Merge tag 'linux-kselftest-4.14-rc1-update' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91 EXPORT_SYMBOL(vm_zone_stat);
92 EXPORT_SYMBOL(vm_node_stat);
93
94 #ifdef CONFIG_SMP
95
96 int calculate_pressure_threshold(struct zone *zone)
97 {
98         int threshold;
99         int watermark_distance;
100
101         /*
102          * As vmstats are not up to date, there is drift between the estimated
103          * and real values. For high thresholds and a high number of CPUs, it
104          * is possible for the min watermark to be breached while the estimated
105          * value looks fine. The pressure threshold is a reduced value such
106          * that even the maximum amount of drift will not accidentally breach
107          * the min watermark
108          */
109         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112         /*
113          * Maximum threshold is 125
114          */
115         threshold = min(125, threshold);
116
117         return threshold;
118 }
119
120 int calculate_normal_threshold(struct zone *zone)
121 {
122         int threshold;
123         int mem;        /* memory in 128 MB units */
124
125         /*
126          * The threshold scales with the number of processors and the amount
127          * of memory per zone. More memory means that we can defer updates for
128          * longer, more processors could lead to more contention.
129          * fls() is used to have a cheap way of logarithmic scaling.
130          *
131          * Some sample thresholds:
132          *
133          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
134          * ------------------------------------------------------------------
135          * 8            1               1       0.9-1 GB        4
136          * 16           2               2       0.9-1 GB        4
137          * 20           2               2       1-2 GB          5
138          * 24           2               2       2-4 GB          6
139          * 28           2               2       4-8 GB          7
140          * 32           2               2       8-16 GB         8
141          * 4            2               2       <128M           1
142          * 30           4               3       2-4 GB          5
143          * 48           4               3       8-16 GB         8
144          * 32           8               4       1-2 GB          4
145          * 32           8               4       0.9-1GB         4
146          * 10           16              5       <128M           1
147          * 40           16              5       900M            4
148          * 70           64              7       2-4 GB          5
149          * 84           64              7       4-8 GB          6
150          * 108          512             9       4-8 GB          6
151          * 125          1024            10      8-16 GB         8
152          * 125          1024            10      16-32 GB        9
153          */
154
155         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
156
157         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159         /*
160          * Maximum threshold is 125
161          */
162         threshold = min(125, threshold);
163
164         return threshold;
165 }
166
167 /*
168  * Refresh the thresholds for each zone.
169  */
170 void refresh_zone_stat_thresholds(void)
171 {
172         struct pglist_data *pgdat;
173         struct zone *zone;
174         int cpu;
175         int threshold;
176
177         /* Zero current pgdat thresholds */
178         for_each_online_pgdat(pgdat) {
179                 for_each_online_cpu(cpu) {
180                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181                 }
182         }
183
184         for_each_populated_zone(zone) {
185                 struct pglist_data *pgdat = zone->zone_pgdat;
186                 unsigned long max_drift, tolerate_drift;
187
188                 threshold = calculate_normal_threshold(zone);
189
190                 for_each_online_cpu(cpu) {
191                         int pgdat_threshold;
192
193                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194                                                         = threshold;
195
196                         /* Base nodestat threshold on the largest populated zone. */
197                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199                                 = max(threshold, pgdat_threshold);
200                 }
201
202                 /*
203                  * Only set percpu_drift_mark if there is a danger that
204                  * NR_FREE_PAGES reports the low watermark is ok when in fact
205                  * the min watermark could be breached by an allocation
206                  */
207                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208                 max_drift = num_online_cpus() * threshold;
209                 if (max_drift > tolerate_drift)
210                         zone->percpu_drift_mark = high_wmark_pages(zone) +
211                                         max_drift;
212         }
213 }
214
215 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216                                 int (*calculate_pressure)(struct zone *))
217 {
218         struct zone *zone;
219         int cpu;
220         int threshold;
221         int i;
222
223         for (i = 0; i < pgdat->nr_zones; i++) {
224                 zone = &pgdat->node_zones[i];
225                 if (!zone->percpu_drift_mark)
226                         continue;
227
228                 threshold = (*calculate_pressure)(zone);
229                 for_each_online_cpu(cpu)
230                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231                                                         = threshold;
232         }
233 }
234
235 /*
236  * For use when we know that interrupts are disabled,
237  * or when we know that preemption is disabled and that
238  * particular counter cannot be updated from interrupt context.
239  */
240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241                            long delta)
242 {
243         struct per_cpu_pageset __percpu *pcp = zone->pageset;
244         s8 __percpu *p = pcp->vm_stat_diff + item;
245         long x;
246         long t;
247
248         x = delta + __this_cpu_read(*p);
249
250         t = __this_cpu_read(pcp->stat_threshold);
251
252         if (unlikely(x > t || x < -t)) {
253                 zone_page_state_add(x, zone, item);
254                 x = 0;
255         }
256         __this_cpu_write(*p, x);
257 }
258 EXPORT_SYMBOL(__mod_zone_page_state);
259
260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261                                 long delta)
262 {
263         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264         s8 __percpu *p = pcp->vm_node_stat_diff + item;
265         long x;
266         long t;
267
268         x = delta + __this_cpu_read(*p);
269
270         t = __this_cpu_read(pcp->stat_threshold);
271
272         if (unlikely(x > t || x < -t)) {
273                 node_page_state_add(x, pgdat, item);
274                 x = 0;
275         }
276         __this_cpu_write(*p, x);
277 }
278 EXPORT_SYMBOL(__mod_node_page_state);
279
280 /*
281  * Optimized increment and decrement functions.
282  *
283  * These are only for a single page and therefore can take a struct page *
284  * argument instead of struct zone *. This allows the inclusion of the code
285  * generated for page_zone(page) into the optimized functions.
286  *
287  * No overflow check is necessary and therefore the differential can be
288  * incremented or decremented in place which may allow the compilers to
289  * generate better code.
290  * The increment or decrement is known and therefore one boundary check can
291  * be omitted.
292  *
293  * NOTE: These functions are very performance sensitive. Change only
294  * with care.
295  *
296  * Some processors have inc/dec instructions that are atomic vs an interrupt.
297  * However, the code must first determine the differential location in a zone
298  * based on the processor number and then inc/dec the counter. There is no
299  * guarantee without disabling preemption that the processor will not change
300  * in between and therefore the atomicity vs. interrupt cannot be exploited
301  * in a useful way here.
302  */
303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
304 {
305         struct per_cpu_pageset __percpu *pcp = zone->pageset;
306         s8 __percpu *p = pcp->vm_stat_diff + item;
307         s8 v, t;
308
309         v = __this_cpu_inc_return(*p);
310         t = __this_cpu_read(pcp->stat_threshold);
311         if (unlikely(v > t)) {
312                 s8 overstep = t >> 1;
313
314                 zone_page_state_add(v + overstep, zone, item);
315                 __this_cpu_write(*p, -overstep);
316         }
317 }
318
319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320 {
321         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322         s8 __percpu *p = pcp->vm_node_stat_diff + item;
323         s8 v, t;
324
325         v = __this_cpu_inc_return(*p);
326         t = __this_cpu_read(pcp->stat_threshold);
327         if (unlikely(v > t)) {
328                 s8 overstep = t >> 1;
329
330                 node_page_state_add(v + overstep, pgdat, item);
331                 __this_cpu_write(*p, -overstep);
332         }
333 }
334
335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336 {
337         __inc_zone_state(page_zone(page), item);
338 }
339 EXPORT_SYMBOL(__inc_zone_page_state);
340
341 void __inc_node_page_state(struct page *page, enum node_stat_item item)
342 {
343         __inc_node_state(page_pgdat(page), item);
344 }
345 EXPORT_SYMBOL(__inc_node_page_state);
346
347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
348 {
349         struct per_cpu_pageset __percpu *pcp = zone->pageset;
350         s8 __percpu *p = pcp->vm_stat_diff + item;
351         s8 v, t;
352
353         v = __this_cpu_dec_return(*p);
354         t = __this_cpu_read(pcp->stat_threshold);
355         if (unlikely(v < - t)) {
356                 s8 overstep = t >> 1;
357
358                 zone_page_state_add(v - overstep, zone, item);
359                 __this_cpu_write(*p, overstep);
360         }
361 }
362
363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364 {
365         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366         s8 __percpu *p = pcp->vm_node_stat_diff + item;
367         s8 v, t;
368
369         v = __this_cpu_dec_return(*p);
370         t = __this_cpu_read(pcp->stat_threshold);
371         if (unlikely(v < - t)) {
372                 s8 overstep = t >> 1;
373
374                 node_page_state_add(v - overstep, pgdat, item);
375                 __this_cpu_write(*p, overstep);
376         }
377 }
378
379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380 {
381         __dec_zone_state(page_zone(page), item);
382 }
383 EXPORT_SYMBOL(__dec_zone_page_state);
384
385 void __dec_node_page_state(struct page *page, enum node_stat_item item)
386 {
387         __dec_node_state(page_pgdat(page), item);
388 }
389 EXPORT_SYMBOL(__dec_node_page_state);
390
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
392 /*
393  * If we have cmpxchg_local support then we do not need to incur the overhead
394  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395  *
396  * mod_state() modifies the zone counter state through atomic per cpu
397  * operations.
398  *
399  * Overstep mode specifies how overstep should handled:
400  *     0       No overstepping
401  *     1       Overstepping half of threshold
402  *     -1      Overstepping minus half of threshold
403 */
404 static inline void mod_zone_state(struct zone *zone,
405        enum zone_stat_item item, long delta, int overstep_mode)
406 {
407         struct per_cpu_pageset __percpu *pcp = zone->pageset;
408         s8 __percpu *p = pcp->vm_stat_diff + item;
409         long o, n, t, z;
410
411         do {
412                 z = 0;  /* overflow to zone counters */
413
414                 /*
415                  * The fetching of the stat_threshold is racy. We may apply
416                  * a counter threshold to the wrong the cpu if we get
417                  * rescheduled while executing here. However, the next
418                  * counter update will apply the threshold again and
419                  * therefore bring the counter under the threshold again.
420                  *
421                  * Most of the time the thresholds are the same anyways
422                  * for all cpus in a zone.
423                  */
424                 t = this_cpu_read(pcp->stat_threshold);
425
426                 o = this_cpu_read(*p);
427                 n = delta + o;
428
429                 if (n > t || n < -t) {
430                         int os = overstep_mode * (t >> 1) ;
431
432                         /* Overflow must be added to zone counters */
433                         z = n + os;
434                         n = -os;
435                 }
436         } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438         if (z)
439                 zone_page_state_add(z, zone, item);
440 }
441
442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443                          long delta)
444 {
445         mod_zone_state(zone, item, delta, 0);
446 }
447 EXPORT_SYMBOL(mod_zone_page_state);
448
449 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450 {
451         mod_zone_state(page_zone(page), item, 1, 1);
452 }
453 EXPORT_SYMBOL(inc_zone_page_state);
454
455 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457         mod_zone_state(page_zone(page), item, -1, -1);
458 }
459 EXPORT_SYMBOL(dec_zone_page_state);
460
461 static inline void mod_node_state(struct pglist_data *pgdat,
462        enum node_stat_item item, int delta, int overstep_mode)
463 {
464         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465         s8 __percpu *p = pcp->vm_node_stat_diff + item;
466         long o, n, t, z;
467
468         do {
469                 z = 0;  /* overflow to node counters */
470
471                 /*
472                  * The fetching of the stat_threshold is racy. We may apply
473                  * a counter threshold to the wrong the cpu if we get
474                  * rescheduled while executing here. However, the next
475                  * counter update will apply the threshold again and
476                  * therefore bring the counter under the threshold again.
477                  *
478                  * Most of the time the thresholds are the same anyways
479                  * for all cpus in a node.
480                  */
481                 t = this_cpu_read(pcp->stat_threshold);
482
483                 o = this_cpu_read(*p);
484                 n = delta + o;
485
486                 if (n > t || n < -t) {
487                         int os = overstep_mode * (t >> 1) ;
488
489                         /* Overflow must be added to node counters */
490                         z = n + os;
491                         n = -os;
492                 }
493         } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495         if (z)
496                 node_page_state_add(z, pgdat, item);
497 }
498
499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500                                         long delta)
501 {
502         mod_node_state(pgdat, item, delta, 0);
503 }
504 EXPORT_SYMBOL(mod_node_page_state);
505
506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507 {
508         mod_node_state(pgdat, item, 1, 1);
509 }
510
511 void inc_node_page_state(struct page *page, enum node_stat_item item)
512 {
513         mod_node_state(page_pgdat(page), item, 1, 1);
514 }
515 EXPORT_SYMBOL(inc_node_page_state);
516
517 void dec_node_page_state(struct page *page, enum node_stat_item item)
518 {
519         mod_node_state(page_pgdat(page), item, -1, -1);
520 }
521 EXPORT_SYMBOL(dec_node_page_state);
522 #else
523 /*
524  * Use interrupt disable to serialize counter updates
525  */
526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527                          long delta)
528 {
529         unsigned long flags;
530
531         local_irq_save(flags);
532         __mod_zone_page_state(zone, item, delta);
533         local_irq_restore(flags);
534 }
535 EXPORT_SYMBOL(mod_zone_page_state);
536
537 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538 {
539         unsigned long flags;
540         struct zone *zone;
541
542         zone = page_zone(page);
543         local_irq_save(flags);
544         __inc_zone_state(zone, item);
545         local_irq_restore(flags);
546 }
547 EXPORT_SYMBOL(inc_zone_page_state);
548
549 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550 {
551         unsigned long flags;
552
553         local_irq_save(flags);
554         __dec_zone_page_state(page, item);
555         local_irq_restore(flags);
556 }
557 EXPORT_SYMBOL(dec_zone_page_state);
558
559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560 {
561         unsigned long flags;
562
563         local_irq_save(flags);
564         __inc_node_state(pgdat, item);
565         local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL(inc_node_state);
568
569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570                                         long delta)
571 {
572         unsigned long flags;
573
574         local_irq_save(flags);
575         __mod_node_page_state(pgdat, item, delta);
576         local_irq_restore(flags);
577 }
578 EXPORT_SYMBOL(mod_node_page_state);
579
580 void inc_node_page_state(struct page *page, enum node_stat_item item)
581 {
582         unsigned long flags;
583         struct pglist_data *pgdat;
584
585         pgdat = page_pgdat(page);
586         local_irq_save(flags);
587         __inc_node_state(pgdat, item);
588         local_irq_restore(flags);
589 }
590 EXPORT_SYMBOL(inc_node_page_state);
591
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __dec_node_page_state(page, item);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL(dec_node_page_state);
601 #endif
602
603 /*
604  * Fold a differential into the global counters.
605  * Returns the number of counters updated.
606  */
607 static int fold_diff(int *zone_diff, int *node_diff)
608 {
609         int i;
610         int changes = 0;
611
612         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613                 if (zone_diff[i]) {
614                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615                         changes++;
616         }
617
618         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619                 if (node_diff[i]) {
620                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
621                         changes++;
622         }
623         return changes;
624 }
625
626 /*
627  * Update the zone counters for the current cpu.
628  *
629  * Note that refresh_cpu_vm_stats strives to only access
630  * node local memory. The per cpu pagesets on remote zones are placed
631  * in the memory local to the processor using that pageset. So the
632  * loop over all zones will access a series of cachelines local to
633  * the processor.
634  *
635  * The call to zone_page_state_add updates the cachelines with the
636  * statistics in the remote zone struct as well as the global cachelines
637  * with the global counters. These could cause remote node cache line
638  * bouncing and will have to be only done when necessary.
639  *
640  * The function returns the number of global counters updated.
641  */
642 static int refresh_cpu_vm_stats(bool do_pagesets)
643 {
644         struct pglist_data *pgdat;
645         struct zone *zone;
646         int i;
647         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649         int changes = 0;
650
651         for_each_populated_zone(zone) {
652                 struct per_cpu_pageset __percpu *p = zone->pageset;
653
654                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655                         int v;
656
657                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658                         if (v) {
659
660                                 atomic_long_add(v, &zone->vm_stat[i]);
661                                 global_zone_diff[i] += v;
662 #ifdef CONFIG_NUMA
663                                 /* 3 seconds idle till flush */
664                                 __this_cpu_write(p->expire, 3);
665 #endif
666                         }
667                 }
668 #ifdef CONFIG_NUMA
669                 if (do_pagesets) {
670                         cond_resched();
671                         /*
672                          * Deal with draining the remote pageset of this
673                          * processor
674                          *
675                          * Check if there are pages remaining in this pageset
676                          * if not then there is nothing to expire.
677                          */
678                         if (!__this_cpu_read(p->expire) ||
679                                !__this_cpu_read(p->pcp.count))
680                                 continue;
681
682                         /*
683                          * We never drain zones local to this processor.
684                          */
685                         if (zone_to_nid(zone) == numa_node_id()) {
686                                 __this_cpu_write(p->expire, 0);
687                                 continue;
688                         }
689
690                         if (__this_cpu_dec_return(p->expire))
691                                 continue;
692
693                         if (__this_cpu_read(p->pcp.count)) {
694                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695                                 changes++;
696                         }
697                 }
698 #endif
699         }
700
701         for_each_online_pgdat(pgdat) {
702                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705                         int v;
706
707                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708                         if (v) {
709                                 atomic_long_add(v, &pgdat->vm_stat[i]);
710                                 global_node_diff[i] += v;
711                         }
712                 }
713         }
714
715         changes += fold_diff(global_zone_diff, global_node_diff);
716         return changes;
717 }
718
719 /*
720  * Fold the data for an offline cpu into the global array.
721  * There cannot be any access by the offline cpu and therefore
722  * synchronization is simplified.
723  */
724 void cpu_vm_stats_fold(int cpu)
725 {
726         struct pglist_data *pgdat;
727         struct zone *zone;
728         int i;
729         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
731
732         for_each_populated_zone(zone) {
733                 struct per_cpu_pageset *p;
734
735                 p = per_cpu_ptr(zone->pageset, cpu);
736
737                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738                         if (p->vm_stat_diff[i]) {
739                                 int v;
740
741                                 v = p->vm_stat_diff[i];
742                                 p->vm_stat_diff[i] = 0;
743                                 atomic_long_add(v, &zone->vm_stat[i]);
744                                 global_zone_diff[i] += v;
745                         }
746         }
747
748         for_each_online_pgdat(pgdat) {
749                 struct per_cpu_nodestat *p;
750
751                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754                         if (p->vm_node_stat_diff[i]) {
755                                 int v;
756
757                                 v = p->vm_node_stat_diff[i];
758                                 p->vm_node_stat_diff[i] = 0;
759                                 atomic_long_add(v, &pgdat->vm_stat[i]);
760                                 global_node_diff[i] += v;
761                         }
762         }
763
764         fold_diff(global_zone_diff, global_node_diff);
765 }
766
767 /*
768  * this is only called if !populated_zone(zone), which implies no other users of
769  * pset->vm_stat_diff[] exsist.
770  */
771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772 {
773         int i;
774
775         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776                 if (pset->vm_stat_diff[i]) {
777                         int v = pset->vm_stat_diff[i];
778                         pset->vm_stat_diff[i] = 0;
779                         atomic_long_add(v, &zone->vm_stat[i]);
780                         atomic_long_add(v, &vm_zone_stat[i]);
781                 }
782 }
783 #endif
784
785 #ifdef CONFIG_NUMA
786 /*
787  * Determine the per node value of a stat item. This function
788  * is called frequently in a NUMA machine, so try to be as
789  * frugal as possible.
790  */
791 unsigned long sum_zone_node_page_state(int node,
792                                  enum zone_stat_item item)
793 {
794         struct zone *zones = NODE_DATA(node)->node_zones;
795         int i;
796         unsigned long count = 0;
797
798         for (i = 0; i < MAX_NR_ZONES; i++)
799                 count += zone_page_state(zones + i, item);
800
801         return count;
802 }
803
804 /*
805  * Determine the per node value of a stat item.
806  */
807 unsigned long node_page_state(struct pglist_data *pgdat,
808                                 enum node_stat_item item)
809 {
810         long x = atomic_long_read(&pgdat->vm_stat[item]);
811 #ifdef CONFIG_SMP
812         if (x < 0)
813                 x = 0;
814 #endif
815         return x;
816 }
817 #endif
818
819 #ifdef CONFIG_COMPACTION
820
821 struct contig_page_info {
822         unsigned long free_pages;
823         unsigned long free_blocks_total;
824         unsigned long free_blocks_suitable;
825 };
826
827 /*
828  * Calculate the number of free pages in a zone, how many contiguous
829  * pages are free and how many are large enough to satisfy an allocation of
830  * the target size. Note that this function makes no attempt to estimate
831  * how many suitable free blocks there *might* be if MOVABLE pages were
832  * migrated. Calculating that is possible, but expensive and can be
833  * figured out from userspace
834  */
835 static void fill_contig_page_info(struct zone *zone,
836                                 unsigned int suitable_order,
837                                 struct contig_page_info *info)
838 {
839         unsigned int order;
840
841         info->free_pages = 0;
842         info->free_blocks_total = 0;
843         info->free_blocks_suitable = 0;
844
845         for (order = 0; order < MAX_ORDER; order++) {
846                 unsigned long blocks;
847
848                 /* Count number of free blocks */
849                 blocks = zone->free_area[order].nr_free;
850                 info->free_blocks_total += blocks;
851
852                 /* Count free base pages */
853                 info->free_pages += blocks << order;
854
855                 /* Count the suitable free blocks */
856                 if (order >= suitable_order)
857                         info->free_blocks_suitable += blocks <<
858                                                 (order - suitable_order);
859         }
860 }
861
862 /*
863  * A fragmentation index only makes sense if an allocation of a requested
864  * size would fail. If that is true, the fragmentation index indicates
865  * whether external fragmentation or a lack of memory was the problem.
866  * The value can be used to determine if page reclaim or compaction
867  * should be used
868  */
869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
870 {
871         unsigned long requested = 1UL << order;
872
873         if (WARN_ON_ONCE(order >= MAX_ORDER))
874                 return 0;
875
876         if (!info->free_blocks_total)
877                 return 0;
878
879         /* Fragmentation index only makes sense when a request would fail */
880         if (info->free_blocks_suitable)
881                 return -1000;
882
883         /*
884          * Index is between 0 and 1 so return within 3 decimal places
885          *
886          * 0 => allocation would fail due to lack of memory
887          * 1 => allocation would fail due to fragmentation
888          */
889         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
890 }
891
892 /* Same as __fragmentation index but allocs contig_page_info on stack */
893 int fragmentation_index(struct zone *zone, unsigned int order)
894 {
895         struct contig_page_info info;
896
897         fill_contig_page_info(zone, order, &info);
898         return __fragmentation_index(order, &info);
899 }
900 #endif
901
902 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
903 #ifdef CONFIG_ZONE_DMA
904 #define TEXT_FOR_DMA(xx) xx "_dma",
905 #else
906 #define TEXT_FOR_DMA(xx)
907 #endif
908
909 #ifdef CONFIG_ZONE_DMA32
910 #define TEXT_FOR_DMA32(xx) xx "_dma32",
911 #else
912 #define TEXT_FOR_DMA32(xx)
913 #endif
914
915 #ifdef CONFIG_HIGHMEM
916 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
917 #else
918 #define TEXT_FOR_HIGHMEM(xx)
919 #endif
920
921 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
922                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
923
924 const char * const vmstat_text[] = {
925         /* enum zone_stat_item countes */
926         "nr_free_pages",
927         "nr_zone_inactive_anon",
928         "nr_zone_active_anon",
929         "nr_zone_inactive_file",
930         "nr_zone_active_file",
931         "nr_zone_unevictable",
932         "nr_zone_write_pending",
933         "nr_mlock",
934         "nr_page_table_pages",
935         "nr_kernel_stack",
936         "nr_bounce",
937 #if IS_ENABLED(CONFIG_ZSMALLOC)
938         "nr_zspages",
939 #endif
940 #ifdef CONFIG_NUMA
941         "numa_hit",
942         "numa_miss",
943         "numa_foreign",
944         "numa_interleave",
945         "numa_local",
946         "numa_other",
947 #endif
948         "nr_free_cma",
949
950         /* Node-based counters */
951         "nr_inactive_anon",
952         "nr_active_anon",
953         "nr_inactive_file",
954         "nr_active_file",
955         "nr_unevictable",
956         "nr_slab_reclaimable",
957         "nr_slab_unreclaimable",
958         "nr_isolated_anon",
959         "nr_isolated_file",
960         "workingset_refault",
961         "workingset_activate",
962         "workingset_nodereclaim",
963         "nr_anon_pages",
964         "nr_mapped",
965         "nr_file_pages",
966         "nr_dirty",
967         "nr_writeback",
968         "nr_writeback_temp",
969         "nr_shmem",
970         "nr_shmem_hugepages",
971         "nr_shmem_pmdmapped",
972         "nr_anon_transparent_hugepages",
973         "nr_unstable",
974         "nr_vmscan_write",
975         "nr_vmscan_immediate_reclaim",
976         "nr_dirtied",
977         "nr_written",
978
979         /* enum writeback_stat_item counters */
980         "nr_dirty_threshold",
981         "nr_dirty_background_threshold",
982
983 #ifdef CONFIG_VM_EVENT_COUNTERS
984         /* enum vm_event_item counters */
985         "pgpgin",
986         "pgpgout",
987         "pswpin",
988         "pswpout",
989
990         TEXTS_FOR_ZONES("pgalloc")
991         TEXTS_FOR_ZONES("allocstall")
992         TEXTS_FOR_ZONES("pgskip")
993
994         "pgfree",
995         "pgactivate",
996         "pgdeactivate",
997         "pglazyfree",
998
999         "pgfault",
1000         "pgmajfault",
1001         "pglazyfreed",
1002
1003         "pgrefill",
1004         "pgsteal_kswapd",
1005         "pgsteal_direct",
1006         "pgscan_kswapd",
1007         "pgscan_direct",
1008         "pgscan_direct_throttle",
1009
1010 #ifdef CONFIG_NUMA
1011         "zone_reclaim_failed",
1012 #endif
1013         "pginodesteal",
1014         "slabs_scanned",
1015         "kswapd_inodesteal",
1016         "kswapd_low_wmark_hit_quickly",
1017         "kswapd_high_wmark_hit_quickly",
1018         "pageoutrun",
1019
1020         "pgrotated",
1021
1022         "drop_pagecache",
1023         "drop_slab",
1024         "oom_kill",
1025
1026 #ifdef CONFIG_NUMA_BALANCING
1027         "numa_pte_updates",
1028         "numa_huge_pte_updates",
1029         "numa_hint_faults",
1030         "numa_hint_faults_local",
1031         "numa_pages_migrated",
1032 #endif
1033 #ifdef CONFIG_MIGRATION
1034         "pgmigrate_success",
1035         "pgmigrate_fail",
1036 #endif
1037 #ifdef CONFIG_COMPACTION
1038         "compact_migrate_scanned",
1039         "compact_free_scanned",
1040         "compact_isolated",
1041         "compact_stall",
1042         "compact_fail",
1043         "compact_success",
1044         "compact_daemon_wake",
1045         "compact_daemon_migrate_scanned",
1046         "compact_daemon_free_scanned",
1047 #endif
1048
1049 #ifdef CONFIG_HUGETLB_PAGE
1050         "htlb_buddy_alloc_success",
1051         "htlb_buddy_alloc_fail",
1052 #endif
1053         "unevictable_pgs_culled",
1054         "unevictable_pgs_scanned",
1055         "unevictable_pgs_rescued",
1056         "unevictable_pgs_mlocked",
1057         "unevictable_pgs_munlocked",
1058         "unevictable_pgs_cleared",
1059         "unevictable_pgs_stranded",
1060
1061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1062         "thp_fault_alloc",
1063         "thp_fault_fallback",
1064         "thp_collapse_alloc",
1065         "thp_collapse_alloc_failed",
1066         "thp_file_alloc",
1067         "thp_file_mapped",
1068         "thp_split_page",
1069         "thp_split_page_failed",
1070         "thp_deferred_split_page",
1071         "thp_split_pmd",
1072 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1073         "thp_split_pud",
1074 #endif
1075         "thp_zero_page_alloc",
1076         "thp_zero_page_alloc_failed",
1077         "thp_swpout",
1078         "thp_swpout_fallback",
1079 #endif
1080 #ifdef CONFIG_MEMORY_BALLOON
1081         "balloon_inflate",
1082         "balloon_deflate",
1083 #ifdef CONFIG_BALLOON_COMPACTION
1084         "balloon_migrate",
1085 #endif
1086 #endif /* CONFIG_MEMORY_BALLOON */
1087 #ifdef CONFIG_DEBUG_TLBFLUSH
1088 #ifdef CONFIG_SMP
1089         "nr_tlb_remote_flush",
1090         "nr_tlb_remote_flush_received",
1091 #endif /* CONFIG_SMP */
1092         "nr_tlb_local_flush_all",
1093         "nr_tlb_local_flush_one",
1094 #endif /* CONFIG_DEBUG_TLBFLUSH */
1095
1096 #ifdef CONFIG_DEBUG_VM_VMACACHE
1097         "vmacache_find_calls",
1098         "vmacache_find_hits",
1099         "vmacache_full_flushes",
1100 #endif
1101 #ifdef CONFIG_SWAP
1102         "swap_ra",
1103         "swap_ra_hit",
1104 #endif
1105 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1106 };
1107 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1108
1109
1110 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1111      defined(CONFIG_PROC_FS)
1112 static void *frag_start(struct seq_file *m, loff_t *pos)
1113 {
1114         pg_data_t *pgdat;
1115         loff_t node = *pos;
1116
1117         for (pgdat = first_online_pgdat();
1118              pgdat && node;
1119              pgdat = next_online_pgdat(pgdat))
1120                 --node;
1121
1122         return pgdat;
1123 }
1124
1125 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1126 {
1127         pg_data_t *pgdat = (pg_data_t *)arg;
1128
1129         (*pos)++;
1130         return next_online_pgdat(pgdat);
1131 }
1132
1133 static void frag_stop(struct seq_file *m, void *arg)
1134 {
1135 }
1136
1137 /*
1138  * Walk zones in a node and print using a callback.
1139  * If @assert_populated is true, only use callback for zones that are populated.
1140  */
1141 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1142                 bool assert_populated, bool nolock,
1143                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1144 {
1145         struct zone *zone;
1146         struct zone *node_zones = pgdat->node_zones;
1147         unsigned long flags;
1148
1149         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1150                 if (assert_populated && !populated_zone(zone))
1151                         continue;
1152
1153                 if (!nolock)
1154                         spin_lock_irqsave(&zone->lock, flags);
1155                 print(m, pgdat, zone);
1156                 if (!nolock)
1157                         spin_unlock_irqrestore(&zone->lock, flags);
1158         }
1159 }
1160 #endif
1161
1162 #ifdef CONFIG_PROC_FS
1163 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1164                                                 struct zone *zone)
1165 {
1166         int order;
1167
1168         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1169         for (order = 0; order < MAX_ORDER; ++order)
1170                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1171         seq_putc(m, '\n');
1172 }
1173
1174 /*
1175  * This walks the free areas for each zone.
1176  */
1177 static int frag_show(struct seq_file *m, void *arg)
1178 {
1179         pg_data_t *pgdat = (pg_data_t *)arg;
1180         walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1181         return 0;
1182 }
1183
1184 static void pagetypeinfo_showfree_print(struct seq_file *m,
1185                                         pg_data_t *pgdat, struct zone *zone)
1186 {
1187         int order, mtype;
1188
1189         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1190                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1191                                         pgdat->node_id,
1192                                         zone->name,
1193                                         migratetype_names[mtype]);
1194                 for (order = 0; order < MAX_ORDER; ++order) {
1195                         unsigned long freecount = 0;
1196                         struct free_area *area;
1197                         struct list_head *curr;
1198
1199                         area = &(zone->free_area[order]);
1200
1201                         list_for_each(curr, &area->free_list[mtype])
1202                                 freecount++;
1203                         seq_printf(m, "%6lu ", freecount);
1204                 }
1205                 seq_putc(m, '\n');
1206         }
1207 }
1208
1209 /* Print out the free pages at each order for each migatetype */
1210 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1211 {
1212         int order;
1213         pg_data_t *pgdat = (pg_data_t *)arg;
1214
1215         /* Print header */
1216         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1217         for (order = 0; order < MAX_ORDER; ++order)
1218                 seq_printf(m, "%6d ", order);
1219         seq_putc(m, '\n');
1220
1221         walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1222
1223         return 0;
1224 }
1225
1226 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1227                                         pg_data_t *pgdat, struct zone *zone)
1228 {
1229         int mtype;
1230         unsigned long pfn;
1231         unsigned long start_pfn = zone->zone_start_pfn;
1232         unsigned long end_pfn = zone_end_pfn(zone);
1233         unsigned long count[MIGRATE_TYPES] = { 0, };
1234
1235         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1236                 struct page *page;
1237
1238                 page = pfn_to_online_page(pfn);
1239                 if (!page)
1240                         continue;
1241
1242                 /* Watch for unexpected holes punched in the memmap */
1243                 if (!memmap_valid_within(pfn, page, zone))
1244                         continue;
1245
1246                 if (page_zone(page) != zone)
1247                         continue;
1248
1249                 mtype = get_pageblock_migratetype(page);
1250
1251                 if (mtype < MIGRATE_TYPES)
1252                         count[mtype]++;
1253         }
1254
1255         /* Print counts */
1256         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1257         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1258                 seq_printf(m, "%12lu ", count[mtype]);
1259         seq_putc(m, '\n');
1260 }
1261
1262 /* Print out the number of pageblocks for each migratetype */
1263 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1264 {
1265         int mtype;
1266         pg_data_t *pgdat = (pg_data_t *)arg;
1267
1268         seq_printf(m, "\n%-23s", "Number of blocks type ");
1269         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1270                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1271         seq_putc(m, '\n');
1272         walk_zones_in_node(m, pgdat, true, false,
1273                 pagetypeinfo_showblockcount_print);
1274
1275         return 0;
1276 }
1277
1278 /*
1279  * Print out the number of pageblocks for each migratetype that contain pages
1280  * of other types. This gives an indication of how well fallbacks are being
1281  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1282  * to determine what is going on
1283  */
1284 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1285 {
1286 #ifdef CONFIG_PAGE_OWNER
1287         int mtype;
1288
1289         if (!static_branch_unlikely(&page_owner_inited))
1290                 return;
1291
1292         drain_all_pages(NULL);
1293
1294         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1295         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1296                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1297         seq_putc(m, '\n');
1298
1299         walk_zones_in_node(m, pgdat, true, true,
1300                 pagetypeinfo_showmixedcount_print);
1301 #endif /* CONFIG_PAGE_OWNER */
1302 }
1303
1304 /*
1305  * This prints out statistics in relation to grouping pages by mobility.
1306  * It is expensive to collect so do not constantly read the file.
1307  */
1308 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1309 {
1310         pg_data_t *pgdat = (pg_data_t *)arg;
1311
1312         /* check memoryless node */
1313         if (!node_state(pgdat->node_id, N_MEMORY))
1314                 return 0;
1315
1316         seq_printf(m, "Page block order: %d\n", pageblock_order);
1317         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1318         seq_putc(m, '\n');
1319         pagetypeinfo_showfree(m, pgdat);
1320         pagetypeinfo_showblockcount(m, pgdat);
1321         pagetypeinfo_showmixedcount(m, pgdat);
1322
1323         return 0;
1324 }
1325
1326 static const struct seq_operations fragmentation_op = {
1327         .start  = frag_start,
1328         .next   = frag_next,
1329         .stop   = frag_stop,
1330         .show   = frag_show,
1331 };
1332
1333 static int fragmentation_open(struct inode *inode, struct file *file)
1334 {
1335         return seq_open(file, &fragmentation_op);
1336 }
1337
1338 static const struct file_operations buddyinfo_file_operations = {
1339         .open           = fragmentation_open,
1340         .read           = seq_read,
1341         .llseek         = seq_lseek,
1342         .release        = seq_release,
1343 };
1344
1345 static const struct seq_operations pagetypeinfo_op = {
1346         .start  = frag_start,
1347         .next   = frag_next,
1348         .stop   = frag_stop,
1349         .show   = pagetypeinfo_show,
1350 };
1351
1352 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1353 {
1354         return seq_open(file, &pagetypeinfo_op);
1355 }
1356
1357 static const struct file_operations pagetypeinfo_file_operations = {
1358         .open           = pagetypeinfo_open,
1359         .read           = seq_read,
1360         .llseek         = seq_lseek,
1361         .release        = seq_release,
1362 };
1363
1364 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1365 {
1366         int zid;
1367
1368         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1369                 struct zone *compare = &pgdat->node_zones[zid];
1370
1371                 if (populated_zone(compare))
1372                         return zone == compare;
1373         }
1374
1375         return false;
1376 }
1377
1378 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1379                                                         struct zone *zone)
1380 {
1381         int i;
1382         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1383         if (is_zone_first_populated(pgdat, zone)) {
1384                 seq_printf(m, "\n  per-node stats");
1385                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1386                         seq_printf(m, "\n      %-12s %lu",
1387                                 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1388                                 node_page_state(pgdat, i));
1389                 }
1390         }
1391         seq_printf(m,
1392                    "\n  pages free     %lu"
1393                    "\n        min      %lu"
1394                    "\n        low      %lu"
1395                    "\n        high     %lu"
1396                    "\n        spanned  %lu"
1397                    "\n        present  %lu"
1398                    "\n        managed  %lu",
1399                    zone_page_state(zone, NR_FREE_PAGES),
1400                    min_wmark_pages(zone),
1401                    low_wmark_pages(zone),
1402                    high_wmark_pages(zone),
1403                    zone->spanned_pages,
1404                    zone->present_pages,
1405                    zone->managed_pages);
1406
1407         seq_printf(m,
1408                    "\n        protection: (%ld",
1409                    zone->lowmem_reserve[0]);
1410         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1411                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1412         seq_putc(m, ')');
1413
1414         /* If unpopulated, no other information is useful */
1415         if (!populated_zone(zone)) {
1416                 seq_putc(m, '\n');
1417                 return;
1418         }
1419
1420         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1421                 seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1422                                 zone_page_state(zone, i));
1423
1424         seq_printf(m, "\n  pagesets");
1425         for_each_online_cpu(i) {
1426                 struct per_cpu_pageset *pageset;
1427
1428                 pageset = per_cpu_ptr(zone->pageset, i);
1429                 seq_printf(m,
1430                            "\n    cpu: %i"
1431                            "\n              count: %i"
1432                            "\n              high:  %i"
1433                            "\n              batch: %i",
1434                            i,
1435                            pageset->pcp.count,
1436                            pageset->pcp.high,
1437                            pageset->pcp.batch);
1438 #ifdef CONFIG_SMP
1439                 seq_printf(m, "\n  vm stats threshold: %d",
1440                                 pageset->stat_threshold);
1441 #endif
1442         }
1443         seq_printf(m,
1444                    "\n  node_unreclaimable:  %u"
1445                    "\n  start_pfn:           %lu"
1446                    "\n  node_inactive_ratio: %u",
1447                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1448                    zone->zone_start_pfn,
1449                    zone->zone_pgdat->inactive_ratio);
1450         seq_putc(m, '\n');
1451 }
1452
1453 /*
1454  * Output information about zones in @pgdat.  All zones are printed regardless
1455  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1456  * set of all zones and userspace would not be aware of such zones if they are
1457  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1458  */
1459 static int zoneinfo_show(struct seq_file *m, void *arg)
1460 {
1461         pg_data_t *pgdat = (pg_data_t *)arg;
1462         walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1463         return 0;
1464 }
1465
1466 static const struct seq_operations zoneinfo_op = {
1467         .start  = frag_start, /* iterate over all zones. The same as in
1468                                * fragmentation. */
1469         .next   = frag_next,
1470         .stop   = frag_stop,
1471         .show   = zoneinfo_show,
1472 };
1473
1474 static int zoneinfo_open(struct inode *inode, struct file *file)
1475 {
1476         return seq_open(file, &zoneinfo_op);
1477 }
1478
1479 static const struct file_operations zoneinfo_file_operations = {
1480         .open           = zoneinfo_open,
1481         .read           = seq_read,
1482         .llseek         = seq_lseek,
1483         .release        = seq_release,
1484 };
1485
1486 enum writeback_stat_item {
1487         NR_DIRTY_THRESHOLD,
1488         NR_DIRTY_BG_THRESHOLD,
1489         NR_VM_WRITEBACK_STAT_ITEMS,
1490 };
1491
1492 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1493 {
1494         unsigned long *v;
1495         int i, stat_items_size;
1496
1497         if (*pos >= ARRAY_SIZE(vmstat_text))
1498                 return NULL;
1499         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1500                           NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1501                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1502
1503 #ifdef CONFIG_VM_EVENT_COUNTERS
1504         stat_items_size += sizeof(struct vm_event_state);
1505 #endif
1506
1507         v = kmalloc(stat_items_size, GFP_KERNEL);
1508         m->private = v;
1509         if (!v)
1510                 return ERR_PTR(-ENOMEM);
1511         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1512                 v[i] = global_zone_page_state(i);
1513         v += NR_VM_ZONE_STAT_ITEMS;
1514
1515         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1516                 v[i] = global_node_page_state(i);
1517         v += NR_VM_NODE_STAT_ITEMS;
1518
1519         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1520                             v + NR_DIRTY_THRESHOLD);
1521         v += NR_VM_WRITEBACK_STAT_ITEMS;
1522
1523 #ifdef CONFIG_VM_EVENT_COUNTERS
1524         all_vm_events(v);
1525         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1526         v[PGPGOUT] /= 2;
1527 #endif
1528         return (unsigned long *)m->private + *pos;
1529 }
1530
1531 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1532 {
1533         (*pos)++;
1534         if (*pos >= ARRAY_SIZE(vmstat_text))
1535                 return NULL;
1536         return (unsigned long *)m->private + *pos;
1537 }
1538
1539 static int vmstat_show(struct seq_file *m, void *arg)
1540 {
1541         unsigned long *l = arg;
1542         unsigned long off = l - (unsigned long *)m->private;
1543
1544         seq_puts(m, vmstat_text[off]);
1545         seq_put_decimal_ull(m, " ", *l);
1546         seq_putc(m, '\n');
1547         return 0;
1548 }
1549
1550 static void vmstat_stop(struct seq_file *m, void *arg)
1551 {
1552         kfree(m->private);
1553         m->private = NULL;
1554 }
1555
1556 static const struct seq_operations vmstat_op = {
1557         .start  = vmstat_start,
1558         .next   = vmstat_next,
1559         .stop   = vmstat_stop,
1560         .show   = vmstat_show,
1561 };
1562
1563 static int vmstat_open(struct inode *inode, struct file *file)
1564 {
1565         return seq_open(file, &vmstat_op);
1566 }
1567
1568 static const struct file_operations vmstat_file_operations = {
1569         .open           = vmstat_open,
1570         .read           = seq_read,
1571         .llseek         = seq_lseek,
1572         .release        = seq_release,
1573 };
1574 #endif /* CONFIG_PROC_FS */
1575
1576 #ifdef CONFIG_SMP
1577 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1578 int sysctl_stat_interval __read_mostly = HZ;
1579
1580 #ifdef CONFIG_PROC_FS
1581 static void refresh_vm_stats(struct work_struct *work)
1582 {
1583         refresh_cpu_vm_stats(true);
1584 }
1585
1586 int vmstat_refresh(struct ctl_table *table, int write,
1587                    void __user *buffer, size_t *lenp, loff_t *ppos)
1588 {
1589         long val;
1590         int err;
1591         int i;
1592
1593         /*
1594          * The regular update, every sysctl_stat_interval, may come later
1595          * than expected: leaving a significant amount in per_cpu buckets.
1596          * This is particularly misleading when checking a quantity of HUGE
1597          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1598          * which can equally be echo'ed to or cat'ted from (by root),
1599          * can be used to update the stats just before reading them.
1600          *
1601          * Oh, and since global_zone_page_state() etc. are so careful to hide
1602          * transiently negative values, report an error here if any of
1603          * the stats is negative, so we know to go looking for imbalance.
1604          */
1605         err = schedule_on_each_cpu(refresh_vm_stats);
1606         if (err)
1607                 return err;
1608         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1609                 val = atomic_long_read(&vm_zone_stat[i]);
1610                 if (val < 0) {
1611                         pr_warn("%s: %s %ld\n",
1612                                 __func__, vmstat_text[i], val);
1613                         err = -EINVAL;
1614                 }
1615         }
1616         if (err)
1617                 return err;
1618         if (write)
1619                 *ppos += *lenp;
1620         else
1621                 *lenp = 0;
1622         return 0;
1623 }
1624 #endif /* CONFIG_PROC_FS */
1625
1626 static void vmstat_update(struct work_struct *w)
1627 {
1628         if (refresh_cpu_vm_stats(true)) {
1629                 /*
1630                  * Counters were updated so we expect more updates
1631                  * to occur in the future. Keep on running the
1632                  * update worker thread.
1633                  */
1634                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1635                                 this_cpu_ptr(&vmstat_work),
1636                                 round_jiffies_relative(sysctl_stat_interval));
1637         }
1638 }
1639
1640 /*
1641  * Switch off vmstat processing and then fold all the remaining differentials
1642  * until the diffs stay at zero. The function is used by NOHZ and can only be
1643  * invoked when tick processing is not active.
1644  */
1645 /*
1646  * Check if the diffs for a certain cpu indicate that
1647  * an update is needed.
1648  */
1649 static bool need_update(int cpu)
1650 {
1651         struct zone *zone;
1652
1653         for_each_populated_zone(zone) {
1654                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1655
1656                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1657                 /*
1658                  * The fast way of checking if there are any vmstat diffs.
1659                  * This works because the diffs are byte sized items.
1660                  */
1661                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1662                         return true;
1663
1664         }
1665         return false;
1666 }
1667
1668 /*
1669  * Switch off vmstat processing and then fold all the remaining differentials
1670  * until the diffs stay at zero. The function is used by NOHZ and can only be
1671  * invoked when tick processing is not active.
1672  */
1673 void quiet_vmstat(void)
1674 {
1675         if (system_state != SYSTEM_RUNNING)
1676                 return;
1677
1678         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1679                 return;
1680
1681         if (!need_update(smp_processor_id()))
1682                 return;
1683
1684         /*
1685          * Just refresh counters and do not care about the pending delayed
1686          * vmstat_update. It doesn't fire that often to matter and canceling
1687          * it would be too expensive from this path.
1688          * vmstat_shepherd will take care about that for us.
1689          */
1690         refresh_cpu_vm_stats(false);
1691 }
1692
1693 /*
1694  * Shepherd worker thread that checks the
1695  * differentials of processors that have their worker
1696  * threads for vm statistics updates disabled because of
1697  * inactivity.
1698  */
1699 static void vmstat_shepherd(struct work_struct *w);
1700
1701 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1702
1703 static void vmstat_shepherd(struct work_struct *w)
1704 {
1705         int cpu;
1706
1707         get_online_cpus();
1708         /* Check processors whose vmstat worker threads have been disabled */
1709         for_each_online_cpu(cpu) {
1710                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1711
1712                 if (!delayed_work_pending(dw) && need_update(cpu))
1713                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1714         }
1715         put_online_cpus();
1716
1717         schedule_delayed_work(&shepherd,
1718                 round_jiffies_relative(sysctl_stat_interval));
1719 }
1720
1721 static void __init start_shepherd_timer(void)
1722 {
1723         int cpu;
1724
1725         for_each_possible_cpu(cpu)
1726                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1727                         vmstat_update);
1728
1729         schedule_delayed_work(&shepherd,
1730                 round_jiffies_relative(sysctl_stat_interval));
1731 }
1732
1733 static void __init init_cpu_node_state(void)
1734 {
1735         int node;
1736
1737         for_each_online_node(node) {
1738                 if (cpumask_weight(cpumask_of_node(node)) > 0)
1739                         node_set_state(node, N_CPU);
1740         }
1741 }
1742
1743 static int vmstat_cpu_online(unsigned int cpu)
1744 {
1745         refresh_zone_stat_thresholds();
1746         node_set_state(cpu_to_node(cpu), N_CPU);
1747         return 0;
1748 }
1749
1750 static int vmstat_cpu_down_prep(unsigned int cpu)
1751 {
1752         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1753         return 0;
1754 }
1755
1756 static int vmstat_cpu_dead(unsigned int cpu)
1757 {
1758         const struct cpumask *node_cpus;
1759         int node;
1760
1761         node = cpu_to_node(cpu);
1762
1763         refresh_zone_stat_thresholds();
1764         node_cpus = cpumask_of_node(node);
1765         if (cpumask_weight(node_cpus) > 0)
1766                 return 0;
1767
1768         node_clear_state(node, N_CPU);
1769         return 0;
1770 }
1771
1772 #endif
1773
1774 struct workqueue_struct *mm_percpu_wq;
1775
1776 void __init init_mm_internals(void)
1777 {
1778         int ret __maybe_unused;
1779
1780         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1781
1782 #ifdef CONFIG_SMP
1783         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1784                                         NULL, vmstat_cpu_dead);
1785         if (ret < 0)
1786                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1787
1788         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1789                                         vmstat_cpu_online,
1790                                         vmstat_cpu_down_prep);
1791         if (ret < 0)
1792                 pr_err("vmstat: failed to register 'online' hotplug state\n");
1793
1794         get_online_cpus();
1795         init_cpu_node_state();
1796         put_online_cpus();
1797
1798         start_shepherd_timer();
1799 #endif
1800 #ifdef CONFIG_PROC_FS
1801         proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations);
1802         proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations);
1803         proc_create("vmstat", 0444, NULL, &vmstat_file_operations);
1804         proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations);
1805 #endif
1806 }
1807
1808 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1809
1810 /*
1811  * Return an index indicating how much of the available free memory is
1812  * unusable for an allocation of the requested size.
1813  */
1814 static int unusable_free_index(unsigned int order,
1815                                 struct contig_page_info *info)
1816 {
1817         /* No free memory is interpreted as all free memory is unusable */
1818         if (info->free_pages == 0)
1819                 return 1000;
1820
1821         /*
1822          * Index should be a value between 0 and 1. Return a value to 3
1823          * decimal places.
1824          *
1825          * 0 => no fragmentation
1826          * 1 => high fragmentation
1827          */
1828         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1829
1830 }
1831
1832 static void unusable_show_print(struct seq_file *m,
1833                                         pg_data_t *pgdat, struct zone *zone)
1834 {
1835         unsigned int order;
1836         int index;
1837         struct contig_page_info info;
1838
1839         seq_printf(m, "Node %d, zone %8s ",
1840                                 pgdat->node_id,
1841                                 zone->name);
1842         for (order = 0; order < MAX_ORDER; ++order) {
1843                 fill_contig_page_info(zone, order, &info);
1844                 index = unusable_free_index(order, &info);
1845                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1846         }
1847
1848         seq_putc(m, '\n');
1849 }
1850
1851 /*
1852  * Display unusable free space index
1853  *
1854  * The unusable free space index measures how much of the available free
1855  * memory cannot be used to satisfy an allocation of a given size and is a
1856  * value between 0 and 1. The higher the value, the more of free memory is
1857  * unusable and by implication, the worse the external fragmentation is. This
1858  * can be expressed as a percentage by multiplying by 100.
1859  */
1860 static int unusable_show(struct seq_file *m, void *arg)
1861 {
1862         pg_data_t *pgdat = (pg_data_t *)arg;
1863
1864         /* check memoryless node */
1865         if (!node_state(pgdat->node_id, N_MEMORY))
1866                 return 0;
1867
1868         walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
1869
1870         return 0;
1871 }
1872
1873 static const struct seq_operations unusable_op = {
1874         .start  = frag_start,
1875         .next   = frag_next,
1876         .stop   = frag_stop,
1877         .show   = unusable_show,
1878 };
1879
1880 static int unusable_open(struct inode *inode, struct file *file)
1881 {
1882         return seq_open(file, &unusable_op);
1883 }
1884
1885 static const struct file_operations unusable_file_ops = {
1886         .open           = unusable_open,
1887         .read           = seq_read,
1888         .llseek         = seq_lseek,
1889         .release        = seq_release,
1890 };
1891
1892 static void extfrag_show_print(struct seq_file *m,
1893                                         pg_data_t *pgdat, struct zone *zone)
1894 {
1895         unsigned int order;
1896         int index;
1897
1898         /* Alloc on stack as interrupts are disabled for zone walk */
1899         struct contig_page_info info;
1900
1901         seq_printf(m, "Node %d, zone %8s ",
1902                                 pgdat->node_id,
1903                                 zone->name);
1904         for (order = 0; order < MAX_ORDER; ++order) {
1905                 fill_contig_page_info(zone, order, &info);
1906                 index = __fragmentation_index(order, &info);
1907                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1908         }
1909
1910         seq_putc(m, '\n');
1911 }
1912
1913 /*
1914  * Display fragmentation index for orders that allocations would fail for
1915  */
1916 static int extfrag_show(struct seq_file *m, void *arg)
1917 {
1918         pg_data_t *pgdat = (pg_data_t *)arg;
1919
1920         walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
1921
1922         return 0;
1923 }
1924
1925 static const struct seq_operations extfrag_op = {
1926         .start  = frag_start,
1927         .next   = frag_next,
1928         .stop   = frag_stop,
1929         .show   = extfrag_show,
1930 };
1931
1932 static int extfrag_open(struct inode *inode, struct file *file)
1933 {
1934         return seq_open(file, &extfrag_op);
1935 }
1936
1937 static const struct file_operations extfrag_file_ops = {
1938         .open           = extfrag_open,
1939         .read           = seq_read,
1940         .llseek         = seq_lseek,
1941         .release        = seq_release,
1942 };
1943
1944 static int __init extfrag_debug_init(void)
1945 {
1946         struct dentry *extfrag_debug_root;
1947
1948         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1949         if (!extfrag_debug_root)
1950                 return -ENOMEM;
1951
1952         if (!debugfs_create_file("unusable_index", 0444,
1953                         extfrag_debug_root, NULL, &unusable_file_ops))
1954                 goto fail;
1955
1956         if (!debugfs_create_file("extfrag_index", 0444,
1957                         extfrag_debug_root, NULL, &extfrag_file_ops))
1958                 goto fail;
1959
1960         return 0;
1961 fail:
1962         debugfs_remove_recursive(extfrag_debug_root);
1963         return -ENOMEM;
1964 }
1965
1966 module_init(extfrag_debug_init);
1967 #endif