Merge tag 'pstore-v4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[sfrench/cifs-2.6.git] / mm / sparse.c
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section       - memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26         ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available())
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         else
71                 section = memblock_virt_alloc_node(array_size, nid);
72
73         return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79         struct mem_section *section;
80
81         if (mem_section[root])
82                 return -EEXIST;
83
84         section = sparse_index_alloc(nid);
85         if (!section)
86                 return -ENOMEM;
87
88         mem_section[root] = section;
89
90         return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95         return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102         unsigned long root_nr;
103         struct mem_section* root;
104
105         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107                 if (!root)
108                         continue;
109
110                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111                      break;
112         }
113
114         VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
115
116         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121         return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133         return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138         return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143                                                 unsigned long *end_pfn)
144 {
145         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147         /*
148          * Sanity checks - do not allow an architecture to pass
149          * in larger pfns than the maximum scope of sparsemem:
150          */
151         if (*start_pfn > max_sparsemem_pfn) {
152                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154                         *start_pfn, *end_pfn, max_sparsemem_pfn);
155                 WARN_ON_ONCE(1);
156                 *start_pfn = max_sparsemem_pfn;
157                 *end_pfn = max_sparsemem_pfn;
158         } else if (*end_pfn > max_sparsemem_pfn) {
159                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161                         *start_pfn, *end_pfn, max_sparsemem_pfn);
162                 WARN_ON_ONCE(1);
163                 *end_pfn = max_sparsemem_pfn;
164         }
165 }
166
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179         int section_nr = __section_nr(ms);
180
181         if (section_nr > __highest_present_section_nr)
182                 __highest_present_section_nr = section_nr;
183
184         ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189         do {
190                 section_nr++;
191                 if (present_section_nr(section_nr))
192                         return section_nr;
193         } while ((section_nr < NR_MEM_SECTIONS) &&
194                  (section_nr <= __highest_present_section_nr));
195
196         return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)          \
199         for (section_nr = next_present_section_nr(start-1);     \
200              ((section_nr >= 0) &&                              \
201               (section_nr < NR_MEM_SECTIONS) &&                 \
202               (section_nr <= __highest_present_section_nr));    \
203              section_nr = next_present_section_nr(section_nr))
204
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208         unsigned long pfn;
209
210         start &= PAGE_SECTION_MASK;
211         mminit_validate_memmodel_limits(&start, &end);
212         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
213                 unsigned long section = pfn_to_section_nr(pfn);
214                 struct mem_section *ms;
215
216                 sparse_index_init(section, nid);
217                 set_section_nid(section, nid);
218
219                 ms = __nr_to_section(section);
220                 if (!ms->section_mem_map) {
221                         ms->section_mem_map = sparse_encode_early_nid(nid) |
222                                                         SECTION_IS_ONLINE;
223                         section_mark_present(ms);
224                 }
225         }
226 }
227
228 /*
229  * Only used by the i386 NUMA architecures, but relatively
230  * generic code.
231  */
232 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
233                                                      unsigned long end_pfn)
234 {
235         unsigned long pfn;
236         unsigned long nr_pages = 0;
237
238         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
239         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240                 if (nid != early_pfn_to_nid(pfn))
241                         continue;
242
243                 if (pfn_present(pfn))
244                         nr_pages += PAGES_PER_SECTION;
245         }
246
247         return nr_pages * sizeof(struct page);
248 }
249
250 /*
251  * Subtle, we encode the real pfn into the mem_map such that
252  * the identity pfn - section_mem_map will return the actual
253  * physical page frame number.
254  */
255 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
256 {
257         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
258 }
259
260 /*
261  * Decode mem_map from the coded memmap
262  */
263 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
264 {
265         /* mask off the extra low bits of information */
266         coded_mem_map &= SECTION_MAP_MASK;
267         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
268 }
269
270 static int __meminit sparse_init_one_section(struct mem_section *ms,
271                 unsigned long pnum, struct page *mem_map,
272                 unsigned long *pageblock_bitmap)
273 {
274         if (!present_section(ms))
275                 return -EINVAL;
276
277         ms->section_mem_map &= ~SECTION_MAP_MASK;
278         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
279                                                         SECTION_HAS_MEM_MAP;
280         ms->pageblock_flags = pageblock_bitmap;
281
282         return 1;
283 }
284
285 unsigned long usemap_size(void)
286 {
287         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
288 }
289
290 #ifdef CONFIG_MEMORY_HOTPLUG
291 static unsigned long *__kmalloc_section_usemap(void)
292 {
293         return kmalloc(usemap_size(), GFP_KERNEL);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296
297 #ifdef CONFIG_MEMORY_HOTREMOVE
298 static unsigned long * __init
299 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
300                                          unsigned long size)
301 {
302         unsigned long goal, limit;
303         unsigned long *p;
304         int nid;
305         /*
306          * A page may contain usemaps for other sections preventing the
307          * page being freed and making a section unremovable while
308          * other sections referencing the usemap remain active. Similarly,
309          * a pgdat can prevent a section being removed. If section A
310          * contains a pgdat and section B contains the usemap, both
311          * sections become inter-dependent. This allocates usemaps
312          * from the same section as the pgdat where possible to avoid
313          * this problem.
314          */
315         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
316         limit = goal + (1UL << PA_SECTION_SHIFT);
317         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
318 again:
319         p = memblock_virt_alloc_try_nid_nopanic(size,
320                                                 SMP_CACHE_BYTES, goal, limit,
321                                                 nid);
322         if (!p && limit) {
323                 limit = 0;
324                 goto again;
325         }
326         return p;
327 }
328
329 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
330 {
331         unsigned long usemap_snr, pgdat_snr;
332         static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
333         static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
334         struct pglist_data *pgdat = NODE_DATA(nid);
335         int usemap_nid;
336
337         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
338         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
339         if (usemap_snr == pgdat_snr)
340                 return;
341
342         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
343                 /* skip redundant message */
344                 return;
345
346         old_usemap_snr = usemap_snr;
347         old_pgdat_snr = pgdat_snr;
348
349         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
350         if (usemap_nid != nid) {
351                 pr_info("node %d must be removed before remove section %ld\n",
352                         nid, usemap_snr);
353                 return;
354         }
355         /*
356          * There is a circular dependency.
357          * Some platforms allow un-removable section because they will just
358          * gather other removable sections for dynamic partitioning.
359          * Just notify un-removable section's number here.
360          */
361         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
362                 usemap_snr, pgdat_snr, nid);
363 }
364 #else
365 static unsigned long * __init
366 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
367                                          unsigned long size)
368 {
369         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
370 }
371
372 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
373 {
374 }
375 #endif /* CONFIG_MEMORY_HOTREMOVE */
376
377 static void __init sparse_early_usemaps_alloc_node(void *data,
378                                  unsigned long pnum_begin,
379                                  unsigned long pnum_end,
380                                  unsigned long usemap_count, int nodeid)
381 {
382         void *usemap;
383         unsigned long pnum;
384         unsigned long **usemap_map = (unsigned long **)data;
385         int size = usemap_size();
386
387         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
388                                                           size * usemap_count);
389         if (!usemap) {
390                 pr_warn("%s: allocation failed\n", __func__);
391                 return;
392         }
393
394         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395                 if (!present_section_nr(pnum))
396                         continue;
397                 usemap_map[pnum] = usemap;
398                 usemap += size;
399                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
400         }
401 }
402
403 #ifndef CONFIG_SPARSEMEM_VMEMMAP
404 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
405 {
406         struct page *map;
407         unsigned long size;
408
409         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
410         if (map)
411                 return map;
412
413         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
414         map = memblock_virt_alloc_try_nid(size,
415                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
416                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
417         return map;
418 }
419 void __init sparse_mem_maps_populate_node(struct page **map_map,
420                                           unsigned long pnum_begin,
421                                           unsigned long pnum_end,
422                                           unsigned long map_count, int nodeid)
423 {
424         void *map;
425         unsigned long pnum;
426         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
427
428         map = alloc_remap(nodeid, size * map_count);
429         if (map) {
430                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431                         if (!present_section_nr(pnum))
432                                 continue;
433                         map_map[pnum] = map;
434                         map += size;
435                 }
436                 return;
437         }
438
439         size = PAGE_ALIGN(size);
440         map = memblock_virt_alloc_try_nid(size * map_count,
441                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
442                                           BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
443         if (map) {
444                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
445                         if (!present_section_nr(pnum))
446                                 continue;
447                         map_map[pnum] = map;
448                         map += size;
449                 }
450                 return;
451         }
452
453         /* fallback */
454         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
455                 struct mem_section *ms;
456
457                 if (!present_section_nr(pnum))
458                         continue;
459                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
460                 if (map_map[pnum])
461                         continue;
462                 ms = __nr_to_section(pnum);
463                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
464                        __func__);
465                 ms->section_mem_map = 0;
466         }
467 }
468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
469
470 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
471 static void __init sparse_early_mem_maps_alloc_node(void *data,
472                                  unsigned long pnum_begin,
473                                  unsigned long pnum_end,
474                                  unsigned long map_count, int nodeid)
475 {
476         struct page **map_map = (struct page **)data;
477         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
478                                          map_count, nodeid);
479 }
480 #else
481 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
482 {
483         struct page *map;
484         struct mem_section *ms = __nr_to_section(pnum);
485         int nid = sparse_early_nid(ms);
486
487         map = sparse_mem_map_populate(pnum, nid);
488         if (map)
489                 return map;
490
491         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
492                __func__);
493         ms->section_mem_map = 0;
494         return NULL;
495 }
496 #endif
497
498 void __weak __meminit vmemmap_populate_print_last(void)
499 {
500 }
501
502 /**
503  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
504  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
505  */
506 static void __init alloc_usemap_and_memmap(void (*alloc_func)
507                                         (void *, unsigned long, unsigned long,
508                                         unsigned long, int), void *data)
509 {
510         unsigned long pnum;
511         unsigned long map_count;
512         int nodeid_begin = 0;
513         unsigned long pnum_begin = 0;
514
515         for_each_present_section_nr(0, pnum) {
516                 struct mem_section *ms;
517
518                 ms = __nr_to_section(pnum);
519                 nodeid_begin = sparse_early_nid(ms);
520                 pnum_begin = pnum;
521                 break;
522         }
523         map_count = 1;
524         for_each_present_section_nr(pnum_begin + 1, pnum) {
525                 struct mem_section *ms;
526                 int nodeid;
527
528                 ms = __nr_to_section(pnum);
529                 nodeid = sparse_early_nid(ms);
530                 if (nodeid == nodeid_begin) {
531                         map_count++;
532                         continue;
533                 }
534                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
535                 alloc_func(data, pnum_begin, pnum,
536                                                 map_count, nodeid_begin);
537                 /* new start, update count etc*/
538                 nodeid_begin = nodeid;
539                 pnum_begin = pnum;
540                 map_count = 1;
541         }
542         /* ok, last chunk */
543         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
544                                                 map_count, nodeid_begin);
545 }
546
547 /*
548  * Allocate the accumulated non-linear sections, allocate a mem_map
549  * for each and record the physical to section mapping.
550  */
551 void __init sparse_init(void)
552 {
553         unsigned long pnum;
554         struct page *map;
555         unsigned long *usemap;
556         unsigned long **usemap_map;
557         int size;
558 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
559         int size2;
560         struct page **map_map;
561 #endif
562
563         /* see include/linux/mmzone.h 'struct mem_section' definition */
564         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565
566         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
567         set_pageblock_order();
568
569         /*
570          * map is using big page (aka 2M in x86 64 bit)
571          * usemap is less one page (aka 24 bytes)
572          * so alloc 2M (with 2M align) and 24 bytes in turn will
573          * make next 2M slip to one more 2M later.
574          * then in big system, the memory will have a lot of holes...
575          * here try to allocate 2M pages continuously.
576          *
577          * powerpc need to call sparse_init_one_section right after each
578          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
579          */
580         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
581         usemap_map = memblock_virt_alloc(size, 0);
582         if (!usemap_map)
583                 panic("can not allocate usemap_map\n");
584         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
585                                                         (void *)usemap_map);
586
587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
588         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
589         map_map = memblock_virt_alloc(size2, 0);
590         if (!map_map)
591                 panic("can not allocate map_map\n");
592         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
593                                                         (void *)map_map);
594 #endif
595
596         for_each_present_section_nr(0, pnum) {
597                 usemap = usemap_map[pnum];
598                 if (!usemap)
599                         continue;
600
601 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
602                 map = map_map[pnum];
603 #else
604                 map = sparse_early_mem_map_alloc(pnum);
605 #endif
606                 if (!map)
607                         continue;
608
609                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
610                                                                 usemap);
611         }
612
613         vmemmap_populate_print_last();
614
615 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
616         memblock_free_early(__pa(map_map), size2);
617 #endif
618         memblock_free_early(__pa(usemap_map), size);
619 }
620
621 #ifdef CONFIG_MEMORY_HOTPLUG
622
623 /* Mark all memory sections within the pfn range as online */
624 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
625 {
626         unsigned long pfn;
627
628         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
629                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
630                 struct mem_section *ms;
631
632                 /* onlining code should never touch invalid ranges */
633                 if (WARN_ON(!valid_section_nr(section_nr)))
634                         continue;
635
636                 ms = __nr_to_section(section_nr);
637                 ms->section_mem_map |= SECTION_IS_ONLINE;
638         }
639 }
640
641 #ifdef CONFIG_MEMORY_HOTREMOVE
642 /* Mark all memory sections within the pfn range as online */
643 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
644 {
645         unsigned long pfn;
646
647         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
648                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
649                 struct mem_section *ms;
650
651                 /*
652                  * TODO this needs some double checking. Offlining code makes
653                  * sure to check pfn_valid but those checks might be just bogus
654                  */
655                 if (WARN_ON(!valid_section_nr(section_nr)))
656                         continue;
657
658                 ms = __nr_to_section(section_nr);
659                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
660         }
661 }
662 #endif
663
664 #ifdef CONFIG_SPARSEMEM_VMEMMAP
665 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
666 {
667         /* This will make the necessary allocations eventually. */
668         return sparse_mem_map_populate(pnum, nid);
669 }
670 static void __kfree_section_memmap(struct page *memmap)
671 {
672         unsigned long start = (unsigned long)memmap;
673         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
674
675         vmemmap_free(start, end);
676 }
677 #ifdef CONFIG_MEMORY_HOTREMOVE
678 static void free_map_bootmem(struct page *memmap)
679 {
680         unsigned long start = (unsigned long)memmap;
681         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
682
683         vmemmap_free(start, end);
684 }
685 #endif /* CONFIG_MEMORY_HOTREMOVE */
686 #else
687 static struct page *__kmalloc_section_memmap(void)
688 {
689         struct page *page, *ret;
690         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
691
692         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
693         if (page)
694                 goto got_map_page;
695
696         ret = vmalloc(memmap_size);
697         if (ret)
698                 goto got_map_ptr;
699
700         return NULL;
701 got_map_page:
702         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
703 got_map_ptr:
704
705         return ret;
706 }
707
708 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
709 {
710         return __kmalloc_section_memmap();
711 }
712
713 static void __kfree_section_memmap(struct page *memmap)
714 {
715         if (is_vmalloc_addr(memmap))
716                 vfree(memmap);
717         else
718                 free_pages((unsigned long)memmap,
719                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
720 }
721
722 #ifdef CONFIG_MEMORY_HOTREMOVE
723 static void free_map_bootmem(struct page *memmap)
724 {
725         unsigned long maps_section_nr, removing_section_nr, i;
726         unsigned long magic, nr_pages;
727         struct page *page = virt_to_page(memmap);
728
729         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
730                 >> PAGE_SHIFT;
731
732         for (i = 0; i < nr_pages; i++, page++) {
733                 magic = (unsigned long) page->freelist;
734
735                 BUG_ON(magic == NODE_INFO);
736
737                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
738                 removing_section_nr = page_private(page);
739
740                 /*
741                  * When this function is called, the removing section is
742                  * logical offlined state. This means all pages are isolated
743                  * from page allocator. If removing section's memmap is placed
744                  * on the same section, it must not be freed.
745                  * If it is freed, page allocator may allocate it which will
746                  * be removed physically soon.
747                  */
748                 if (maps_section_nr != removing_section_nr)
749                         put_page_bootmem(page);
750         }
751 }
752 #endif /* CONFIG_MEMORY_HOTREMOVE */
753 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
754
755 /*
756  * returns the number of sections whose mem_maps were properly
757  * set.  If this is <=0, then that means that the passed-in
758  * map was not consumed and must be freed.
759  */
760 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
761 {
762         unsigned long section_nr = pfn_to_section_nr(start_pfn);
763         struct mem_section *ms;
764         struct page *memmap;
765         unsigned long *usemap;
766         unsigned long flags;
767         int ret;
768
769         /*
770          * no locking for this, because it does its own
771          * plus, it does a kmalloc
772          */
773         ret = sparse_index_init(section_nr, pgdat->node_id);
774         if (ret < 0 && ret != -EEXIST)
775                 return ret;
776         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
777         if (!memmap)
778                 return -ENOMEM;
779         usemap = __kmalloc_section_usemap();
780         if (!usemap) {
781                 __kfree_section_memmap(memmap);
782                 return -ENOMEM;
783         }
784
785         pgdat_resize_lock(pgdat, &flags);
786
787         ms = __pfn_to_section(start_pfn);
788         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
789                 ret = -EEXIST;
790                 goto out;
791         }
792
793         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
794
795         section_mark_present(ms);
796
797         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
798
799 out:
800         pgdat_resize_unlock(pgdat, &flags);
801         if (ret <= 0) {
802                 kfree(usemap);
803                 __kfree_section_memmap(memmap);
804         }
805         return ret;
806 }
807
808 #ifdef CONFIG_MEMORY_HOTREMOVE
809 #ifdef CONFIG_MEMORY_FAILURE
810 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
811 {
812         int i;
813
814         if (!memmap)
815                 return;
816
817         for (i = 0; i < nr_pages; i++) {
818                 if (PageHWPoison(&memmap[i])) {
819                         atomic_long_sub(1, &num_poisoned_pages);
820                         ClearPageHWPoison(&memmap[i]);
821                 }
822         }
823 }
824 #else
825 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
826 {
827 }
828 #endif
829
830 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
831 {
832         struct page *usemap_page;
833
834         if (!usemap)
835                 return;
836
837         usemap_page = virt_to_page(usemap);
838         /*
839          * Check to see if allocation came from hot-plug-add
840          */
841         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
842                 kfree(usemap);
843                 if (memmap)
844                         __kfree_section_memmap(memmap);
845                 return;
846         }
847
848         /*
849          * The usemap came from bootmem. This is packed with other usemaps
850          * on the section which has pgdat at boot time. Just keep it as is now.
851          */
852
853         if (memmap)
854                 free_map_bootmem(memmap);
855 }
856
857 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
858                 unsigned long map_offset)
859 {
860         struct page *memmap = NULL;
861         unsigned long *usemap = NULL, flags;
862         struct pglist_data *pgdat = zone->zone_pgdat;
863
864         pgdat_resize_lock(pgdat, &flags);
865         if (ms->section_mem_map) {
866                 usemap = ms->pageblock_flags;
867                 memmap = sparse_decode_mem_map(ms->section_mem_map,
868                                                 __section_nr(ms));
869                 ms->section_mem_map = 0;
870                 ms->pageblock_flags = NULL;
871         }
872         pgdat_resize_unlock(pgdat, &flags);
873
874         clear_hwpoisoned_pages(memmap + map_offset,
875                         PAGES_PER_SECTION - map_offset);
876         free_section_usemap(memmap, usemap);
877 }
878 #endif /* CONFIG_MEMORY_HOTREMOVE */
879 #endif /* CONFIG_MEMORY_HOTPLUG */