mm, THP, swap: make reuse_swap_page() works for THP swapped out
[sfrench/cifs-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static PLIST_HEAD(swap_avail_head);
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 static inline unsigned char swap_count(unsigned char ent)
100 {
101         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
102 }
103
104 /* returns 1 if swap entry is freed */
105 static int
106 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107 {
108         swp_entry_t entry = swp_entry(si->type, offset);
109         struct page *page;
110         int ret = 0;
111
112         page = find_get_page(swap_address_space(entry), swp_offset(entry));
113         if (!page)
114                 return 0;
115         /*
116          * This function is called from scan_swap_map() and it's called
117          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118          * We have to use trylock for avoiding deadlock. This is a special
119          * case and you should use try_to_free_swap() with explicit lock_page()
120          * in usual operations.
121          */
122         if (trylock_page(page)) {
123                 ret = try_to_free_swap(page);
124                 unlock_page(page);
125         }
126         put_page(page);
127         return ret;
128 }
129
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136         struct swap_extent *se;
137         sector_t start_block;
138         sector_t nr_blocks;
139         int err = 0;
140
141         /* Do not discard the swap header page! */
142         se = &si->first_swap_extent;
143         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145         if (nr_blocks) {
146                 err = blkdev_issue_discard(si->bdev, start_block,
147                                 nr_blocks, GFP_KERNEL, 0);
148                 if (err)
149                         return err;
150                 cond_resched();
151         }
152
153         list_for_each_entry(se, &si->first_swap_extent.list, list) {
154                 start_block = se->start_block << (PAGE_SHIFT - 9);
155                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156
157                 err = blkdev_issue_discard(si->bdev, start_block,
158                                 nr_blocks, GFP_KERNEL, 0);
159                 if (err)
160                         break;
161
162                 cond_resched();
163         }
164         return err;             /* That will often be -EOPNOTSUPP */
165 }
166
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172                                  pgoff_t start_page, pgoff_t nr_pages)
173 {
174         struct swap_extent *se = si->curr_swap_extent;
175         int found_extent = 0;
176
177         while (nr_pages) {
178                 if (se->start_page <= start_page &&
179                     start_page < se->start_page + se->nr_pages) {
180                         pgoff_t offset = start_page - se->start_page;
181                         sector_t start_block = se->start_block + offset;
182                         sector_t nr_blocks = se->nr_pages - offset;
183
184                         if (nr_blocks > nr_pages)
185                                 nr_blocks = nr_pages;
186                         start_page += nr_blocks;
187                         nr_pages -= nr_blocks;
188
189                         if (!found_extent++)
190                                 si->curr_swap_extent = se;
191
192                         start_block <<= PAGE_SHIFT - 9;
193                         nr_blocks <<= PAGE_SHIFT - 9;
194                         if (blkdev_issue_discard(si->bdev, start_block,
195                                     nr_blocks, GFP_NOIO, 0))
196                                 break;
197                 }
198
199                 se = list_next_entry(se, list);
200         }
201 }
202
203 #ifdef CONFIG_THP_SWAP
204 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
205 #else
206 #define SWAPFILE_CLUSTER        256
207 #endif
208 #define LATENCY_LIMIT           256
209
210 static inline void cluster_set_flag(struct swap_cluster_info *info,
211         unsigned int flag)
212 {
213         info->flags = flag;
214 }
215
216 static inline unsigned int cluster_count(struct swap_cluster_info *info)
217 {
218         return info->data;
219 }
220
221 static inline void cluster_set_count(struct swap_cluster_info *info,
222                                      unsigned int c)
223 {
224         info->data = c;
225 }
226
227 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228                                          unsigned int c, unsigned int f)
229 {
230         info->flags = f;
231         info->data = c;
232 }
233
234 static inline unsigned int cluster_next(struct swap_cluster_info *info)
235 {
236         return info->data;
237 }
238
239 static inline void cluster_set_next(struct swap_cluster_info *info,
240                                     unsigned int n)
241 {
242         info->data = n;
243 }
244
245 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246                                          unsigned int n, unsigned int f)
247 {
248         info->flags = f;
249         info->data = n;
250 }
251
252 static inline bool cluster_is_free(struct swap_cluster_info *info)
253 {
254         return info->flags & CLUSTER_FLAG_FREE;
255 }
256
257 static inline bool cluster_is_null(struct swap_cluster_info *info)
258 {
259         return info->flags & CLUSTER_FLAG_NEXT_NULL;
260 }
261
262 static inline void cluster_set_null(struct swap_cluster_info *info)
263 {
264         info->flags = CLUSTER_FLAG_NEXT_NULL;
265         info->data = 0;
266 }
267
268 static inline bool cluster_is_huge(struct swap_cluster_info *info)
269 {
270         return info->flags & CLUSTER_FLAG_HUGE;
271 }
272
273 static inline void cluster_clear_huge(struct swap_cluster_info *info)
274 {
275         info->flags &= ~CLUSTER_FLAG_HUGE;
276 }
277
278 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
279                                                      unsigned long offset)
280 {
281         struct swap_cluster_info *ci;
282
283         ci = si->cluster_info;
284         if (ci) {
285                 ci += offset / SWAPFILE_CLUSTER;
286                 spin_lock(&ci->lock);
287         }
288         return ci;
289 }
290
291 static inline void unlock_cluster(struct swap_cluster_info *ci)
292 {
293         if (ci)
294                 spin_unlock(&ci->lock);
295 }
296
297 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
298         struct swap_info_struct *si,
299         unsigned long offset)
300 {
301         struct swap_cluster_info *ci;
302
303         ci = lock_cluster(si, offset);
304         if (!ci)
305                 spin_lock(&si->lock);
306
307         return ci;
308 }
309
310 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
311                                                struct swap_cluster_info *ci)
312 {
313         if (ci)
314                 unlock_cluster(ci);
315         else
316                 spin_unlock(&si->lock);
317 }
318
319 static inline bool cluster_list_empty(struct swap_cluster_list *list)
320 {
321         return cluster_is_null(&list->head);
322 }
323
324 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
325 {
326         return cluster_next(&list->head);
327 }
328
329 static void cluster_list_init(struct swap_cluster_list *list)
330 {
331         cluster_set_null(&list->head);
332         cluster_set_null(&list->tail);
333 }
334
335 static void cluster_list_add_tail(struct swap_cluster_list *list,
336                                   struct swap_cluster_info *ci,
337                                   unsigned int idx)
338 {
339         if (cluster_list_empty(list)) {
340                 cluster_set_next_flag(&list->head, idx, 0);
341                 cluster_set_next_flag(&list->tail, idx, 0);
342         } else {
343                 struct swap_cluster_info *ci_tail;
344                 unsigned int tail = cluster_next(&list->tail);
345
346                 /*
347                  * Nested cluster lock, but both cluster locks are
348                  * only acquired when we held swap_info_struct->lock
349                  */
350                 ci_tail = ci + tail;
351                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
352                 cluster_set_next(ci_tail, idx);
353                 spin_unlock(&ci_tail->lock);
354                 cluster_set_next_flag(&list->tail, idx, 0);
355         }
356 }
357
358 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
359                                            struct swap_cluster_info *ci)
360 {
361         unsigned int idx;
362
363         idx = cluster_next(&list->head);
364         if (cluster_next(&list->tail) == idx) {
365                 cluster_set_null(&list->head);
366                 cluster_set_null(&list->tail);
367         } else
368                 cluster_set_next_flag(&list->head,
369                                       cluster_next(&ci[idx]), 0);
370
371         return idx;
372 }
373
374 /* Add a cluster to discard list and schedule it to do discard */
375 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
376                 unsigned int idx)
377 {
378         /*
379          * If scan_swap_map() can't find a free cluster, it will check
380          * si->swap_map directly. To make sure the discarding cluster isn't
381          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
382          * will be cleared after discard
383          */
384         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
385                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
386
387         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
388
389         schedule_work(&si->discard_work);
390 }
391
392 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
393 {
394         struct swap_cluster_info *ci = si->cluster_info;
395
396         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
397         cluster_list_add_tail(&si->free_clusters, ci, idx);
398 }
399
400 /*
401  * Doing discard actually. After a cluster discard is finished, the cluster
402  * will be added to free cluster list. caller should hold si->lock.
403 */
404 static void swap_do_scheduled_discard(struct swap_info_struct *si)
405 {
406         struct swap_cluster_info *info, *ci;
407         unsigned int idx;
408
409         info = si->cluster_info;
410
411         while (!cluster_list_empty(&si->discard_clusters)) {
412                 idx = cluster_list_del_first(&si->discard_clusters, info);
413                 spin_unlock(&si->lock);
414
415                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
416                                 SWAPFILE_CLUSTER);
417
418                 spin_lock(&si->lock);
419                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
420                 __free_cluster(si, idx);
421                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
422                                 0, SWAPFILE_CLUSTER);
423                 unlock_cluster(ci);
424         }
425 }
426
427 static void swap_discard_work(struct work_struct *work)
428 {
429         struct swap_info_struct *si;
430
431         si = container_of(work, struct swap_info_struct, discard_work);
432
433         spin_lock(&si->lock);
434         swap_do_scheduled_discard(si);
435         spin_unlock(&si->lock);
436 }
437
438 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
439 {
440         struct swap_cluster_info *ci = si->cluster_info;
441
442         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
443         cluster_list_del_first(&si->free_clusters, ci);
444         cluster_set_count_flag(ci + idx, 0, 0);
445 }
446
447 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
448 {
449         struct swap_cluster_info *ci = si->cluster_info + idx;
450
451         VM_BUG_ON(cluster_count(ci) != 0);
452         /*
453          * If the swap is discardable, prepare discard the cluster
454          * instead of free it immediately. The cluster will be freed
455          * after discard.
456          */
457         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
458             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
459                 swap_cluster_schedule_discard(si, idx);
460                 return;
461         }
462
463         __free_cluster(si, idx);
464 }
465
466 /*
467  * The cluster corresponding to page_nr will be used. The cluster will be
468  * removed from free cluster list and its usage counter will be increased.
469  */
470 static void inc_cluster_info_page(struct swap_info_struct *p,
471         struct swap_cluster_info *cluster_info, unsigned long page_nr)
472 {
473         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
474
475         if (!cluster_info)
476                 return;
477         if (cluster_is_free(&cluster_info[idx]))
478                 alloc_cluster(p, idx);
479
480         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
481         cluster_set_count(&cluster_info[idx],
482                 cluster_count(&cluster_info[idx]) + 1);
483 }
484
485 /*
486  * The cluster corresponding to page_nr decreases one usage. If the usage
487  * counter becomes 0, which means no page in the cluster is in using, we can
488  * optionally discard the cluster and add it to free cluster list.
489  */
490 static void dec_cluster_info_page(struct swap_info_struct *p,
491         struct swap_cluster_info *cluster_info, unsigned long page_nr)
492 {
493         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
494
495         if (!cluster_info)
496                 return;
497
498         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
499         cluster_set_count(&cluster_info[idx],
500                 cluster_count(&cluster_info[idx]) - 1);
501
502         if (cluster_count(&cluster_info[idx]) == 0)
503                 free_cluster(p, idx);
504 }
505
506 /*
507  * It's possible scan_swap_map() uses a free cluster in the middle of free
508  * cluster list. Avoiding such abuse to avoid list corruption.
509  */
510 static bool
511 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
512         unsigned long offset)
513 {
514         struct percpu_cluster *percpu_cluster;
515         bool conflict;
516
517         offset /= SWAPFILE_CLUSTER;
518         conflict = !cluster_list_empty(&si->free_clusters) &&
519                 offset != cluster_list_first(&si->free_clusters) &&
520                 cluster_is_free(&si->cluster_info[offset]);
521
522         if (!conflict)
523                 return false;
524
525         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
526         cluster_set_null(&percpu_cluster->index);
527         return true;
528 }
529
530 /*
531  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
532  * might involve allocating a new cluster for current CPU too.
533  */
534 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
535         unsigned long *offset, unsigned long *scan_base)
536 {
537         struct percpu_cluster *cluster;
538         struct swap_cluster_info *ci;
539         bool found_free;
540         unsigned long tmp, max;
541
542 new_cluster:
543         cluster = this_cpu_ptr(si->percpu_cluster);
544         if (cluster_is_null(&cluster->index)) {
545                 if (!cluster_list_empty(&si->free_clusters)) {
546                         cluster->index = si->free_clusters.head;
547                         cluster->next = cluster_next(&cluster->index) *
548                                         SWAPFILE_CLUSTER;
549                 } else if (!cluster_list_empty(&si->discard_clusters)) {
550                         /*
551                          * we don't have free cluster but have some clusters in
552                          * discarding, do discard now and reclaim them
553                          */
554                         swap_do_scheduled_discard(si);
555                         *scan_base = *offset = si->cluster_next;
556                         goto new_cluster;
557                 } else
558                         return false;
559         }
560
561         found_free = false;
562
563         /*
564          * Other CPUs can use our cluster if they can't find a free cluster,
565          * check if there is still free entry in the cluster
566          */
567         tmp = cluster->next;
568         max = min_t(unsigned long, si->max,
569                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
570         if (tmp >= max) {
571                 cluster_set_null(&cluster->index);
572                 goto new_cluster;
573         }
574         ci = lock_cluster(si, tmp);
575         while (tmp < max) {
576                 if (!si->swap_map[tmp]) {
577                         found_free = true;
578                         break;
579                 }
580                 tmp++;
581         }
582         unlock_cluster(ci);
583         if (!found_free) {
584                 cluster_set_null(&cluster->index);
585                 goto new_cluster;
586         }
587         cluster->next = tmp + 1;
588         *offset = tmp;
589         *scan_base = tmp;
590         return found_free;
591 }
592
593 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
594                              unsigned int nr_entries)
595 {
596         unsigned int end = offset + nr_entries - 1;
597
598         if (offset == si->lowest_bit)
599                 si->lowest_bit += nr_entries;
600         if (end == si->highest_bit)
601                 si->highest_bit -= nr_entries;
602         si->inuse_pages += nr_entries;
603         if (si->inuse_pages == si->pages) {
604                 si->lowest_bit = si->max;
605                 si->highest_bit = 0;
606                 spin_lock(&swap_avail_lock);
607                 plist_del(&si->avail_list, &swap_avail_head);
608                 spin_unlock(&swap_avail_lock);
609         }
610 }
611
612 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
613                             unsigned int nr_entries)
614 {
615         unsigned long end = offset + nr_entries - 1;
616         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
617
618         if (offset < si->lowest_bit)
619                 si->lowest_bit = offset;
620         if (end > si->highest_bit) {
621                 bool was_full = !si->highest_bit;
622
623                 si->highest_bit = end;
624                 if (was_full && (si->flags & SWP_WRITEOK)) {
625                         spin_lock(&swap_avail_lock);
626                         WARN_ON(!plist_node_empty(&si->avail_list));
627                         if (plist_node_empty(&si->avail_list))
628                                 plist_add(&si->avail_list, &swap_avail_head);
629                         spin_unlock(&swap_avail_lock);
630                 }
631         }
632         atomic_long_add(nr_entries, &nr_swap_pages);
633         si->inuse_pages -= nr_entries;
634         if (si->flags & SWP_BLKDEV)
635                 swap_slot_free_notify =
636                         si->bdev->bd_disk->fops->swap_slot_free_notify;
637         else
638                 swap_slot_free_notify = NULL;
639         while (offset <= end) {
640                 frontswap_invalidate_page(si->type, offset);
641                 if (swap_slot_free_notify)
642                         swap_slot_free_notify(si->bdev, offset);
643                 offset++;
644         }
645 }
646
647 static int scan_swap_map_slots(struct swap_info_struct *si,
648                                unsigned char usage, int nr,
649                                swp_entry_t slots[])
650 {
651         struct swap_cluster_info *ci;
652         unsigned long offset;
653         unsigned long scan_base;
654         unsigned long last_in_cluster = 0;
655         int latency_ration = LATENCY_LIMIT;
656         int n_ret = 0;
657
658         if (nr > SWAP_BATCH)
659                 nr = SWAP_BATCH;
660
661         /*
662          * We try to cluster swap pages by allocating them sequentially
663          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
664          * way, however, we resort to first-free allocation, starting
665          * a new cluster.  This prevents us from scattering swap pages
666          * all over the entire swap partition, so that we reduce
667          * overall disk seek times between swap pages.  -- sct
668          * But we do now try to find an empty cluster.  -Andrea
669          * And we let swap pages go all over an SSD partition.  Hugh
670          */
671
672         si->flags += SWP_SCANNING;
673         scan_base = offset = si->cluster_next;
674
675         /* SSD algorithm */
676         if (si->cluster_info) {
677                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
678                         goto checks;
679                 else
680                         goto scan;
681         }
682
683         if (unlikely(!si->cluster_nr--)) {
684                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
685                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
686                         goto checks;
687                 }
688
689                 spin_unlock(&si->lock);
690
691                 /*
692                  * If seek is expensive, start searching for new cluster from
693                  * start of partition, to minimize the span of allocated swap.
694                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
695                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
696                  */
697                 scan_base = offset = si->lowest_bit;
698                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
699
700                 /* Locate the first empty (unaligned) cluster */
701                 for (; last_in_cluster <= si->highest_bit; offset++) {
702                         if (si->swap_map[offset])
703                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
704                         else if (offset == last_in_cluster) {
705                                 spin_lock(&si->lock);
706                                 offset -= SWAPFILE_CLUSTER - 1;
707                                 si->cluster_next = offset;
708                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
709                                 goto checks;
710                         }
711                         if (unlikely(--latency_ration < 0)) {
712                                 cond_resched();
713                                 latency_ration = LATENCY_LIMIT;
714                         }
715                 }
716
717                 offset = scan_base;
718                 spin_lock(&si->lock);
719                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
720         }
721
722 checks:
723         if (si->cluster_info) {
724                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
725                 /* take a break if we already got some slots */
726                         if (n_ret)
727                                 goto done;
728                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
729                                                         &scan_base))
730                                 goto scan;
731                 }
732         }
733         if (!(si->flags & SWP_WRITEOK))
734                 goto no_page;
735         if (!si->highest_bit)
736                 goto no_page;
737         if (offset > si->highest_bit)
738                 scan_base = offset = si->lowest_bit;
739
740         ci = lock_cluster(si, offset);
741         /* reuse swap entry of cache-only swap if not busy. */
742         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
743                 int swap_was_freed;
744                 unlock_cluster(ci);
745                 spin_unlock(&si->lock);
746                 swap_was_freed = __try_to_reclaim_swap(si, offset);
747                 spin_lock(&si->lock);
748                 /* entry was freed successfully, try to use this again */
749                 if (swap_was_freed)
750                         goto checks;
751                 goto scan; /* check next one */
752         }
753
754         if (si->swap_map[offset]) {
755                 unlock_cluster(ci);
756                 if (!n_ret)
757                         goto scan;
758                 else
759                         goto done;
760         }
761         si->swap_map[offset] = usage;
762         inc_cluster_info_page(si, si->cluster_info, offset);
763         unlock_cluster(ci);
764
765         swap_range_alloc(si, offset, 1);
766         si->cluster_next = offset + 1;
767         slots[n_ret++] = swp_entry(si->type, offset);
768
769         /* got enough slots or reach max slots? */
770         if ((n_ret == nr) || (offset >= si->highest_bit))
771                 goto done;
772
773         /* search for next available slot */
774
775         /* time to take a break? */
776         if (unlikely(--latency_ration < 0)) {
777                 if (n_ret)
778                         goto done;
779                 spin_unlock(&si->lock);
780                 cond_resched();
781                 spin_lock(&si->lock);
782                 latency_ration = LATENCY_LIMIT;
783         }
784
785         /* try to get more slots in cluster */
786         if (si->cluster_info) {
787                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
788                         goto checks;
789                 else
790                         goto done;
791         }
792         /* non-ssd case */
793         ++offset;
794
795         /* non-ssd case, still more slots in cluster? */
796         if (si->cluster_nr && !si->swap_map[offset]) {
797                 --si->cluster_nr;
798                 goto checks;
799         }
800
801 done:
802         si->flags -= SWP_SCANNING;
803         return n_ret;
804
805 scan:
806         spin_unlock(&si->lock);
807         while (++offset <= si->highest_bit) {
808                 if (!si->swap_map[offset]) {
809                         spin_lock(&si->lock);
810                         goto checks;
811                 }
812                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
813                         spin_lock(&si->lock);
814                         goto checks;
815                 }
816                 if (unlikely(--latency_ration < 0)) {
817                         cond_resched();
818                         latency_ration = LATENCY_LIMIT;
819                 }
820         }
821         offset = si->lowest_bit;
822         while (offset < scan_base) {
823                 if (!si->swap_map[offset]) {
824                         spin_lock(&si->lock);
825                         goto checks;
826                 }
827                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
828                         spin_lock(&si->lock);
829                         goto checks;
830                 }
831                 if (unlikely(--latency_ration < 0)) {
832                         cond_resched();
833                         latency_ration = LATENCY_LIMIT;
834                 }
835                 offset++;
836         }
837         spin_lock(&si->lock);
838
839 no_page:
840         si->flags -= SWP_SCANNING;
841         return n_ret;
842 }
843
844 #ifdef CONFIG_THP_SWAP
845 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
846 {
847         unsigned long idx;
848         struct swap_cluster_info *ci;
849         unsigned long offset, i;
850         unsigned char *map;
851
852         if (cluster_list_empty(&si->free_clusters))
853                 return 0;
854
855         idx = cluster_list_first(&si->free_clusters);
856         offset = idx * SWAPFILE_CLUSTER;
857         ci = lock_cluster(si, offset);
858         alloc_cluster(si, idx);
859         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
860
861         map = si->swap_map + offset;
862         for (i = 0; i < SWAPFILE_CLUSTER; i++)
863                 map[i] = SWAP_HAS_CACHE;
864         unlock_cluster(ci);
865         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
866         *slot = swp_entry(si->type, offset);
867
868         return 1;
869 }
870
871 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
872 {
873         unsigned long offset = idx * SWAPFILE_CLUSTER;
874         struct swap_cluster_info *ci;
875
876         ci = lock_cluster(si, offset);
877         cluster_set_count_flag(ci, 0, 0);
878         free_cluster(si, idx);
879         unlock_cluster(ci);
880         swap_range_free(si, offset, SWAPFILE_CLUSTER);
881 }
882 #else
883 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
884 {
885         VM_WARN_ON_ONCE(1);
886         return 0;
887 }
888 #endif /* CONFIG_THP_SWAP */
889
890 static unsigned long scan_swap_map(struct swap_info_struct *si,
891                                    unsigned char usage)
892 {
893         swp_entry_t entry;
894         int n_ret;
895
896         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
897
898         if (n_ret)
899                 return swp_offset(entry);
900         else
901                 return 0;
902
903 }
904
905 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
906 {
907         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
908         struct swap_info_struct *si, *next;
909         long avail_pgs;
910         int n_ret = 0;
911
912         /* Only single cluster request supported */
913         WARN_ON_ONCE(n_goal > 1 && cluster);
914
915         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
916         if (avail_pgs <= 0)
917                 goto noswap;
918
919         if (n_goal > SWAP_BATCH)
920                 n_goal = SWAP_BATCH;
921
922         if (n_goal > avail_pgs)
923                 n_goal = avail_pgs;
924
925         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
926
927         spin_lock(&swap_avail_lock);
928
929 start_over:
930         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
931                 /* requeue si to after same-priority siblings */
932                 plist_requeue(&si->avail_list, &swap_avail_head);
933                 spin_unlock(&swap_avail_lock);
934                 spin_lock(&si->lock);
935                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
936                         spin_lock(&swap_avail_lock);
937                         if (plist_node_empty(&si->avail_list)) {
938                                 spin_unlock(&si->lock);
939                                 goto nextsi;
940                         }
941                         WARN(!si->highest_bit,
942                              "swap_info %d in list but !highest_bit\n",
943                              si->type);
944                         WARN(!(si->flags & SWP_WRITEOK),
945                              "swap_info %d in list but !SWP_WRITEOK\n",
946                              si->type);
947                         plist_del(&si->avail_list, &swap_avail_head);
948                         spin_unlock(&si->lock);
949                         goto nextsi;
950                 }
951                 if (cluster)
952                         n_ret = swap_alloc_cluster(si, swp_entries);
953                 else
954                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
955                                                     n_goal, swp_entries);
956                 spin_unlock(&si->lock);
957                 if (n_ret || cluster)
958                         goto check_out;
959                 pr_debug("scan_swap_map of si %d failed to find offset\n",
960                         si->type);
961
962                 spin_lock(&swap_avail_lock);
963 nextsi:
964                 /*
965                  * if we got here, it's likely that si was almost full before,
966                  * and since scan_swap_map() can drop the si->lock, multiple
967                  * callers probably all tried to get a page from the same si
968                  * and it filled up before we could get one; or, the si filled
969                  * up between us dropping swap_avail_lock and taking si->lock.
970                  * Since we dropped the swap_avail_lock, the swap_avail_head
971                  * list may have been modified; so if next is still in the
972                  * swap_avail_head list then try it, otherwise start over
973                  * if we have not gotten any slots.
974                  */
975                 if (plist_node_empty(&next->avail_list))
976                         goto start_over;
977         }
978
979         spin_unlock(&swap_avail_lock);
980
981 check_out:
982         if (n_ret < n_goal)
983                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
984                                 &nr_swap_pages);
985 noswap:
986         return n_ret;
987 }
988
989 /* The only caller of this function is now suspend routine */
990 swp_entry_t get_swap_page_of_type(int type)
991 {
992         struct swap_info_struct *si;
993         pgoff_t offset;
994
995         si = swap_info[type];
996         spin_lock(&si->lock);
997         if (si && (si->flags & SWP_WRITEOK)) {
998                 atomic_long_dec(&nr_swap_pages);
999                 /* This is called for allocating swap entry, not cache */
1000                 offset = scan_swap_map(si, 1);
1001                 if (offset) {
1002                         spin_unlock(&si->lock);
1003                         return swp_entry(type, offset);
1004                 }
1005                 atomic_long_inc(&nr_swap_pages);
1006         }
1007         spin_unlock(&si->lock);
1008         return (swp_entry_t) {0};
1009 }
1010
1011 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1012 {
1013         struct swap_info_struct *p;
1014         unsigned long offset, type;
1015
1016         if (!entry.val)
1017                 goto out;
1018         type = swp_type(entry);
1019         if (type >= nr_swapfiles)
1020                 goto bad_nofile;
1021         p = swap_info[type];
1022         if (!(p->flags & SWP_USED))
1023                 goto bad_device;
1024         offset = swp_offset(entry);
1025         if (offset >= p->max)
1026                 goto bad_offset;
1027         return p;
1028
1029 bad_offset:
1030         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1031         goto out;
1032 bad_device:
1033         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1034         goto out;
1035 bad_nofile:
1036         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1037 out:
1038         return NULL;
1039 }
1040
1041 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1042 {
1043         struct swap_info_struct *p;
1044
1045         p = __swap_info_get(entry);
1046         if (!p)
1047                 goto out;
1048         if (!p->swap_map[swp_offset(entry)])
1049                 goto bad_free;
1050         return p;
1051
1052 bad_free:
1053         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1054         goto out;
1055 out:
1056         return NULL;
1057 }
1058
1059 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1060 {
1061         struct swap_info_struct *p;
1062
1063         p = _swap_info_get(entry);
1064         if (p)
1065                 spin_lock(&p->lock);
1066         return p;
1067 }
1068
1069 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1070                                         struct swap_info_struct *q)
1071 {
1072         struct swap_info_struct *p;
1073
1074         p = _swap_info_get(entry);
1075
1076         if (p != q) {
1077                 if (q != NULL)
1078                         spin_unlock(&q->lock);
1079                 if (p != NULL)
1080                         spin_lock(&p->lock);
1081         }
1082         return p;
1083 }
1084
1085 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1086                                        swp_entry_t entry, unsigned char usage)
1087 {
1088         struct swap_cluster_info *ci;
1089         unsigned long offset = swp_offset(entry);
1090         unsigned char count;
1091         unsigned char has_cache;
1092
1093         ci = lock_cluster_or_swap_info(p, offset);
1094
1095         count = p->swap_map[offset];
1096
1097         has_cache = count & SWAP_HAS_CACHE;
1098         count &= ~SWAP_HAS_CACHE;
1099
1100         if (usage == SWAP_HAS_CACHE) {
1101                 VM_BUG_ON(!has_cache);
1102                 has_cache = 0;
1103         } else if (count == SWAP_MAP_SHMEM) {
1104                 /*
1105                  * Or we could insist on shmem.c using a special
1106                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1107                  */
1108                 count = 0;
1109         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1110                 if (count == COUNT_CONTINUED) {
1111                         if (swap_count_continued(p, offset, count))
1112                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1113                         else
1114                                 count = SWAP_MAP_MAX;
1115                 } else
1116                         count--;
1117         }
1118
1119         usage = count | has_cache;
1120         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1121
1122         unlock_cluster_or_swap_info(p, ci);
1123
1124         return usage;
1125 }
1126
1127 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1128 {
1129         struct swap_cluster_info *ci;
1130         unsigned long offset = swp_offset(entry);
1131         unsigned char count;
1132
1133         ci = lock_cluster(p, offset);
1134         count = p->swap_map[offset];
1135         VM_BUG_ON(count != SWAP_HAS_CACHE);
1136         p->swap_map[offset] = 0;
1137         dec_cluster_info_page(p, p->cluster_info, offset);
1138         unlock_cluster(ci);
1139
1140         mem_cgroup_uncharge_swap(entry, 1);
1141         swap_range_free(p, offset, 1);
1142 }
1143
1144 /*
1145  * Caller has made sure that the swap device corresponding to entry
1146  * is still around or has not been recycled.
1147  */
1148 void swap_free(swp_entry_t entry)
1149 {
1150         struct swap_info_struct *p;
1151
1152         p = _swap_info_get(entry);
1153         if (p) {
1154                 if (!__swap_entry_free(p, entry, 1))
1155                         free_swap_slot(entry);
1156         }
1157 }
1158
1159 /*
1160  * Called after dropping swapcache to decrease refcnt to swap entries.
1161  */
1162 static void swapcache_free(swp_entry_t entry)
1163 {
1164         struct swap_info_struct *p;
1165
1166         p = _swap_info_get(entry);
1167         if (p) {
1168                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1169                         free_swap_slot(entry);
1170         }
1171 }
1172
1173 #ifdef CONFIG_THP_SWAP
1174 static void swapcache_free_cluster(swp_entry_t entry)
1175 {
1176         unsigned long offset = swp_offset(entry);
1177         unsigned long idx = offset / SWAPFILE_CLUSTER;
1178         struct swap_cluster_info *ci;
1179         struct swap_info_struct *si;
1180         unsigned char *map;
1181         unsigned int i, free_entries = 0;
1182         unsigned char val;
1183
1184         si = _swap_info_get(entry);
1185         if (!si)
1186                 return;
1187
1188         ci = lock_cluster(si, offset);
1189         VM_BUG_ON(!cluster_is_huge(ci));
1190         map = si->swap_map + offset;
1191         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1192                 val = map[i];
1193                 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1194                 if (val == SWAP_HAS_CACHE)
1195                         free_entries++;
1196         }
1197         if (!free_entries) {
1198                 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1199                         map[i] &= ~SWAP_HAS_CACHE;
1200         }
1201         cluster_clear_huge(ci);
1202         unlock_cluster(ci);
1203         if (free_entries == SWAPFILE_CLUSTER) {
1204                 spin_lock(&si->lock);
1205                 ci = lock_cluster(si, offset);
1206                 memset(map, 0, SWAPFILE_CLUSTER);
1207                 unlock_cluster(ci);
1208                 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1209                 swap_free_cluster(si, idx);
1210                 spin_unlock(&si->lock);
1211         } else if (free_entries) {
1212                 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1213                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1214                                 free_swap_slot(entry);
1215                 }
1216         }
1217 }
1218 #else
1219 static inline void swapcache_free_cluster(swp_entry_t entry)
1220 {
1221 }
1222 #endif /* CONFIG_THP_SWAP */
1223
1224 void put_swap_page(struct page *page, swp_entry_t entry)
1225 {
1226         if (!PageTransHuge(page))
1227                 swapcache_free(entry);
1228         else
1229                 swapcache_free_cluster(entry);
1230 }
1231
1232 static int swp_entry_cmp(const void *ent1, const void *ent2)
1233 {
1234         const swp_entry_t *e1 = ent1, *e2 = ent2;
1235
1236         return (int)swp_type(*e1) - (int)swp_type(*e2);
1237 }
1238
1239 void swapcache_free_entries(swp_entry_t *entries, int n)
1240 {
1241         struct swap_info_struct *p, *prev;
1242         int i;
1243
1244         if (n <= 0)
1245                 return;
1246
1247         prev = NULL;
1248         p = NULL;
1249
1250         /*
1251          * Sort swap entries by swap device, so each lock is only taken once.
1252          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1253          * so low that it isn't necessary to optimize further.
1254          */
1255         if (nr_swapfiles > 1)
1256                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1257         for (i = 0; i < n; ++i) {
1258                 p = swap_info_get_cont(entries[i], prev);
1259                 if (p)
1260                         swap_entry_free(p, entries[i]);
1261                 prev = p;
1262         }
1263         if (p)
1264                 spin_unlock(&p->lock);
1265 }
1266
1267 /*
1268  * How many references to page are currently swapped out?
1269  * This does not give an exact answer when swap count is continued,
1270  * but does include the high COUNT_CONTINUED flag to allow for that.
1271  */
1272 int page_swapcount(struct page *page)
1273 {
1274         int count = 0;
1275         struct swap_info_struct *p;
1276         struct swap_cluster_info *ci;
1277         swp_entry_t entry;
1278         unsigned long offset;
1279
1280         entry.val = page_private(page);
1281         p = _swap_info_get(entry);
1282         if (p) {
1283                 offset = swp_offset(entry);
1284                 ci = lock_cluster_or_swap_info(p, offset);
1285                 count = swap_count(p->swap_map[offset]);
1286                 unlock_cluster_or_swap_info(p, ci);
1287         }
1288         return count;
1289 }
1290
1291 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1292 {
1293         int count = 0;
1294         pgoff_t offset = swp_offset(entry);
1295         struct swap_cluster_info *ci;
1296
1297         ci = lock_cluster_or_swap_info(si, offset);
1298         count = swap_count(si->swap_map[offset]);
1299         unlock_cluster_or_swap_info(si, ci);
1300         return count;
1301 }
1302
1303 /*
1304  * How many references to @entry are currently swapped out?
1305  * This does not give an exact answer when swap count is continued,
1306  * but does include the high COUNT_CONTINUED flag to allow for that.
1307  */
1308 int __swp_swapcount(swp_entry_t entry)
1309 {
1310         int count = 0;
1311         struct swap_info_struct *si;
1312
1313         si = __swap_info_get(entry);
1314         if (si)
1315                 count = swap_swapcount(si, entry);
1316         return count;
1317 }
1318
1319 /*
1320  * How many references to @entry are currently swapped out?
1321  * This considers COUNT_CONTINUED so it returns exact answer.
1322  */
1323 int swp_swapcount(swp_entry_t entry)
1324 {
1325         int count, tmp_count, n;
1326         struct swap_info_struct *p;
1327         struct swap_cluster_info *ci;
1328         struct page *page;
1329         pgoff_t offset;
1330         unsigned char *map;
1331
1332         p = _swap_info_get(entry);
1333         if (!p)
1334                 return 0;
1335
1336         offset = swp_offset(entry);
1337
1338         ci = lock_cluster_or_swap_info(p, offset);
1339
1340         count = swap_count(p->swap_map[offset]);
1341         if (!(count & COUNT_CONTINUED))
1342                 goto out;
1343
1344         count &= ~COUNT_CONTINUED;
1345         n = SWAP_MAP_MAX + 1;
1346
1347         page = vmalloc_to_page(p->swap_map + offset);
1348         offset &= ~PAGE_MASK;
1349         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1350
1351         do {
1352                 page = list_next_entry(page, lru);
1353                 map = kmap_atomic(page);
1354                 tmp_count = map[offset];
1355                 kunmap_atomic(map);
1356
1357                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1358                 n *= (SWAP_CONT_MAX + 1);
1359         } while (tmp_count & COUNT_CONTINUED);
1360 out:
1361         unlock_cluster_or_swap_info(p, ci);
1362         return count;
1363 }
1364
1365 #ifdef CONFIG_THP_SWAP
1366 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1367                                          swp_entry_t entry)
1368 {
1369         struct swap_cluster_info *ci;
1370         unsigned char *map = si->swap_map;
1371         unsigned long roffset = swp_offset(entry);
1372         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1373         int i;
1374         bool ret = false;
1375
1376         ci = lock_cluster_or_swap_info(si, offset);
1377         if (!ci || !cluster_is_huge(ci)) {
1378                 if (map[roffset] != SWAP_HAS_CACHE)
1379                         ret = true;
1380                 goto unlock_out;
1381         }
1382         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383                 if (map[offset + i] != SWAP_HAS_CACHE) {
1384                         ret = true;
1385                         break;
1386                 }
1387         }
1388 unlock_out:
1389         unlock_cluster_or_swap_info(si, ci);
1390         return ret;
1391 }
1392
1393 static bool page_swapped(struct page *page)
1394 {
1395         swp_entry_t entry;
1396         struct swap_info_struct *si;
1397
1398         if (likely(!PageTransCompound(page)))
1399                 return page_swapcount(page) != 0;
1400
1401         page = compound_head(page);
1402         entry.val = page_private(page);
1403         si = _swap_info_get(entry);
1404         if (si)
1405                 return swap_page_trans_huge_swapped(si, entry);
1406         return false;
1407 }
1408
1409 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1410                                          int *total_swapcount)
1411 {
1412         int i, map_swapcount, _total_mapcount, _total_swapcount;
1413         unsigned long offset = 0;
1414         struct swap_info_struct *si;
1415         struct swap_cluster_info *ci = NULL;
1416         unsigned char *map = NULL;
1417         int mapcount, swapcount = 0;
1418
1419         /* hugetlbfs shouldn't call it */
1420         VM_BUG_ON_PAGE(PageHuge(page), page);
1421
1422         if (likely(!PageTransCompound(page))) {
1423                 mapcount = atomic_read(&page->_mapcount) + 1;
1424                 if (total_mapcount)
1425                         *total_mapcount = mapcount;
1426                 if (PageSwapCache(page))
1427                         swapcount = page_swapcount(page);
1428                 if (total_swapcount)
1429                         *total_swapcount = swapcount;
1430                 return mapcount + swapcount;
1431         }
1432
1433         page = compound_head(page);
1434
1435         _total_mapcount = _total_swapcount = map_swapcount = 0;
1436         if (PageSwapCache(page)) {
1437                 swp_entry_t entry;
1438
1439                 entry.val = page_private(page);
1440                 si = _swap_info_get(entry);
1441                 if (si) {
1442                         map = si->swap_map;
1443                         offset = swp_offset(entry);
1444                 }
1445         }
1446         if (map)
1447                 ci = lock_cluster(si, offset);
1448         for (i = 0; i < HPAGE_PMD_NR; i++) {
1449                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1450                 _total_mapcount += mapcount;
1451                 if (map) {
1452                         swapcount = swap_count(map[offset + i]);
1453                         _total_swapcount += swapcount;
1454                 }
1455                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1456         }
1457         unlock_cluster(ci);
1458         if (PageDoubleMap(page)) {
1459                 map_swapcount -= 1;
1460                 _total_mapcount -= HPAGE_PMD_NR;
1461         }
1462         mapcount = compound_mapcount(page);
1463         map_swapcount += mapcount;
1464         _total_mapcount += mapcount;
1465         if (total_mapcount)
1466                 *total_mapcount = _total_mapcount;
1467         if (total_swapcount)
1468                 *total_swapcount = _total_swapcount;
1469
1470         return map_swapcount;
1471 }
1472 #else
1473 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1474 #define page_swapped(page)                      (page_swapcount(page) != 0)
1475
1476 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1477                                          int *total_swapcount)
1478 {
1479         int mapcount, swapcount = 0;
1480
1481         /* hugetlbfs shouldn't call it */
1482         VM_BUG_ON_PAGE(PageHuge(page), page);
1483
1484         mapcount = page_trans_huge_mapcount(page, total_mapcount);
1485         if (PageSwapCache(page))
1486                 swapcount = page_swapcount(page);
1487         if (total_swapcount)
1488                 *total_swapcount = swapcount;
1489         return mapcount + swapcount;
1490 }
1491 #endif
1492
1493 /*
1494  * We can write to an anon page without COW if there are no other references
1495  * to it.  And as a side-effect, free up its swap: because the old content
1496  * on disk will never be read, and seeking back there to write new content
1497  * later would only waste time away from clustering.
1498  *
1499  * NOTE: total_map_swapcount should not be relied upon by the caller if
1500  * reuse_swap_page() returns false, but it may be always overwritten
1501  * (see the other implementation for CONFIG_SWAP=n).
1502  */
1503 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1504 {
1505         int count, total_mapcount, total_swapcount;
1506
1507         VM_BUG_ON_PAGE(!PageLocked(page), page);
1508         if (unlikely(PageKsm(page)))
1509                 return false;
1510         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1511                                               &total_swapcount);
1512         if (total_map_swapcount)
1513                 *total_map_swapcount = total_mapcount + total_swapcount;
1514         if (count == 1 && PageSwapCache(page) &&
1515             (likely(!PageTransCompound(page)) ||
1516              /* The remaining swap count will be freed soon */
1517              total_swapcount == page_swapcount(page))) {
1518                 if (!PageWriteback(page)) {
1519                         page = compound_head(page);
1520                         delete_from_swap_cache(page);
1521                         SetPageDirty(page);
1522                 } else {
1523                         swp_entry_t entry;
1524                         struct swap_info_struct *p;
1525
1526                         entry.val = page_private(page);
1527                         p = swap_info_get(entry);
1528                         if (p->flags & SWP_STABLE_WRITES) {
1529                                 spin_unlock(&p->lock);
1530                                 return false;
1531                         }
1532                         spin_unlock(&p->lock);
1533                 }
1534         }
1535
1536         return count <= 1;
1537 }
1538
1539 /*
1540  * If swap is getting full, or if there are no more mappings of this page,
1541  * then try_to_free_swap is called to free its swap space.
1542  */
1543 int try_to_free_swap(struct page *page)
1544 {
1545         VM_BUG_ON_PAGE(!PageLocked(page), page);
1546
1547         if (!PageSwapCache(page))
1548                 return 0;
1549         if (PageWriteback(page))
1550                 return 0;
1551         if (page_swapped(page))
1552                 return 0;
1553
1554         /*
1555          * Once hibernation has begun to create its image of memory,
1556          * there's a danger that one of the calls to try_to_free_swap()
1557          * - most probably a call from __try_to_reclaim_swap() while
1558          * hibernation is allocating its own swap pages for the image,
1559          * but conceivably even a call from memory reclaim - will free
1560          * the swap from a page which has already been recorded in the
1561          * image as a clean swapcache page, and then reuse its swap for
1562          * another page of the image.  On waking from hibernation, the
1563          * original page might be freed under memory pressure, then
1564          * later read back in from swap, now with the wrong data.
1565          *
1566          * Hibernation suspends storage while it is writing the image
1567          * to disk so check that here.
1568          */
1569         if (pm_suspended_storage())
1570                 return 0;
1571
1572         page = compound_head(page);
1573         delete_from_swap_cache(page);
1574         SetPageDirty(page);
1575         return 1;
1576 }
1577
1578 /*
1579  * Free the swap entry like above, but also try to
1580  * free the page cache entry if it is the last user.
1581  */
1582 int free_swap_and_cache(swp_entry_t entry)
1583 {
1584         struct swap_info_struct *p;
1585         struct page *page = NULL;
1586         unsigned char count;
1587
1588         if (non_swap_entry(entry))
1589                 return 1;
1590
1591         p = _swap_info_get(entry);
1592         if (p) {
1593                 count = __swap_entry_free(p, entry, 1);
1594                 if (count == SWAP_HAS_CACHE &&
1595                     !swap_page_trans_huge_swapped(p, entry)) {
1596                         page = find_get_page(swap_address_space(entry),
1597                                              swp_offset(entry));
1598                         if (page && !trylock_page(page)) {
1599                                 put_page(page);
1600                                 page = NULL;
1601                         }
1602                 } else if (!count)
1603                         free_swap_slot(entry);
1604         }
1605         if (page) {
1606                 /*
1607                  * Not mapped elsewhere, or swap space full? Free it!
1608                  * Also recheck PageSwapCache now page is locked (above).
1609                  */
1610                 if (PageSwapCache(page) && !PageWriteback(page) &&
1611                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1612                     !swap_page_trans_huge_swapped(p, entry)) {
1613                         page = compound_head(page);
1614                         delete_from_swap_cache(page);
1615                         SetPageDirty(page);
1616                 }
1617                 unlock_page(page);
1618                 put_page(page);
1619         }
1620         return p != NULL;
1621 }
1622
1623 #ifdef CONFIG_HIBERNATION
1624 /*
1625  * Find the swap type that corresponds to given device (if any).
1626  *
1627  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1628  * from 0, in which the swap header is expected to be located.
1629  *
1630  * This is needed for the suspend to disk (aka swsusp).
1631  */
1632 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1633 {
1634         struct block_device *bdev = NULL;
1635         int type;
1636
1637         if (device)
1638                 bdev = bdget(device);
1639
1640         spin_lock(&swap_lock);
1641         for (type = 0; type < nr_swapfiles; type++) {
1642                 struct swap_info_struct *sis = swap_info[type];
1643
1644                 if (!(sis->flags & SWP_WRITEOK))
1645                         continue;
1646
1647                 if (!bdev) {
1648                         if (bdev_p)
1649                                 *bdev_p = bdgrab(sis->bdev);
1650
1651                         spin_unlock(&swap_lock);
1652                         return type;
1653                 }
1654                 if (bdev == sis->bdev) {
1655                         struct swap_extent *se = &sis->first_swap_extent;
1656
1657                         if (se->start_block == offset) {
1658                                 if (bdev_p)
1659                                         *bdev_p = bdgrab(sis->bdev);
1660
1661                                 spin_unlock(&swap_lock);
1662                                 bdput(bdev);
1663                                 return type;
1664                         }
1665                 }
1666         }
1667         spin_unlock(&swap_lock);
1668         if (bdev)
1669                 bdput(bdev);
1670
1671         return -ENODEV;
1672 }
1673
1674 /*
1675  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1676  * corresponding to given index in swap_info (swap type).
1677  */
1678 sector_t swapdev_block(int type, pgoff_t offset)
1679 {
1680         struct block_device *bdev;
1681
1682         if ((unsigned int)type >= nr_swapfiles)
1683                 return 0;
1684         if (!(swap_info[type]->flags & SWP_WRITEOK))
1685                 return 0;
1686         return map_swap_entry(swp_entry(type, offset), &bdev);
1687 }
1688
1689 /*
1690  * Return either the total number of swap pages of given type, or the number
1691  * of free pages of that type (depending on @free)
1692  *
1693  * This is needed for software suspend
1694  */
1695 unsigned int count_swap_pages(int type, int free)
1696 {
1697         unsigned int n = 0;
1698
1699         spin_lock(&swap_lock);
1700         if ((unsigned int)type < nr_swapfiles) {
1701                 struct swap_info_struct *sis = swap_info[type];
1702
1703                 spin_lock(&sis->lock);
1704                 if (sis->flags & SWP_WRITEOK) {
1705                         n = sis->pages;
1706                         if (free)
1707                                 n -= sis->inuse_pages;
1708                 }
1709                 spin_unlock(&sis->lock);
1710         }
1711         spin_unlock(&swap_lock);
1712         return n;
1713 }
1714 #endif /* CONFIG_HIBERNATION */
1715
1716 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1717 {
1718         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1719 }
1720
1721 /*
1722  * No need to decide whether this PTE shares the swap entry with others,
1723  * just let do_wp_page work it out if a write is requested later - to
1724  * force COW, vm_page_prot omits write permission from any private vma.
1725  */
1726 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1727                 unsigned long addr, swp_entry_t entry, struct page *page)
1728 {
1729         struct page *swapcache;
1730         struct mem_cgroup *memcg;
1731         spinlock_t *ptl;
1732         pte_t *pte;
1733         int ret = 1;
1734
1735         swapcache = page;
1736         page = ksm_might_need_to_copy(page, vma, addr);
1737         if (unlikely(!page))
1738                 return -ENOMEM;
1739
1740         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1741                                 &memcg, false)) {
1742                 ret = -ENOMEM;
1743                 goto out_nolock;
1744         }
1745
1746         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1747         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1748                 mem_cgroup_cancel_charge(page, memcg, false);
1749                 ret = 0;
1750                 goto out;
1751         }
1752
1753         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1754         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1755         get_page(page);
1756         set_pte_at(vma->vm_mm, addr, pte,
1757                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1758         if (page == swapcache) {
1759                 page_add_anon_rmap(page, vma, addr, false);
1760                 mem_cgroup_commit_charge(page, memcg, true, false);
1761         } else { /* ksm created a completely new copy */
1762                 page_add_new_anon_rmap(page, vma, addr, false);
1763                 mem_cgroup_commit_charge(page, memcg, false, false);
1764                 lru_cache_add_active_or_unevictable(page, vma);
1765         }
1766         swap_free(entry);
1767         /*
1768          * Move the page to the active list so it is not
1769          * immediately swapped out again after swapon.
1770          */
1771         activate_page(page);
1772 out:
1773         pte_unmap_unlock(pte, ptl);
1774 out_nolock:
1775         if (page != swapcache) {
1776                 unlock_page(page);
1777                 put_page(page);
1778         }
1779         return ret;
1780 }
1781
1782 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1783                                 unsigned long addr, unsigned long end,
1784                                 swp_entry_t entry, struct page *page)
1785 {
1786         pte_t swp_pte = swp_entry_to_pte(entry);
1787         pte_t *pte;
1788         int ret = 0;
1789
1790         /*
1791          * We don't actually need pte lock while scanning for swp_pte: since
1792          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1793          * page table while we're scanning; though it could get zapped, and on
1794          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1795          * of unmatched parts which look like swp_pte, so unuse_pte must
1796          * recheck under pte lock.  Scanning without pte lock lets it be
1797          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1798          */
1799         pte = pte_offset_map(pmd, addr);
1800         do {
1801                 /*
1802                  * swapoff spends a _lot_ of time in this loop!
1803                  * Test inline before going to call unuse_pte.
1804                  */
1805                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1806                         pte_unmap(pte);
1807                         ret = unuse_pte(vma, pmd, addr, entry, page);
1808                         if (ret)
1809                                 goto out;
1810                         pte = pte_offset_map(pmd, addr);
1811                 }
1812         } while (pte++, addr += PAGE_SIZE, addr != end);
1813         pte_unmap(pte - 1);
1814 out:
1815         return ret;
1816 }
1817
1818 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1819                                 unsigned long addr, unsigned long end,
1820                                 swp_entry_t entry, struct page *page)
1821 {
1822         pmd_t *pmd;
1823         unsigned long next;
1824         int ret;
1825
1826         pmd = pmd_offset(pud, addr);
1827         do {
1828                 cond_resched();
1829                 next = pmd_addr_end(addr, end);
1830                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1831                         continue;
1832                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1833                 if (ret)
1834                         return ret;
1835         } while (pmd++, addr = next, addr != end);
1836         return 0;
1837 }
1838
1839 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1840                                 unsigned long addr, unsigned long end,
1841                                 swp_entry_t entry, struct page *page)
1842 {
1843         pud_t *pud;
1844         unsigned long next;
1845         int ret;
1846
1847         pud = pud_offset(p4d, addr);
1848         do {
1849                 next = pud_addr_end(addr, end);
1850                 if (pud_none_or_clear_bad(pud))
1851                         continue;
1852                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1853                 if (ret)
1854                         return ret;
1855         } while (pud++, addr = next, addr != end);
1856         return 0;
1857 }
1858
1859 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1860                                 unsigned long addr, unsigned long end,
1861                                 swp_entry_t entry, struct page *page)
1862 {
1863         p4d_t *p4d;
1864         unsigned long next;
1865         int ret;
1866
1867         p4d = p4d_offset(pgd, addr);
1868         do {
1869                 next = p4d_addr_end(addr, end);
1870                 if (p4d_none_or_clear_bad(p4d))
1871                         continue;
1872                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1873                 if (ret)
1874                         return ret;
1875         } while (p4d++, addr = next, addr != end);
1876         return 0;
1877 }
1878
1879 static int unuse_vma(struct vm_area_struct *vma,
1880                                 swp_entry_t entry, struct page *page)
1881 {
1882         pgd_t *pgd;
1883         unsigned long addr, end, next;
1884         int ret;
1885
1886         if (page_anon_vma(page)) {
1887                 addr = page_address_in_vma(page, vma);
1888                 if (addr == -EFAULT)
1889                         return 0;
1890                 else
1891                         end = addr + PAGE_SIZE;
1892         } else {
1893                 addr = vma->vm_start;
1894                 end = vma->vm_end;
1895         }
1896
1897         pgd = pgd_offset(vma->vm_mm, addr);
1898         do {
1899                 next = pgd_addr_end(addr, end);
1900                 if (pgd_none_or_clear_bad(pgd))
1901                         continue;
1902                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1903                 if (ret)
1904                         return ret;
1905         } while (pgd++, addr = next, addr != end);
1906         return 0;
1907 }
1908
1909 static int unuse_mm(struct mm_struct *mm,
1910                                 swp_entry_t entry, struct page *page)
1911 {
1912         struct vm_area_struct *vma;
1913         int ret = 0;
1914
1915         if (!down_read_trylock(&mm->mmap_sem)) {
1916                 /*
1917                  * Activate page so shrink_inactive_list is unlikely to unmap
1918                  * its ptes while lock is dropped, so swapoff can make progress.
1919                  */
1920                 activate_page(page);
1921                 unlock_page(page);
1922                 down_read(&mm->mmap_sem);
1923                 lock_page(page);
1924         }
1925         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1926                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1927                         break;
1928                 cond_resched();
1929         }
1930         up_read(&mm->mmap_sem);
1931         return (ret < 0)? ret: 0;
1932 }
1933
1934 /*
1935  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1936  * from current position to next entry still in use.
1937  * Recycle to start on reaching the end, returning 0 when empty.
1938  */
1939 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1940                                         unsigned int prev, bool frontswap)
1941 {
1942         unsigned int max = si->max;
1943         unsigned int i = prev;
1944         unsigned char count;
1945
1946         /*
1947          * No need for swap_lock here: we're just looking
1948          * for whether an entry is in use, not modifying it; false
1949          * hits are okay, and sys_swapoff() has already prevented new
1950          * allocations from this area (while holding swap_lock).
1951          */
1952         for (;;) {
1953                 if (++i >= max) {
1954                         if (!prev) {
1955                                 i = 0;
1956                                 break;
1957                         }
1958                         /*
1959                          * No entries in use at top of swap_map,
1960                          * loop back to start and recheck there.
1961                          */
1962                         max = prev + 1;
1963                         prev = 0;
1964                         i = 1;
1965                 }
1966                 count = READ_ONCE(si->swap_map[i]);
1967                 if (count && swap_count(count) != SWAP_MAP_BAD)
1968                         if (!frontswap || frontswap_test(si, i))
1969                                 break;
1970                 if ((i % LATENCY_LIMIT) == 0)
1971                         cond_resched();
1972         }
1973         return i;
1974 }
1975
1976 /*
1977  * We completely avoid races by reading each swap page in advance,
1978  * and then search for the process using it.  All the necessary
1979  * page table adjustments can then be made atomically.
1980  *
1981  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1982  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1983  */
1984 int try_to_unuse(unsigned int type, bool frontswap,
1985                  unsigned long pages_to_unuse)
1986 {
1987         struct swap_info_struct *si = swap_info[type];
1988         struct mm_struct *start_mm;
1989         volatile unsigned char *swap_map; /* swap_map is accessed without
1990                                            * locking. Mark it as volatile
1991                                            * to prevent compiler doing
1992                                            * something odd.
1993                                            */
1994         unsigned char swcount;
1995         struct page *page;
1996         swp_entry_t entry;
1997         unsigned int i = 0;
1998         int retval = 0;
1999
2000         /*
2001          * When searching mms for an entry, a good strategy is to
2002          * start at the first mm we freed the previous entry from
2003          * (though actually we don't notice whether we or coincidence
2004          * freed the entry).  Initialize this start_mm with a hold.
2005          *
2006          * A simpler strategy would be to start at the last mm we
2007          * freed the previous entry from; but that would take less
2008          * advantage of mmlist ordering, which clusters forked mms
2009          * together, child after parent.  If we race with dup_mmap(), we
2010          * prefer to resolve parent before child, lest we miss entries
2011          * duplicated after we scanned child: using last mm would invert
2012          * that.
2013          */
2014         start_mm = &init_mm;
2015         mmget(&init_mm);
2016
2017         /*
2018          * Keep on scanning until all entries have gone.  Usually,
2019          * one pass through swap_map is enough, but not necessarily:
2020          * there are races when an instance of an entry might be missed.
2021          */
2022         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2023                 if (signal_pending(current)) {
2024                         retval = -EINTR;
2025                         break;
2026                 }
2027
2028                 /*
2029                  * Get a page for the entry, using the existing swap
2030                  * cache page if there is one.  Otherwise, get a clean
2031                  * page and read the swap into it.
2032                  */
2033                 swap_map = &si->swap_map[i];
2034                 entry = swp_entry(type, i);
2035                 page = read_swap_cache_async(entry,
2036                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2037                 if (!page) {
2038                         /*
2039                          * Either swap_duplicate() failed because entry
2040                          * has been freed independently, and will not be
2041                          * reused since sys_swapoff() already disabled
2042                          * allocation from here, or alloc_page() failed.
2043                          */
2044                         swcount = *swap_map;
2045                         /*
2046                          * We don't hold lock here, so the swap entry could be
2047                          * SWAP_MAP_BAD (when the cluster is discarding).
2048                          * Instead of fail out, We can just skip the swap
2049                          * entry because swapoff will wait for discarding
2050                          * finish anyway.
2051                          */
2052                         if (!swcount || swcount == SWAP_MAP_BAD)
2053                                 continue;
2054                         retval = -ENOMEM;
2055                         break;
2056                 }
2057
2058                 /*
2059                  * Don't hold on to start_mm if it looks like exiting.
2060                  */
2061                 if (atomic_read(&start_mm->mm_users) == 1) {
2062                         mmput(start_mm);
2063                         start_mm = &init_mm;
2064                         mmget(&init_mm);
2065                 }
2066
2067                 /*
2068                  * Wait for and lock page.  When do_swap_page races with
2069                  * try_to_unuse, do_swap_page can handle the fault much
2070                  * faster than try_to_unuse can locate the entry.  This
2071                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2072                  * defer to do_swap_page in such a case - in some tests,
2073                  * do_swap_page and try_to_unuse repeatedly compete.
2074                  */
2075                 wait_on_page_locked(page);
2076                 wait_on_page_writeback(page);
2077                 lock_page(page);
2078                 wait_on_page_writeback(page);
2079
2080                 /*
2081                  * Remove all references to entry.
2082                  */
2083                 swcount = *swap_map;
2084                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2085                         retval = shmem_unuse(entry, page);
2086                         /* page has already been unlocked and released */
2087                         if (retval < 0)
2088                                 break;
2089                         continue;
2090                 }
2091                 if (swap_count(swcount) && start_mm != &init_mm)
2092                         retval = unuse_mm(start_mm, entry, page);
2093
2094                 if (swap_count(*swap_map)) {
2095                         int set_start_mm = (*swap_map >= swcount);
2096                         struct list_head *p = &start_mm->mmlist;
2097                         struct mm_struct *new_start_mm = start_mm;
2098                         struct mm_struct *prev_mm = start_mm;
2099                         struct mm_struct *mm;
2100
2101                         mmget(new_start_mm);
2102                         mmget(prev_mm);
2103                         spin_lock(&mmlist_lock);
2104                         while (swap_count(*swap_map) && !retval &&
2105                                         (p = p->next) != &start_mm->mmlist) {
2106                                 mm = list_entry(p, struct mm_struct, mmlist);
2107                                 if (!mmget_not_zero(mm))
2108                                         continue;
2109                                 spin_unlock(&mmlist_lock);
2110                                 mmput(prev_mm);
2111                                 prev_mm = mm;
2112
2113                                 cond_resched();
2114
2115                                 swcount = *swap_map;
2116                                 if (!swap_count(swcount)) /* any usage ? */
2117                                         ;
2118                                 else if (mm == &init_mm)
2119                                         set_start_mm = 1;
2120                                 else
2121                                         retval = unuse_mm(mm, entry, page);
2122
2123                                 if (set_start_mm && *swap_map < swcount) {
2124                                         mmput(new_start_mm);
2125                                         mmget(mm);
2126                                         new_start_mm = mm;
2127                                         set_start_mm = 0;
2128                                 }
2129                                 spin_lock(&mmlist_lock);
2130                         }
2131                         spin_unlock(&mmlist_lock);
2132                         mmput(prev_mm);
2133                         mmput(start_mm);
2134                         start_mm = new_start_mm;
2135                 }
2136                 if (retval) {
2137                         unlock_page(page);
2138                         put_page(page);
2139                         break;
2140                 }
2141
2142                 /*
2143                  * If a reference remains (rare), we would like to leave
2144                  * the page in the swap cache; but try_to_unmap could
2145                  * then re-duplicate the entry once we drop page lock,
2146                  * so we might loop indefinitely; also, that page could
2147                  * not be swapped out to other storage meanwhile.  So:
2148                  * delete from cache even if there's another reference,
2149                  * after ensuring that the data has been saved to disk -
2150                  * since if the reference remains (rarer), it will be
2151                  * read from disk into another page.  Splitting into two
2152                  * pages would be incorrect if swap supported "shared
2153                  * private" pages, but they are handled by tmpfs files.
2154                  *
2155                  * Given how unuse_vma() targets one particular offset
2156                  * in an anon_vma, once the anon_vma has been determined,
2157                  * this splitting happens to be just what is needed to
2158                  * handle where KSM pages have been swapped out: re-reading
2159                  * is unnecessarily slow, but we can fix that later on.
2160                  */
2161                 if (swap_count(*swap_map) &&
2162                      PageDirty(page) && PageSwapCache(page)) {
2163                         struct writeback_control wbc = {
2164                                 .sync_mode = WB_SYNC_NONE,
2165                         };
2166
2167                         swap_writepage(compound_head(page), &wbc);
2168                         lock_page(page);
2169                         wait_on_page_writeback(page);
2170                 }
2171
2172                 /*
2173                  * It is conceivable that a racing task removed this page from
2174                  * swap cache just before we acquired the page lock at the top,
2175                  * or while we dropped it in unuse_mm().  The page might even
2176                  * be back in swap cache on another swap area: that we must not
2177                  * delete, since it may not have been written out to swap yet.
2178                  */
2179                 if (PageSwapCache(page) &&
2180                     likely(page_private(page) == entry.val) &&
2181                     !page_swapped(page))
2182                         delete_from_swap_cache(compound_head(page));
2183
2184                 /*
2185                  * So we could skip searching mms once swap count went
2186                  * to 1, we did not mark any present ptes as dirty: must
2187                  * mark page dirty so shrink_page_list will preserve it.
2188                  */
2189                 SetPageDirty(page);
2190                 unlock_page(page);
2191                 put_page(page);
2192
2193                 /*
2194                  * Make sure that we aren't completely killing
2195                  * interactive performance.
2196                  */
2197                 cond_resched();
2198                 if (frontswap && pages_to_unuse > 0) {
2199                         if (!--pages_to_unuse)
2200                                 break;
2201                 }
2202         }
2203
2204         mmput(start_mm);
2205         return retval;
2206 }
2207
2208 /*
2209  * After a successful try_to_unuse, if no swap is now in use, we know
2210  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2211  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2212  * added to the mmlist just after page_duplicate - before would be racy.
2213  */
2214 static void drain_mmlist(void)
2215 {
2216         struct list_head *p, *next;
2217         unsigned int type;
2218
2219         for (type = 0; type < nr_swapfiles; type++)
2220                 if (swap_info[type]->inuse_pages)
2221                         return;
2222         spin_lock(&mmlist_lock);
2223         list_for_each_safe(p, next, &init_mm.mmlist)
2224                 list_del_init(p);
2225         spin_unlock(&mmlist_lock);
2226 }
2227
2228 /*
2229  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2230  * corresponds to page offset for the specified swap entry.
2231  * Note that the type of this function is sector_t, but it returns page offset
2232  * into the bdev, not sector offset.
2233  */
2234 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2235 {
2236         struct swap_info_struct *sis;
2237         struct swap_extent *start_se;
2238         struct swap_extent *se;
2239         pgoff_t offset;
2240
2241         sis = swap_info[swp_type(entry)];
2242         *bdev = sis->bdev;
2243
2244         offset = swp_offset(entry);
2245         start_se = sis->curr_swap_extent;
2246         se = start_se;
2247
2248         for ( ; ; ) {
2249                 if (se->start_page <= offset &&
2250                                 offset < (se->start_page + se->nr_pages)) {
2251                         return se->start_block + (offset - se->start_page);
2252                 }
2253                 se = list_next_entry(se, list);
2254                 sis->curr_swap_extent = se;
2255                 BUG_ON(se == start_se);         /* It *must* be present */
2256         }
2257 }
2258
2259 /*
2260  * Returns the page offset into bdev for the specified page's swap entry.
2261  */
2262 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2263 {
2264         swp_entry_t entry;
2265         entry.val = page_private(page);
2266         return map_swap_entry(entry, bdev);
2267 }
2268
2269 /*
2270  * Free all of a swapdev's extent information
2271  */
2272 static void destroy_swap_extents(struct swap_info_struct *sis)
2273 {
2274         while (!list_empty(&sis->first_swap_extent.list)) {
2275                 struct swap_extent *se;
2276
2277                 se = list_first_entry(&sis->first_swap_extent.list,
2278                                 struct swap_extent, list);
2279                 list_del(&se->list);
2280                 kfree(se);
2281         }
2282
2283         if (sis->flags & SWP_FILE) {
2284                 struct file *swap_file = sis->swap_file;
2285                 struct address_space *mapping = swap_file->f_mapping;
2286
2287                 sis->flags &= ~SWP_FILE;
2288                 mapping->a_ops->swap_deactivate(swap_file);
2289         }
2290 }
2291
2292 /*
2293  * Add a block range (and the corresponding page range) into this swapdev's
2294  * extent list.  The extent list is kept sorted in page order.
2295  *
2296  * This function rather assumes that it is called in ascending page order.
2297  */
2298 int
2299 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2300                 unsigned long nr_pages, sector_t start_block)
2301 {
2302         struct swap_extent *se;
2303         struct swap_extent *new_se;
2304         struct list_head *lh;
2305
2306         if (start_page == 0) {
2307                 se = &sis->first_swap_extent;
2308                 sis->curr_swap_extent = se;
2309                 se->start_page = 0;
2310                 se->nr_pages = nr_pages;
2311                 se->start_block = start_block;
2312                 return 1;
2313         } else {
2314                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2315                 se = list_entry(lh, struct swap_extent, list);
2316                 BUG_ON(se->start_page + se->nr_pages != start_page);
2317                 if (se->start_block + se->nr_pages == start_block) {
2318                         /* Merge it */
2319                         se->nr_pages += nr_pages;
2320                         return 0;
2321                 }
2322         }
2323
2324         /*
2325          * No merge.  Insert a new extent, preserving ordering.
2326          */
2327         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2328         if (new_se == NULL)
2329                 return -ENOMEM;
2330         new_se->start_page = start_page;
2331         new_se->nr_pages = nr_pages;
2332         new_se->start_block = start_block;
2333
2334         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2335         return 1;
2336 }
2337
2338 /*
2339  * A `swap extent' is a simple thing which maps a contiguous range of pages
2340  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2341  * is built at swapon time and is then used at swap_writepage/swap_readpage
2342  * time for locating where on disk a page belongs.
2343  *
2344  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2345  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2346  * swap files identically.
2347  *
2348  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2349  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2350  * swapfiles are handled *identically* after swapon time.
2351  *
2352  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2353  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2354  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2355  * requirements, they are simply tossed out - we will never use those blocks
2356  * for swapping.
2357  *
2358  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2359  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2360  * which will scribble on the fs.
2361  *
2362  * The amount of disk space which a single swap extent represents varies.
2363  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2364  * extents in the list.  To avoid much list walking, we cache the previous
2365  * search location in `curr_swap_extent', and start new searches from there.
2366  * This is extremely effective.  The average number of iterations in
2367  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2368  */
2369 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2370 {
2371         struct file *swap_file = sis->swap_file;
2372         struct address_space *mapping = swap_file->f_mapping;
2373         struct inode *inode = mapping->host;
2374         int ret;
2375
2376         if (S_ISBLK(inode->i_mode)) {
2377                 ret = add_swap_extent(sis, 0, sis->max, 0);
2378                 *span = sis->pages;
2379                 return ret;
2380         }
2381
2382         if (mapping->a_ops->swap_activate) {
2383                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2384                 if (!ret) {
2385                         sis->flags |= SWP_FILE;
2386                         ret = add_swap_extent(sis, 0, sis->max, 0);
2387                         *span = sis->pages;
2388                 }
2389                 return ret;
2390         }
2391
2392         return generic_swapfile_activate(sis, swap_file, span);
2393 }
2394
2395 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2396                                 unsigned char *swap_map,
2397                                 struct swap_cluster_info *cluster_info)
2398 {
2399         if (prio >= 0)
2400                 p->prio = prio;
2401         else
2402                 p->prio = --least_priority;
2403         /*
2404          * the plist prio is negated because plist ordering is
2405          * low-to-high, while swap ordering is high-to-low
2406          */
2407         p->list.prio = -p->prio;
2408         p->avail_list.prio = -p->prio;
2409         p->swap_map = swap_map;
2410         p->cluster_info = cluster_info;
2411         p->flags |= SWP_WRITEOK;
2412         atomic_long_add(p->pages, &nr_swap_pages);
2413         total_swap_pages += p->pages;
2414
2415         assert_spin_locked(&swap_lock);
2416         /*
2417          * both lists are plists, and thus priority ordered.
2418          * swap_active_head needs to be priority ordered for swapoff(),
2419          * which on removal of any swap_info_struct with an auto-assigned
2420          * (i.e. negative) priority increments the auto-assigned priority
2421          * of any lower-priority swap_info_structs.
2422          * swap_avail_head needs to be priority ordered for get_swap_page(),
2423          * which allocates swap pages from the highest available priority
2424          * swap_info_struct.
2425          */
2426         plist_add(&p->list, &swap_active_head);
2427         spin_lock(&swap_avail_lock);
2428         plist_add(&p->avail_list, &swap_avail_head);
2429         spin_unlock(&swap_avail_lock);
2430 }
2431
2432 static void enable_swap_info(struct swap_info_struct *p, int prio,
2433                                 unsigned char *swap_map,
2434                                 struct swap_cluster_info *cluster_info,
2435                                 unsigned long *frontswap_map)
2436 {
2437         frontswap_init(p->type, frontswap_map);
2438         spin_lock(&swap_lock);
2439         spin_lock(&p->lock);
2440          _enable_swap_info(p, prio, swap_map, cluster_info);
2441         spin_unlock(&p->lock);
2442         spin_unlock(&swap_lock);
2443 }
2444
2445 static void reinsert_swap_info(struct swap_info_struct *p)
2446 {
2447         spin_lock(&swap_lock);
2448         spin_lock(&p->lock);
2449         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2450         spin_unlock(&p->lock);
2451         spin_unlock(&swap_lock);
2452 }
2453
2454 bool has_usable_swap(void)
2455 {
2456         bool ret = true;
2457
2458         spin_lock(&swap_lock);
2459         if (plist_head_empty(&swap_active_head))
2460                 ret = false;
2461         spin_unlock(&swap_lock);
2462         return ret;
2463 }
2464
2465 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2466 {
2467         struct swap_info_struct *p = NULL;
2468         unsigned char *swap_map;
2469         struct swap_cluster_info *cluster_info;
2470         unsigned long *frontswap_map;
2471         struct file *swap_file, *victim;
2472         struct address_space *mapping;
2473         struct inode *inode;
2474         struct filename *pathname;
2475         int err, found = 0;
2476         unsigned int old_block_size;
2477
2478         if (!capable(CAP_SYS_ADMIN))
2479                 return -EPERM;
2480
2481         BUG_ON(!current->mm);
2482
2483         pathname = getname(specialfile);
2484         if (IS_ERR(pathname))
2485                 return PTR_ERR(pathname);
2486
2487         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2488         err = PTR_ERR(victim);
2489         if (IS_ERR(victim))
2490                 goto out;
2491
2492         mapping = victim->f_mapping;
2493         spin_lock(&swap_lock);
2494         plist_for_each_entry(p, &swap_active_head, list) {
2495                 if (p->flags & SWP_WRITEOK) {
2496                         if (p->swap_file->f_mapping == mapping) {
2497                                 found = 1;
2498                                 break;
2499                         }
2500                 }
2501         }
2502         if (!found) {
2503                 err = -EINVAL;
2504                 spin_unlock(&swap_lock);
2505                 goto out_dput;
2506         }
2507         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2508                 vm_unacct_memory(p->pages);
2509         else {
2510                 err = -ENOMEM;
2511                 spin_unlock(&swap_lock);
2512                 goto out_dput;
2513         }
2514         spin_lock(&swap_avail_lock);
2515         plist_del(&p->avail_list, &swap_avail_head);
2516         spin_unlock(&swap_avail_lock);
2517         spin_lock(&p->lock);
2518         if (p->prio < 0) {
2519                 struct swap_info_struct *si = p;
2520
2521                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2522                         si->prio++;
2523                         si->list.prio--;
2524                         si->avail_list.prio--;
2525                 }
2526                 least_priority++;
2527         }
2528         plist_del(&p->list, &swap_active_head);
2529         atomic_long_sub(p->pages, &nr_swap_pages);
2530         total_swap_pages -= p->pages;
2531         p->flags &= ~SWP_WRITEOK;
2532         spin_unlock(&p->lock);
2533         spin_unlock(&swap_lock);
2534
2535         disable_swap_slots_cache_lock();
2536
2537         set_current_oom_origin();
2538         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2539         clear_current_oom_origin();
2540
2541         if (err) {
2542                 /* re-insert swap space back into swap_list */
2543                 reinsert_swap_info(p);
2544                 reenable_swap_slots_cache_unlock();
2545                 goto out_dput;
2546         }
2547
2548         reenable_swap_slots_cache_unlock();
2549
2550         flush_work(&p->discard_work);
2551
2552         destroy_swap_extents(p);
2553         if (p->flags & SWP_CONTINUED)
2554                 free_swap_count_continuations(p);
2555
2556         mutex_lock(&swapon_mutex);
2557         spin_lock(&swap_lock);
2558         spin_lock(&p->lock);
2559         drain_mmlist();
2560
2561         /* wait for anyone still in scan_swap_map */
2562         p->highest_bit = 0;             /* cuts scans short */
2563         while (p->flags >= SWP_SCANNING) {
2564                 spin_unlock(&p->lock);
2565                 spin_unlock(&swap_lock);
2566                 schedule_timeout_uninterruptible(1);
2567                 spin_lock(&swap_lock);
2568                 spin_lock(&p->lock);
2569         }
2570
2571         swap_file = p->swap_file;
2572         old_block_size = p->old_block_size;
2573         p->swap_file = NULL;
2574         p->max = 0;
2575         swap_map = p->swap_map;
2576         p->swap_map = NULL;
2577         cluster_info = p->cluster_info;
2578         p->cluster_info = NULL;
2579         frontswap_map = frontswap_map_get(p);
2580         spin_unlock(&p->lock);
2581         spin_unlock(&swap_lock);
2582         frontswap_invalidate_area(p->type);
2583         frontswap_map_set(p, NULL);
2584         mutex_unlock(&swapon_mutex);
2585         free_percpu(p->percpu_cluster);
2586         p->percpu_cluster = NULL;
2587         vfree(swap_map);
2588         kvfree(cluster_info);
2589         kvfree(frontswap_map);
2590         /* Destroy swap account information */
2591         swap_cgroup_swapoff(p->type);
2592         exit_swap_address_space(p->type);
2593
2594         inode = mapping->host;
2595         if (S_ISBLK(inode->i_mode)) {
2596                 struct block_device *bdev = I_BDEV(inode);
2597                 set_blocksize(bdev, old_block_size);
2598                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2599         } else {
2600                 inode_lock(inode);
2601                 inode->i_flags &= ~S_SWAPFILE;
2602                 inode_unlock(inode);
2603         }
2604         filp_close(swap_file, NULL);
2605
2606         /*
2607          * Clear the SWP_USED flag after all resources are freed so that swapon
2608          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2609          * not hold p->lock after we cleared its SWP_WRITEOK.
2610          */
2611         spin_lock(&swap_lock);
2612         p->flags = 0;
2613         spin_unlock(&swap_lock);
2614
2615         err = 0;
2616         atomic_inc(&proc_poll_event);
2617         wake_up_interruptible(&proc_poll_wait);
2618
2619 out_dput:
2620         filp_close(victim, NULL);
2621 out:
2622         putname(pathname);
2623         return err;
2624 }
2625
2626 #ifdef CONFIG_PROC_FS
2627 static unsigned swaps_poll(struct file *file, poll_table *wait)
2628 {
2629         struct seq_file *seq = file->private_data;
2630
2631         poll_wait(file, &proc_poll_wait, wait);
2632
2633         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2634                 seq->poll_event = atomic_read(&proc_poll_event);
2635                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2636         }
2637
2638         return POLLIN | POLLRDNORM;
2639 }
2640
2641 /* iterator */
2642 static void *swap_start(struct seq_file *swap, loff_t *pos)
2643 {
2644         struct swap_info_struct *si;
2645         int type;
2646         loff_t l = *pos;
2647
2648         mutex_lock(&swapon_mutex);
2649
2650         if (!l)
2651                 return SEQ_START_TOKEN;
2652
2653         for (type = 0; type < nr_swapfiles; type++) {
2654                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2655                 si = swap_info[type];
2656                 if (!(si->flags & SWP_USED) || !si->swap_map)
2657                         continue;
2658                 if (!--l)
2659                         return si;
2660         }
2661
2662         return NULL;
2663 }
2664
2665 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2666 {
2667         struct swap_info_struct *si = v;
2668         int type;
2669
2670         if (v == SEQ_START_TOKEN)
2671                 type = 0;
2672         else
2673                 type = si->type + 1;
2674
2675         for (; type < nr_swapfiles; type++) {
2676                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2677                 si = swap_info[type];
2678                 if (!(si->flags & SWP_USED) || !si->swap_map)
2679                         continue;
2680                 ++*pos;
2681                 return si;
2682         }
2683
2684         return NULL;
2685 }
2686
2687 static void swap_stop(struct seq_file *swap, void *v)
2688 {
2689         mutex_unlock(&swapon_mutex);
2690 }
2691
2692 static int swap_show(struct seq_file *swap, void *v)
2693 {
2694         struct swap_info_struct *si = v;
2695         struct file *file;
2696         int len;
2697
2698         if (si == SEQ_START_TOKEN) {
2699                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2700                 return 0;
2701         }
2702
2703         file = si->swap_file;
2704         len = seq_file_path(swap, file, " \t\n\\");
2705         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2706                         len < 40 ? 40 - len : 1, " ",
2707                         S_ISBLK(file_inode(file)->i_mode) ?
2708                                 "partition" : "file\t",
2709                         si->pages << (PAGE_SHIFT - 10),
2710                         si->inuse_pages << (PAGE_SHIFT - 10),
2711                         si->prio);
2712         return 0;
2713 }
2714
2715 static const struct seq_operations swaps_op = {
2716         .start =        swap_start,
2717         .next =         swap_next,
2718         .stop =         swap_stop,
2719         .show =         swap_show
2720 };
2721
2722 static int swaps_open(struct inode *inode, struct file *file)
2723 {
2724         struct seq_file *seq;
2725         int ret;
2726
2727         ret = seq_open(file, &swaps_op);
2728         if (ret)
2729                 return ret;
2730
2731         seq = file->private_data;
2732         seq->poll_event = atomic_read(&proc_poll_event);
2733         return 0;
2734 }
2735
2736 static const struct file_operations proc_swaps_operations = {
2737         .open           = swaps_open,
2738         .read           = seq_read,
2739         .llseek         = seq_lseek,
2740         .release        = seq_release,
2741         .poll           = swaps_poll,
2742 };
2743
2744 static int __init procswaps_init(void)
2745 {
2746         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2747         return 0;
2748 }
2749 __initcall(procswaps_init);
2750 #endif /* CONFIG_PROC_FS */
2751
2752 #ifdef MAX_SWAPFILES_CHECK
2753 static int __init max_swapfiles_check(void)
2754 {
2755         MAX_SWAPFILES_CHECK();
2756         return 0;
2757 }
2758 late_initcall(max_swapfiles_check);
2759 #endif
2760
2761 static struct swap_info_struct *alloc_swap_info(void)
2762 {
2763         struct swap_info_struct *p;
2764         unsigned int type;
2765
2766         p = kzalloc(sizeof(*p), GFP_KERNEL);
2767         if (!p)
2768                 return ERR_PTR(-ENOMEM);
2769
2770         spin_lock(&swap_lock);
2771         for (type = 0; type < nr_swapfiles; type++) {
2772                 if (!(swap_info[type]->flags & SWP_USED))
2773                         break;
2774         }
2775         if (type >= MAX_SWAPFILES) {
2776                 spin_unlock(&swap_lock);
2777                 kfree(p);
2778                 return ERR_PTR(-EPERM);
2779         }
2780         if (type >= nr_swapfiles) {
2781                 p->type = type;
2782                 swap_info[type] = p;
2783                 /*
2784                  * Write swap_info[type] before nr_swapfiles, in case a
2785                  * racing procfs swap_start() or swap_next() is reading them.
2786                  * (We never shrink nr_swapfiles, we never free this entry.)
2787                  */
2788                 smp_wmb();
2789                 nr_swapfiles++;
2790         } else {
2791                 kfree(p);
2792                 p = swap_info[type];
2793                 /*
2794                  * Do not memset this entry: a racing procfs swap_next()
2795                  * would be relying on p->type to remain valid.
2796                  */
2797         }
2798         INIT_LIST_HEAD(&p->first_swap_extent.list);
2799         plist_node_init(&p->list, 0);
2800         plist_node_init(&p->avail_list, 0);
2801         p->flags = SWP_USED;
2802         spin_unlock(&swap_lock);
2803         spin_lock_init(&p->lock);
2804
2805         return p;
2806 }
2807
2808 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2809 {
2810         int error;
2811
2812         if (S_ISBLK(inode->i_mode)) {
2813                 p->bdev = bdgrab(I_BDEV(inode));
2814                 error = blkdev_get(p->bdev,
2815                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2816                 if (error < 0) {
2817                         p->bdev = NULL;
2818                         return error;
2819                 }
2820                 p->old_block_size = block_size(p->bdev);
2821                 error = set_blocksize(p->bdev, PAGE_SIZE);
2822                 if (error < 0)
2823                         return error;
2824                 p->flags |= SWP_BLKDEV;
2825         } else if (S_ISREG(inode->i_mode)) {
2826                 p->bdev = inode->i_sb->s_bdev;
2827                 inode_lock(inode);
2828                 if (IS_SWAPFILE(inode))
2829                         return -EBUSY;
2830         } else
2831                 return -EINVAL;
2832
2833         return 0;
2834 }
2835
2836 static unsigned long read_swap_header(struct swap_info_struct *p,
2837                                         union swap_header *swap_header,
2838                                         struct inode *inode)
2839 {
2840         int i;
2841         unsigned long maxpages;
2842         unsigned long swapfilepages;
2843         unsigned long last_page;
2844
2845         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2846                 pr_err("Unable to find swap-space signature\n");
2847                 return 0;
2848         }
2849
2850         /* swap partition endianess hack... */
2851         if (swab32(swap_header->info.version) == 1) {
2852                 swab32s(&swap_header->info.version);
2853                 swab32s(&swap_header->info.last_page);
2854                 swab32s(&swap_header->info.nr_badpages);
2855                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2856                         return 0;
2857                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2858                         swab32s(&swap_header->info.badpages[i]);
2859         }
2860         /* Check the swap header's sub-version */
2861         if (swap_header->info.version != 1) {
2862                 pr_warn("Unable to handle swap header version %d\n",
2863                         swap_header->info.version);
2864                 return 0;
2865         }
2866
2867         p->lowest_bit  = 1;
2868         p->cluster_next = 1;
2869         p->cluster_nr = 0;
2870
2871         /*
2872          * Find out how many pages are allowed for a single swap
2873          * device. There are two limiting factors: 1) the number
2874          * of bits for the swap offset in the swp_entry_t type, and
2875          * 2) the number of bits in the swap pte as defined by the
2876          * different architectures. In order to find the
2877          * largest possible bit mask, a swap entry with swap type 0
2878          * and swap offset ~0UL is created, encoded to a swap pte,
2879          * decoded to a swp_entry_t again, and finally the swap
2880          * offset is extracted. This will mask all the bits from
2881          * the initial ~0UL mask that can't be encoded in either
2882          * the swp_entry_t or the architecture definition of a
2883          * swap pte.
2884          */
2885         maxpages = swp_offset(pte_to_swp_entry(
2886                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2887         last_page = swap_header->info.last_page;
2888         if (last_page > maxpages) {
2889                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2890                         maxpages << (PAGE_SHIFT - 10),
2891                         last_page << (PAGE_SHIFT - 10));
2892         }
2893         if (maxpages > last_page) {
2894                 maxpages = last_page + 1;
2895                 /* p->max is an unsigned int: don't overflow it */
2896                 if ((unsigned int)maxpages == 0)
2897                         maxpages = UINT_MAX;
2898         }
2899         p->highest_bit = maxpages - 1;
2900
2901         if (!maxpages)
2902                 return 0;
2903         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2904         if (swapfilepages && maxpages > swapfilepages) {
2905                 pr_warn("Swap area shorter than signature indicates\n");
2906                 return 0;
2907         }
2908         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2909                 return 0;
2910         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2911                 return 0;
2912
2913         return maxpages;
2914 }
2915
2916 #define SWAP_CLUSTER_INFO_COLS                                          \
2917         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2918 #define SWAP_CLUSTER_SPACE_COLS                                         \
2919         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2920 #define SWAP_CLUSTER_COLS                                               \
2921         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2922
2923 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2924                                         union swap_header *swap_header,
2925                                         unsigned char *swap_map,
2926                                         struct swap_cluster_info *cluster_info,
2927                                         unsigned long maxpages,
2928                                         sector_t *span)
2929 {
2930         unsigned int j, k;
2931         unsigned int nr_good_pages;
2932         int nr_extents;
2933         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2934         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2935         unsigned long i, idx;
2936
2937         nr_good_pages = maxpages - 1;   /* omit header page */
2938
2939         cluster_list_init(&p->free_clusters);
2940         cluster_list_init(&p->discard_clusters);
2941
2942         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2943                 unsigned int page_nr = swap_header->info.badpages[i];
2944                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2945                         return -EINVAL;
2946                 if (page_nr < maxpages) {
2947                         swap_map[page_nr] = SWAP_MAP_BAD;
2948                         nr_good_pages--;
2949                         /*
2950                          * Haven't marked the cluster free yet, no list
2951                          * operation involved
2952                          */
2953                         inc_cluster_info_page(p, cluster_info, page_nr);
2954                 }
2955         }
2956
2957         /* Haven't marked the cluster free yet, no list operation involved */
2958         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2959                 inc_cluster_info_page(p, cluster_info, i);
2960
2961         if (nr_good_pages) {
2962                 swap_map[0] = SWAP_MAP_BAD;
2963                 /*
2964                  * Not mark the cluster free yet, no list
2965                  * operation involved
2966                  */
2967                 inc_cluster_info_page(p, cluster_info, 0);
2968                 p->max = maxpages;
2969                 p->pages = nr_good_pages;
2970                 nr_extents = setup_swap_extents(p, span);
2971                 if (nr_extents < 0)
2972                         return nr_extents;
2973                 nr_good_pages = p->pages;
2974         }
2975         if (!nr_good_pages) {
2976                 pr_warn("Empty swap-file\n");
2977                 return -EINVAL;
2978         }
2979
2980         if (!cluster_info)
2981                 return nr_extents;
2982
2983
2984         /*
2985          * Reduce false cache line sharing between cluster_info and
2986          * sharing same address space.
2987          */
2988         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2989                 j = (k + col) % SWAP_CLUSTER_COLS;
2990                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2991                         idx = i * SWAP_CLUSTER_COLS + j;
2992                         if (idx >= nr_clusters)
2993                                 continue;
2994                         if (cluster_count(&cluster_info[idx]))
2995                                 continue;
2996                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2997                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2998                                               idx);
2999                 }
3000         }
3001         return nr_extents;
3002 }
3003
3004 /*
3005  * Helper to sys_swapon determining if a given swap
3006  * backing device queue supports DISCARD operations.
3007  */
3008 static bool swap_discardable(struct swap_info_struct *si)
3009 {
3010         struct request_queue *q = bdev_get_queue(si->bdev);
3011
3012         if (!q || !blk_queue_discard(q))
3013                 return false;
3014
3015         return true;
3016 }
3017
3018 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3019 {
3020         struct swap_info_struct *p;
3021         struct filename *name;
3022         struct file *swap_file = NULL;
3023         struct address_space *mapping;
3024         int prio;
3025         int error;
3026         union swap_header *swap_header;
3027         int nr_extents;
3028         sector_t span;
3029         unsigned long maxpages;
3030         unsigned char *swap_map = NULL;
3031         struct swap_cluster_info *cluster_info = NULL;
3032         unsigned long *frontswap_map = NULL;
3033         struct page *page = NULL;
3034         struct inode *inode = NULL;
3035
3036         if (swap_flags & ~SWAP_FLAGS_VALID)
3037                 return -EINVAL;
3038
3039         if (!capable(CAP_SYS_ADMIN))
3040                 return -EPERM;
3041
3042         p = alloc_swap_info();
3043         if (IS_ERR(p))
3044                 return PTR_ERR(p);
3045
3046         INIT_WORK(&p->discard_work, swap_discard_work);
3047
3048         name = getname(specialfile);
3049         if (IS_ERR(name)) {
3050                 error = PTR_ERR(name);
3051                 name = NULL;
3052                 goto bad_swap;
3053         }
3054         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3055         if (IS_ERR(swap_file)) {
3056                 error = PTR_ERR(swap_file);
3057                 swap_file = NULL;
3058                 goto bad_swap;
3059         }
3060
3061         p->swap_file = swap_file;
3062         mapping = swap_file->f_mapping;
3063         inode = mapping->host;
3064
3065         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3066         error = claim_swapfile(p, inode);
3067         if (unlikely(error))
3068                 goto bad_swap;
3069
3070         /*
3071          * Read the swap header.
3072          */
3073         if (!mapping->a_ops->readpage) {
3074                 error = -EINVAL;
3075                 goto bad_swap;
3076         }
3077         page = read_mapping_page(mapping, 0, swap_file);
3078         if (IS_ERR(page)) {
3079                 error = PTR_ERR(page);
3080                 goto bad_swap;
3081         }
3082         swap_header = kmap(page);
3083
3084         maxpages = read_swap_header(p, swap_header, inode);
3085         if (unlikely(!maxpages)) {
3086                 error = -EINVAL;
3087                 goto bad_swap;
3088         }
3089
3090         /* OK, set up the swap map and apply the bad block list */
3091         swap_map = vzalloc(maxpages);
3092         if (!swap_map) {
3093                 error = -ENOMEM;
3094                 goto bad_swap;
3095         }
3096
3097         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3098                 p->flags |= SWP_STABLE_WRITES;
3099
3100         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3101                 int cpu;
3102                 unsigned long ci, nr_cluster;
3103
3104                 p->flags |= SWP_SOLIDSTATE;
3105                 /*
3106                  * select a random position to start with to help wear leveling
3107                  * SSD
3108                  */
3109                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3110                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3111
3112                 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3113                                         GFP_KERNEL);
3114                 if (!cluster_info) {
3115                         error = -ENOMEM;
3116                         goto bad_swap;
3117                 }
3118
3119                 for (ci = 0; ci < nr_cluster; ci++)
3120                         spin_lock_init(&((cluster_info + ci)->lock));
3121
3122                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3123                 if (!p->percpu_cluster) {
3124                         error = -ENOMEM;
3125                         goto bad_swap;
3126                 }
3127                 for_each_possible_cpu(cpu) {
3128                         struct percpu_cluster *cluster;
3129                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3130                         cluster_set_null(&cluster->index);
3131                 }
3132         }
3133
3134         error = swap_cgroup_swapon(p->type, maxpages);
3135         if (error)
3136                 goto bad_swap;
3137
3138         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3139                 cluster_info, maxpages, &span);
3140         if (unlikely(nr_extents < 0)) {
3141                 error = nr_extents;
3142                 goto bad_swap;
3143         }
3144         /* frontswap enabled? set up bit-per-page map for frontswap */
3145         if (IS_ENABLED(CONFIG_FRONTSWAP))
3146                 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3147                                          GFP_KERNEL);
3148
3149         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3150                 /*
3151                  * When discard is enabled for swap with no particular
3152                  * policy flagged, we set all swap discard flags here in
3153                  * order to sustain backward compatibility with older
3154                  * swapon(8) releases.
3155                  */
3156                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3157                              SWP_PAGE_DISCARD);
3158
3159                 /*
3160                  * By flagging sys_swapon, a sysadmin can tell us to
3161                  * either do single-time area discards only, or to just
3162                  * perform discards for released swap page-clusters.
3163                  * Now it's time to adjust the p->flags accordingly.
3164                  */
3165                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3166                         p->flags &= ~SWP_PAGE_DISCARD;
3167                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3168                         p->flags &= ~SWP_AREA_DISCARD;
3169
3170                 /* issue a swapon-time discard if it's still required */
3171                 if (p->flags & SWP_AREA_DISCARD) {
3172                         int err = discard_swap(p);
3173                         if (unlikely(err))
3174                                 pr_err("swapon: discard_swap(%p): %d\n",
3175                                         p, err);
3176                 }
3177         }
3178
3179         error = init_swap_address_space(p->type, maxpages);
3180         if (error)
3181                 goto bad_swap;
3182
3183         mutex_lock(&swapon_mutex);
3184         prio = -1;
3185         if (swap_flags & SWAP_FLAG_PREFER)
3186                 prio =
3187                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3188         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3189
3190         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3191                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3192                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3193                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3194                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3195                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3196                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3197                 (frontswap_map) ? "FS" : "");
3198
3199         mutex_unlock(&swapon_mutex);
3200         atomic_inc(&proc_poll_event);
3201         wake_up_interruptible(&proc_poll_wait);
3202
3203         if (S_ISREG(inode->i_mode))
3204                 inode->i_flags |= S_SWAPFILE;
3205         error = 0;
3206         goto out;
3207 bad_swap:
3208         free_percpu(p->percpu_cluster);
3209         p->percpu_cluster = NULL;
3210         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3211                 set_blocksize(p->bdev, p->old_block_size);
3212                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3213         }
3214         destroy_swap_extents(p);
3215         swap_cgroup_swapoff(p->type);
3216         spin_lock(&swap_lock);
3217         p->swap_file = NULL;
3218         p->flags = 0;
3219         spin_unlock(&swap_lock);
3220         vfree(swap_map);
3221         vfree(cluster_info);
3222         if (swap_file) {
3223                 if (inode && S_ISREG(inode->i_mode)) {
3224                         inode_unlock(inode);
3225                         inode = NULL;
3226                 }
3227                 filp_close(swap_file, NULL);
3228         }
3229 out:
3230         if (page && !IS_ERR(page)) {
3231                 kunmap(page);
3232                 put_page(page);
3233         }
3234         if (name)
3235                 putname(name);
3236         if (inode && S_ISREG(inode->i_mode))
3237                 inode_unlock(inode);
3238         if (!error)
3239                 enable_swap_slots_cache();
3240         return error;
3241 }
3242
3243 void si_swapinfo(struct sysinfo *val)
3244 {
3245         unsigned int type;
3246         unsigned long nr_to_be_unused = 0;
3247
3248         spin_lock(&swap_lock);
3249         for (type = 0; type < nr_swapfiles; type++) {
3250                 struct swap_info_struct *si = swap_info[type];
3251
3252                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253                         nr_to_be_unused += si->inuse_pages;
3254         }
3255         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256         val->totalswap = total_swap_pages + nr_to_be_unused;
3257         spin_unlock(&swap_lock);
3258 }
3259
3260 /*
3261  * Verify that a swap entry is valid and increment its swap map count.
3262  *
3263  * Returns error code in following case.
3264  * - success -> 0
3265  * - swp_entry is invalid -> EINVAL
3266  * - swp_entry is migration entry -> EINVAL
3267  * - swap-cache reference is requested but there is already one. -> EEXIST
3268  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270  */
3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272 {
3273         struct swap_info_struct *p;
3274         struct swap_cluster_info *ci;
3275         unsigned long offset, type;
3276         unsigned char count;
3277         unsigned char has_cache;
3278         int err = -EINVAL;
3279
3280         if (non_swap_entry(entry))
3281                 goto out;
3282
3283         type = swp_type(entry);
3284         if (type >= nr_swapfiles)
3285                 goto bad_file;
3286         p = swap_info[type];
3287         offset = swp_offset(entry);
3288         if (unlikely(offset >= p->max))
3289                 goto out;
3290
3291         ci = lock_cluster_or_swap_info(p, offset);
3292
3293         count = p->swap_map[offset];
3294
3295         /*
3296          * swapin_readahead() doesn't check if a swap entry is valid, so the
3297          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3298          */
3299         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3300                 err = -ENOENT;
3301                 goto unlock_out;
3302         }
3303
3304         has_cache = count & SWAP_HAS_CACHE;
3305         count &= ~SWAP_HAS_CACHE;
3306         err = 0;
3307
3308         if (usage == SWAP_HAS_CACHE) {
3309
3310                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3311                 if (!has_cache && count)
3312                         has_cache = SWAP_HAS_CACHE;
3313                 else if (has_cache)             /* someone else added cache */
3314                         err = -EEXIST;
3315                 else                            /* no users remaining */
3316                         err = -ENOENT;
3317
3318         } else if (count || has_cache) {
3319
3320                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3321                         count += usage;
3322                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3323                         err = -EINVAL;
3324                 else if (swap_count_continued(p, offset, count))
3325                         count = COUNT_CONTINUED;
3326                 else
3327                         err = -ENOMEM;
3328         } else
3329                 err = -ENOENT;                  /* unused swap entry */
3330
3331         p->swap_map[offset] = count | has_cache;
3332
3333 unlock_out:
3334         unlock_cluster_or_swap_info(p, ci);
3335 out:
3336         return err;
3337
3338 bad_file:
3339         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3340         goto out;
3341 }
3342
3343 /*
3344  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3345  * (in which case its reference count is never incremented).
3346  */
3347 void swap_shmem_alloc(swp_entry_t entry)
3348 {
3349         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3350 }
3351
3352 /*
3353  * Increase reference count of swap entry by 1.
3354  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3355  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3356  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3357  * might occur if a page table entry has got corrupted.
3358  */
3359 int swap_duplicate(swp_entry_t entry)
3360 {
3361         int err = 0;
3362
3363         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3364                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3365         return err;
3366 }
3367
3368 /*
3369  * @entry: swap entry for which we allocate swap cache.
3370  *
3371  * Called when allocating swap cache for existing swap entry,
3372  * This can return error codes. Returns 0 at success.
3373  * -EBUSY means there is a swap cache.
3374  * Note: return code is different from swap_duplicate().
3375  */
3376 int swapcache_prepare(swp_entry_t entry)
3377 {
3378         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3379 }
3380
3381 struct swap_info_struct *page_swap_info(struct page *page)
3382 {
3383         swp_entry_t swap = { .val = page_private(page) };
3384         return swap_info[swp_type(swap)];
3385 }
3386
3387 /*
3388  * out-of-line __page_file_ methods to avoid include hell.
3389  */
3390 struct address_space *__page_file_mapping(struct page *page)
3391 {
3392         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3393         return page_swap_info(page)->swap_file->f_mapping;
3394 }
3395 EXPORT_SYMBOL_GPL(__page_file_mapping);
3396
3397 pgoff_t __page_file_index(struct page *page)
3398 {
3399         swp_entry_t swap = { .val = page_private(page) };
3400         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3401         return swp_offset(swap);
3402 }
3403 EXPORT_SYMBOL_GPL(__page_file_index);
3404
3405 /*
3406  * add_swap_count_continuation - called when a swap count is duplicated
3407  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3408  * page of the original vmalloc'ed swap_map, to hold the continuation count
3409  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3410  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3411  *
3412  * These continuation pages are seldom referenced: the common paths all work
3413  * on the original swap_map, only referring to a continuation page when the
3414  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3415  *
3416  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3417  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3418  * can be called after dropping locks.
3419  */
3420 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3421 {
3422         struct swap_info_struct *si;
3423         struct swap_cluster_info *ci;
3424         struct page *head;
3425         struct page *page;
3426         struct page *list_page;
3427         pgoff_t offset;
3428         unsigned char count;
3429
3430         /*
3431          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3432          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3433          */
3434         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3435
3436         si = swap_info_get(entry);
3437         if (!si) {
3438                 /*
3439                  * An acceptable race has occurred since the failing
3440                  * __swap_duplicate(): the swap entry has been freed,
3441                  * perhaps even the whole swap_map cleared for swapoff.
3442                  */
3443                 goto outer;
3444         }
3445
3446         offset = swp_offset(entry);
3447
3448         ci = lock_cluster(si, offset);
3449
3450         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3451
3452         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3453                 /*
3454                  * The higher the swap count, the more likely it is that tasks
3455                  * will race to add swap count continuation: we need to avoid
3456                  * over-provisioning.
3457                  */
3458                 goto out;
3459         }
3460
3461         if (!page) {
3462                 unlock_cluster(ci);
3463                 spin_unlock(&si->lock);
3464                 return -ENOMEM;
3465         }
3466
3467         /*
3468          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3469          * no architecture is using highmem pages for kernel page tables: so it
3470          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3471          */
3472         head = vmalloc_to_page(si->swap_map + offset);
3473         offset &= ~PAGE_MASK;
3474
3475         /*
3476          * Page allocation does not initialize the page's lru field,
3477          * but it does always reset its private field.
3478          */
3479         if (!page_private(head)) {
3480                 BUG_ON(count & COUNT_CONTINUED);
3481                 INIT_LIST_HEAD(&head->lru);
3482                 set_page_private(head, SWP_CONTINUED);
3483                 si->flags |= SWP_CONTINUED;
3484         }
3485
3486         list_for_each_entry(list_page, &head->lru, lru) {
3487                 unsigned char *map;
3488
3489                 /*
3490                  * If the previous map said no continuation, but we've found
3491                  * a continuation page, free our allocation and use this one.
3492                  */
3493                 if (!(count & COUNT_CONTINUED))
3494                         goto out;
3495
3496                 map = kmap_atomic(list_page) + offset;
3497                 count = *map;
3498                 kunmap_atomic(map);
3499
3500                 /*
3501                  * If this continuation count now has some space in it,
3502                  * free our allocation and use this one.
3503                  */
3504                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3505                         goto out;
3506         }
3507
3508         list_add_tail(&page->lru, &head->lru);
3509         page = NULL;                    /* now it's attached, don't free it */
3510 out:
3511         unlock_cluster(ci);
3512         spin_unlock(&si->lock);
3513 outer:
3514         if (page)
3515                 __free_page(page);
3516         return 0;
3517 }
3518
3519 /*
3520  * swap_count_continued - when the original swap_map count is incremented
3521  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3522  * into, carry if so, or else fail until a new continuation page is allocated;
3523  * when the original swap_map count is decremented from 0 with continuation,
3524  * borrow from the continuation and report whether it still holds more.
3525  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3526  * lock.
3527  */
3528 static bool swap_count_continued(struct swap_info_struct *si,
3529                                  pgoff_t offset, unsigned char count)
3530 {
3531         struct page *head;
3532         struct page *page;
3533         unsigned char *map;
3534
3535         head = vmalloc_to_page(si->swap_map + offset);
3536         if (page_private(head) != SWP_CONTINUED) {
3537                 BUG_ON(count & COUNT_CONTINUED);
3538                 return false;           /* need to add count continuation */
3539         }
3540
3541         offset &= ~PAGE_MASK;
3542         page = list_entry(head->lru.next, struct page, lru);
3543         map = kmap_atomic(page) + offset;
3544
3545         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3546                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3547
3548         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3549                 /*
3550                  * Think of how you add 1 to 999
3551                  */
3552                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3553                         kunmap_atomic(map);
3554                         page = list_entry(page->lru.next, struct page, lru);
3555                         BUG_ON(page == head);
3556                         map = kmap_atomic(page) + offset;
3557                 }
3558                 if (*map == SWAP_CONT_MAX) {
3559                         kunmap_atomic(map);
3560                         page = list_entry(page->lru.next, struct page, lru);
3561                         if (page == head)
3562                                 return false;   /* add count continuation */
3563                         map = kmap_atomic(page) + offset;
3564 init_map:               *map = 0;               /* we didn't zero the page */
3565                 }
3566                 *map += 1;
3567                 kunmap_atomic(map);
3568                 page = list_entry(page->lru.prev, struct page, lru);
3569                 while (page != head) {
3570                         map = kmap_atomic(page) + offset;
3571                         *map = COUNT_CONTINUED;
3572                         kunmap_atomic(map);
3573                         page = list_entry(page->lru.prev, struct page, lru);
3574                 }
3575                 return true;                    /* incremented */
3576
3577         } else {                                /* decrementing */
3578                 /*
3579                  * Think of how you subtract 1 from 1000
3580                  */
3581                 BUG_ON(count != COUNT_CONTINUED);
3582                 while (*map == COUNT_CONTINUED) {
3583                         kunmap_atomic(map);
3584                         page = list_entry(page->lru.next, struct page, lru);
3585                         BUG_ON(page == head);
3586                         map = kmap_atomic(page) + offset;
3587                 }
3588                 BUG_ON(*map == 0);
3589                 *map -= 1;
3590                 if (*map == 0)
3591                         count = 0;
3592                 kunmap_atomic(map);
3593                 page = list_entry(page->lru.prev, struct page, lru);
3594                 while (page != head) {
3595                         map = kmap_atomic(page) + offset;
3596                         *map = SWAP_CONT_MAX | count;
3597                         count = COUNT_CONTINUED;
3598                         kunmap_atomic(map);
3599                         page = list_entry(page->lru.prev, struct page, lru);
3600                 }
3601                 return count == COUNT_CONTINUED;
3602         }
3603 }
3604
3605 /*
3606  * free_swap_count_continuations - swapoff free all the continuation pages
3607  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3608  */
3609 static void free_swap_count_continuations(struct swap_info_struct *si)
3610 {
3611         pgoff_t offset;
3612
3613         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3614                 struct page *head;
3615                 head = vmalloc_to_page(si->swap_map + offset);
3616                 if (page_private(head)) {
3617                         struct page *page, *next;
3618
3619                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3620                                 list_del(&page->lru);
3621                                 __free_page(page);
3622                         }
3623                 }
3624         }
3625 }