTNL();
6740
6741         dev->flags |= IFF_PROMISC;
6742         dev->promiscuity += inc;
6743         if (dev->promiscuity == 0) {
6744                 /*
6745                  * Avoid overflow.
6746                  * If inc causes overflow, untouch promisc and return error.
6747                  */
6748                 if (inc < 0)
6749                         dev->flags &= ~IFF_PROMISC;
6750                 else {
6751                         dev->promiscuity -= inc;
6752                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6753                                 dev->name);
6754                         return -EOVERFLOW;
6755                 }
6756         }
6757         if (dev->flags != old_flags) {
6758                 pr_info("device %s %s promiscuous mode\n",
6759                         dev->name,
6760                         dev->flags & IFF_PROMISC ? "entered" : "left");
6761                 if (audit_enabled) {
6762                         current_uid_gid(&uid, &gid);
6763                         audit_log(current->audit_context, GFP_ATOMIC,
6764                                 AUDIT_ANOM_PROMISCUOUS,
6765                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6766                                 dev->name, (dev->flags & IFF_PROMISC),
6767                                 (old_flags & IFF_PROMISC),
6768                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6769                                 from_kuid(&init_user_ns, uid),
6770                                 from_kgid(&init_user_ns, gid),
6771                                 audit_get_sessionid(current));
6772                 }
6773
6774                 dev_change_rx_flags(dev, IFF_PROMISC);
6775         }
6776         if (notify)
6777                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6778         return 0;
6779 }
6780
6781 /**
6782  *      dev_set_promiscuity     - update promiscuity count on a device
6783  *      @dev: device
6784  *      @inc: modifier
6785  *
6786  *      Add or remove promiscuity from a device. While the count in the device
6787  *      remains above zero the interface remains promiscuous. Once it hits zero
6788  *      the device reverts back to normal filtering operation. A negative inc
6789  *      value is used to drop promiscuity on the device.
6790  *      Return 0 if successful or a negative errno code on error.
6791  */
6792 int dev_set_promiscuity(struct net_device *dev, int inc)
6793 {
6794         unsigned int old_flags = dev->flags;
6795         int err;
6796
6797         err = __dev_set_promiscuity(dev, inc, true);
6798         if (err < 0)
6799                 return err;
6800         if (dev->flags != old_flags)
6801                 dev_set_rx_mode(dev);
6802         return err;
6803 }
6804 EXPORT_SYMBOL(dev_set_promiscuity);
6805
6806 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6807 {
6808         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6809
6810         ASSERT_RTNL();
6811
6812         dev->flags |= IFF_ALLMULTI;
6813         dev->allmulti += inc;
6814         if (dev->allmulti == 0) {
6815                 /*
6816                  * Avoid overflow.
6817                  * If inc causes overflow, untouch allmulti and return error.
6818                  */
6819                 if (inc < 0)
6820                         dev->flags &= ~IFF_ALLMULTI;
6821                 else {
6822                         dev->allmulti -= inc;
6823                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6824                                 dev->name);
6825                         return -EOVERFLOW;
6826                 }
6827         }
6828         if (dev->flags ^ old_flags) {
6829                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6830                 dev_set_rx_mode(dev);
6831                 if (notify)
6832                         __dev_notify_flags(dev, old_flags,
6833                                            dev->gflags ^ old_gflags);
6834         }
6835         return 0;
6836 }
6837
6838 /**
6839  *      dev_set_allmulti        - update allmulti count on a device
6840  *      @dev: device
6841  *      @inc: modifier
6842  *
6843  *      Add or remove reception of all multicast frames to a device. While the
6844  *      count in the device remains above zero the interface remains listening
6845  *      to all interfaces. Once it hits zero the device reverts back to normal
6846  *      filtering operation. A negative @inc value is used to drop the counter
6847  *      when releasing a resource needing all multicasts.
6848  *      Return 0 if successful or a negative errno code on error.
6849  */
6850
6851 int dev_set_allmulti(struct net_device *dev, int inc)
6852 {
6853         return __dev_set_allmulti(dev, inc, true);
6854 }
6855 EXPORT_SYMBOL(dev_set_allmulti);
6856
6857 /*
6858  *      Upload unicast and multicast address lists to device and
6859  *      configure RX filtering. When the device doesn't support unicast
6860  *      filtering it is put in promiscuous mode while unicast addresses
6861  *      are present.
6862  */
6863 void __dev_set_rx_mode(struct net_device *dev)
6864 {
6865         const struct net_device_ops *ops = dev->netdev_ops;
6866
6867         /* dev_open will call this function so the list will stay sane. */
6868         if (!(dev->flags&IFF_UP))
6869                 return;
6870
6871         if (!netif_device_present(dev))
6872                 return;
6873
6874         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6875                 /* Unicast addresses changes may only happen under the rtnl,
6876                  * therefore calling __dev_set_promiscuity here is safe.
6877                  */
6878                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6879                         __dev_set_promiscuity(dev, 1, false);
6880                         dev->uc_promisc = true;
6881                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6882                         __dev_set_promiscuity(dev, -1, false);
6883                         dev->uc_promisc = false;
6884                 }
6885         }
6886
6887         if (ops->ndo_set_rx_mode)
6888                 ops->ndo_set_rx_mode(dev);
6889 }
6890
6891 void dev_set_rx_mode(struct net_device *dev)
6892 {
6893         netif_addr_lock_bh(dev);
6894         __dev_set_rx_mode(dev);
6895         netif_addr_unlock_bh(dev);
6896 }
6897
6898 /**
6899  *      dev_get_flags - get flags reported to userspace
6900  *      @dev: device
6901  *
6902  *      Get the combination of flag bits exported through APIs to userspace.
6903  */
6904 unsigned int dev_get_flags(const struct net_device *dev)
6905 {
6906         unsigned int flags;
6907
6908         flags = (dev->flags & ~(IFF_PROMISC |
6909                                 IFF_ALLMULTI |
6910                                 IFF_RUNNING |
6911                                 IFF_LOWER_UP |
6912                                 IFF_DORMANT)) |
6913                 (dev->gflags & (IFF_PROMISC |
6914                                 IFF_ALLMULTI));
6915
6916         if (netif_running(dev)) {
6917                 if (netif_oper_up(dev))
6918                         flags |= IFF_RUNNING;
6919                 if (netif_carrier_ok(dev))
6920                         flags |= IFF_LOWER_UP;
6921                 if (netif_dormant(dev))
6922                         flags |= IFF_DORMANT;
6923         }
6924
6925         return flags;
6926 }
6927 EXPORT_SYMBOL(dev_get_flags);
6928
6929 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6930 {
6931         unsigned int old_flags = dev->flags;
6932         int ret;
6933
6934         ASSERT_RTNL();
6935
6936         /*
6937          *      Set the flags on our device.
6938          */
6939
6940         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6941                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6942                                IFF_AUTOMEDIA)) |
6943                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6944                                     IFF_ALLMULTI));
6945
6946         /*
6947          *      Load in the correct multicast list now the flags have changed.
6948          */
6949
6950         if ((old_flags ^ flags) & IFF_MULTICAST)
6951                 dev_change_rx_flags(dev, IFF_MULTICAST);
6952
6953         dev_set_rx_mode(dev);
6954
6955         /*
6956          *      Have we downed the interface. We handle IFF_UP ourselves
6957          *      according to user attempts to set it, rather than blindly
6958          *      setting it.
6959          */
6960
6961         ret = 0;
6962         if ((old_flags ^ flags) & IFF_UP) {
6963                 if (old_flags & IFF_UP)
6964                         __dev_close(dev);
6965                 else
6966                         ret = __dev_open(dev);
6967         }
6968
6969         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6970                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6971                 unsigned int old_flags = dev->flags;
6972
6973                 dev->gflags ^= IFF_PROMISC;
6974
6975                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6976                         if (dev->flags != old_flags)
6977                                 dev_set_rx_mode(dev);
6978         }
6979
6980         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6981          * is important. Some (broken) drivers set IFF_PROMISC, when
6982          * IFF_ALLMULTI is requested not asking us and not reporting.
6983          */
6984         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6985                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6986
6987                 dev->gflags ^= IFF_ALLMULTI;
6988                 __dev_set_allmulti(dev, inc, false);
6989         }
6990
6991         return ret;
6992 }
6993
6994 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6995                         unsigned int gchanges)
6996 {
6997         unsigned int changes = dev->flags ^ old_flags;
6998
6999         if (gchanges)
7000                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7001
7002         if (changes & IFF_UP) {
7003                 if (dev->flags & IFF_UP)
7004                         call_netdevice_notifiers(NETDEV_UP, dev);
7005                 else
7006                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7007         }
7008
7009         if (dev->flags & IFF_UP &&
7010             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7011                 struct netdev_notifier_change_info change_info = {
7012                         .info = {
7013                                 .dev = dev,
7014                         },
7015                         .flags_changed = changes,
7016                 };
7017
7018                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7019         }
7020 }
7021
7022 /**
7023  *      dev_change_flags - change device settings
7024  *      @dev: device
7025  *      @flags: device state flags
7026  *
7027  *      Change settings on device based state flags. The flags are
7028  *      in the userspace exported format.
7029  */
7030 int dev_change_flags(struct net_device *dev, unsigned int flags)
7031 {
7032         int ret;
7033         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7034
7035         ret = __dev_change_flags(dev, flags);
7036         if (ret < 0)
7037                 return ret;
7038
7039         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7040         __dev_notify_flags(dev, old_flags, changes);
7041         return ret;
7042 }
7043 EXPORT_SYMBOL(dev_change_flags);
7044
7045 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7046 {
7047         const struct net_device_ops *ops = dev->netdev_ops;
7048
7049         if (ops->ndo_change_mtu)
7050                 return ops->ndo_change_mtu(dev, new_mtu);
7051
7052         dev->mtu = new_mtu;
7053         return 0;
7054 }
7055 EXPORT_SYMBOL(__dev_set_mtu);
7056
7057 /**
7058  *      dev_set_mtu - Change maximum transfer unit
7059  *      @dev: device
7060  *      @new_mtu: new transfer unit
7061  *
7062  *      Change the maximum transfer size of the network device.
7063  */
7064 int dev_set_mtu(struct net_device *dev, int new_mtu)
7065 {
7066         int err, orig_mtu;
7067
7068         if (new_mtu == dev->mtu)
7069                 return 0;
7070
7071         /* MTU must be positive, and in range */
7072         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7073                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7074                                     dev->name, new_mtu, dev->min_mtu);
7075                 return -EINVAL;
7076         }
7077
7078         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7079                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7080                                     dev->name, new_mtu, dev->max_mtu);
7081                 return -EINVAL;
7082         }
7083
7084         if (!netif_device_present(dev))
7085                 return -ENODEV;
7086
7087         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7088         err = notifier_to_errno(err);
7089         if (err)
7090                 return err;
7091
7092         orig_mtu = dev->mtu;
7093         err = __dev_set_mtu(dev, new_mtu);
7094
7095         if (!err) {
7096                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7097                 err = notifier_to_errno(err);
7098                 if (err) {
7099                         /* setting mtu back and notifying everyone again,
7100                          * so that they have a chance to revert changes.
7101                          */
7102                         __dev_set_mtu(dev, orig_mtu);
7103                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7104                 }
7105         }
7106         return err;
7107 }
7108 EXPORT_SYMBOL(dev_set_mtu);
7109
7110 /**
7111  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7112  *      @dev: device
7113  *      @new_len: new tx queue length
7114  */
7115 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7116 {
7117         unsigned int orig_len = dev->tx_queue_len;
7118         int res;
7119
7120         if (new_len != (unsigned int)new_len)
7121                 return -ERANGE;
7122
7123         if (new_len != orig_len) {
7124                 dev->tx_queue_len = new_len;
7125                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7126                 res = notifier_to_errno(res);
7127                 if (res) {
7128                         netdev_err(dev,
7129                                    "refused to change device tx_queue_len\n");
7130                         dev->tx_queue_len = orig_len;
7131                         return res;
7132                 }
7133                 return dev_qdisc_change_tx_queue_len(dev);
7134         }
7135
7136         return 0;
7137 }
7138
7139 /**
7140  *      dev_set_group - Change group this device belongs to
7141  *      @dev: device
7142  *      @new_group: group this device should belong to
7143  */
7144 void dev_set_group(struct net_device *dev, int new_group)
7145 {
7146         dev->group = new_group;
7147 }
7148 EXPORT_SYMBOL(dev_set_group);
7149
7150 /**
7151  *      dev_set_mac_address - Change Media Access Control Address
7152  *      @dev: device
7153  *      @sa: new address
7154  *
7155  *      Change the hardware (MAC) address of the device
7156  */
7157 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7158 {
7159         const struct net_device_ops *ops = dev->netdev_ops;
7160         int err;
7161
7162         if (!ops->ndo_set_mac_address)
7163                 return -EOPNOTSUPP;
7164         if (sa->sa_family != dev->type)
7165                 return -EINVAL;
7166         if (!netif_device_present(dev))
7167                 return -ENODEV;
7168         err = ops->ndo_set_mac_address(dev, sa);
7169         if (err)
7170                 return err;
7171         dev->addr_assign_type = NET_ADDR_SET;
7172         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7173         add_device_randomness(dev->dev_addr, dev->addr_len);
7174         return 0;
7175 }
7176 EXPORT_SYMBOL(dev_set_mac_address);
7177
7178 /**
7179  *      dev_change_carrier - Change device carrier
7180  *      @dev: device
7181  *      @new_carrier: new value
7182  *
7183  *      Change device carrier
7184  */
7185 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7186 {
7187         const struct net_device_ops *ops = dev->netdev_ops;
7188
7189         if (!ops->ndo_change_carrier)
7190                 return -EOPNOTSUPP;
7191         if (!netif_device_present(dev))
7192                 return -ENODEV;
7193         return ops->ndo_change_carrier(dev, new_carrier);
7194 }
7195 EXPORT_SYMBOL(dev_change_carrier);
7196
7197 /**
7198  *      dev_get_phys_port_id - Get device physical port ID
7199  *      @dev: device
7200  *      @ppid: port ID
7201  *
7202  *      Get device physical port ID
7203  */
7204 int dev_get_phys_port_id(struct net_device *dev,
7205                          struct netdev_phys_item_id *ppid)
7206 {
7207         const struct net_device_ops *ops = dev->netdev_ops;
7208
7209         if (!ops->ndo_get_phys_port_id)
7210                 return -EOPNOTSUPP;
7211         return ops->ndo_get_phys_port_id(dev, ppid);
7212 }
7213 EXPORT_SYMBOL(dev_get_phys_port_id);
7214
7215 /**
7216  *      dev_get_phys_port_name - Get device physical port name
7217  *      @dev: device
7218  *      @name: port name
7219  *      @len: limit of bytes to copy to name
7220  *
7221  *      Get device physical port name
7222  */
7223 int dev_get_phys_port_name(struct net_device *dev,
7224                            char *name, size_t len)
7225 {
7226         const struct net_device_ops *ops = dev->netdev_ops;
7227
7228         if (!ops->ndo_get_phys_port_name)
7229                 return -EOPNOTSUPP;
7230         return ops->ndo_get_phys_port_name(dev, name, len);
7231 }
7232 EXPORT_SYMBOL(dev_get_phys_port_name);
7233
7234 /**
7235  *      dev_change_proto_down - update protocol port state information
7236  *      @dev: device
7237  *      @proto_down: new value
7238  *
7239  *      This info can be used by switch drivers to set the phys state of the
7240  *      port.
7241  */
7242 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7243 {
7244         const struct net_device_ops *ops = dev->netdev_ops;
7245
7246         if (!ops->ndo_change_proto_down)
7247                 return -EOPNOTSUPP;
7248         if (!netif_device_present(dev))
7249                 return -ENODEV;
7250         return ops->ndo_change_proto_down(dev, proto_down);
7251 }
7252 EXPORT_SYMBOL(dev_change_proto_down);
7253
7254 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7255                      struct netdev_bpf *xdp)
7256 {
7257         memset(xdp, 0, sizeof(*xdp));
7258         xdp->command = XDP_QUERY_PROG;
7259
7260         /* Query must always succeed. */
7261         WARN_ON(bpf_op(dev, xdp) < 0);
7262 }
7263
7264 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7265 {
7266         struct netdev_bpf xdp;
7267
7268         __dev_xdp_query(dev, bpf_op, &xdp);
7269
7270         return xdp.prog_attached;
7271 }
7272
7273 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7274                            struct netlink_ext_ack *extack, u32 flags,
7275                            struct bpf_prog *prog)
7276 {
7277         struct netdev_bpf xdp;
7278
7279         memset(&xdp, 0, sizeof(xdp));
7280         if (flags & XDP_FLAGS_HW_MODE)
7281                 xdp.command = XDP_SETUP_PROG_HW;
7282         else
7283                 xdp.command = XDP_SETUP_PROG;
7284         xdp.extack = extack;
7285         xdp.flags = flags;
7286         xdp.prog = prog;
7287
7288         return bpf_op(dev, &xdp);
7289 }
7290
7291 static void dev_xdp_uninstall(struct net_device *dev)
7292 {
7293         struct netdev_bpf xdp;
7294         bpf_op_t ndo_bpf;
7295
7296         /* Remove generic XDP */
7297         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7298
7299         /* Remove from the driver */
7300         ndo_bpf = dev->netdev_ops->ndo_bpf;
7301         if (!ndo_bpf)
7302                 return;
7303
7304         __dev_xdp_query(dev, ndo_bpf, &xdp);
7305         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7306                 return;
7307
7308         /* Program removal should always succeed */
7309         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7310 }
7311
7312 /**
7313  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7314  *      @dev: device
7315  *      @extack: netlink extended ack
7316  *      @fd: new program fd or negative value to clear
7317  *      @flags: xdp-related flags
7318  *
7319  *      Set or clear a bpf program for a device
7320  */
7321 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7322                       int fd, u32 flags)
7323 {
7324         const struct net_device_ops *ops = dev->netdev_ops;
7325         struct bpf_prog *prog = NULL;
7326         bpf_op_t bpf_op, bpf_chk;
7327         int err;
7328
7329         ASSERT_RTNL();
7330
7331         bpf_op = bpf_chk = ops->ndo_bpf;
7332         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7333                 return -EOPNOTSUPP;
7334         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7335                 bpf_op = generic_xdp_install;
7336         if (bpf_op == bpf_chk)
7337                 bpf_chk = generic_xdp_install;
7338
7339         if (fd >= 0) {
7340                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7341                         return -EEXIST;
7342                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7343                     __dev_xdp_attached(dev, bpf_op))
7344                         return -EBUSY;
7345
7346                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7347                                              bpf_op == ops->ndo_bpf);
7348                 if (IS_ERR(prog))
7349                         return PTR_ERR(prog);
7350
7351                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7352                     bpf_prog_is_dev_bound(prog->aux)) {
7353                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7354                         bpf_prog_put(prog);
7355                         return -EINVAL;
7356                 }
7357         }
7358
7359         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7360         if (err < 0 && prog)
7361                 bpf_prog_put(prog);
7362
7363         return err;
7364 }
7365
7366 /**
7367  *      dev_new_index   -       allocate an ifindex
7368  *      @net: the applicable net namespace
7369  *
7370  *      Returns a suitable unique value for a new device interface
7371  *      number.  The caller must hold the rtnl semaphore or the
7372  *      dev_base_lock to be sure it remains unique.
7373  */
7374 static int dev_new_index(struct net *net)
7375 {
7376         int ifindex = net->ifindex;
7377
7378         for (;;) {
7379                 if (++ifindex <= 0)
7380                         ifindex = 1;
7381                 if (!__dev_get_by_index(net, ifindex))
7382                         return net->ifindex = ifindex;
7383         }
7384 }
7385
7386 /* Delayed registration/unregisteration */
7387 static LIST_HEAD(net_todo_list);
7388 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7389
7390 static void net_set_todo(struct net_device *dev)
7391 {
7392         list_add_tail(&dev->todo_list, &net_todo_list);
7393         dev_net(dev)->dev_unreg_count++;
7394 }
7395
7396 static void rollback_registered_many(struct list_head *head)
7397 {
7398         struct net_device *dev, *tmp;
7399         LIST_HEAD(close_head);
7400
7401         BUG_ON(dev_boot_phase);
7402         ASSERT_RTNL();
7403
7404         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7405                 /* Some devices call without registering
7406                  * for initialization unwind. Remove those
7407                  * devices and proceed with the remaining.
7408                  */
7409                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7410                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7411                                  dev->name, dev);
7412
7413                         WARN_ON(1);
7414                         list_del(&dev->unreg_list);
7415                         continue;
7416                 }
7417                 dev->dismantle = true;
7418                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7419         }
7420
7421         /* If device is running, close it first. */
7422         list_for_each_entry(dev, head, unreg_list)
7423                 list_add_tail(&dev->close_list, &close_head);
7424         dev_close_many(&close_head, true);
7425
7426         list_for_each_entry(dev, head, unreg_list) {
7427                 /* And unlink it from device chain. */
7428                 unlist_netdevice(dev);
7429
7430                 dev->reg_state = NETREG_UNREGISTERING;
7431         }
7432         flush_all_backlogs();
7433
7434         synchronize_net();
7435
7436         list_for_each_entry(dev, head, unreg_list) {
7437                 struct sk_buff *skb = NULL;
7438
7439                 /* Shutdown queueing discipline. */
7440                 dev_shutdown(dev);
7441
7442                 dev_xdp_uninstall(dev);
7443
7444                 /* Notify protocols, that we are about to destroy
7445                  * this device. They should clean all the things.
7446                  */
7447                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7448
7449                 if (!dev->rtnl_link_ops ||
7450                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7451                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7452                                                      GFP_KERNEL, NULL, 0);
7453
7454                 /*
7455                  *      Flush the unicast and multicast chains
7456                  */
7457                 dev_uc_flush(dev);
7458                 dev_mc_flush(dev);
7459
7460                 if (dev->netdev_ops->ndo_uninit)
7461                         dev->netdev_ops->ndo_uninit(dev);
7462
7463                 if (skb)
7464                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7465
7466                 /* Notifier chain MUST detach us all upper devices. */
7467                 WARN_ON(netdev_has_any_upper_dev(dev));
7468                 WARN_ON(netdev_has_any_lower_dev(dev));
7469
7470                 /* Remove entries from kobject tree */
7471                 netdev_unregister_kobject(dev);
7472 #ifdef CONFIG_XPS
7473                 /* Remove XPS queueing entries */
7474                 netif_reset_xps_queues_gt(dev, 0);
7475 #endif
7476         }
7477
7478         synchronize_net();
7479
7480         list_for_each_entry(dev, head, unreg_list)
7481                 dev_put(dev);
7482 }
7483
7484 static void rollback_registered(struct net_device *dev)
7485 {
7486         LIST_HEAD(single);
7487
7488         list_add(&dev->unreg_list, &single);
7489         rollback_registered_many(&single);
7490         list_del(&single);
7491 }
7492
7493 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7494         struct net_device *upper, netdev_features_t features)
7495 {
7496         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7497         netdev_features_t feature;
7498         int feature_bit;
7499
7500         for_each_netdev_feature(&upper_disables, feature_bit) {
7501                 feature = __NETIF_F_BIT(feature_bit);
7502                 if (!(upper->wanted_features & feature)
7503                     && (features & feature)) {
7504                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7505                                    &feature, upper->name);
7506                         features &= ~feature;
7507                 }
7508         }
7509
7510         return features;
7511 }
7512
7513 static void netdev_sync_lower_features(struct net_device *upper,
7514         struct net_device *lower, netdev_features_t features)
7515 {
7516         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7517         netdev_features_t feature;
7518         int feature_bit;
7519
7520         for_each_netdev_feature(&upper_disables, feature_bit) {
7521                 feature = __NETIF_F_BIT(feature_bit);
7522                 if (!(features & feature) && (lower->features & feature)) {
7523                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7524                                    &feature, lower->name);
7525                         lower->wanted_features &= ~feature;
7526                         netdev_update_features(lower);
7527
7528                         if (unlikely(lower->features & feature))
7529                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7530                                             &feature, lower->name);
7531                 }
7532         }
7533 }
7534
7535 static netdev_features_t netdev_fix_features(struct net_device *dev,
7536         netdev_features_t features)
7537 {
7538         /* Fix illegal checksum combinations */
7539         if ((features & NETIF_F_HW_CSUM) &&
7540             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7541                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7542                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7543         }
7544
7545         /* TSO requires that SG is present as well. */
7546         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7547                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7548                 features &= ~NETIF_F_ALL_TSO;
7549         }
7550
7551         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7552                                         !(features & NETIF_F_IP_CSUM)) {
7553                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7554                 features &= ~NETIF_F_TSO;
7555                 features &= ~NETIF_F_TSO_ECN;
7556         }
7557
7558         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7559                                          !(features & NETIF_F_IPV6_CSUM)) {
7560                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7561                 features &= ~NETIF_F_TSO6;
7562         }
7563
7564         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7565         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7566                 features &= ~NETIF_F_TSO_MANGLEID;
7567
7568         /* TSO ECN requires that TSO is present as well. */
7569         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7570                 features &= ~NETIF_F_TSO_ECN;
7571
7572         /* Software GSO depends on SG. */
7573         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7574                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7575                 features &= ~NETIF_F_GSO;
7576         }
7577
7578         /* GSO partial features require GSO partial be set */
7579         if ((features & dev->gso_partial_features) &&
7580             !(features & NETIF_F_GSO_PARTIAL)) {
7581                 netdev_dbg(dev,
7582                            "Dropping partially supported GSO features since no GSO partial.\n");
7583                 features &= ~dev->gso_partial_features;
7584         }
7585
7586         if (!(features & NETIF_F_RXCSUM)) {
7587                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7588                  * successfully merged by hardware must also have the
7589                  * checksum verified by hardware.  If the user does not
7590                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7591                  */
7592                 if (features & NETIF_F_GRO_HW) {
7593                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7594                         features &= ~NETIF_F_GRO_HW;
7595                 }
7596         }
7597
7598         /* LRO/HW-GRO features cannot be combined with RX-FCS */
7599         if (features & NETIF_F_RXFCS) {
7600                 if (features & NETIF_F_LRO) {
7601                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7602                         features &= ~NETIF_F_LRO;
7603                 }
7604
7605                 if (features & NETIF_F_GRO_HW) {
7606                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7607                         features &= ~NETIF_F_GRO_HW;
7608                 }
7609         }
7610
7611         return features;
7612 }
7613
7614 int __netdev_update_features(struct net_device *dev)
7615 {
7616         struct net_device *upper, *lower;
7617         netdev_features_t features;
7618         struct list_head *iter;
7619         int err = -1;
7620
7621         ASSERT_RTNL();
7622
7623         features = netdev_get_wanted_features(dev);
7624
7625         if (dev->netdev_ops->ndo_fix_features)
7626                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7627
7628         /* driver might be less strict about feature dependencies */
7629         features = netdev_fix_features(dev, features);
7630
7631         /* some features can't be enabled if they're off an an upper device */
7632         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7633                 features = netdev_sync_upper_features(dev, upper, features);
7634
7635         if (dev->features == features)
7636                 goto sync_lower;
7637
7638         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7639                 &dev->features, &features);
7640
7641         if (dev->netdev_ops->ndo_set_features)
7642                 err = dev->netdev_ops->ndo_set_features(dev, features);
7643         else
7644                 err = 0;
7645
7646         if (unlikely(err < 0)) {
7647                 netdev_err(dev,
7648                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7649                         err, &features, &dev->features);
7650                 /* return non-0 since some features might have changed and
7651                  * it's better to fire a spurious notification than miss it
7652                  */
7653                 return -1;
7654         }
7655
7656 sync_lower:
7657         /* some features must be disabled on lower devices when disabled
7658          * on an upper device (think: bonding master or bridge)
7659          */
7660         netdev_for_each_lower_dev(dev, lower, iter)
7661                 netdev_sync_lower_features(dev, lower, features);
7662
7663         if (!err) {
7664                 netdev_features_t diff = features ^ dev->features;
7665
7666                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7667                         /* udp_tunnel_{get,drop}_rx_info both need
7668                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7669                          * device, or they won't do anything.
7670                          * Thus we need to update dev->features
7671                          * *before* calling udp_tunnel_get_rx_info,
7672                          * but *after* calling udp_tunnel_drop_rx_info.
7673                          */
7674                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7675                                 dev->features = features;
7676                                 udp_tunnel_get_rx_info(dev);
7677                         } else {
7678                                 udp_tunnel_drop_rx_info(dev);
7679                         }
7680                 }
7681
7682                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7683                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7684                                 dev->features = features;
7685                                 err |= vlan_get_rx_ctag_filter_info(dev);
7686                         } else {
7687                                 vlan_drop_rx_ctag_filter_info(dev);
7688                         }
7689                 }
7690
7691                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7692                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7693                                 dev->features = features;
7694                                 err |= vlan_get_rx_stag_filter_info(dev);
7695                         } else {
7696                                 vlan_drop_rx_stag_filter_info(dev);
7697                         }
7698                 }
7699
7700                 dev->features = features;
7701         }
7702
7703         return err < 0 ? 0 : 1;
7704 }
7705
7706 /**
7707  *      netdev_update_features - recalculate device features
7708  *      @dev: the device to check
7709  *
7710  *      Recalculate dev->features set and send notifications if it
7711  *      has changed. Should be called after driver or hardware dependent
7712  *      conditions might have changed that influence the features.
7713  */
7714 void netdev_update_features(struct net_device *dev)
7715 {
7716         if (__netdev_update_features(dev))
7717                 netdev_features_change(dev);
7718 }
7719 EXPORT_SYMBOL(netdev_update_features);
7720
7721 /**
7722  *      netdev_change_features - recalculate device features
7723  *      @dev: the device to check
7724  *
7725  *      Recalculate dev->features set and send notifications even
7726  *      if they have not changed. Should be called instead of
7727  *      netdev_update_features() if also dev->vlan_features might
7728  *      have changed to allow the changes to be propagated to stacked
7729  *      VLAN devices.
7730  */
7731 void netdev_change_features(struct net_device *dev)
7732 {
7733         __netdev_update_features(dev);
7734         netdev_features_change(dev);
7735 }
7736 EXPORT_SYMBOL(netdev_change_features);
7737
7738 /**
7739  *      netif_stacked_transfer_operstate -      transfer operstate
7740  *      @rootdev: the root or lower level device to transfer state from
7741  *      @dev: the device to transfer operstate to
7742  *
7743  *      Transfer operational state from root to device. This is normally
7744  *      called when a stacking relationship exists between the root
7745  *      device and the device(a leaf device).
7746  */
7747 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7748                                         struct net_device *dev)
7749 {
7750         if (rootdev->operstate == IF_OPER_DORMANT)
7751                 netif_dormant_on(dev);
7752         else
7753                 netif_dormant_off(dev);
7754
7755         if (netif_carrier_ok(rootdev))
7756                 netif_carrier_on(dev);
7757         else
7758                 netif_carrier_off(dev);
7759 }
7760 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7761
7762 static int netif_alloc_rx_queues(struct net_device *dev)
7763 {
7764         unsigned int i, count = dev->num_rx_queues;
7765         struct netdev_rx_queue *rx;
7766         size_t sz = count * sizeof(*rx);
7767         int err = 0;
7768
7769         BUG_ON(count < 1);
7770
7771         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7772         if (!rx)
7773                 return -ENOMEM;
7774
7775         dev->_rx = rx;
7776
7777         for (i = 0; i < count; i++) {
7778                 rx[i].dev = dev;
7779
7780                 /* XDP RX-queue setup */
7781                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7782                 if (err < 0)
7783                         goto err_rxq_info;
7784         }
7785         return 0;
7786
7787 err_rxq_info:
7788         /* Rollback successful reg's and free other resources */
7789         while (i--)
7790                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7791         kvfree(dev->_rx);
7792         dev->_rx = NULL;
7793         return err;
7794 }
7795
7796 static void netif_free_rx_queues(struct net_device *dev)
7797 {
7798         unsigned int i, count = dev->num_rx_queues;
7799
7800         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7801         if (!dev->_rx)
7802                 return;
7803
7804         for (i = 0; i < count; i++)
7805                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7806
7807         kvfree(dev->_rx);
7808 }
7809
7810 static void netdev_init_one_queue(struct net_device *dev,
7811                                   struct netdev_queue *queue, void *_unused)
7812 {
7813         /* Initialize queue lock */
7814         spin_lock_init(&queue->_xmit_lock);
7815         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7816         queue->xmit_lock_owner = -1;
7817         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7818         queue->dev = dev;
7819 #ifdef CONFIG_BQL
7820         dql_init(&queue->dql, HZ);
7821 #endif
7822 }
7823
7824 static void netif_free_tx_queues(struct net_device *dev)
7825 {
7826         kvfree(dev->_tx);
7827 }
7828
7829 static int netif_alloc_netdev_queues(struct net_device *dev)
7830 {
7831         unsigned int count = dev->num_tx_queues;
7832         struct netdev_queue *tx;
7833         size_t sz = count * sizeof(*tx);
7834
7835         if (count < 1 || count > 0xffff)
7836                 return -EINVAL;
7837
7838         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7839         if (!tx)
7840                 return -ENOMEM;
7841
7842         dev->_tx = tx;
7843
7844         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7845         spin_lock_init(&dev->tx_global_lock);
7846
7847         return 0;
7848 }
7849
7850 void netif_tx_stop_all_queues(struct net_device *dev)
7851 {
7852         unsigned int i;
7853
7854         for (i = 0; i < dev->num_tx_queues; i++) {
7855                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7856
7857                 netif_tx_stop_queue(txq);
7858         }
7859 }
7860 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7861
7862 /**
7863  *      register_netdevice      - register a network device
7864  *      @dev: device to register
7865  *
7866  *      Take a completed network device structure and add it to the kernel
7867  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7868  *      chain. 0 is returned on success. A negative errno code is returned
7869  *      on a failure to set up the device, or if the name is a duplicate.
7870  *
7871  *      Callers must hold the rtnl semaphore. You may want
7872  *      register_netdev() instead of this.
7873  *
7874  *      BUGS:
7875  *      The locking appears insufficient to guarantee two parallel registers
7876  *      will not get the same name.
7877  */
7878
7879 int register_netdevice(struct net_device *dev)
7880 {
7881         int ret;
7882         struct net *net = dev_net(dev);
7883
7884         BUG_ON(dev_boot_phase);
7885         ASSERT_RTNL();
7886
7887         might_sleep();
7888
7889         /* When net_device's are persistent, this will be fatal. */
7890         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7891         BUG_ON(!net);
7892
7893         spin_lock_init(&dev->addr_list_lock);
7894         netdev_set_addr_lockdep_class(dev);
7895
7896         ret = dev_get_valid_name(net, dev, dev->name);
7897         if (ret < 0)
7898                 goto out;
7899
7900         /* Init, if this function is available */
7901         if (dev->netdev_ops->ndo_init) {
7902                 ret = dev->netdev_ops->ndo_init(dev);
7903                 if (ret) {
7904                         if (ret > 0)
7905                                 ret = -EIO;
7906                         goto out;
7907                 }
7908         }
7909
7910         if (((dev->hw_features | dev->features) &
7911              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7912             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7913              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7914                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7915                 ret = -EINVAL;
7916                 goto err_uninit;
7917         }
7918
7919         ret = -EBUSY;
7920         if (!dev->ifindex)
7921                 dev->ifindex = dev_new_index(net);
7922         else if (__dev_get_by_index(net, dev->ifindex))
7923                 goto err_uninit;
7924
7925         /* Transfer changeable features to wanted_features and enable
7926          * software offloads (GSO and GRO).
7927          */
7928         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7929         dev->features |= NETIF_F_SOFT_FEATURES;
7930
7931         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7932                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7933                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7934         }
7935
7936         dev->wanted_features = dev->features & dev->hw_features;
7937
7938         if (!(dev->flags & IFF_LOOPBACK))
7939                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7940
7941         /* If IPv4 TCP segmentation offload is supported we should also
7942          * allow the device to enable segmenting the frame with the option
7943          * of ignoring a static IP ID value.  This doesn't enable the
7944          * feature itself but allows the user to enable it later.
7945          */
7946         if (dev->hw_features & NETIF_F_TSO)
7947                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7948         if (dev->vlan_features & NETIF_F_TSO)
7949                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7950         if (dev->mpls_features & NETIF_F_TSO)
7951                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7952         if (dev->hw_enc_features & NETIF_F_TSO)
7953                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7954
7955         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7956          */
7957         dev->vlan_features |= NETIF_F_HIGHDMA;
7958
7959         /* Make NETIF_F_SG inheritable to tunnel devices.
7960          */
7961         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7962
7963         /* Make NETIF_F_SG inheritable to MPLS.
7964          */
7965         dev->mpls_features |= NETIF_F_SG;
7966
7967         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7968         ret = notifier_to_errno(ret);
7969         if (ret)
7970                 goto err_uninit;
7971
7972         ret = netdev_register_kobject(dev);
7973         if (ret)
7974                 goto err_uninit;
7975         dev->reg_state = NETREG_REGISTERED;
7976
7977         __netdev_update_features(dev);
7978
7979         /*
7980          *      Default initial state at registry is that the
7981          *      device is present.
7982          */
7983
7984         set_bit(__LINK_STATE_PRESENT, &dev->state);
7985
7986         linkwatch_init_dev(dev);
7987
7988         dev_init_scheduler(dev);
7989         dev_hold(dev);
7990         list_netdevice(dev);
7991         add_device_randomness(dev->dev_addr, dev->addr_len);
7992
7993         /* If the device has permanent device address, driver should
7994          * set dev_addr and also addr_assign_type should be set to
7995          * NET_ADDR_PERM (default value).
7996          */
7997         if (dev->addr_assign_type == NET_ADDR_PERM)
7998                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7999
8000         /* Notify protocols, that a new device appeared. */
8001         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8002         ret = notifier_to_errno(ret);
8003         if (ret) {
8004                 rollback_registered(dev);
8005                 dev->reg_state = NETREG_UNREGISTERED;
8006         }
8007         /*
8008          *      Prevent userspace races by waiting until the network
8009          *      device is fully setup before sending notifications.
8010          */
8011         if (!dev->rtnl_link_ops ||
8012             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8013                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8014
8015 out:
8016         return ret;
8017
8018 err_uninit:
8019         if (dev->netdev_ops->ndo_uninit)
8020                 dev->netdev_ops->ndo_uninit(dev);
8021         if (dev->priv_destructor)
8022                 dev->priv_destructor(dev);
8023         goto out;
8024 }
8025 EXPORT_SYMBOL(register_netdevice);
8026
8027 /**
8028  *      init_dummy_netdev       - init a dummy network device for NAPI
8029  *      @dev: device to init
8030  *
8031  *      This takes a network device structure and initialize the minimum
8032  *      amount of fields so it can be used to schedule NAPI polls without
8033  *      registering a full blown interface. This is to be used by drivers
8034  *      that need to tie several hardware interfaces to a single NAPI
8035  *      poll scheduler due to HW limitations.
8036  */
8037 int init_dummy_netdev(struct net_device *dev)
8038 {
8039         /* Clear everything. Note we don't initialize spinlocks
8040          * are they aren't supposed to be taken by any of the
8041          * NAPI code and this dummy netdev is supposed to be
8042          * only ever used for NAPI polls
8043          */
8044         memset(dev, 0, sizeof(struct net_device));
8045
8046         /* make sure we BUG if trying to hit standard
8047          * register/unregister code path
8048          */
8049         dev->reg_state = NETREG_DUMMY;
8050
8051         /* NAPI wants this */
8052         INIT_LIST_HEAD(&dev->napi_list);
8053
8054         /* a dummy interface is started by default */
8055         set_bit(__LINK_STATE_PRESENT, &dev->state);
8056         set_bit(__LINK_STATE_START, &dev->state);
8057
8058         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8059          * because users of this 'device' dont need to change
8060          * its refcount.
8061          */
8062
8063         return 0;
8064 }
8065 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8066
8067
8068 /**
8069  *      register_netdev - register a network device
8070  *      @dev: device to register
8071  *
8072  *      Take a completed network device structure and add it to the kernel
8073  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8074  *      chain. 0 is returned on success. A negative errno code is returned
8075  *      on a failure to set up the device, or if the name is a duplicate.
8076  *
8077  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8078  *      and expands the device name if you passed a format string to
8079  *      alloc_netdev.
8080  */
8081 int register_netdev(struct net_device *dev)
8082 {
8083         int err;
8084
8085         if (rtnl_lock_killable())
8086                 return -EINTR;
8087         err = register_netdevice(dev);
8088         rtnl_unlock();
8089         return err;
8090 }
8091 EXPORT_SYMBOL(register_netdev);
8092
8093 int netdev_refcnt_read(const struct net_device *dev)
8094 {
8095         int i, refcnt = 0;
8096
8097         for_each_possible_cpu(i)
8098                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8099         return refcnt;
8100 }
8101 EXPORT_SYMBOL(netdev_refcnt_read);
8102
8103 /**
8104  * netdev_wait_allrefs - wait until all references are gone.
8105  * @dev: target net_device
8106  *
8107  * This is called when unregistering network devices.
8108  *
8109  * Any protocol or device that holds a reference should register
8110  * for netdevice notification, and cleanup and put back the
8111  * reference if they receive an UNREGISTER event.
8112  * We can get stuck here if buggy protocols don't correctly
8113  * call dev_put.
8114  */
8115 static void netdev_wait_allrefs(struct net_device *dev)
8116 {
8117         unsigned long rebroadcast_time, warning_time;
8118         int refcnt;
8119
8120         linkwatch_forget_dev(dev);
8121
8122         rebroadcast_time = warning_time = jiffies;
8123         refcnt = netdev_refcnt_read(dev);
8124
8125         while (refcnt != 0) {
8126                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8127                         rtnl_lock();
8128
8129                         /* Rebroadcast unregister notification */
8130                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8131
8132                         __rtnl_unlock();
8133                         rcu_barrier();
8134                         rtnl_lock();
8135
8136                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8137                                      &dev->state)) {
8138                                 /* We must not have linkwatch events
8139                                  * pending on unregister. If this
8140                                  * happens, we simply run the queue
8141                                  * unscheduled, resulting in a noop
8142                                  * for this device.
8143                                  */
8144                                 linkwatch_run_queue();
8145                         }
8146
8147                         __rtnl_unlock();
8148
8149                         rebroadcast_time = jiffies;
8150                 }
8151
8152                 msleep(250);
8153
8154                 refcnt = netdev_refcnt_read(dev);
8155
8156                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8157                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8158                                  dev->name, refcnt);
8159                         warning_time = jiffies;
8160                 }
8161         }
8162 }
8163
8164 /* The sequence is:
8165  *
8166  *      rtnl_lock();
8167  *      ...
8168  *      register_netdevice(x1);
8169  *      register_netdevice(x2);
8170  *      ...
8171  *      unregister_netdevice(y1);
8172  *      unregister_netdevice(y2);
8173  *      ...
8174  *      rtnl_unlock();
8175  *      free_netdev(y1);
8176  *      free_netdev(y2);
8177  *
8178  * We are invoked by rtnl_unlock().
8179  * This allows us to deal with problems:
8180  * 1) We can delete sysfs objects which invoke hotplug
8181  *    without deadlocking with linkwatch via keventd.
8182  * 2) Since we run with the RTNL semaphore not held, we can sleep
8183  *    safely in order to wait for the netdev refcnt to drop to zero.
8184  *
8185  * We must not return until all unregister events added during
8186  * the interval the lock was held have been completed.
8187  */
8188 void netdev_run_todo(void)
8189 {
8190         struct list_head list;
8191
8192         /* Snapshot list, allow later requests */
8193         list_replace_init(&net_todo_list, &list);
8194
8195         __rtnl_unlock();
8196
8197
8198         /* Wait for rcu callbacks to finish before next phase */
8199         if (!list_empty(&list))
8200                 rcu_barrier();
8201
8202         while (!list_empty(&list)) {
8203                 struct net_device *dev
8204                         = list_first_entry(&list, struct net_device, todo_list);
8205                 list_del(&dev->todo_list);
8206
8207                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8208                         pr_err("network todo '%s' but state %d\n",
8209                                dev->name, dev->reg_state);
8210                         dump_stack();
8211                         continue;
8212                 }
8213
8214                 dev->reg_state = NETREG_UNREGISTERED;
8215
8216                 netdev_wait_allrefs(dev);
8217
8218                 /* paranoia */
8219                 BUG_ON(netdev_refcnt_read(dev));
8220                 BUG_ON(!list_empty(&dev->ptype_all));
8221                 BUG_ON(!list_empty(&dev->ptype_specific));
8222                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8223                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8224 #if IS_ENABLED(CONFIG_DECNET)
8225                 WARN_ON(dev->dn_ptr);
8226 #endif
8227                 if (dev->priv_destructor)
8228                         dev->priv_destructor(dev);
8229                 if (dev->needs_free_netdev)
8230                         free_netdev(dev);
8231
8232                 /* Report a network device has been unregistered */
8233                 rtnl_lock();
8234                 dev_net(dev)->dev_unreg_count--;
8235                 __rtnl_unlock();
8236                 wake_up(&netdev_unregistering_wq);
8237
8238                 /* Free network device */
8239                 kobject_put(&dev->dev.kobj);
8240         }
8241 }
8242
8243 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8244  * all the same fields in the same order as net_device_stats, with only
8245  * the type differing, but rtnl_link_stats64 may have additional fields
8246  * at the end for newer counters.
8247  */
8248 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8249                              const struct net_device_stats *netdev_stats)
8250 {
8251 #if BITS_PER_LONG == 64
8252         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8253         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8254         /* zero out counters that only exist in rtnl_link_stats64 */
8255         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8256                sizeof(*stats64) - sizeof(*netdev_stats));
8257 #else
8258         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8259         const unsigned long *src = (const unsigned long *)netdev_stats;
8260         u64 *dst = (u64 *)stats64;
8261
8262         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8263         for (i = 0; i < n; i++)
8264                 dst[i] = src[i];
8265         /* zero out counters that only exist in rtnl_link_stats64 */
8266         memset((char *)stats64 + n * sizeof(u64), 0,
8267                sizeof(*stats64) - n * sizeof(u64));
8268 #endif
8269 }
8270 EXPORT_SYMBOL(netdev_stats_to_stats64);
8271
8272 /**
8273  *      dev_get_stats   - get network device statistics
8274  *      @dev: device to get statistics from
8275  *      @storage: place to store stats
8276  *
8277  *      Get network statistics from device. Return @storage.
8278  *      The device driver may provide its own method by setting
8279  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8280  *      otherwise the internal statistics structure is used.
8281  */
8282 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8283                                         struct rtnl_link_stats64 *storage)
8284 {
8285         const struct net_device_ops *ops = dev->netdev_ops;
8286
8287         if (ops->ndo_get_stats64) {
8288                 memset(storage, 0, sizeof(*storage));
8289                 ops->ndo_get_stats64(dev, storage);
8290         } else if (ops->ndo_get_stats) {
8291                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8292         } else {
8293                 netdev_stats_to_stats64(storage, &dev->stats);
8294         }
8295         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8296         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8297         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8298         return storage;
8299 }
8300 EXPORT_SYMBOL(dev_get_stats);
8301
8302 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8303 {
8304         struct netdev_queue *queue = dev_ingress_queue(dev);
8305
8306 #ifdef CONFIG_NET_CLS_ACT
8307         if (queue)
8308                 return queue;
8309         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8310         if (!queue)
8311                 return NULL;
8312         netdev_init_one_queue(dev, queue, NULL);
8313         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8314         queue->qdisc_sleeping = &noop_qdisc;
8315         rcu_assign_pointer(dev->ingress_queue, queue);
8316 #endif
8317         return queue;
8318 }
8319
8320 static const struct ethtool_ops default_ethtool_ops;
8321
8322 void netdev_set_default_ethtool_ops(struct net_device *dev,
8323                                     const struct ethtool_ops *ops)
8324 {
8325         if (dev->ethtool_ops == &default_ethtool_ops)
8326                 dev->ethtool_ops = ops;
8327 }
8328 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8329
8330 void netdev_freemem(struct net_device *dev)
8331 {
8332         char *addr = (char *)dev - dev->padded;
8333
8334         kvfree(addr);
8335 }
8336
8337 /**
8338  * alloc_netdev_mqs - allocate network device
8339  * @sizeof_priv: size of private data to allocate space for
8340  * @name: device name format string
8341  * @name_assign_type: origin of device name
8342  * @setup: callback to initialize device
8343  * @txqs: the number of TX subqueues to allocate
8344  * @rxqs: the number of RX subqueues to allocate
8345  *
8346  * Allocates a struct net_device with private data area for driver use
8347  * and performs basic initialization.  Also allocates subqueue structs
8348  * for each queue on the device.
8349  */
8350 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8351                 unsigned char name_assign_type,
8352                 void (*setup)(struct net_device *),
8353                 unsigned int txqs, unsigned int rxqs)
8354 {
8355         struct net_device *dev;
8356         unsigned int alloc_size;
8357         struct net_device *p;
8358
8359         BUG_ON(strlen(name) >= sizeof(dev->name));
8360
8361         if (txqs < 1) {
8362                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8363                 return NULL;
8364         }
8365
8366         if (rxqs < 1) {
8367                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8368                 return NULL;
8369         }
8370
8371         alloc_size = sizeof(struct net_device);
8372         if (sizeof_priv) {
8373                 /* ensure 32-byte alignment of private area */
8374                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8375                 alloc_size += sizeof_priv;
8376         }
8377         /* ensure 32-byte alignment of whole construct */
8378         alloc_size += NETDEV_ALIGN - 1;
8379
8380         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8381         if (!p)
8382                 return NULL;
8383
8384         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8385         dev->padded = (char *)dev - (char *)p;
8386
8387         dev->pcpu_refcnt = alloc_percpu(int);
8388         if (!dev->pcpu_refcnt)
8389                 goto free_dev;
8390
8391         if (dev_addr_init(dev))
8392                 goto free_pcpu;
8393
8394         dev_mc_init(dev);
8395         dev_uc_init(dev);
8396
8397         dev_net_set(dev, &init_net);
8398
8399         dev->gso_max_size = GSO_MAX_SIZE;
8400         dev->gso_max_segs = GSO_MAX_SEGS;
8401
8402         INIT_LIST_HEAD(&dev->napi_list);
8403         INIT_LIST_HEAD(&dev->unreg_list);
8404         INIT_LIST_HEAD(&dev->close_list);
8405         INIT_LIST_HEAD(&dev->link_watch_list);
8406         INIT_LIST_HEAD(&dev->adj_list.upper);
8407         INIT_LIST_HEAD(&dev->adj_list.lower);
8408         INIT_LIST_HEAD(&dev->ptype_all);
8409         INIT_LIST_HEAD(&dev->ptype_specific);
8410 #ifdef CONFIG_NET_SCHED
8411         hash_init(dev->qdisc_hash);
8412 #endif
8413         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8414         setup(dev);
8415
8416         if (!dev->tx_queue_len) {
8417                 dev->priv_flags |= IFF_NO_QUEUE;
8418                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8419         }
8420
8421         dev->num_tx_queues = txqs;
8422         dev->real_num_tx_queues = txqs;
8423         if (netif_alloc_netdev_queues(dev))
8424                 goto free_all;
8425
8426         dev->num_rx_queues = rxqs;
8427         dev->real_num_rx_queues = rxqs;
8428         if (netif_alloc_rx_queues(dev))
8429                 goto free_all;
8430
8431         strcpy(dev->name, name);
8432         dev->name_assign_type = name_assign_type;
8433         dev->group = INIT_NETDEV_GROUP;
8434         if (!dev->ethtool_ops)
8435                 dev->ethtool_ops = &default_ethtool_ops;
8436
8437         nf_hook_ingress_init(dev);
8438
8439         return dev;
8440
8441 free_all:
8442         free_netdev(dev);
8443         return NULL;
8444
8445 free_pcpu:
8446         free_percpu(dev->pcpu_refcnt);
8447 free_dev:
8448         netdev_freemem(dev);
8449         return NULL;
8450 }
8451 EXPORT_SYMBOL(alloc_netdev_mqs);
8452
8453 /**
8454  * free_netdev - free network device
8455  * @dev: device
8456  *
8457  * This function does the last stage of destroying an allocated device
8458  * interface. The reference to the device object is released. If this
8459  * is the last reference then it will be freed.Must be called in process
8460  * context.
8461  */
8462 void free_netdev(struct net_device *dev)
8463 {
8464         struct napi_struct *p, *n;
8465
8466         might_sleep();
8467         netif_free_tx_queues(dev);
8468         netif_free_rx_queues(dev);
8469
8470         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8471
8472         /* Flush device addresses */
8473         dev_addr_flush(dev);
8474
8475         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8476                 netif_napi_del(p);
8477
8478         free_percpu(dev->pcpu_refcnt);
8479         dev->pcpu_refcnt = NULL;
8480
8481         /*  Compatibility with error handling in drivers */
8482         if (dev->reg_state == NETREG_UNINITIALIZED) {
8483                 netdev_freemem(dev);
8484                 return;
8485         }
8486
8487         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8488         dev->reg_state = NETREG_RELEASED;
8489
8490         /* will free via device release */
8491         put_device(&dev->dev);
8492 }
8493 EXPORT_SYMBOL(free_netdev);
8494
8495 /**
8496  *      synchronize_net -  Synchronize with packet receive processing
8497  *
8498  *      Wait for packets currently being received to be done.
8499  *      Does not block later packets from starting.
8500  */
8501 void synchronize_net(void)
8502 {
8503         might_sleep();
8504         if (rtnl_is_locked())
8505                 synchronize_rcu_expedited();
8506         else
8507                 synchronize_rcu();
8508 }
8509 EXPORT_SYMBOL(synchronize_net);
8510
8511 /**
8512  *      unregister_netdevice_queue - remove device from the kernel
8513  *      @dev: device
8514  *      @head: list
8515  *
8516  *      This function shuts down a device interface and removes it
8517  *      from the kernel tables.
8518  *      If head not NULL, device is queued to be unregistered later.
8519  *
8520  *      Callers must hold the rtnl semaphore.  You may want
8521  *      unregister_netdev() instead of this.
8522  */
8523
8524 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8525 {
8526         ASSERT_RTNL();
8527
8528         if (head) {
8529                 list_move_tail(&dev->unreg_list, head);
8530         } else {
8531                 rollback_registered(dev);
8532                 /* Finish processing unregister after unlock */
8533                 net_set_todo(dev);
8534         }
8535 }
8536 EXPORT_SYMBOL(unregister_netdevice_queue);
8537
8538 /**
8539  *      unregister_netdevice_many - unregister many devices
8540  *      @head: list of devices
8541  *
8542  *  Note: As most callers use a stack allocated list_head,
8543  *  we force a list_del() to make sure stack wont be corrupted later.
8544  */
8545 void unregister_netdevice_many(struct list_head *head)
8546 {
8547         struct net_device *dev;
8548
8549         if (!list_empty(head)) {
8550                 rollback_registered_many(head);
8551                 list_for_each_entry(dev, head, unreg_list)
8552                         net_set_todo(dev);
8553                 list_del(head);
8554         }
8555 }
8556 EXPORT_SYMBOL(unregister_netdevice_many);
8557
8558 /**
8559  *      unregister_netdev - remove device from the kernel
8560  *      @dev: device
8561  *
8562  *      This function shuts down a device interface and removes it
8563  *      from the kernel tables.
8564  *
8565  *      This is just a wrapper for unregister_netdevice that takes
8566  *      the rtnl semaphore.  In general you want to use this and not
8567  *      unregister_netdevice.
8568  */
8569 void unregister_netdev(struct net_device *dev)
8570 {
8571         rtnl_lock();
8572         unregister_netdevice(dev);
8573         rtnl_unlock();
8574 }
8575 EXPORT_SYMBOL(unregister_netdev);
8576
8577 /**
8578  *      dev_change_net_namespace - move device to different nethost namespace
8579  *      @dev: device
8580  *      @net: network namespace
8581  *      @pat: If not NULL name pattern to try if the current device name
8582  *            is already taken in the destination network namespace.
8583  *
8584  *      This function shuts down a device interface and moves it
8585  *      to a new network namespace. On success 0 is returned, on
8586  *      a failure a netagive errno code is returned.
8587  *
8588  *      Callers must hold the rtnl semaphore.
8589  */
8590
8591 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8592 {
8593         int err, new_nsid, new_ifindex;
8594
8595         ASSERT_RTNL();
8596
8597         /* Don't allow namespace local devices to be moved. */
8598         err = -EINVAL;
8599         if (dev->features & NETIF_F_NETNS_LOCAL)
8600                 goto out;
8601
8602         /* Ensure the device has been registrered */
8603         if (dev->reg_state != NETREG_REGISTERED)
8604                 goto out;
8605
8606         /* Get out if there is nothing todo */
8607         err = 0;
8608         if (net_eq(dev_net(dev), net))
8609                 goto out;
8610
8611         /* Pick the destination device name, and ensure
8612          * we can use it in the destination network namespace.
8613          */
8614         err = -EEXIST;
8615         if (__dev_get_by_name(net, dev->name)) {
8616                 /* We get here if we can't use the current device name */
8617                 if (!pat)
8618                         goto out;
8619                 if (dev_get_valid_name(net, dev, pat) < 0)
8620                         goto out;
8621         }
8622
8623         /*
8624          * And now a mini version of register_netdevice unregister_netdevice.
8625          */
8626
8627         /* If device is running close it first. */
8628         dev_close(dev);
8629
8630         /* And unlink it from device chain */
8631         err = -ENODEV;
8632         unlist_netdevice(dev);
8633
8634         synchronize_net();
8635
8636         /* Shutdown queueing discipline. */
8637         dev_shutdown(dev);
8638
8639         /* Notify protocols, that we are about to destroy
8640          * this device. They should clean all the things.
8641          *
8642          * Note that dev->reg_state stays at NETREG_REGISTERED.
8643          * This is wanted because this way 8021q and macvlan know
8644          * the device is just moving and can keep their slaves up.
8645          */
8646         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8647         rcu_barrier();
8648
8649         new_nsid = peernet2id_alloc(dev_net(dev), net);
8650         /* If there is an ifindex conflict assign a new one */
8651         if (__dev_get_by_index(net, dev->ifindex))
8652                 new_ifindex = dev_new_index(net);
8653         else
8654                 new_ifindex = dev->ifindex;
8655
8656         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8657                             new_ifindex);
8658
8659         /*
8660          *      Flush the unicast and multicast chains
8661          */
8662         dev_uc_flush(dev);
8663         dev_mc_flush(dev);
8664
8665         /* Send a netdev-removed uevent to the old namespace */
8666         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8667         netdev_adjacent_del_links(dev);
8668
8669         /* Actually switch the network namespace */
8670         dev_net_set(dev, net);
8671         dev->ifindex = new_ifindex;
8672
8673         /* Send a netdev-add uevent to the new namespace */
8674         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8675         netdev_adjacent_add_links(dev);
8676
8677         /* Fixup kobjects */
8678         err = device_rename(&dev->dev, dev->name);
8679         WARN_ON(err);
8680
8681         /* Add the device back in the hashes */
8682         list_netdevice(dev);
8683
8684         /* Notify protocols, that a new device appeared. */
8685         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8686
8687         /*
8688          *      Prevent userspace races by waiting until the network
8689          *      device is fully setup before sending notifications.
8690          */
8691         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8692
8693         synchronize_net();
8694         err = 0;
8695 out:
8696         return err;
8697 }
8698 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8699
8700 static int dev_cpu_dead(unsigned int oldcpu)
8701 {
8702         struct sk_buff **list_skb;
8703         struct sk_buff *skb;
8704         unsigned int cpu;
8705         struct softnet_data *sd, *oldsd, *remsd = NULL;
8706
8707         local_irq_disable();
8708         cpu = smp_processor_id();
8709         sd = &per_cpu(softnet_data, cpu);
8710         oldsd = &per_cpu(softnet_data, oldcpu);
8711
8712         /* Find end of our completion_queue. */
8713         list_skb = &sd->completion_queue;
8714         while (*list_skb)
8715                 list_skb = &(*list_skb)->next;
8716         /* Append completion queue from offline CPU. */
8717         *list_skb = oldsd->completion_queue;
8718         oldsd->completion_queue = NULL;
8719
8720         /* Append output queue from offline CPU. */
8721         if (oldsd->output_queue) {
8722                 *sd->output_queue_tailp = oldsd->output_queue;
8723                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8724                 oldsd->output_queue = NULL;
8725                 oldsd->output_queue_tailp = &oldsd->output_queue;
8726         }
8727         /* Append NAPI poll list from offline CPU, with one exception :
8728          * process_backlog() must be called by cpu owning percpu backlog.
8729          * We properly handle process_queue & input_pkt_queue later.
8730          */
8731         while (!list_empty(&oldsd->poll_list)) {
8732                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8733                                                             struct napi_struct,
8734                                                             poll_list);
8735
8736                 list_del_init(&napi->poll_list);
8737                 if (napi->poll == process_backlog)
8738                         napi->state = 0;
8739                 else
8740                         ____napi_schedule(sd, napi);
8741         }
8742
8743         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8744         local_irq_enable();
8745
8746 #ifdef CONFIG_RPS
8747         remsd = oldsd->rps_ipi_list;
8748         oldsd->rps_ipi_list = NULL;
8749 #endif
8750         /* send out pending IPI's on offline CPU */
8751         net_rps_send_ipi(remsd);
8752
8753         /* Process offline CPU's input_pkt_queue */
8754         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8755                 netif_rx_ni(skb);
8756                 input_queue_head_incr(oldsd);
8757         }
8758         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8759                 netif_rx_ni(skb);
8760                 input_queue_head_incr(oldsd);
8761         }
8762
8763         return 0;
8764 }
8765
8766 /**
8767  *      netdev_increment_features - increment feature set by one
8768  *      @all: current feature set
8769  *      @one: new feature set
8770  *      @mask: mask feature set
8771  *
8772  *      Computes a new feature set after adding a device with feature set
8773  *      @one to the master device with current feature set @all.  Will not
8774  *      enable anything that is off in @mask. Returns the new feature set.
8775  */
8776 netdev_features_t netdev_increment_features(netdev_features_t all,
8777         netdev_features_t one, netdev_features_t mask)
8778 {
8779         if (mask & NETIF_F_HW_CSUM)
8780                 mask |= NETIF_F_CSUM_MASK;
8781         mask |= NETIF_F_VLAN_CHALLENGED;
8782
8783         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8784         all &= one | ~NETIF_F_ALL_FOR_ALL;
8785
8786         /* If one device supports hw checksumming, set for all. */
8787         if (all & NETIF_F_HW_CSUM)
8788                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8789
8790         return all;
8791 }
8792 EXPORT_SYMBOL(netdev_increment_features);
8793
8794 static struct hlist_head * __net_init netdev_create_hash(void)
8795 {
8796         int i;
8797         struct hlist_head *hash;
8798
8799         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8800         if (hash != NULL)
8801                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8802                         INIT_HLIST_HEAD(&hash[i]);
8803
8804         return hash;
8805 }
8806
8807 /* Initialize per network namespace state */
8808 static int __net_init netdev_init(struct net *net)
8809 {
8810         if (net != &init_net)
8811                 INIT_LIST_HEAD(&net->dev_base_head);
8812
8813         net->dev_name_head = netdev_create_hash();
8814         if (net->dev_name_head == NULL)
8815                 goto err_name;
8816
8817         net->dev_index_head = netdev_create_hash();
8818         if (net->dev_index_head == NULL)
8819                 goto err_idx;
8820
8821         return 0;
8822
8823 err_idx:
8824         kfree(net->dev_name_head);
8825 err_name:
8826         return -ENOMEM;
8827 }
8828
8829 /**
8830  *      netdev_drivername - network driver for the device
8831  *      @dev: network device
8832  *
8833  *      Determine network driver for device.
8834  */
8835 const char *netdev_drivername(const struct net_device *dev)
8836 {
8837         const struct device_driver *driver;
8838         const struct device *parent;
8839         const char *empty = "";
8840
8841         parent = dev->dev.parent;
8842         if (!parent)
8843                 return empty;
8844
8845         driver = parent->driver;
8846         if (driver && driver->name)
8847                 return driver->name;
8848         return empty;
8849 }
8850
8851 static void __netdev_printk(const char *level, const struct net_device *dev,
8852                             struct va_format *vaf)
8853 {
8854         if (dev && dev->dev.parent) {
8855                 dev_printk_emit(level[1] - '0',
8856                                 dev->dev.parent,
8857                                 "%s %s %s%s: %pV",
8858                                 dev_driver_string(dev->dev.parent),
8859                                 dev_name(dev->dev.parent),
8860                                 netdev_name(dev), netdev_reg_state(dev),
8861                                 vaf);
8862         } else if (dev) {
8863                 printk("%s%s%s: %pV",
8864                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8865         } else {
8866                 printk("%s(NULL net_device): %pV", level, vaf);
8867         }
8868 }
8869
8870 void netdev_printk(const char *level, const struct net_device *dev,
8871                    const char *format, ...)
8872 {
8873         struct va_format vaf;
8874         va_list args;
8875
8876         va_start(args, format);
8877
8878         vaf.fmt = format;
8879         vaf.va = &args;
8880
8881         __netdev_printk(level, dev, &vaf);
8882
8883         va_end(args);
8884 }
8885 EXPORT_SYMBOL(netdev_printk);
8886
8887 #define define_netdev_printk_level(func, level)                 \
8888 void func(const struct net_device *dev, const char *fmt, ...)   \
8889 {                                                               \
8890         struct va_format vaf;                                   \
8891         va_list args;                                           \
8892                                                                 \
8893         va_start(args, fmt);                                    \
8894                                                                 \
8895         vaf.fmt = fmt;                                          \
8896         vaf.va = &args;                                         \
8897                                                                 \
8898         __netdev_printk(level, dev, &vaf);                      \
8899                                                                 \
8900         va_end(args);                                           \
8901 }                                                               \
8902 EXPORT_SYMBOL(func);
8903
8904 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8905 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8906 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8907 define_netdev_printk_level(netdev_err, KERN_ERR);
8908 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8909 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8910 define_netdev_printk_level(netdev_info, KERN_INFO);
8911
8912 static void __net_exit netdev_exit(struct net *net)
8913 {
8914         kfree(net->dev_name_head);
8915         kfree(net->dev_index_head);
8916         if (net != &init_net)
8917                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8918 }
8919
8920 static struct pernet_operations __net_initdata netdev_net_ops = {
8921         .init = netdev_init,
8922         .exit = netdev_exit,
8923 };
8924
8925 static void __net_exit default_device_exit(struct net *net)
8926 {
8927         struct net_device *dev, *aux;
8928         /*
8929          * Push all migratable network devices back to the
8930          * initial network namespace
8931          */
8932         rtnl_lock();
8933         for_each_netdev_safe(net, dev, aux) {
8934                 int err;
8935                 char fb_name[IFNAMSIZ];
8936
8937                 /* Ignore unmoveable devices (i.e. loopback) */
8938                 if (dev->features & NETIF_F_NETNS_LOCAL)
8939                         continue;
8940
8941                 /* Leave virtual devices for the generic cleanup */
8942                 if (dev->rtnl_link_ops)
8943                         continue;
8944
8945                 /* Push remaining network devices to init_net */
8946                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8947                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8948                 if (err) {
8949                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8950                                  __func__, dev->name, err);
8951                         BUG();
8952                 }
8953         }
8954         rtnl_unlock();
8955 }
8956
8957 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8958 {
8959         /* Return with the rtnl_lock held when there are no network
8960          * devices unregistering in any network namespace in net_list.
8961          */
8962         struct net *net;
8963         bool unregistering;
8964         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8965
8966         add_wait_queue(&netdev_unregistering_wq, &wait);
8967         for (;;) {
8968                 unregistering = false;
8969                 rtnl_lock();
8970                 list_for_each_entry(net, net_list, exit_list) {
8971                         if (net->dev_unreg_count > 0) {
8972                                 unregistering = true;
8973                                 break;
8974                         }
8975                 }
8976                 if (!unregistering)
8977                         break;
8978                 __rtnl_unlock();
8979
8980                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8981         }
8982         remove_wait_queue(&netdev_unregistering_wq, &wait);
8983 }
8984
8985 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8986 {
8987         /* At exit all network devices most be removed from a network
8988          * namespace.  Do this in the reverse order of registration.
8989          * Do this across as many network namespaces as possible to
8990          * improve batching efficiency.
8991          */
8992         struct net_device *dev;
8993         struct net *net;
8994         LIST_HEAD(dev_kill_list);
8995
8996         /* To prevent network device cleanup code from dereferencing
8997          * loopback devices or network devices that have been freed
8998          * wait here for all pending unregistrations to complete,
8999          * before unregistring the loopback device and allowing the
9000          * network namespace be freed.
9001          *
9002          * The netdev todo list containing all network devices
9003          * unregistrations that happen in default_device_exit_batch
9004          * will run in the rtnl_unlock() at the end of
9005          * default_device_exit_batch.
9006          */
9007         rtnl_lock_unregistering(net_list);
9008         list_for_each_entry(net, net_list, exit_list) {
9009                 for_each_netdev_reverse(net, dev) {
9010                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9011                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9012                         else
9013                                 unregister_netdevice_queue(dev, &dev_kill_list);
9014                 }
9015         }
9016         unregister_netdevice_many(&dev_kill_list);
9017         rtnl_unlock();
9018 }
9019
9020 static struct pernet_operations __net_initdata default_device_ops = {
9021         .exit = default_device_exit,
9022         .exit_batch = default_device_exit_batch,
9023 };
9024
9025 /*
9026  *      Initialize the DEV module. At boot time this walks the device list and
9027  *      unhooks any devices that fail to initialise (normally hardware not
9028  *      present) and leaves us with a valid list of present and active devices.
9029  *
9030  */
9031
9032 /*
9033  *       This is called single threaded during boot, so no need
9034  *       to take the rtnl semaphore.
9035  */
9036 static int __init net_dev_init(void)
9037 {
9038         int i, rc = -ENOMEM;
9039
9040         BUG_ON(!dev_boot_phase);
9041
9042         if (dev_proc_init())
9043                 goto out;
9044
9045         if (netdev_kobject_init())
9046                 goto out;
9047
9048         INIT_LIST_HEAD(&ptype_all);
9049         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9050                 INIT_LIST_HEAD(&ptype_base[i]);
9051
9052         INIT_LIST_HEAD(&offload_base);
9053
9054         if (register_pernet_subsys(&netdev_net_ops))
9055                 goto out;
9056
9057         /*
9058          *      Initialise the packet receive queues.
9059          */
9060
9061         for_each_possible_cpu(i) {
9062                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9063                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9064
9065                 INIT_WORK(flush, flush_backlog);
9066
9067                 skb_queue_head_init(&sd->input_pkt_queue);
9068                 skb_queue_head_init(&sd->process_queue);
9069 #ifdef CONFIG_XFRM_OFFLOAD
9070                 skb_queue_head_init(&sd->xfrm_backlog);
9071 #endif
9072                 INIT_LIST_HEAD(&sd->poll_list);
9073                 sd->output_queue_tailp = &sd->output_queue;
9074 #ifdef CONFIG_RPS
9075                 sd->csd.func = rps_trigger_softirq;
9076                 sd->csd.info = sd;
9077                 sd->cpu = i;
9078 #endif
9079
9080                 sd->backlog.poll = process_backlog;
9081                 sd->backlog.weight = weight_p;
9082         }
9083
9084         dev_boot_phase = 0;
9085
9086         /* The loopback device is special if any other network devices
9087          * is present in a network namespace the loopback device must
9088          * be present. Since we now dynamically allocate and free the
9089          * loopback device ensure this invariant is maintained by
9090          * keeping the loopback device as the first device on the
9091          * list of network devices.  Ensuring the loopback devices
9092          * is the first device that appears and the last network device
9093          * that disappears.
9094          */
9095         if (register_pernet_device(&loopback_net_ops))
9096                 goto out;
9097
9098         if (register_pernet_device(&default_device_ops))
9099                 goto out;
9100
9101         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9102         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9103
9104         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9105                                        NULL, dev_cpu_dead);
9106         WARN_ON(rc < 0);
9107         rc = 0;
9108 out:
9109         return rc;
9110 }
9111
9112 subsys_initcall(net_dev_init);