Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available())
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         else
71                 section = memblock_virt_alloc_node(array_size, nid);
72
73         return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79         struct mem_section *section;
80
81         if (mem_section[root])
82                 return -EEXIST;
83
84         section = sparse_index_alloc(nid);
85         if (!section)
86                 return -ENOMEM;
87
88         mem_section[root] = section;
89
90         return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95         return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102         unsigned long root_nr;
103         struct mem_section *root = NULL;
104
105         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107                 if (!root)
108                         continue;
109
110                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111                      break;
112         }
113
114         VM_BUG_ON(!root);
115
116         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121         return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133         return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138         return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143                                                 unsigned long *end_pfn)
144 {
145         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147         /*
148          * Sanity checks - do not allow an architecture to pass
149          * in larger pfns than the maximum scope of sparsemem:
150          */
151         if (*start_pfn > max_sparsemem_pfn) {
152                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154                         *start_pfn, *end_pfn, max_sparsemem_pfn);
155                 WARN_ON_ONCE(1);
156                 *start_pfn = max_sparsemem_pfn;
157                 *end_pfn = max_sparsemem_pfn;
158         } else if (*end_pfn > max_sparsemem_pfn) {
159                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161                         *start_pfn, *end_pfn, max_sparsemem_pfn);
162                 WARN_ON_ONCE(1);
163                 *end_pfn = max_sparsemem_pfn;
164         }
165 }
166
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179         int section_nr = __section_nr(ms);
180
181         if (section_nr > __highest_present_section_nr)
182                 __highest_present_section_nr = section_nr;
183
184         ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189         do {
190                 section_nr++;
191                 if (present_section_nr(section_nr))
192                         return section_nr;
193         } while ((section_nr < NR_MEM_SECTIONS) &&
194                  (section_nr <= __highest_present_section_nr));
195
196         return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)          \
199         for (section_nr = next_present_section_nr(start-1);     \
200              ((section_nr >= 0) &&                              \
201               (section_nr < NR_MEM_SECTIONS) &&                 \
202               (section_nr <= __highest_present_section_nr));    \
203              section_nr = next_present_section_nr(section_nr))
204
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208         unsigned long pfn;
209
210 #ifdef CONFIG_SPARSEMEM_EXTREME
211         if (unlikely(!mem_section)) {
212                 unsigned long size, align;
213
214                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215                 align = 1 << (INTERNODE_CACHE_SHIFT);
216                 mem_section = memblock_virt_alloc(size, align);
217         }
218 #endif
219
220         start &= PAGE_SECTION_MASK;
221         mminit_validate_memmodel_limits(&start, &end);
222         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223                 unsigned long section = pfn_to_section_nr(pfn);
224                 struct mem_section *ms;
225
226                 sparse_index_init(section, nid);
227                 set_section_nid(section, nid);
228
229                 ms = __nr_to_section(section);
230                 if (!ms->section_mem_map) {
231                         ms->section_mem_map = sparse_encode_early_nid(nid) |
232                                                         SECTION_IS_ONLINE;
233                         section_mark_present(ms);
234                 }
235         }
236 }
237
238 /*
239  * Only used by the i386 NUMA architecures, but relatively
240  * generic code.
241  */
242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
243                                                      unsigned long end_pfn)
244 {
245         unsigned long pfn;
246         unsigned long nr_pages = 0;
247
248         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
249         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
250                 if (nid != early_pfn_to_nid(pfn))
251                         continue;
252
253                 if (pfn_present(pfn))
254                         nr_pages += PAGES_PER_SECTION;
255         }
256
257         return nr_pages * sizeof(struct page);
258 }
259
260 /*
261  * Subtle, we encode the real pfn into the mem_map such that
262  * the identity pfn - section_mem_map will return the actual
263  * physical page frame number.
264  */
265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
266 {
267         unsigned long coded_mem_map =
268                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
269         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
270         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
271         return coded_mem_map;
272 }
273
274 /*
275  * Decode mem_map from the coded memmap
276  */
277 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
278 {
279         /* mask off the extra low bits of information */
280         coded_mem_map &= SECTION_MAP_MASK;
281         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
282 }
283
284 static int __meminit sparse_init_one_section(struct mem_section *ms,
285                 unsigned long pnum, struct page *mem_map,
286                 unsigned long *pageblock_bitmap)
287 {
288         if (!present_section(ms))
289                 return -EINVAL;
290
291         ms->section_mem_map &= ~SECTION_MAP_MASK;
292         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
293                                                         SECTION_HAS_MEM_MAP;
294         ms->pageblock_flags = pageblock_bitmap;
295
296         return 1;
297 }
298
299 unsigned long usemap_size(void)
300 {
301         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302 }
303
304 #ifdef CONFIG_MEMORY_HOTPLUG
305 static unsigned long *__kmalloc_section_usemap(void)
306 {
307         return kmalloc(usemap_size(), GFP_KERNEL);
308 }
309 #endif /* CONFIG_MEMORY_HOTPLUG */
310
311 #ifdef CONFIG_MEMORY_HOTREMOVE
312 static unsigned long * __init
313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314                                          unsigned long size)
315 {
316         unsigned long goal, limit;
317         unsigned long *p;
318         int nid;
319         /*
320          * A page may contain usemaps for other sections preventing the
321          * page being freed and making a section unremovable while
322          * other sections referencing the usemap remain active. Similarly,
323          * a pgdat can prevent a section being removed. If section A
324          * contains a pgdat and section B contains the usemap, both
325          * sections become inter-dependent. This allocates usemaps
326          * from the same section as the pgdat where possible to avoid
327          * this problem.
328          */
329         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330         limit = goal + (1UL << PA_SECTION_SHIFT);
331         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332 again:
333         p = memblock_virt_alloc_try_nid_nopanic(size,
334                                                 SMP_CACHE_BYTES, goal, limit,
335                                                 nid);
336         if (!p && limit) {
337                 limit = 0;
338                 goto again;
339         }
340         return p;
341 }
342
343 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
344 {
345         unsigned long usemap_snr, pgdat_snr;
346         static unsigned long old_usemap_snr;
347         static unsigned long old_pgdat_snr;
348         struct pglist_data *pgdat = NODE_DATA(nid);
349         int usemap_nid;
350
351         /* First call */
352         if (!old_usemap_snr) {
353                 old_usemap_snr = NR_MEM_SECTIONS;
354                 old_pgdat_snr = NR_MEM_SECTIONS;
355         }
356
357         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
358         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
359         if (usemap_snr == pgdat_snr)
360                 return;
361
362         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
363                 /* skip redundant message */
364                 return;
365
366         old_usemap_snr = usemap_snr;
367         old_pgdat_snr = pgdat_snr;
368
369         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
370         if (usemap_nid != nid) {
371                 pr_info("node %d must be removed before remove section %ld\n",
372                         nid, usemap_snr);
373                 return;
374         }
375         /*
376          * There is a circular dependency.
377          * Some platforms allow un-removable section because they will just
378          * gather other removable sections for dynamic partitioning.
379          * Just notify un-removable section's number here.
380          */
381         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
382                 usemap_snr, pgdat_snr, nid);
383 }
384 #else
385 static unsigned long * __init
386 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
387                                          unsigned long size)
388 {
389         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
390 }
391
392 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
393 {
394 }
395 #endif /* CONFIG_MEMORY_HOTREMOVE */
396
397 static void __init sparse_early_usemaps_alloc_node(void *data,
398                                  unsigned long pnum_begin,
399                                  unsigned long pnum_end,
400                                  unsigned long usemap_count, int nodeid)
401 {
402         void *usemap;
403         unsigned long pnum;
404         unsigned long **usemap_map = (unsigned long **)data;
405         int size = usemap_size();
406
407         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
408                                                           size * usemap_count);
409         if (!usemap) {
410                 pr_warn("%s: allocation failed\n", __func__);
411                 return;
412         }
413
414         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
415                 if (!present_section_nr(pnum))
416                         continue;
417                 usemap_map[pnum] = usemap;
418                 usemap += size;
419                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
420         }
421 }
422
423 #ifndef CONFIG_SPARSEMEM_VMEMMAP
424 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
425 {
426         struct page *map;
427         unsigned long size;
428
429         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
430         if (map)
431                 return map;
432
433         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
434         map = memblock_virt_alloc_try_nid(size,
435                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
436                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
437         return map;
438 }
439 void __init sparse_mem_maps_populate_node(struct page **map_map,
440                                           unsigned long pnum_begin,
441                                           unsigned long pnum_end,
442                                           unsigned long map_count, int nodeid)
443 {
444         void *map;
445         unsigned long pnum;
446         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
447
448         map = alloc_remap(nodeid, size * map_count);
449         if (map) {
450                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
451                         if (!present_section_nr(pnum))
452                                 continue;
453                         map_map[pnum] = map;
454                         map += size;
455                 }
456                 return;
457         }
458
459         size = PAGE_ALIGN(size);
460         map = memblock_virt_alloc_try_nid_raw(size * map_count,
461                                               PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
462                                               BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
463         if (map) {
464                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
465                         if (!present_section_nr(pnum))
466                                 continue;
467                         map_map[pnum] = map;
468                         map += size;
469                 }
470                 return;
471         }
472
473         /* fallback */
474         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
475                 struct mem_section *ms;
476
477                 if (!present_section_nr(pnum))
478                         continue;
479                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
480                 if (map_map[pnum])
481                         continue;
482                 ms = __nr_to_section(pnum);
483                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
484                        __func__);
485                 ms->section_mem_map = 0;
486         }
487 }
488 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
489
490 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
491 static void __init sparse_early_mem_maps_alloc_node(void *data,
492                                  unsigned long pnum_begin,
493                                  unsigned long pnum_end,
494                                  unsigned long map_count, int nodeid)
495 {
496         struct page **map_map = (struct page **)data;
497         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
498                                          map_count, nodeid);
499 }
500 #else
501 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
502 {
503         struct page *map;
504         struct mem_section *ms = __nr_to_section(pnum);
505         int nid = sparse_early_nid(ms);
506
507         map = sparse_mem_map_populate(pnum, nid);
508         if (map)
509                 return map;
510
511         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
512                __func__);
513         ms->section_mem_map = 0;
514         return NULL;
515 }
516 #endif
517
518 void __weak __meminit vmemmap_populate_print_last(void)
519 {
520 }
521
522 /**
523  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
524  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
525  */
526 static void __init alloc_usemap_and_memmap(void (*alloc_func)
527                                         (void *, unsigned long, unsigned long,
528                                         unsigned long, int), void *data)
529 {
530         unsigned long pnum;
531         unsigned long map_count;
532         int nodeid_begin = 0;
533         unsigned long pnum_begin = 0;
534
535         for_each_present_section_nr(0, pnum) {
536                 struct mem_section *ms;
537
538                 ms = __nr_to_section(pnum);
539                 nodeid_begin = sparse_early_nid(ms);
540                 pnum_begin = pnum;
541                 break;
542         }
543         map_count = 1;
544         for_each_present_section_nr(pnum_begin + 1, pnum) {
545                 struct mem_section *ms;
546                 int nodeid;
547
548                 ms = __nr_to_section(pnum);
549                 nodeid = sparse_early_nid(ms);
550                 if (nodeid == nodeid_begin) {
551                         map_count++;
552                         continue;
553                 }
554                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
555                 alloc_func(data, pnum_begin, pnum,
556                                                 map_count, nodeid_begin);
557                 /* new start, update count etc*/
558                 nodeid_begin = nodeid;
559                 pnum_begin = pnum;
560                 map_count = 1;
561         }
562         /* ok, last chunk */
563         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
564                                                 map_count, nodeid_begin);
565 }
566
567 /*
568  * Allocate the accumulated non-linear sections, allocate a mem_map
569  * for each and record the physical to section mapping.
570  */
571 void __init sparse_init(void)
572 {
573         unsigned long pnum;
574         struct page *map;
575         unsigned long *usemap;
576         unsigned long **usemap_map;
577         int size;
578 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
579         int size2;
580         struct page **map_map;
581 #endif
582
583         /* see include/linux/mmzone.h 'struct mem_section' definition */
584         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
585
586         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
587         set_pageblock_order();
588
589         /*
590          * map is using big page (aka 2M in x86 64 bit)
591          * usemap is less one page (aka 24 bytes)
592          * so alloc 2M (with 2M align) and 24 bytes in turn will
593          * make next 2M slip to one more 2M later.
594          * then in big system, the memory will have a lot of holes...
595          * here try to allocate 2M pages continuously.
596          *
597          * powerpc need to call sparse_init_one_section right after each
598          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
599          */
600         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
601         usemap_map = memblock_virt_alloc(size, 0);
602         if (!usemap_map)
603                 panic("can not allocate usemap_map\n");
604         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
605                                                         (void *)usemap_map);
606
607 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
608         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
609         map_map = memblock_virt_alloc(size2, 0);
610         if (!map_map)
611                 panic("can not allocate map_map\n");
612         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
613                                                         (void *)map_map);
614 #endif
615
616         for_each_present_section_nr(0, pnum) {
617                 usemap = usemap_map[pnum];
618                 if (!usemap)
619                         continue;
620
621 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
622                 map = map_map[pnum];
623 #else
624                 map = sparse_early_mem_map_alloc(pnum);
625 #endif
626                 if (!map)
627                         continue;
628
629                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
630                                                                 usemap);
631         }
632
633         vmemmap_populate_print_last();
634
635 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
636         memblock_free_early(__pa(map_map), size2);
637 #endif
638         memblock_free_early(__pa(usemap_map), size);
639 }
640
641 #ifdef CONFIG_MEMORY_HOTPLUG
642
643 /* Mark all memory sections within the pfn range as online */
644 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
645 {
646         unsigned long pfn;
647
648         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
649                 unsigned long section_nr = pfn_to_section_nr(pfn);
650                 struct mem_section *ms;
651
652                 /* onlining code should never touch invalid ranges */
653                 if (WARN_ON(!valid_section_nr(section_nr)))
654                         continue;
655
656                 ms = __nr_to_section(section_nr);
657                 ms->section_mem_map |= SECTION_IS_ONLINE;
658         }
659 }
660
661 #ifdef CONFIG_MEMORY_HOTREMOVE
662 /* Mark all memory sections within the pfn range as online */
663 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
664 {
665         unsigned long pfn;
666
667         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
668                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
669                 struct mem_section *ms;
670
671                 /*
672                  * TODO this needs some double checking. Offlining code makes
673                  * sure to check pfn_valid but those checks might be just bogus
674                  */
675                 if (WARN_ON(!valid_section_nr(section_nr)))
676                         continue;
677
678                 ms = __nr_to_section(section_nr);
679                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
680         }
681 }
682 #endif
683
684 #ifdef CONFIG_SPARSEMEM_VMEMMAP
685 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
686 {
687         /* This will make the necessary allocations eventually. */
688         return sparse_mem_map_populate(pnum, nid);
689 }
690 static void __kfree_section_memmap(struct page *memmap)
691 {
692         unsigned long start = (unsigned long)memmap;
693         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
694
695         vmemmap_free(start, end);
696 }
697 #ifdef CONFIG_MEMORY_HOTREMOVE
698 static void free_map_bootmem(struct page *memmap)
699 {
700         unsigned long start = (unsigned long)memmap;
701         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
702
703         vmemmap_free(start, end);
704 }
705 #endif /* CONFIG_MEMORY_HOTREMOVE */
706 #else
707 static struct page *__kmalloc_section_memmap(void)
708 {
709         struct page *page, *ret;
710         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
711
712         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
713         if (page)
714                 goto got_map_page;
715
716         ret = vmalloc(memmap_size);
717         if (ret)
718                 goto got_map_ptr;
719
720         return NULL;
721 got_map_page:
722         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
723 got_map_ptr:
724
725         return ret;
726 }
727
728 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
729 {
730         return __kmalloc_section_memmap();
731 }
732
733 static void __kfree_section_memmap(struct page *memmap)
734 {
735         if (is_vmalloc_addr(memmap))
736                 vfree(memmap);
737         else
738                 free_pages((unsigned long)memmap,
739                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
740 }
741
742 #ifdef CONFIG_MEMORY_HOTREMOVE
743 static void free_map_bootmem(struct page *memmap)
744 {
745         unsigned long maps_section_nr, removing_section_nr, i;
746         unsigned long magic, nr_pages;
747         struct page *page = virt_to_page(memmap);
748
749         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
750                 >> PAGE_SHIFT;
751
752         for (i = 0; i < nr_pages; i++, page++) {
753                 magic = (unsigned long) page->freelist;
754
755                 BUG_ON(magic == NODE_INFO);
756
757                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
758                 removing_section_nr = page_private(page);
759
760                 /*
761                  * When this function is called, the removing section is
762                  * logical offlined state. This means all pages are isolated
763                  * from page allocator. If removing section's memmap is placed
764                  * on the same section, it must not be freed.
765                  * If it is freed, page allocator may allocate it which will
766                  * be removed physically soon.
767                  */
768                 if (maps_section_nr != removing_section_nr)
769                         put_page_bootmem(page);
770         }
771 }
772 #endif /* CONFIG_MEMORY_HOTREMOVE */
773 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
774
775 /*
776  * returns the number of sections whose mem_maps were properly
777  * set.  If this is <=0, then that means that the passed-in
778  * map was not consumed and must be freed.
779  */
780 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
781 {
782         unsigned long section_nr = pfn_to_section_nr(start_pfn);
783         struct mem_section *ms;
784         struct page *memmap;
785         unsigned long *usemap;
786         unsigned long flags;
787         int ret;
788
789         /*
790          * no locking for this, because it does its own
791          * plus, it does a kmalloc
792          */
793         ret = sparse_index_init(section_nr, pgdat->node_id);
794         if (ret < 0 && ret != -EEXIST)
795                 return ret;
796         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
797         if (!memmap)
798                 return -ENOMEM;
799         usemap = __kmalloc_section_usemap();
800         if (!usemap) {
801                 __kfree_section_memmap(memmap);
802                 return -ENOMEM;
803         }
804
805         pgdat_resize_lock(pgdat, &flags);
806
807         ms = __pfn_to_section(start_pfn);
808         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
809                 ret = -EEXIST;
810                 goto out;
811         }
812
813         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
814
815         section_mark_present(ms);
816
817         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
818
819 out:
820         pgdat_resize_unlock(pgdat, &flags);
821         if (ret <= 0) {
822                 kfree(usemap);
823                 __kfree_section_memmap(memmap);
824         }
825         return ret;
826 }
827
828 #ifdef CONFIG_MEMORY_HOTREMOVE
829 #ifdef CONFIG_MEMORY_FAILURE
830 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
831 {
832         int i;
833
834         if (!memmap)
835                 return;
836
837         for (i = 0; i < nr_pages; i++) {
838                 if (PageHWPoison(&memmap[i])) {
839                         atomic_long_sub(1, &num_poisoned_pages);
840                         ClearPageHWPoison(&memmap[i]);
841                 }
842         }
843 }
844 #else
845 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
846 {
847 }
848 #endif
849
850 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
851 {
852         struct page *usemap_page;
853
854         if (!usemap)
855                 return;
856
857         usemap_page = virt_to_page(usemap);
858         /*
859          * Check to see if allocation came from hot-plug-add
860          */
861         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
862                 kfree(usemap);
863                 if (memmap)
864                         __kfree_section_memmap(memmap);
865                 return;
866         }
867
868         /*
869          * The usemap came from bootmem. This is packed with other usemaps
870          * on the section which has pgdat at boot time. Just keep it as is now.
871          */
872
873         if (memmap)
874                 free_map_bootmem(memmap);
875 }
876
877 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
878                 unsigned long map_offset)
879 {
880         struct page *memmap = NULL;
881         unsigned long *usemap = NULL, flags;
882         struct pglist_data *pgdat = zone->zone_pgdat;
883
884         pgdat_resize_lock(pgdat, &flags);
885         if (ms->section_mem_map) {
886                 usemap = ms->pageblock_flags;
887                 memmap = sparse_decode_mem_map(ms->section_mem_map,
888                                                 __section_nr(ms));
889                 ms->section_mem_map = 0;
890                 ms->pageblock_flags = NULL;
891         }
892         pgdat_resize_unlock(pgdat, &flags);
893
894         clear_hwpoisoned_pages(memmap + map_offset,
895                         PAGES_PER_SECTION - map_offset);
896         free_section_usemap(memmap, usemap);
897 }
898 #endif /* CONFIG_MEMORY_HOTREMOVE */
899 #endif /* CONFIG_MEMORY_HOTPLUG */