net: phy: realtek: add missing page operations
[sfrench/cifs-2.6.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available()) {
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         } else {
71                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72                                               nid);
73                 if (!section)
74                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
75                               __func__, array_size, nid);
76         }
77
78         return section;
79 }
80
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84         struct mem_section *section;
85
86         if (mem_section[root])
87                 return -EEXIST;
88
89         section = sparse_index_alloc(nid);
90         if (!section)
91                 return -ENOMEM;
92
93         mem_section[root] = section;
94
95         return 0;
96 }
97 #else /* !SPARSEMEM_EXTREME */
98 static inline int sparse_index_init(unsigned long section_nr, int nid)
99 {
100         return 0;
101 }
102 #endif
103
104 #ifdef CONFIG_SPARSEMEM_EXTREME
105 int __section_nr(struct mem_section* ms)
106 {
107         unsigned long root_nr;
108         struct mem_section *root = NULL;
109
110         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
111                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
112                 if (!root)
113                         continue;
114
115                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
116                      break;
117         }
118
119         VM_BUG_ON(!root);
120
121         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
122 }
123 #else
124 int __section_nr(struct mem_section* ms)
125 {
126         return (int)(ms - mem_section[0]);
127 }
128 #endif
129
130 /*
131  * During early boot, before section_mem_map is used for an actual
132  * mem_map, we use section_mem_map to store the section's NUMA
133  * node.  This keeps us from having to use another data structure.  The
134  * node information is cleared just before we store the real mem_map.
135  */
136 static inline unsigned long sparse_encode_early_nid(int nid)
137 {
138         return (nid << SECTION_NID_SHIFT);
139 }
140
141 static inline int sparse_early_nid(struct mem_section *section)
142 {
143         return (section->section_mem_map >> SECTION_NID_SHIFT);
144 }
145
146 /* Validate the physical addressing limitations of the model */
147 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
148                                                 unsigned long *end_pfn)
149 {
150         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
151
152         /*
153          * Sanity checks - do not allow an architecture to pass
154          * in larger pfns than the maximum scope of sparsemem:
155          */
156         if (*start_pfn > max_sparsemem_pfn) {
157                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
158                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
159                         *start_pfn, *end_pfn, max_sparsemem_pfn);
160                 WARN_ON_ONCE(1);
161                 *start_pfn = max_sparsemem_pfn;
162                 *end_pfn = max_sparsemem_pfn;
163         } else if (*end_pfn > max_sparsemem_pfn) {
164                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166                         *start_pfn, *end_pfn, max_sparsemem_pfn);
167                 WARN_ON_ONCE(1);
168                 *end_pfn = max_sparsemem_pfn;
169         }
170 }
171
172 /*
173  * There are a number of times that we loop over NR_MEM_SECTIONS,
174  * looking for section_present() on each.  But, when we have very
175  * large physical address spaces, NR_MEM_SECTIONS can also be
176  * very large which makes the loops quite long.
177  *
178  * Keeping track of this gives us an easy way to break out of
179  * those loops early.
180  */
181 int __highest_present_section_nr;
182 static void section_mark_present(struct mem_section *ms)
183 {
184         int section_nr = __section_nr(ms);
185
186         if (section_nr > __highest_present_section_nr)
187                 __highest_present_section_nr = section_nr;
188
189         ms->section_mem_map |= SECTION_MARKED_PRESENT;
190 }
191
192 static inline int next_present_section_nr(int section_nr)
193 {
194         do {
195                 section_nr++;
196                 if (present_section_nr(section_nr))
197                         return section_nr;
198         } while ((section_nr <= __highest_present_section_nr));
199
200         return -1;
201 }
202 #define for_each_present_section_nr(start, section_nr)          \
203         for (section_nr = next_present_section_nr(start-1);     \
204              ((section_nr != -1) &&                             \
205               (section_nr <= __highest_present_section_nr));    \
206              section_nr = next_present_section_nr(section_nr))
207
208 static inline unsigned long first_present_section_nr(void)
209 {
210         return next_present_section_nr(-1);
211 }
212
213 /* Record a memory area against a node. */
214 void __init memory_present(int nid, unsigned long start, unsigned long end)
215 {
216         unsigned long pfn;
217
218 #ifdef CONFIG_SPARSEMEM_EXTREME
219         if (unlikely(!mem_section)) {
220                 unsigned long size, align;
221
222                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
223                 align = 1 << (INTERNODE_CACHE_SHIFT);
224                 mem_section = memblock_alloc(size, align);
225                 if (!mem_section)
226                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
227                               __func__, size, align);
228         }
229 #endif
230
231         start &= PAGE_SECTION_MASK;
232         mminit_validate_memmodel_limits(&start, &end);
233         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
234                 unsigned long section = pfn_to_section_nr(pfn);
235                 struct mem_section *ms;
236
237                 sparse_index_init(section, nid);
238                 set_section_nid(section, nid);
239
240                 ms = __nr_to_section(section);
241                 if (!ms->section_mem_map) {
242                         ms->section_mem_map = sparse_encode_early_nid(nid) |
243                                                         SECTION_IS_ONLINE;
244                         section_mark_present(ms);
245                 }
246         }
247 }
248
249 /*
250  * Mark all memblocks as present using memory_present(). This is a
251  * convienence function that is useful for a number of arches
252  * to mark all of the systems memory as present during initialization.
253  */
254 void __init memblocks_present(void)
255 {
256         struct memblock_region *reg;
257
258         for_each_memblock(memory, reg) {
259                 memory_present(memblock_get_region_node(reg),
260                                memblock_region_memory_base_pfn(reg),
261                                memblock_region_memory_end_pfn(reg));
262         }
263 }
264
265 /*
266  * Subtle, we encode the real pfn into the mem_map such that
267  * the identity pfn - section_mem_map will return the actual
268  * physical page frame number.
269  */
270 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
271 {
272         unsigned long coded_mem_map =
273                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
274         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
275         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
276         return coded_mem_map;
277 }
278
279 /*
280  * Decode mem_map from the coded memmap
281  */
282 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
283 {
284         /* mask off the extra low bits of information */
285         coded_mem_map &= SECTION_MAP_MASK;
286         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
287 }
288
289 static void __meminit sparse_init_one_section(struct mem_section *ms,
290                 unsigned long pnum, struct page *mem_map,
291                 unsigned long *pageblock_bitmap)
292 {
293         ms->section_mem_map &= ~SECTION_MAP_MASK;
294         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
295                                                         SECTION_HAS_MEM_MAP;
296         ms->pageblock_flags = pageblock_bitmap;
297 }
298
299 unsigned long usemap_size(void)
300 {
301         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302 }
303
304 #ifdef CONFIG_MEMORY_HOTPLUG
305 static unsigned long *__kmalloc_section_usemap(void)
306 {
307         return kmalloc(usemap_size(), GFP_KERNEL);
308 }
309 #endif /* CONFIG_MEMORY_HOTPLUG */
310
311 #ifdef CONFIG_MEMORY_HOTREMOVE
312 static unsigned long * __init
313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314                                          unsigned long size)
315 {
316         unsigned long goal, limit;
317         unsigned long *p;
318         int nid;
319         /*
320          * A page may contain usemaps for other sections preventing the
321          * page being freed and making a section unremovable while
322          * other sections referencing the usemap remain active. Similarly,
323          * a pgdat can prevent a section being removed. If section A
324          * contains a pgdat and section B contains the usemap, both
325          * sections become inter-dependent. This allocates usemaps
326          * from the same section as the pgdat where possible to avoid
327          * this problem.
328          */
329         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330         limit = goal + (1UL << PA_SECTION_SHIFT);
331         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332 again:
333         p = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
334         if (!p && limit) {
335                 limit = 0;
336                 goto again;
337         }
338         return p;
339 }
340
341 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
342 {
343         unsigned long usemap_snr, pgdat_snr;
344         static unsigned long old_usemap_snr;
345         static unsigned long old_pgdat_snr;
346         struct pglist_data *pgdat = NODE_DATA(nid);
347         int usemap_nid;
348
349         /* First call */
350         if (!old_usemap_snr) {
351                 old_usemap_snr = NR_MEM_SECTIONS;
352                 old_pgdat_snr = NR_MEM_SECTIONS;
353         }
354
355         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
356         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
357         if (usemap_snr == pgdat_snr)
358                 return;
359
360         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
361                 /* skip redundant message */
362                 return;
363
364         old_usemap_snr = usemap_snr;
365         old_pgdat_snr = pgdat_snr;
366
367         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
368         if (usemap_nid != nid) {
369                 pr_info("node %d must be removed before remove section %ld\n",
370                         nid, usemap_snr);
371                 return;
372         }
373         /*
374          * There is a circular dependency.
375          * Some platforms allow un-removable section because they will just
376          * gather other removable sections for dynamic partitioning.
377          * Just notify un-removable section's number here.
378          */
379         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
380                 usemap_snr, pgdat_snr, nid);
381 }
382 #else
383 static unsigned long * __init
384 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
385                                          unsigned long size)
386 {
387         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
388 }
389
390 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
391 {
392 }
393 #endif /* CONFIG_MEMORY_HOTREMOVE */
394
395 #ifdef CONFIG_SPARSEMEM_VMEMMAP
396 static unsigned long __init section_map_size(void)
397 {
398         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
399 }
400
401 #else
402 static unsigned long __init section_map_size(void)
403 {
404         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
405 }
406
407 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
408                 struct vmem_altmap *altmap)
409 {
410         unsigned long size = section_map_size();
411         struct page *map = sparse_buffer_alloc(size);
412         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
413
414         if (map)
415                 return map;
416
417         map = memblock_alloc_try_nid(size,
418                                           PAGE_SIZE, addr,
419                                           MEMBLOCK_ALLOC_ACCESSIBLE, nid);
420         if (!map)
421                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
422                       __func__, size, PAGE_SIZE, nid, &addr);
423
424         return map;
425 }
426 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
427
428 static void *sparsemap_buf __meminitdata;
429 static void *sparsemap_buf_end __meminitdata;
430
431 static void __init sparse_buffer_init(unsigned long size, int nid)
432 {
433         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
434         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
435         sparsemap_buf =
436                 memblock_alloc_try_nid_raw(size, PAGE_SIZE,
437                                                 addr,
438                                                 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
439         sparsemap_buf_end = sparsemap_buf + size;
440 }
441
442 static void __init sparse_buffer_fini(void)
443 {
444         unsigned long size = sparsemap_buf_end - sparsemap_buf;
445
446         if (sparsemap_buf && size > 0)
447                 memblock_free_early(__pa(sparsemap_buf), size);
448         sparsemap_buf = NULL;
449 }
450
451 void * __meminit sparse_buffer_alloc(unsigned long size)
452 {
453         void *ptr = NULL;
454
455         if (sparsemap_buf) {
456                 ptr = PTR_ALIGN(sparsemap_buf, size);
457                 if (ptr + size > sparsemap_buf_end)
458                         ptr = NULL;
459                 else
460                         sparsemap_buf = ptr + size;
461         }
462         return ptr;
463 }
464
465 void __weak __meminit vmemmap_populate_print_last(void)
466 {
467 }
468
469 /*
470  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
471  * And number of present sections in this node is map_count.
472  */
473 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
474                                    unsigned long pnum_end,
475                                    unsigned long map_count)
476 {
477         unsigned long pnum, usemap_longs, *usemap;
478         struct page *map;
479
480         usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
481         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
482                                                           usemap_size() *
483                                                           map_count);
484         if (!usemap) {
485                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
486                 goto failed;
487         }
488         sparse_buffer_init(map_count * section_map_size(), nid);
489         for_each_present_section_nr(pnum_begin, pnum) {
490                 if (pnum >= pnum_end)
491                         break;
492
493                 map = sparse_mem_map_populate(pnum, nid, NULL);
494                 if (!map) {
495                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
496                                __func__, nid);
497                         pnum_begin = pnum;
498                         goto failed;
499                 }
500                 check_usemap_section_nr(nid, usemap);
501                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
502                 usemap += usemap_longs;
503         }
504         sparse_buffer_fini();
505         return;
506 failed:
507         /* We failed to allocate, mark all the following pnums as not present */
508         for_each_present_section_nr(pnum_begin, pnum) {
509                 struct mem_section *ms;
510
511                 if (pnum >= pnum_end)
512                         break;
513                 ms = __nr_to_section(pnum);
514                 ms->section_mem_map = 0;
515         }
516 }
517
518 /*
519  * Allocate the accumulated non-linear sections, allocate a mem_map
520  * for each and record the physical to section mapping.
521  */
522 void __init sparse_init(void)
523 {
524         unsigned long pnum_begin = first_present_section_nr();
525         int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
526         unsigned long pnum_end, map_count = 1;
527
528         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
529         set_pageblock_order();
530
531         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
532                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
533
534                 if (nid == nid_begin) {
535                         map_count++;
536                         continue;
537                 }
538                 /* Init node with sections in range [pnum_begin, pnum_end) */
539                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
540                 nid_begin = nid;
541                 pnum_begin = pnum_end;
542                 map_count = 1;
543         }
544         /* cover the last node */
545         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
546         vmemmap_populate_print_last();
547 }
548
549 #ifdef CONFIG_MEMORY_HOTPLUG
550
551 /* Mark all memory sections within the pfn range as online */
552 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
553 {
554         unsigned long pfn;
555
556         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
557                 unsigned long section_nr = pfn_to_section_nr(pfn);
558                 struct mem_section *ms;
559
560                 /* onlining code should never touch invalid ranges */
561                 if (WARN_ON(!valid_section_nr(section_nr)))
562                         continue;
563
564                 ms = __nr_to_section(section_nr);
565                 ms->section_mem_map |= SECTION_IS_ONLINE;
566         }
567 }
568
569 #ifdef CONFIG_MEMORY_HOTREMOVE
570 /* Mark all memory sections within the pfn range as offline */
571 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
572 {
573         unsigned long pfn;
574
575         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
576                 unsigned long section_nr = pfn_to_section_nr(pfn);
577                 struct mem_section *ms;
578
579                 /*
580                  * TODO this needs some double checking. Offlining code makes
581                  * sure to check pfn_valid but those checks might be just bogus
582                  */
583                 if (WARN_ON(!valid_section_nr(section_nr)))
584                         continue;
585
586                 ms = __nr_to_section(section_nr);
587                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
588         }
589 }
590 #endif
591
592 #ifdef CONFIG_SPARSEMEM_VMEMMAP
593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
594                 struct vmem_altmap *altmap)
595 {
596         /* This will make the necessary allocations eventually. */
597         return sparse_mem_map_populate(pnum, nid, altmap);
598 }
599 static void __kfree_section_memmap(struct page *memmap,
600                 struct vmem_altmap *altmap)
601 {
602         unsigned long start = (unsigned long)memmap;
603         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
604
605         vmemmap_free(start, end, altmap);
606 }
607 #ifdef CONFIG_MEMORY_HOTREMOVE
608 static void free_map_bootmem(struct page *memmap)
609 {
610         unsigned long start = (unsigned long)memmap;
611         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
612
613         vmemmap_free(start, end, NULL);
614 }
615 #endif /* CONFIG_MEMORY_HOTREMOVE */
616 #else
617 static struct page *__kmalloc_section_memmap(void)
618 {
619         struct page *page, *ret;
620         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
621
622         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
623         if (page)
624                 goto got_map_page;
625
626         ret = vmalloc(memmap_size);
627         if (ret)
628                 goto got_map_ptr;
629
630         return NULL;
631 got_map_page:
632         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633 got_map_ptr:
634
635         return ret;
636 }
637
638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
639                 struct vmem_altmap *altmap)
640 {
641         return __kmalloc_section_memmap();
642 }
643
644 static void __kfree_section_memmap(struct page *memmap,
645                 struct vmem_altmap *altmap)
646 {
647         if (is_vmalloc_addr(memmap))
648                 vfree(memmap);
649         else
650                 free_pages((unsigned long)memmap,
651                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
652 }
653
654 #ifdef CONFIG_MEMORY_HOTREMOVE
655 static void free_map_bootmem(struct page *memmap)
656 {
657         unsigned long maps_section_nr, removing_section_nr, i;
658         unsigned long magic, nr_pages;
659         struct page *page = virt_to_page(memmap);
660
661         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
662                 >> PAGE_SHIFT;
663
664         for (i = 0; i < nr_pages; i++, page++) {
665                 magic = (unsigned long) page->freelist;
666
667                 BUG_ON(magic == NODE_INFO);
668
669                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
670                 removing_section_nr = page_private(page);
671
672                 /*
673                  * When this function is called, the removing section is
674                  * logical offlined state. This means all pages are isolated
675                  * from page allocator. If removing section's memmap is placed
676                  * on the same section, it must not be freed.
677                  * If it is freed, page allocator may allocate it which will
678                  * be removed physically soon.
679                  */
680                 if (maps_section_nr != removing_section_nr)
681                         put_page_bootmem(page);
682         }
683 }
684 #endif /* CONFIG_MEMORY_HOTREMOVE */
685 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
686
687 /*
688  * returns the number of sections whose mem_maps were properly
689  * set.  If this is <=0, then that means that the passed-in
690  * map was not consumed and must be freed.
691  */
692 int __meminit sparse_add_one_section(int nid, unsigned long start_pfn,
693                                      struct vmem_altmap *altmap)
694 {
695         unsigned long section_nr = pfn_to_section_nr(start_pfn);
696         struct mem_section *ms;
697         struct page *memmap;
698         unsigned long *usemap;
699         int ret;
700
701         /*
702          * no locking for this, because it does its own
703          * plus, it does a kmalloc
704          */
705         ret = sparse_index_init(section_nr, nid);
706         if (ret < 0 && ret != -EEXIST)
707                 return ret;
708         ret = 0;
709         memmap = kmalloc_section_memmap(section_nr, nid, altmap);
710         if (!memmap)
711                 return -ENOMEM;
712         usemap = __kmalloc_section_usemap();
713         if (!usemap) {
714                 __kfree_section_memmap(memmap, altmap);
715                 return -ENOMEM;
716         }
717
718         ms = __pfn_to_section(start_pfn);
719         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
720                 ret = -EEXIST;
721                 goto out;
722         }
723
724         /*
725          * Poison uninitialized struct pages in order to catch invalid flags
726          * combinations.
727          */
728         page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION);
729
730         section_mark_present(ms);
731         sparse_init_one_section(ms, section_nr, memmap, usemap);
732
733 out:
734         if (ret < 0) {
735                 kfree(usemap);
736                 __kfree_section_memmap(memmap, altmap);
737         }
738         return ret;
739 }
740
741 #ifdef CONFIG_MEMORY_HOTREMOVE
742 #ifdef CONFIG_MEMORY_FAILURE
743 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
744 {
745         int i;
746
747         if (!memmap)
748                 return;
749
750         /*
751          * A further optimization is to have per section refcounted
752          * num_poisoned_pages.  But that would need more space per memmap, so
753          * for now just do a quick global check to speed up this routine in the
754          * absence of bad pages.
755          */
756         if (atomic_long_read(&num_poisoned_pages) == 0)
757                 return;
758
759         for (i = 0; i < nr_pages; i++) {
760                 if (PageHWPoison(&memmap[i])) {
761                         atomic_long_sub(1, &num_poisoned_pages);
762                         ClearPageHWPoison(&memmap[i]);
763                 }
764         }
765 }
766 #else
767 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
768 {
769 }
770 #endif
771
772 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
773                 struct vmem_altmap *altmap)
774 {
775         struct page *usemap_page;
776
777         if (!usemap)
778                 return;
779
780         usemap_page = virt_to_page(usemap);
781         /*
782          * Check to see if allocation came from hot-plug-add
783          */
784         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
785                 kfree(usemap);
786                 if (memmap)
787                         __kfree_section_memmap(memmap, altmap);
788                 return;
789         }
790
791         /*
792          * The usemap came from bootmem. This is packed with other usemaps
793          * on the section which has pgdat at boot time. Just keep it as is now.
794          */
795
796         if (memmap)
797                 free_map_bootmem(memmap);
798 }
799
800 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
801                 unsigned long map_offset, struct vmem_altmap *altmap)
802 {
803         struct page *memmap = NULL;
804         unsigned long *usemap = NULL;
805
806         if (ms->section_mem_map) {
807                 usemap = ms->pageblock_flags;
808                 memmap = sparse_decode_mem_map(ms->section_mem_map,
809                                                 __section_nr(ms));
810                 ms->section_mem_map = 0;
811                 ms->pageblock_flags = NULL;
812         }
813
814         clear_hwpoisoned_pages(memmap + map_offset,
815                         PAGES_PER_SECTION - map_offset);
816         free_section_usemap(memmap, usemap, altmap);
817 }
818 #endif /* CONFIG_MEMORY_HOTREMOVE */
819 #endif /* CONFIG_MEMORY_HOTPLUG */