Merge tag 'xtensa-20170403' of git://github.com/jcmvbkbc/linux-xtensa
[sfrench/cifs-2.6.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE               max(HZ/5, 1)
49
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
55
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT    10
62
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 struct wb_domain global_wb_domain;
127
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131         struct wb_domain        *dom;
132         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
133 #endif
134         struct bdi_writeback    *wb;
135         struct fprop_local_percpu *wb_completions;
136
137         unsigned long           avail;          /* dirtyable */
138         unsigned long           dirty;          /* file_dirty + write + nfs */
139         unsigned long           thresh;         /* dirty threshold */
140         unsigned long           bg_thresh;      /* dirty background threshold */
141
142         unsigned long           wb_dirty;       /* per-wb counterparts */
143         unsigned long           wb_thresh;
144         unsigned long           wb_bg_thresh;
145
146         unsigned long           pos_ratio;
147 };
148
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 #ifdef CONFIG_CGROUP_WRITEBACK
157
158 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
159                                 .dom = &global_wb_domain,               \
160                                 .wb_completions = &(__wb)->completions
161
162 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
163
164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
165                                 .dom = mem_cgroup_wb_domain(__wb),      \
166                                 .wb_completions = &(__wb)->memcg_completions, \
167                                 .gdtc = __gdtc
168
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171         return dtc->dom;
172 }
173
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176         return dtc->dom;
177 }
178
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181         return mdtc->gdtc;
182 }
183
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186         return &wb->memcg_completions;
187 }
188
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190                              unsigned long *minp, unsigned long *maxp)
191 {
192         unsigned long this_bw = wb->avg_write_bandwidth;
193         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194         unsigned long long min = wb->bdi->min_ratio;
195         unsigned long long max = wb->bdi->max_ratio;
196
197         /*
198          * @wb may already be clean by the time control reaches here and
199          * the total may not include its bw.
200          */
201         if (this_bw < tot_bw) {
202                 if (min) {
203                         min *= this_bw;
204                         do_div(min, tot_bw);
205                 }
206                 if (max < 100) {
207                         max *= this_bw;
208                         do_div(max, tot_bw);
209                 }
210         }
211
212         *minp = min;
213         *maxp = max;
214 }
215
216 #else   /* CONFIG_CGROUP_WRITEBACK */
217
218 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
219                                 .wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225         return false;
226 }
227
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230         return &global_wb_domain;
231 }
232
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235         return NULL;
236 }
237
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240         return NULL;
241 }
242
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244                              unsigned long *minp, unsigned long *maxp)
245 {
246         *minp = wb->bdi->min_ratio;
247         *maxp = wb->bdi->max_ratio;
248 }
249
250 #endif  /* CONFIG_CGROUP_WRITEBACK */
251
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effictive number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Returns the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279         unsigned long nr_pages = 0;
280         int z;
281
282         for (z = 0; z < MAX_NR_ZONES; z++) {
283                 struct zone *zone = pgdat->node_zones + z;
284
285                 if (!populated_zone(zone))
286                         continue;
287
288                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289         }
290
291         /*
292          * Pages reserved for the kernel should not be considered
293          * dirtyable, to prevent a situation where reclaim has to
294          * clean pages in order to balance the zones.
295          */
296         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297
298         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300
301         return nr_pages;
302 }
303
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307         int node;
308         unsigned long x = 0;
309         int i;
310
311         for_each_node_state(node, N_HIGH_MEMORY) {
312                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313                         struct zone *z;
314                         unsigned long nr_pages;
315
316                         if (!is_highmem_idx(i))
317                                 continue;
318
319                         z = &NODE_DATA(node)->node_zones[i];
320                         if (!populated_zone(z))
321                                 continue;
322
323                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
324                         /* watch for underflows */
325                         nr_pages -= min(nr_pages, high_wmark_pages(z));
326                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328                         x += nr_pages;
329                 }
330         }
331
332         /*
333          * Unreclaimable memory (kernel memory or anonymous memory
334          * without swap) can bring down the dirtyable pages below
335          * the zone's dirty balance reserve and the above calculation
336          * will underflow.  However we still want to add in nodes
337          * which are below threshold (negative values) to get a more
338          * accurate calculation but make sure that the total never
339          * underflows.
340          */
341         if ((long)x < 0)
342                 x = 0;
343
344         /*
345          * Make sure that the number of highmem pages is never larger
346          * than the number of the total dirtyable memory. This can only
347          * occur in very strange VM situations but we want to make sure
348          * that this does not occur.
349          */
350         return min(x, total);
351 #else
352         return 0;
353 #endif
354 }
355
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Returns the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364         unsigned long x;
365
366         x = global_page_state(NR_FREE_PAGES);
367         /*
368          * Pages reserved for the kernel should not be considered
369          * dirtyable, to prevent a situation where reclaim has to
370          * clean pages in order to balance the zones.
371          */
372         x -= min(x, totalreserve_pages);
373
374         x += global_node_page_state(NR_INACTIVE_FILE);
375         x += global_node_page_state(NR_ACTIVE_FILE);
376
377         if (!vm_highmem_is_dirtyable)
378                 x -= highmem_dirtyable_memory(x);
379
380         return x + 1;   /* Ensure that we never return 0 */
381 }
382
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391  * real-time tasks.
392  */
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 {
395         const unsigned long available_memory = dtc->avail;
396         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397         unsigned long bytes = vm_dirty_bytes;
398         unsigned long bg_bytes = dirty_background_bytes;
399         /* convert ratios to per-PAGE_SIZE for higher precision */
400         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402         unsigned long thresh;
403         unsigned long bg_thresh;
404         struct task_struct *tsk;
405
406         /* gdtc is !NULL iff @dtc is for memcg domain */
407         if (gdtc) {
408                 unsigned long global_avail = gdtc->avail;
409
410                 /*
411                  * The byte settings can't be applied directly to memcg
412                  * domains.  Convert them to ratios by scaling against
413                  * globally available memory.  As the ratios are in
414                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
415                  * number of pages.
416                  */
417                 if (bytes)
418                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
419                                     PAGE_SIZE);
420                 if (bg_bytes)
421                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422                                        PAGE_SIZE);
423                 bytes = bg_bytes = 0;
424         }
425
426         if (bytes)
427                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428         else
429                 thresh = (ratio * available_memory) / PAGE_SIZE;
430
431         if (bg_bytes)
432                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433         else
434                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435
436         if (bg_thresh >= thresh)
437                 bg_thresh = thresh / 2;
438         tsk = current;
439         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442         }
443         dtc->thresh = thresh;
444         dtc->bg_thresh = bg_thresh;
445
446         /* we should eventually report the domain in the TP */
447         if (!gdtc)
448                 trace_global_dirty_state(bg_thresh, thresh);
449 }
450
451 /**
452  * global_dirty_limits - background-writeback and dirty-throttling thresholds
453  * @pbackground: out parameter for bg_thresh
454  * @pdirty: out parameter for thresh
455  *
456  * Calculate bg_thresh and thresh for global_wb_domain.  See
457  * domain_dirty_limits() for details.
458  */
459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460 {
461         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462
463         gdtc.avail = global_dirtyable_memory();
464         domain_dirty_limits(&gdtc);
465
466         *pbackground = gdtc.bg_thresh;
467         *pdirty = gdtc.thresh;
468 }
469
470 /**
471  * node_dirty_limit - maximum number of dirty pages allowed in a node
472  * @pgdat: the node
473  *
474  * Returns the maximum number of dirty pages allowed in a node, based
475  * on the node's dirtyable memory.
476  */
477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478 {
479         unsigned long node_memory = node_dirtyable_memory(pgdat);
480         struct task_struct *tsk = current;
481         unsigned long dirty;
482
483         if (vm_dirty_bytes)
484                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485                         node_memory / global_dirtyable_memory();
486         else
487                 dirty = vm_dirty_ratio * node_memory / 100;
488
489         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490                 dirty += dirty / 4;
491
492         return dirty;
493 }
494
495 /**
496  * node_dirty_ok - tells whether a node is within its dirty limits
497  * @pgdat: the node to check
498  *
499  * Returns %true when the dirty pages in @pgdat are within the node's
500  * dirty limit, %false if the limit is exceeded.
501  */
502 bool node_dirty_ok(struct pglist_data *pgdat)
503 {
504         unsigned long limit = node_dirty_limit(pgdat);
505         unsigned long nr_pages = 0;
506
507         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508         nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510
511         return nr_pages <= limit;
512 }
513
514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
515                 void __user *buffer, size_t *lenp,
516                 loff_t *ppos)
517 {
518         int ret;
519
520         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521         if (ret == 0 && write)
522                 dirty_background_bytes = 0;
523         return ret;
524 }
525
526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527                 void __user *buffer, size_t *lenp,
528                 loff_t *ppos)
529 {
530         int ret;
531
532         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
533         if (ret == 0 && write)
534                 dirty_background_ratio = 0;
535         return ret;
536 }
537
538 int dirty_ratio_handler(struct ctl_table *table, int write,
539                 void __user *buffer, size_t *lenp,
540                 loff_t *ppos)
541 {
542         int old_ratio = vm_dirty_ratio;
543         int ret;
544
545         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
546         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
547                 writeback_set_ratelimit();
548                 vm_dirty_bytes = 0;
549         }
550         return ret;
551 }
552
553 int dirty_bytes_handler(struct ctl_table *table, int write,
554                 void __user *buffer, size_t *lenp,
555                 loff_t *ppos)
556 {
557         unsigned long old_bytes = vm_dirty_bytes;
558         int ret;
559
560         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562                 writeback_set_ratelimit();
563                 vm_dirty_ratio = 0;
564         }
565         return ret;
566 }
567
568 static unsigned long wp_next_time(unsigned long cur_time)
569 {
570         cur_time += VM_COMPLETIONS_PERIOD_LEN;
571         /* 0 has a special meaning... */
572         if (!cur_time)
573                 return 1;
574         return cur_time;
575 }
576
577 static void wb_domain_writeout_inc(struct wb_domain *dom,
578                                    struct fprop_local_percpu *completions,
579                                    unsigned int max_prop_frac)
580 {
581         __fprop_inc_percpu_max(&dom->completions, completions,
582                                max_prop_frac);
583         /* First event after period switching was turned off? */
584         if (unlikely(!dom->period_time)) {
585                 /*
586                  * We can race with other __bdi_writeout_inc calls here but
587                  * it does not cause any harm since the resulting time when
588                  * timer will fire and what is in writeout_period_time will be
589                  * roughly the same.
590                  */
591                 dom->period_time = wp_next_time(jiffies);
592                 mod_timer(&dom->period_timer, dom->period_time);
593         }
594 }
595
596 /*
597  * Increment @wb's writeout completion count and the global writeout
598  * completion count. Called from test_clear_page_writeback().
599  */
600 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
601 {
602         struct wb_domain *cgdom;
603
604         __inc_wb_stat(wb, WB_WRITTEN);
605         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
606                                wb->bdi->max_prop_frac);
607
608         cgdom = mem_cgroup_wb_domain(wb);
609         if (cgdom)
610                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
611                                        wb->bdi->max_prop_frac);
612 }
613
614 void wb_writeout_inc(struct bdi_writeback *wb)
615 {
616         unsigned long flags;
617
618         local_irq_save(flags);
619         __wb_writeout_inc(wb);
620         local_irq_restore(flags);
621 }
622 EXPORT_SYMBOL_GPL(wb_writeout_inc);
623
624 /*
625  * On idle system, we can be called long after we scheduled because we use
626  * deferred timers so count with missed periods.
627  */
628 static void writeout_period(unsigned long t)
629 {
630         struct wb_domain *dom = (void *)t;
631         int miss_periods = (jiffies - dom->period_time) /
632                                                  VM_COMPLETIONS_PERIOD_LEN;
633
634         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
635                 dom->period_time = wp_next_time(dom->period_time +
636                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
637                 mod_timer(&dom->period_timer, dom->period_time);
638         } else {
639                 /*
640                  * Aging has zeroed all fractions. Stop wasting CPU on period
641                  * updates.
642                  */
643                 dom->period_time = 0;
644         }
645 }
646
647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
648 {
649         memset(dom, 0, sizeof(*dom));
650
651         spin_lock_init(&dom->lock);
652
653         init_timer_deferrable(&dom->period_timer);
654         dom->period_timer.function = writeout_period;
655         dom->period_timer.data = (unsigned long)dom;
656
657         dom->dirty_limit_tstamp = jiffies;
658
659         return fprop_global_init(&dom->completions, gfp);
660 }
661
662 #ifdef CONFIG_CGROUP_WRITEBACK
663 void wb_domain_exit(struct wb_domain *dom)
664 {
665         del_timer_sync(&dom->period_timer);
666         fprop_global_destroy(&dom->completions);
667 }
668 #endif
669
670 /*
671  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
672  * registered backing devices, which, for obvious reasons, can not
673  * exceed 100%.
674  */
675 static unsigned int bdi_min_ratio;
676
677 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
678 {
679         int ret = 0;
680
681         spin_lock_bh(&bdi_lock);
682         if (min_ratio > bdi->max_ratio) {
683                 ret = -EINVAL;
684         } else {
685                 min_ratio -= bdi->min_ratio;
686                 if (bdi_min_ratio + min_ratio < 100) {
687                         bdi_min_ratio += min_ratio;
688                         bdi->min_ratio += min_ratio;
689                 } else {
690                         ret = -EINVAL;
691                 }
692         }
693         spin_unlock_bh(&bdi_lock);
694
695         return ret;
696 }
697
698 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
699 {
700         int ret = 0;
701
702         if (max_ratio > 100)
703                 return -EINVAL;
704
705         spin_lock_bh(&bdi_lock);
706         if (bdi->min_ratio > max_ratio) {
707                 ret = -EINVAL;
708         } else {
709                 bdi->max_ratio = max_ratio;
710                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
711         }
712         spin_unlock_bh(&bdi_lock);
713
714         return ret;
715 }
716 EXPORT_SYMBOL(bdi_set_max_ratio);
717
718 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
719                                            unsigned long bg_thresh)
720 {
721         return (thresh + bg_thresh) / 2;
722 }
723
724 static unsigned long hard_dirty_limit(struct wb_domain *dom,
725                                       unsigned long thresh)
726 {
727         return max(thresh, dom->dirty_limit);
728 }
729
730 /*
731  * Memory which can be further allocated to a memcg domain is capped by
732  * system-wide clean memory excluding the amount being used in the domain.
733  */
734 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
735                             unsigned long filepages, unsigned long headroom)
736 {
737         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
738         unsigned long clean = filepages - min(filepages, mdtc->dirty);
739         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
740         unsigned long other_clean = global_clean - min(global_clean, clean);
741
742         mdtc->avail = filepages + min(headroom, other_clean);
743 }
744
745 /**
746  * __wb_calc_thresh - @wb's share of dirty throttling threshold
747  * @dtc: dirty_throttle_context of interest
748  *
749  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
750  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
751  *
752  * Note that balance_dirty_pages() will only seriously take it as a hard limit
753  * when sleeping max_pause per page is not enough to keep the dirty pages under
754  * control. For example, when the device is completely stalled due to some error
755  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
756  * In the other normal situations, it acts more gently by throttling the tasks
757  * more (rather than completely block them) when the wb dirty pages go high.
758  *
759  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
760  * - starving fast devices
761  * - piling up dirty pages (that will take long time to sync) on slow devices
762  *
763  * The wb's share of dirty limit will be adapting to its throughput and
764  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
765  */
766 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
767 {
768         struct wb_domain *dom = dtc_dom(dtc);
769         unsigned long thresh = dtc->thresh;
770         u64 wb_thresh;
771         long numerator, denominator;
772         unsigned long wb_min_ratio, wb_max_ratio;
773
774         /*
775          * Calculate this BDI's share of the thresh ratio.
776          */
777         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
778                               &numerator, &denominator);
779
780         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
781         wb_thresh *= numerator;
782         do_div(wb_thresh, denominator);
783
784         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
785
786         wb_thresh += (thresh * wb_min_ratio) / 100;
787         if (wb_thresh > (thresh * wb_max_ratio) / 100)
788                 wb_thresh = thresh * wb_max_ratio / 100;
789
790         return wb_thresh;
791 }
792
793 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
794 {
795         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
796                                                .thresh = thresh };
797         return __wb_calc_thresh(&gdtc);
798 }
799
800 /*
801  *                           setpoint - dirty 3
802  *        f(dirty) := 1.0 + (----------------)
803  *                           limit - setpoint
804  *
805  * it's a 3rd order polynomial that subjects to
806  *
807  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
808  * (2) f(setpoint) = 1.0 => the balance point
809  * (3) f(limit)    = 0   => the hard limit
810  * (4) df/dx      <= 0   => negative feedback control
811  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
812  *     => fast response on large errors; small oscillation near setpoint
813  */
814 static long long pos_ratio_polynom(unsigned long setpoint,
815                                           unsigned long dirty,
816                                           unsigned long limit)
817 {
818         long long pos_ratio;
819         long x;
820
821         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
822                       (limit - setpoint) | 1);
823         pos_ratio = x;
824         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
825         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
826         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
827
828         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
829 }
830
831 /*
832  * Dirty position control.
833  *
834  * (o) global/bdi setpoints
835  *
836  * We want the dirty pages be balanced around the global/wb setpoints.
837  * When the number of dirty pages is higher/lower than the setpoint, the
838  * dirty position control ratio (and hence task dirty ratelimit) will be
839  * decreased/increased to bring the dirty pages back to the setpoint.
840  *
841  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
842  *
843  *     if (dirty < setpoint) scale up   pos_ratio
844  *     if (dirty > setpoint) scale down pos_ratio
845  *
846  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
847  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
848  *
849  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
850  *
851  * (o) global control line
852  *
853  *     ^ pos_ratio
854  *     |
855  *     |            |<===== global dirty control scope ======>|
856  * 2.0 .............*
857  *     |            .*
858  *     |            . *
859  *     |            .   *
860  *     |            .     *
861  *     |            .        *
862  *     |            .            *
863  * 1.0 ................................*
864  *     |            .                  .     *
865  *     |            .                  .          *
866  *     |            .                  .              *
867  *     |            .                  .                 *
868  *     |            .                  .                    *
869  *   0 +------------.------------------.----------------------*------------->
870  *           freerun^          setpoint^                 limit^   dirty pages
871  *
872  * (o) wb control line
873  *
874  *     ^ pos_ratio
875  *     |
876  *     |            *
877  *     |              *
878  *     |                *
879  *     |                  *
880  *     |                    * |<=========== span ============>|
881  * 1.0 .......................*
882  *     |                      . *
883  *     |                      .   *
884  *     |                      .     *
885  *     |                      .       *
886  *     |                      .         *
887  *     |                      .           *
888  *     |                      .             *
889  *     |                      .               *
890  *     |                      .                 *
891  *     |                      .                   *
892  *     |                      .                     *
893  * 1/4 ...............................................* * * * * * * * * * * *
894  *     |                      .                         .
895  *     |                      .                           .
896  *     |                      .                             .
897  *   0 +----------------------.-------------------------------.------------->
898  *                wb_setpoint^                    x_intercept^
899  *
900  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
901  * be smoothly throttled down to normal if it starts high in situations like
902  * - start writing to a slow SD card and a fast disk at the same time. The SD
903  *   card's wb_dirty may rush to many times higher than wb_setpoint.
904  * - the wb dirty thresh drops quickly due to change of JBOD workload
905  */
906 static void wb_position_ratio(struct dirty_throttle_control *dtc)
907 {
908         struct bdi_writeback *wb = dtc->wb;
909         unsigned long write_bw = wb->avg_write_bandwidth;
910         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
911         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
912         unsigned long wb_thresh = dtc->wb_thresh;
913         unsigned long x_intercept;
914         unsigned long setpoint;         /* dirty pages' target balance point */
915         unsigned long wb_setpoint;
916         unsigned long span;
917         long long pos_ratio;            /* for scaling up/down the rate limit */
918         long x;
919
920         dtc->pos_ratio = 0;
921
922         if (unlikely(dtc->dirty >= limit))
923                 return;
924
925         /*
926          * global setpoint
927          *
928          * See comment for pos_ratio_polynom().
929          */
930         setpoint = (freerun + limit) / 2;
931         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
932
933         /*
934          * The strictlimit feature is a tool preventing mistrusted filesystems
935          * from growing a large number of dirty pages before throttling. For
936          * such filesystems balance_dirty_pages always checks wb counters
937          * against wb limits. Even if global "nr_dirty" is under "freerun".
938          * This is especially important for fuse which sets bdi->max_ratio to
939          * 1% by default. Without strictlimit feature, fuse writeback may
940          * consume arbitrary amount of RAM because it is accounted in
941          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
942          *
943          * Here, in wb_position_ratio(), we calculate pos_ratio based on
944          * two values: wb_dirty and wb_thresh. Let's consider an example:
945          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
946          * limits are set by default to 10% and 20% (background and throttle).
947          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
948          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
949          * about ~6K pages (as the average of background and throttle wb
950          * limits). The 3rd order polynomial will provide positive feedback if
951          * wb_dirty is under wb_setpoint and vice versa.
952          *
953          * Note, that we cannot use global counters in these calculations
954          * because we want to throttle process writing to a strictlimit wb
955          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
956          * in the example above).
957          */
958         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
959                 long long wb_pos_ratio;
960
961                 if (dtc->wb_dirty < 8) {
962                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
963                                            2 << RATELIMIT_CALC_SHIFT);
964                         return;
965                 }
966
967                 if (dtc->wb_dirty >= wb_thresh)
968                         return;
969
970                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
971                                                     dtc->wb_bg_thresh);
972
973                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
974                         return;
975
976                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
977                                                  wb_thresh);
978
979                 /*
980                  * Typically, for strictlimit case, wb_setpoint << setpoint
981                  * and pos_ratio >> wb_pos_ratio. In the other words global
982                  * state ("dirty") is not limiting factor and we have to
983                  * make decision based on wb counters. But there is an
984                  * important case when global pos_ratio should get precedence:
985                  * global limits are exceeded (e.g. due to activities on other
986                  * wb's) while given strictlimit wb is below limit.
987                  *
988                  * "pos_ratio * wb_pos_ratio" would work for the case above,
989                  * but it would look too non-natural for the case of all
990                  * activity in the system coming from a single strictlimit wb
991                  * with bdi->max_ratio == 100%.
992                  *
993                  * Note that min() below somewhat changes the dynamics of the
994                  * control system. Normally, pos_ratio value can be well over 3
995                  * (when globally we are at freerun and wb is well below wb
996                  * setpoint). Now the maximum pos_ratio in the same situation
997                  * is 2. We might want to tweak this if we observe the control
998                  * system is too slow to adapt.
999                  */
1000                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1001                 return;
1002         }
1003
1004         /*
1005          * We have computed basic pos_ratio above based on global situation. If
1006          * the wb is over/under its share of dirty pages, we want to scale
1007          * pos_ratio further down/up. That is done by the following mechanism.
1008          */
1009
1010         /*
1011          * wb setpoint
1012          *
1013          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1014          *
1015          *                        x_intercept - wb_dirty
1016          *                     := --------------------------
1017          *                        x_intercept - wb_setpoint
1018          *
1019          * The main wb control line is a linear function that subjects to
1020          *
1021          * (1) f(wb_setpoint) = 1.0
1022          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1023          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1024          *
1025          * For single wb case, the dirty pages are observed to fluctuate
1026          * regularly within range
1027          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1028          * for various filesystems, where (2) can yield in a reasonable 12.5%
1029          * fluctuation range for pos_ratio.
1030          *
1031          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1032          * own size, so move the slope over accordingly and choose a slope that
1033          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1034          */
1035         if (unlikely(wb_thresh > dtc->thresh))
1036                 wb_thresh = dtc->thresh;
1037         /*
1038          * It's very possible that wb_thresh is close to 0 not because the
1039          * device is slow, but that it has remained inactive for long time.
1040          * Honour such devices a reasonable good (hopefully IO efficient)
1041          * threshold, so that the occasional writes won't be blocked and active
1042          * writes can rampup the threshold quickly.
1043          */
1044         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1045         /*
1046          * scale global setpoint to wb's:
1047          *      wb_setpoint = setpoint * wb_thresh / thresh
1048          */
1049         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1050         wb_setpoint = setpoint * (u64)x >> 16;
1051         /*
1052          * Use span=(8*write_bw) in single wb case as indicated by
1053          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1054          *
1055          *        wb_thresh                    thresh - wb_thresh
1056          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1057          *         thresh                           thresh
1058          */
1059         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1060         x_intercept = wb_setpoint + span;
1061
1062         if (dtc->wb_dirty < x_intercept - span / 4) {
1063                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1064                                       (x_intercept - wb_setpoint) | 1);
1065         } else
1066                 pos_ratio /= 4;
1067
1068         /*
1069          * wb reserve area, safeguard against dirty pool underrun and disk idle
1070          * It may push the desired control point of global dirty pages higher
1071          * than setpoint.
1072          */
1073         x_intercept = wb_thresh / 2;
1074         if (dtc->wb_dirty < x_intercept) {
1075                 if (dtc->wb_dirty > x_intercept / 8)
1076                         pos_ratio = div_u64(pos_ratio * x_intercept,
1077                                             dtc->wb_dirty);
1078                 else
1079                         pos_ratio *= 8;
1080         }
1081
1082         dtc->pos_ratio = pos_ratio;
1083 }
1084
1085 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1086                                       unsigned long elapsed,
1087                                       unsigned long written)
1088 {
1089         const unsigned long period = roundup_pow_of_two(3 * HZ);
1090         unsigned long avg = wb->avg_write_bandwidth;
1091         unsigned long old = wb->write_bandwidth;
1092         u64 bw;
1093
1094         /*
1095          * bw = written * HZ / elapsed
1096          *
1097          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1098          * write_bandwidth = ---------------------------------------------------
1099          *                                          period
1100          *
1101          * @written may have decreased due to account_page_redirty().
1102          * Avoid underflowing @bw calculation.
1103          */
1104         bw = written - min(written, wb->written_stamp);
1105         bw *= HZ;
1106         if (unlikely(elapsed > period)) {
1107                 do_div(bw, elapsed);
1108                 avg = bw;
1109                 goto out;
1110         }
1111         bw += (u64)wb->write_bandwidth * (period - elapsed);
1112         bw >>= ilog2(period);
1113
1114         /*
1115          * one more level of smoothing, for filtering out sudden spikes
1116          */
1117         if (avg > old && old >= (unsigned long)bw)
1118                 avg -= (avg - old) >> 3;
1119
1120         if (avg < old && old <= (unsigned long)bw)
1121                 avg += (old - avg) >> 3;
1122
1123 out:
1124         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1125         avg = max(avg, 1LU);
1126         if (wb_has_dirty_io(wb)) {
1127                 long delta = avg - wb->avg_write_bandwidth;
1128                 WARN_ON_ONCE(atomic_long_add_return(delta,
1129                                         &wb->bdi->tot_write_bandwidth) <= 0);
1130         }
1131         wb->write_bandwidth = bw;
1132         wb->avg_write_bandwidth = avg;
1133 }
1134
1135 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1136 {
1137         struct wb_domain *dom = dtc_dom(dtc);
1138         unsigned long thresh = dtc->thresh;
1139         unsigned long limit = dom->dirty_limit;
1140
1141         /*
1142          * Follow up in one step.
1143          */
1144         if (limit < thresh) {
1145                 limit = thresh;
1146                 goto update;
1147         }
1148
1149         /*
1150          * Follow down slowly. Use the higher one as the target, because thresh
1151          * may drop below dirty. This is exactly the reason to introduce
1152          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1153          */
1154         thresh = max(thresh, dtc->dirty);
1155         if (limit > thresh) {
1156                 limit -= (limit - thresh) >> 5;
1157                 goto update;
1158         }
1159         return;
1160 update:
1161         dom->dirty_limit = limit;
1162 }
1163
1164 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1165                                     unsigned long now)
1166 {
1167         struct wb_domain *dom = dtc_dom(dtc);
1168
1169         /*
1170          * check locklessly first to optimize away locking for the most time
1171          */
1172         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1173                 return;
1174
1175         spin_lock(&dom->lock);
1176         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1177                 update_dirty_limit(dtc);
1178                 dom->dirty_limit_tstamp = now;
1179         }
1180         spin_unlock(&dom->lock);
1181 }
1182
1183 /*
1184  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1185  *
1186  * Normal wb tasks will be curbed at or below it in long term.
1187  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1188  */
1189 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1190                                       unsigned long dirtied,
1191                                       unsigned long elapsed)
1192 {
1193         struct bdi_writeback *wb = dtc->wb;
1194         unsigned long dirty = dtc->dirty;
1195         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1196         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1197         unsigned long setpoint = (freerun + limit) / 2;
1198         unsigned long write_bw = wb->avg_write_bandwidth;
1199         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1200         unsigned long dirty_rate;
1201         unsigned long task_ratelimit;
1202         unsigned long balanced_dirty_ratelimit;
1203         unsigned long step;
1204         unsigned long x;
1205         unsigned long shift;
1206
1207         /*
1208          * The dirty rate will match the writeout rate in long term, except
1209          * when dirty pages are truncated by userspace or re-dirtied by FS.
1210          */
1211         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1212
1213         /*
1214          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1215          */
1216         task_ratelimit = (u64)dirty_ratelimit *
1217                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1218         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1219
1220         /*
1221          * A linear estimation of the "balanced" throttle rate. The theory is,
1222          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1223          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1224          * formula will yield the balanced rate limit (write_bw / N).
1225          *
1226          * Note that the expanded form is not a pure rate feedback:
1227          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1228          * but also takes pos_ratio into account:
1229          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1230          *
1231          * (1) is not realistic because pos_ratio also takes part in balancing
1232          * the dirty rate.  Consider the state
1233          *      pos_ratio = 0.5                                              (3)
1234          *      rate = 2 * (write_bw / N)                                    (4)
1235          * If (1) is used, it will stuck in that state! Because each dd will
1236          * be throttled at
1237          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1238          * yielding
1239          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1240          * put (6) into (1) we get
1241          *      rate_(i+1) = rate_(i)                                        (7)
1242          *
1243          * So we end up using (2) to always keep
1244          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1245          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1246          * pos_ratio is able to drive itself to 1.0, which is not only where
1247          * the dirty count meet the setpoint, but also where the slope of
1248          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1249          */
1250         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1251                                            dirty_rate | 1);
1252         /*
1253          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1254          */
1255         if (unlikely(balanced_dirty_ratelimit > write_bw))
1256                 balanced_dirty_ratelimit = write_bw;
1257
1258         /*
1259          * We could safely do this and return immediately:
1260          *
1261          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1262          *
1263          * However to get a more stable dirty_ratelimit, the below elaborated
1264          * code makes use of task_ratelimit to filter out singular points and
1265          * limit the step size.
1266          *
1267          * The below code essentially only uses the relative value of
1268          *
1269          *      task_ratelimit - dirty_ratelimit
1270          *      = (pos_ratio - 1) * dirty_ratelimit
1271          *
1272          * which reflects the direction and size of dirty position error.
1273          */
1274
1275         /*
1276          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1277          * task_ratelimit is on the same side of dirty_ratelimit, too.
1278          * For example, when
1279          * - dirty_ratelimit > balanced_dirty_ratelimit
1280          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1281          * lowering dirty_ratelimit will help meet both the position and rate
1282          * control targets. Otherwise, don't update dirty_ratelimit if it will
1283          * only help meet the rate target. After all, what the users ultimately
1284          * feel and care are stable dirty rate and small position error.
1285          *
1286          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1287          * and filter out the singular points of balanced_dirty_ratelimit. Which
1288          * keeps jumping around randomly and can even leap far away at times
1289          * due to the small 200ms estimation period of dirty_rate (we want to
1290          * keep that period small to reduce time lags).
1291          */
1292         step = 0;
1293
1294         /*
1295          * For strictlimit case, calculations above were based on wb counters
1296          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1297          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1298          * Hence, to calculate "step" properly, we have to use wb_dirty as
1299          * "dirty" and wb_setpoint as "setpoint".
1300          *
1301          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1302          * it's possible that wb_thresh is close to zero due to inactivity
1303          * of backing device.
1304          */
1305         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1306                 dirty = dtc->wb_dirty;
1307                 if (dtc->wb_dirty < 8)
1308                         setpoint = dtc->wb_dirty + 1;
1309                 else
1310                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1311         }
1312
1313         if (dirty < setpoint) {
1314                 x = min3(wb->balanced_dirty_ratelimit,
1315                          balanced_dirty_ratelimit, task_ratelimit);
1316                 if (dirty_ratelimit < x)
1317                         step = x - dirty_ratelimit;
1318         } else {
1319                 x = max3(wb->balanced_dirty_ratelimit,
1320                          balanced_dirty_ratelimit, task_ratelimit);
1321                 if (dirty_ratelimit > x)
1322                         step = dirty_ratelimit - x;
1323         }
1324
1325         /*
1326          * Don't pursue 100% rate matching. It's impossible since the balanced
1327          * rate itself is constantly fluctuating. So decrease the track speed
1328          * when it gets close to the target. Helps eliminate pointless tremors.
1329          */
1330         shift = dirty_ratelimit / (2 * step + 1);
1331         if (shift < BITS_PER_LONG)
1332                 step = DIV_ROUND_UP(step >> shift, 8);
1333         else
1334                 step = 0;
1335
1336         if (dirty_ratelimit < balanced_dirty_ratelimit)
1337                 dirty_ratelimit += step;
1338         else
1339                 dirty_ratelimit -= step;
1340
1341         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1342         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1343
1344         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1345 }
1346
1347 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1348                                   struct dirty_throttle_control *mdtc,
1349                                   unsigned long start_time,
1350                                   bool update_ratelimit)
1351 {
1352         struct bdi_writeback *wb = gdtc->wb;
1353         unsigned long now = jiffies;
1354         unsigned long elapsed = now - wb->bw_time_stamp;
1355         unsigned long dirtied;
1356         unsigned long written;
1357
1358         lockdep_assert_held(&wb->list_lock);
1359
1360         /*
1361          * rate-limit, only update once every 200ms.
1362          */
1363         if (elapsed < BANDWIDTH_INTERVAL)
1364                 return;
1365
1366         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1367         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1368
1369         /*
1370          * Skip quiet periods when disk bandwidth is under-utilized.
1371          * (at least 1s idle time between two flusher runs)
1372          */
1373         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1374                 goto snapshot;
1375
1376         if (update_ratelimit) {
1377                 domain_update_bandwidth(gdtc, now);
1378                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1379
1380                 /*
1381                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1382                  * compiler has no way to figure that out.  Help it.
1383                  */
1384                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1385                         domain_update_bandwidth(mdtc, now);
1386                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1387                 }
1388         }
1389         wb_update_write_bandwidth(wb, elapsed, written);
1390
1391 snapshot:
1392         wb->dirtied_stamp = dirtied;
1393         wb->written_stamp = written;
1394         wb->bw_time_stamp = now;
1395 }
1396
1397 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1398 {
1399         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1400
1401         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1402 }
1403
1404 /*
1405  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1406  * will look to see if it needs to start dirty throttling.
1407  *
1408  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1409  * global_page_state() too often. So scale it near-sqrt to the safety margin
1410  * (the number of pages we may dirty without exceeding the dirty limits).
1411  */
1412 static unsigned long dirty_poll_interval(unsigned long dirty,
1413                                          unsigned long thresh)
1414 {
1415         if (thresh > dirty)
1416                 return 1UL << (ilog2(thresh - dirty) >> 1);
1417
1418         return 1;
1419 }
1420
1421 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1422                                   unsigned long wb_dirty)
1423 {
1424         unsigned long bw = wb->avg_write_bandwidth;
1425         unsigned long t;
1426
1427         /*
1428          * Limit pause time for small memory systems. If sleeping for too long
1429          * time, a small pool of dirty/writeback pages may go empty and disk go
1430          * idle.
1431          *
1432          * 8 serves as the safety ratio.
1433          */
1434         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1435         t++;
1436
1437         return min_t(unsigned long, t, MAX_PAUSE);
1438 }
1439
1440 static long wb_min_pause(struct bdi_writeback *wb,
1441                          long max_pause,
1442                          unsigned long task_ratelimit,
1443                          unsigned long dirty_ratelimit,
1444                          int *nr_dirtied_pause)
1445 {
1446         long hi = ilog2(wb->avg_write_bandwidth);
1447         long lo = ilog2(wb->dirty_ratelimit);
1448         long t;         /* target pause */
1449         long pause;     /* estimated next pause */
1450         int pages;      /* target nr_dirtied_pause */
1451
1452         /* target for 10ms pause on 1-dd case */
1453         t = max(1, HZ / 100);
1454
1455         /*
1456          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1457          * overheads.
1458          *
1459          * (N * 10ms) on 2^N concurrent tasks.
1460          */
1461         if (hi > lo)
1462                 t += (hi - lo) * (10 * HZ) / 1024;
1463
1464         /*
1465          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1466          * on the much more stable dirty_ratelimit. However the next pause time
1467          * will be computed based on task_ratelimit and the two rate limits may
1468          * depart considerably at some time. Especially if task_ratelimit goes
1469          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1470          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1471          * result task_ratelimit won't be executed faithfully, which could
1472          * eventually bring down dirty_ratelimit.
1473          *
1474          * We apply two rules to fix it up:
1475          * 1) try to estimate the next pause time and if necessary, use a lower
1476          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1477          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1478          * 2) limit the target pause time to max_pause/2, so that the normal
1479          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1480          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1481          */
1482         t = min(t, 1 + max_pause / 2);
1483         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1484
1485         /*
1486          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1487          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1488          * When the 16 consecutive reads are often interrupted by some dirty
1489          * throttling pause during the async writes, cfq will go into idles
1490          * (deadline is fine). So push nr_dirtied_pause as high as possible
1491          * until reaches DIRTY_POLL_THRESH=32 pages.
1492          */
1493         if (pages < DIRTY_POLL_THRESH) {
1494                 t = max_pause;
1495                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1496                 if (pages > DIRTY_POLL_THRESH) {
1497                         pages = DIRTY_POLL_THRESH;
1498                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1499                 }
1500         }
1501
1502         pause = HZ * pages / (task_ratelimit + 1);
1503         if (pause > max_pause) {
1504                 t = max_pause;
1505                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1506         }
1507
1508         *nr_dirtied_pause = pages;
1509         /*
1510          * The minimal pause time will normally be half the target pause time.
1511          */
1512         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1513 }
1514
1515 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1516 {
1517         struct bdi_writeback *wb = dtc->wb;
1518         unsigned long wb_reclaimable;
1519
1520         /*
1521          * wb_thresh is not treated as some limiting factor as
1522          * dirty_thresh, due to reasons
1523          * - in JBOD setup, wb_thresh can fluctuate a lot
1524          * - in a system with HDD and USB key, the USB key may somehow
1525          *   go into state (wb_dirty >> wb_thresh) either because
1526          *   wb_dirty starts high, or because wb_thresh drops low.
1527          *   In this case we don't want to hard throttle the USB key
1528          *   dirtiers for 100 seconds until wb_dirty drops under
1529          *   wb_thresh. Instead the auxiliary wb control line in
1530          *   wb_position_ratio() will let the dirtier task progress
1531          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1532          */
1533         dtc->wb_thresh = __wb_calc_thresh(dtc);
1534         dtc->wb_bg_thresh = dtc->thresh ?
1535                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1536
1537         /*
1538          * In order to avoid the stacked BDI deadlock we need
1539          * to ensure we accurately count the 'dirty' pages when
1540          * the threshold is low.
1541          *
1542          * Otherwise it would be possible to get thresh+n pages
1543          * reported dirty, even though there are thresh-m pages
1544          * actually dirty; with m+n sitting in the percpu
1545          * deltas.
1546          */
1547         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1548                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1549                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1550         } else {
1551                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1552                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1553         }
1554 }
1555
1556 /*
1557  * balance_dirty_pages() must be called by processes which are generating dirty
1558  * data.  It looks at the number of dirty pages in the machine and will force
1559  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1560  * If we're over `background_thresh' then the writeback threads are woken to
1561  * perform some writeout.
1562  */
1563 static void balance_dirty_pages(struct address_space *mapping,
1564                                 struct bdi_writeback *wb,
1565                                 unsigned long pages_dirtied)
1566 {
1567         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1568         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1569         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1570         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1571                                                      &mdtc_stor : NULL;
1572         struct dirty_throttle_control *sdtc;
1573         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1574         long period;
1575         long pause;
1576         long max_pause;
1577         long min_pause;
1578         int nr_dirtied_pause;
1579         bool dirty_exceeded = false;
1580         unsigned long task_ratelimit;
1581         unsigned long dirty_ratelimit;
1582         struct backing_dev_info *bdi = wb->bdi;
1583         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1584         unsigned long start_time = jiffies;
1585
1586         for (;;) {
1587                 unsigned long now = jiffies;
1588                 unsigned long dirty, thresh, bg_thresh;
1589                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1590                 unsigned long m_thresh = 0;
1591                 unsigned long m_bg_thresh = 0;
1592
1593                 /*
1594                  * Unstable writes are a feature of certain networked
1595                  * filesystems (i.e. NFS) in which data may have been
1596                  * written to the server's write cache, but has not yet
1597                  * been flushed to permanent storage.
1598                  */
1599                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1600                                         global_node_page_state(NR_UNSTABLE_NFS);
1601                 gdtc->avail = global_dirtyable_memory();
1602                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1603
1604                 domain_dirty_limits(gdtc);
1605
1606                 if (unlikely(strictlimit)) {
1607                         wb_dirty_limits(gdtc);
1608
1609                         dirty = gdtc->wb_dirty;
1610                         thresh = gdtc->wb_thresh;
1611                         bg_thresh = gdtc->wb_bg_thresh;
1612                 } else {
1613                         dirty = gdtc->dirty;
1614                         thresh = gdtc->thresh;
1615                         bg_thresh = gdtc->bg_thresh;
1616                 }
1617
1618                 if (mdtc) {
1619                         unsigned long filepages, headroom, writeback;
1620
1621                         /*
1622                          * If @wb belongs to !root memcg, repeat the same
1623                          * basic calculations for the memcg domain.
1624                          */
1625                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1626                                             &mdtc->dirty, &writeback);
1627                         mdtc->dirty += writeback;
1628                         mdtc_calc_avail(mdtc, filepages, headroom);
1629
1630                         domain_dirty_limits(mdtc);
1631
1632                         if (unlikely(strictlimit)) {
1633                                 wb_dirty_limits(mdtc);
1634                                 m_dirty = mdtc->wb_dirty;
1635                                 m_thresh = mdtc->wb_thresh;
1636                                 m_bg_thresh = mdtc->wb_bg_thresh;
1637                         } else {
1638                                 m_dirty = mdtc->dirty;
1639                                 m_thresh = mdtc->thresh;
1640                                 m_bg_thresh = mdtc->bg_thresh;
1641                         }
1642                 }
1643
1644                 /*
1645                  * Throttle it only when the background writeback cannot
1646                  * catch-up. This avoids (excessively) small writeouts
1647                  * when the wb limits are ramping up in case of !strictlimit.
1648                  *
1649                  * In strictlimit case make decision based on the wb counters
1650                  * and limits. Small writeouts when the wb limits are ramping
1651                  * up are the price we consciously pay for strictlimit-ing.
1652                  *
1653                  * If memcg domain is in effect, @dirty should be under
1654                  * both global and memcg freerun ceilings.
1655                  */
1656                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657                     (!mdtc ||
1658                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1660                         unsigned long m_intv = ULONG_MAX;
1661
1662                         current->dirty_paused_when = now;
1663                         current->nr_dirtied = 0;
1664                         if (mdtc)
1665                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1666                         current->nr_dirtied_pause = min(intv, m_intv);
1667                         break;
1668                 }
1669
1670                 if (unlikely(!writeback_in_progress(wb)))
1671                         wb_start_background_writeback(wb);
1672
1673                 /*
1674                  * Calculate global domain's pos_ratio and select the
1675                  * global dtc by default.
1676                  */
1677                 if (!strictlimit)
1678                         wb_dirty_limits(gdtc);
1679
1680                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1682
1683                 wb_position_ratio(gdtc);
1684                 sdtc = gdtc;
1685
1686                 if (mdtc) {
1687                         /*
1688                          * If memcg domain is in effect, calculate its
1689                          * pos_ratio.  @wb should satisfy constraints from
1690                          * both global and memcg domains.  Choose the one
1691                          * w/ lower pos_ratio.
1692                          */
1693                         if (!strictlimit)
1694                                 wb_dirty_limits(mdtc);
1695
1696                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1697                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1698
1699                         wb_position_ratio(mdtc);
1700                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1701                                 sdtc = mdtc;
1702                 }
1703
1704                 if (dirty_exceeded && !wb->dirty_exceeded)
1705                         wb->dirty_exceeded = 1;
1706
1707                 if (time_is_before_jiffies(wb->bw_time_stamp +
1708                                            BANDWIDTH_INTERVAL)) {
1709                         spin_lock(&wb->list_lock);
1710                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1711                         spin_unlock(&wb->list_lock);
1712                 }
1713
1714                 /* throttle according to the chosen dtc */
1715                 dirty_ratelimit = wb->dirty_ratelimit;
1716                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1717                                                         RATELIMIT_CALC_SHIFT;
1718                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1719                 min_pause = wb_min_pause(wb, max_pause,
1720                                          task_ratelimit, dirty_ratelimit,
1721                                          &nr_dirtied_pause);
1722
1723                 if (unlikely(task_ratelimit == 0)) {
1724                         period = max_pause;
1725                         pause = max_pause;
1726                         goto pause;
1727                 }
1728                 period = HZ * pages_dirtied / task_ratelimit;
1729                 pause = period;
1730                 if (current->dirty_paused_when)
1731                         pause -= now - current->dirty_paused_when;
1732                 /*
1733                  * For less than 1s think time (ext3/4 may block the dirtier
1734                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1735                  * however at much less frequency), try to compensate it in
1736                  * future periods by updating the virtual time; otherwise just
1737                  * do a reset, as it may be a light dirtier.
1738                  */
1739                 if (pause < min_pause) {
1740                         trace_balance_dirty_pages(wb,
1741                                                   sdtc->thresh,
1742                                                   sdtc->bg_thresh,
1743                                                   sdtc->dirty,
1744                                                   sdtc->wb_thresh,
1745                                                   sdtc->wb_dirty,
1746                                                   dirty_ratelimit,
1747                                                   task_ratelimit,
1748                                                   pages_dirtied,
1749                                                   period,
1750                                                   min(pause, 0L),
1751                                                   start_time);
1752                         if (pause < -HZ) {
1753                                 current->dirty_paused_when = now;
1754                                 current->nr_dirtied = 0;
1755                         } else if (period) {
1756                                 current->dirty_paused_when += period;
1757                                 current->nr_dirtied = 0;
1758                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1759                                 current->nr_dirtied_pause += pages_dirtied;
1760                         break;
1761                 }
1762                 if (unlikely(pause > max_pause)) {
1763                         /* for occasional dropped task_ratelimit */
1764                         now += min(pause - max_pause, max_pause);
1765                         pause = max_pause;
1766                 }
1767
1768 pause:
1769                 trace_balance_dirty_pages(wb,
1770                                           sdtc->thresh,
1771                                           sdtc->bg_thresh,
1772                                           sdtc->dirty,
1773                                           sdtc->wb_thresh,
1774                                           sdtc->wb_dirty,
1775                                           dirty_ratelimit,
1776                                           task_ratelimit,
1777                                           pages_dirtied,
1778                                           period,
1779                                           pause,
1780                                           start_time);
1781                 __set_current_state(TASK_KILLABLE);
1782                 wb->dirty_sleep = now;
1783                 io_schedule_timeout(pause);
1784
1785                 current->dirty_paused_when = now + pause;
1786                 current->nr_dirtied = 0;
1787                 current->nr_dirtied_pause = nr_dirtied_pause;
1788
1789                 /*
1790                  * This is typically equal to (dirty < thresh) and can also
1791                  * keep "1000+ dd on a slow USB stick" under control.
1792                  */
1793                 if (task_ratelimit)
1794                         break;
1795
1796                 /*
1797                  * In the case of an unresponding NFS server and the NFS dirty
1798                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1799                  * to go through, so that tasks on them still remain responsive.
1800                  *
1801                  * In theory 1 page is enough to keep the consumer-producer
1802                  * pipe going: the flusher cleans 1 page => the task dirties 1
1803                  * more page. However wb_dirty has accounting errors.  So use
1804                  * the larger and more IO friendly wb_stat_error.
1805                  */
1806                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1807                         break;
1808
1809                 if (fatal_signal_pending(current))
1810                         break;
1811         }
1812
1813         if (!dirty_exceeded && wb->dirty_exceeded)
1814                 wb->dirty_exceeded = 0;
1815
1816         if (writeback_in_progress(wb))
1817                 return;
1818
1819         /*
1820          * In laptop mode, we wait until hitting the higher threshold before
1821          * starting background writeout, and then write out all the way down
1822          * to the lower threshold.  So slow writers cause minimal disk activity.
1823          *
1824          * In normal mode, we start background writeout at the lower
1825          * background_thresh, to keep the amount of dirty memory low.
1826          */
1827         if (laptop_mode)
1828                 return;
1829
1830         if (nr_reclaimable > gdtc->bg_thresh)
1831                 wb_start_background_writeback(wb);
1832 }
1833
1834 static DEFINE_PER_CPU(int, bdp_ratelimits);
1835
1836 /*
1837  * Normal tasks are throttled by
1838  *      loop {
1839  *              dirty tsk->nr_dirtied_pause pages;
1840  *              take a snap in balance_dirty_pages();
1841  *      }
1842  * However there is a worst case. If every task exit immediately when dirtied
1843  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1844  * called to throttle the page dirties. The solution is to save the not yet
1845  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1846  * randomly into the running tasks. This works well for the above worst case,
1847  * as the new task will pick up and accumulate the old task's leaked dirty
1848  * count and eventually get throttled.
1849  */
1850 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1851
1852 /**
1853  * balance_dirty_pages_ratelimited - balance dirty memory state
1854  * @mapping: address_space which was dirtied
1855  *
1856  * Processes which are dirtying memory should call in here once for each page
1857  * which was newly dirtied.  The function will periodically check the system's
1858  * dirty state and will initiate writeback if needed.
1859  *
1860  * On really big machines, get_writeback_state is expensive, so try to avoid
1861  * calling it too often (ratelimiting).  But once we're over the dirty memory
1862  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1863  * from overshooting the limit by (ratelimit_pages) each.
1864  */
1865 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1866 {
1867         struct inode *inode = mapping->host;
1868         struct backing_dev_info *bdi = inode_to_bdi(inode);
1869         struct bdi_writeback *wb = NULL;
1870         int ratelimit;
1871         int *p;
1872
1873         if (!bdi_cap_account_dirty(bdi))
1874                 return;
1875
1876         if (inode_cgwb_enabled(inode))
1877                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1878         if (!wb)
1879                 wb = &bdi->wb;
1880
1881         ratelimit = current->nr_dirtied_pause;
1882         if (wb->dirty_exceeded)
1883                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1884
1885         preempt_disable();
1886         /*
1887          * This prevents one CPU to accumulate too many dirtied pages without
1888          * calling into balance_dirty_pages(), which can happen when there are
1889          * 1000+ tasks, all of them start dirtying pages at exactly the same
1890          * time, hence all honoured too large initial task->nr_dirtied_pause.
1891          */
1892         p =  this_cpu_ptr(&bdp_ratelimits);
1893         if (unlikely(current->nr_dirtied >= ratelimit))
1894                 *p = 0;
1895         else if (unlikely(*p >= ratelimit_pages)) {
1896                 *p = 0;
1897                 ratelimit = 0;
1898         }
1899         /*
1900          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1901          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1902          * the dirty throttling and livelock other long-run dirtiers.
1903          */
1904         p = this_cpu_ptr(&dirty_throttle_leaks);
1905         if (*p > 0 && current->nr_dirtied < ratelimit) {
1906                 unsigned long nr_pages_dirtied;
1907                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1908                 *p -= nr_pages_dirtied;
1909                 current->nr_dirtied += nr_pages_dirtied;
1910         }
1911         preempt_enable();
1912
1913         if (unlikely(current->nr_dirtied >= ratelimit))
1914                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1915
1916         wb_put(wb);
1917 }
1918 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1919
1920 /**
1921  * wb_over_bg_thresh - does @wb need to be written back?
1922  * @wb: bdi_writeback of interest
1923  *
1924  * Determines whether background writeback should keep writing @wb or it's
1925  * clean enough.  Returns %true if writeback should continue.
1926  */
1927 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1928 {
1929         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1930         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1931         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1932         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1933                                                      &mdtc_stor : NULL;
1934
1935         /*
1936          * Similar to balance_dirty_pages() but ignores pages being written
1937          * as we're trying to decide whether to put more under writeback.
1938          */
1939         gdtc->avail = global_dirtyable_memory();
1940         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1941                       global_node_page_state(NR_UNSTABLE_NFS);
1942         domain_dirty_limits(gdtc);
1943
1944         if (gdtc->dirty > gdtc->bg_thresh)
1945                 return true;
1946
1947         if (wb_stat(wb, WB_RECLAIMABLE) >
1948             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1949                 return true;
1950
1951         if (mdtc) {
1952                 unsigned long filepages, headroom, writeback;
1953
1954                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1955                                     &writeback);
1956                 mdtc_calc_avail(mdtc, filepages, headroom);
1957                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1958
1959                 if (mdtc->dirty > mdtc->bg_thresh)
1960                         return true;
1961
1962                 if (wb_stat(wb, WB_RECLAIMABLE) >
1963                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1964                         return true;
1965         }
1966
1967         return false;
1968 }
1969
1970 /*
1971  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1972  */
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974         void __user *buffer, size_t *length, loff_t *ppos)
1975 {
1976         proc_dointvec(table, write, buffer, length, ppos);
1977         return 0;
1978 }
1979
1980 #ifdef CONFIG_BLOCK
1981 void laptop_mode_timer_fn(unsigned long data)
1982 {
1983         struct request_queue *q = (struct request_queue *)data;
1984         int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1985                 global_node_page_state(NR_UNSTABLE_NFS);
1986         struct bdi_writeback *wb;
1987
1988         /*
1989          * We want to write everything out, not just down to the dirty
1990          * threshold
1991          */
1992         if (!bdi_has_dirty_io(q->backing_dev_info))
1993                 return;
1994
1995         rcu_read_lock();
1996         list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
1997                 if (wb_has_dirty_io(wb))
1998                         wb_start_writeback(wb, nr_pages, true,
1999                                            WB_REASON_LAPTOP_TIMER);
2000         rcu_read_unlock();
2001 }
2002
2003 /*
2004  * We've spun up the disk and we're in laptop mode: schedule writeback
2005  * of all dirty data a few seconds from now.  If the flush is already scheduled
2006  * then push it back - the user is still using the disk.
2007  */
2008 void laptop_io_completion(struct backing_dev_info *info)
2009 {
2010         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2011 }
2012
2013 /*
2014  * We're in laptop mode and we've just synced. The sync's writes will have
2015  * caused another writeback to be scheduled by laptop_io_completion.
2016  * Nothing needs to be written back anymore, so we unschedule the writeback.
2017  */
2018 void laptop_sync_completion(void)
2019 {
2020         struct backing_dev_info *bdi;
2021
2022         rcu_read_lock();
2023
2024         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025                 del_timer(&bdi->laptop_mode_wb_timer);
2026
2027         rcu_read_unlock();
2028 }
2029 #endif
2030
2031 /*
2032  * If ratelimit_pages is too high then we can get into dirty-data overload
2033  * if a large number of processes all perform writes at the same time.
2034  * If it is too low then SMP machines will call the (expensive)
2035  * get_writeback_state too often.
2036  *
2037  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039  * thresholds.
2040  */
2041
2042 void writeback_set_ratelimit(void)
2043 {
2044         struct wb_domain *dom = &global_wb_domain;
2045         unsigned long background_thresh;
2046         unsigned long dirty_thresh;
2047
2048         global_dirty_limits(&background_thresh, &dirty_thresh);
2049         dom->dirty_limit = dirty_thresh;
2050         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2051         if (ratelimit_pages < 16)
2052                 ratelimit_pages = 16;
2053 }
2054
2055 static int page_writeback_cpu_online(unsigned int cpu)
2056 {
2057         writeback_set_ratelimit();
2058         return 0;
2059 }
2060
2061 /*
2062  * Called early on to tune the page writeback dirty limits.
2063  *
2064  * We used to scale dirty pages according to how total memory
2065  * related to pages that could be allocated for buffers (by
2066  * comparing nr_free_buffer_pages() to vm_total_pages.
2067  *
2068  * However, that was when we used "dirty_ratio" to scale with
2069  * all memory, and we don't do that any more. "dirty_ratio"
2070  * is now applied to total non-HIGHPAGE memory (by subtracting
2071  * totalhigh_pages from vm_total_pages), and as such we can't
2072  * get into the old insane situation any more where we had
2073  * large amounts of dirty pages compared to a small amount of
2074  * non-HIGHMEM memory.
2075  *
2076  * But we might still want to scale the dirty_ratio by how
2077  * much memory the box has..
2078  */
2079 void __init page_writeback_init(void)
2080 {
2081         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2082
2083         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2084                           page_writeback_cpu_online, NULL);
2085         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2086                           page_writeback_cpu_online);
2087 }
2088
2089 /**
2090  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091  * @mapping: address space structure to write
2092  * @start: starting page index
2093  * @end: ending page index (inclusive)
2094  *
2095  * This function scans the page range from @start to @end (inclusive) and tags
2096  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097  * that write_cache_pages (or whoever calls this function) will then use
2098  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2099  * used to avoid livelocking of writeback by a process steadily creating new
2100  * dirty pages in the file (thus it is important for this function to be quick
2101  * so that it can tag pages faster than a dirtying process can create them).
2102  */
2103 /*
2104  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2105  */
2106 void tag_pages_for_writeback(struct address_space *mapping,
2107                              pgoff_t start, pgoff_t end)
2108 {
2109 #define WRITEBACK_TAG_BATCH 4096
2110         unsigned long tagged = 0;
2111         struct radix_tree_iter iter;
2112         void **slot;
2113
2114         spin_lock_irq(&mapping->tree_lock);
2115         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2116                                                         PAGECACHE_TAG_DIRTY) {
2117                 if (iter.index > end)
2118                         break;
2119                 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2120                                                         PAGECACHE_TAG_TOWRITE);
2121                 tagged++;
2122                 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2123                         continue;
2124                 slot = radix_tree_iter_resume(slot, &iter);
2125                 spin_unlock_irq(&mapping->tree_lock);
2126                 cond_resched();
2127                 spin_lock_irq(&mapping->tree_lock);
2128         }
2129         spin_unlock_irq(&mapping->tree_lock);
2130 }
2131 EXPORT_SYMBOL(tag_pages_for_writeback);
2132
2133 /**
2134  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135  * @mapping: address space structure to write
2136  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137  * @writepage: function called for each page
2138  * @data: data passed to writepage function
2139  *
2140  * If a page is already under I/O, write_cache_pages() skips it, even
2141  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2142  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2143  * and msync() need to guarantee that all the data which was dirty at the time
2144  * the call was made get new I/O started against them.  If wbc->sync_mode is
2145  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146  * existing IO to complete.
2147  *
2148  * To avoid livelocks (when other process dirties new pages), we first tag
2149  * pages which should be written back with TOWRITE tag and only then start
2150  * writing them. For data-integrity sync we have to be careful so that we do
2151  * not miss some pages (e.g., because some other process has cleared TOWRITE
2152  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153  * by the process clearing the DIRTY tag (and submitting the page for IO).
2154  */
2155 int write_cache_pages(struct address_space *mapping,
2156                       struct writeback_control *wbc, writepage_t writepage,
2157                       void *data)
2158 {
2159         int ret = 0;
2160         int done = 0;
2161         struct pagevec pvec;
2162         int nr_pages;
2163         pgoff_t uninitialized_var(writeback_index);
2164         pgoff_t index;
2165         pgoff_t end;            /* Inclusive */
2166         pgoff_t done_index;
2167         int cycled;
2168         int range_whole = 0;
2169         int tag;
2170
2171         pagevec_init(&pvec, 0);
2172         if (wbc->range_cyclic) {
2173                 writeback_index = mapping->writeback_index; /* prev offset */
2174                 index = writeback_index;
2175                 if (index == 0)
2176                         cycled = 1;
2177                 else
2178                         cycled = 0;
2179                 end = -1;
2180         } else {
2181                 index = wbc->range_start >> PAGE_SHIFT;
2182                 end = wbc->range_end >> PAGE_SHIFT;
2183                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184                         range_whole = 1;
2185                 cycled = 1; /* ignore range_cyclic tests */
2186         }
2187         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188                 tag = PAGECACHE_TAG_TOWRITE;
2189         else
2190                 tag = PAGECACHE_TAG_DIRTY;
2191 retry:
2192         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193                 tag_pages_for_writeback(mapping, index, end);
2194         done_index = index;
2195         while (!done && (index <= end)) {
2196                 int i;
2197
2198                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200                 if (nr_pages == 0)
2201                         break;
2202
2203                 for (i = 0; i < nr_pages; i++) {
2204                         struct page *page = pvec.pages[i];
2205
2206                         /*
2207                          * At this point, the page may be truncated or
2208                          * invalidated (changing page->mapping to NULL), or
2209                          * even swizzled back from swapper_space to tmpfs file
2210                          * mapping. However, page->index will not change
2211                          * because we have a reference on the page.
2212                          */
2213                         if (page->index > end) {
2214                                 /*
2215                                  * can't be range_cyclic (1st pass) because
2216                                  * end == -1 in that case.
2217                                  */
2218                                 done = 1;
2219                                 break;
2220                         }
2221
2222                         done_index = page->index;
2223
2224                         lock_page(page);
2225
2226                         /*
2227                          * Page truncated or invalidated. We can freely skip it
2228                          * then, even for data integrity operations: the page
2229                          * has disappeared concurrently, so there could be no
2230                          * real expectation of this data interity operation
2231                          * even if there is now a new, dirty page at the same
2232                          * pagecache address.
2233                          */
2234                         if (unlikely(page->mapping != mapping)) {
2235 continue_unlock:
2236                                 unlock_page(page);
2237                                 continue;
2238                         }
2239
2240                         if (!PageDirty(page)) {
2241                                 /* someone wrote it for us */
2242                                 goto continue_unlock;
2243                         }
2244
2245                         if (PageWriteback(page)) {
2246                                 if (wbc->sync_mode != WB_SYNC_NONE)
2247                                         wait_on_page_writeback(page);
2248                                 else
2249                                         goto continue_unlock;
2250                         }
2251
2252                         BUG_ON(PageWriteback(page));
2253                         if (!clear_page_dirty_for_io(page))
2254                                 goto continue_unlock;
2255
2256                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257                         ret = (*writepage)(page, wbc, data);
2258                         if (unlikely(ret)) {
2259                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2260                                         unlock_page(page);
2261                                         ret = 0;
2262                                 } else {
2263                                         /*
2264                                          * done_index is set past this page,
2265                                          * so media errors will not choke
2266                                          * background writeout for the entire
2267                                          * file. This has consequences for
2268                                          * range_cyclic semantics (ie. it may
2269                                          * not be suitable for data integrity
2270                                          * writeout).
2271                                          */
2272                                         done_index = page->index + 1;
2273                                         done = 1;
2274                                         break;
2275                                 }
2276                         }
2277
2278                         /*
2279                          * We stop writing back only if we are not doing
2280                          * integrity sync. In case of integrity sync we have to
2281                          * keep going until we have written all the pages
2282                          * we tagged for writeback prior to entering this loop.
2283                          */
2284                         if (--wbc->nr_to_write <= 0 &&
2285                             wbc->sync_mode == WB_SYNC_NONE) {
2286                                 done = 1;
2287                                 break;
2288                         }
2289                 }
2290                 pagevec_release(&pvec);
2291                 cond_resched();
2292         }
2293         if (!cycled && !done) {
2294                 /*
2295                  * range_cyclic:
2296                  * We hit the last page and there is more work to be done: wrap
2297                  * back to the start of the file
2298                  */
2299                 cycled = 1;
2300                 index = 0;
2301                 end = writeback_index - 1;
2302                 goto retry;
2303         }
2304         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305                 mapping->writeback_index = done_index;
2306
2307         return ret;
2308 }
2309 EXPORT_SYMBOL(write_cache_pages);
2310
2311 /*
2312  * Function used by generic_writepages to call the real writepage
2313  * function and set the mapping flags on error
2314  */
2315 static int __writepage(struct page *page, struct writeback_control *wbc,
2316                        void *data)
2317 {
2318         struct address_space *mapping = data;
2319         int ret = mapping->a_ops->writepage(page, wbc);
2320         mapping_set_error(mapping, ret);
2321         return ret;
2322 }
2323
2324 /**
2325  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326  * @mapping: address space structure to write
2327  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328  *
2329  * This is a library function, which implements the writepages()
2330  * address_space_operation.
2331  */
2332 int generic_writepages(struct address_space *mapping,
2333                        struct writeback_control *wbc)
2334 {
2335         struct blk_plug plug;
2336         int ret;
2337
2338         /* deal with chardevs and other special file */
2339         if (!mapping->a_ops->writepage)
2340                 return 0;
2341
2342         blk_start_plug(&plug);
2343         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344         blk_finish_plug(&plug);
2345         return ret;
2346 }
2347
2348 EXPORT_SYMBOL(generic_writepages);
2349
2350 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351 {
2352         int ret;
2353
2354         if (wbc->nr_to_write <= 0)
2355                 return 0;
2356         if (mapping->a_ops->writepages)
2357                 ret = mapping->a_ops->writepages(mapping, wbc);
2358         else
2359                 ret = generic_writepages(mapping, wbc);
2360         return ret;
2361 }
2362
2363 /**
2364  * write_one_page - write out a single page and optionally wait on I/O
2365  * @page: the page to write
2366  * @wait: if true, wait on writeout
2367  *
2368  * The page must be locked by the caller and will be unlocked upon return.
2369  *
2370  * write_one_page() returns a negative error code if I/O failed.
2371  */
2372 int write_one_page(struct page *page, int wait)
2373 {
2374         struct address_space *mapping = page->mapping;
2375         int ret = 0;
2376         struct writeback_control wbc = {
2377                 .sync_mode = WB_SYNC_ALL,
2378                 .nr_to_write = 1,
2379         };
2380
2381         BUG_ON(!PageLocked(page));
2382
2383         if (wait)
2384                 wait_on_page_writeback(page);
2385
2386         if (clear_page_dirty_for_io(page)) {
2387                 get_page(page);
2388                 ret = mapping->a_ops->writepage(page, &wbc);
2389                 if (ret == 0 && wait) {
2390                         wait_on_page_writeback(page);
2391                         if (PageError(page))
2392                                 ret = -EIO;
2393                 }
2394                 put_page(page);
2395         } else {
2396                 unlock_page(page);
2397         }
2398         return ret;
2399 }
2400 EXPORT_SYMBOL(write_one_page);
2401
2402 /*
2403  * For address_spaces which do not use buffers nor write back.
2404  */
2405 int __set_page_dirty_no_writeback(struct page *page)
2406 {
2407         if (!PageDirty(page))
2408                 return !TestSetPageDirty(page);
2409         return 0;
2410 }
2411
2412 /*
2413  * Helper function for set_page_dirty family.
2414  *
2415  * Caller must hold lock_page_memcg().
2416  *
2417  * NOTE: This relies on being atomic wrt interrupts.
2418  */
2419 void account_page_dirtied(struct page *page, struct address_space *mapping)
2420 {
2421         struct inode *inode = mapping->host;
2422
2423         trace_writeback_dirty_page(page, mapping);
2424
2425         if (mapping_cap_account_dirty(mapping)) {
2426                 struct bdi_writeback *wb;
2427
2428                 inode_attach_wb(inode, page);
2429                 wb = inode_to_wb(inode);
2430
2431                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432                 __inc_node_page_state(page, NR_FILE_DIRTY);
2433                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434                 __inc_node_page_state(page, NR_DIRTIED);
2435                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2436                 __inc_wb_stat(wb, WB_DIRTIED);
2437                 task_io_account_write(PAGE_SIZE);
2438                 current->nr_dirtied++;
2439                 this_cpu_inc(bdp_ratelimits);
2440         }
2441 }
2442 EXPORT_SYMBOL(account_page_dirtied);
2443
2444 /*
2445  * Helper function for deaccounting dirty page without writeback.
2446  *
2447  * Caller must hold lock_page_memcg().
2448  */
2449 void account_page_cleaned(struct page *page, struct address_space *mapping,
2450                           struct bdi_writeback *wb)
2451 {
2452         if (mapping_cap_account_dirty(mapping)) {
2453                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2454                 dec_node_page_state(page, NR_FILE_DIRTY);
2455                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456                 dec_wb_stat(wb, WB_RECLAIMABLE);
2457                 task_io_account_cancelled_write(PAGE_SIZE);
2458         }
2459 }
2460
2461 /*
2462  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2463  * its radix tree.
2464  *
2465  * This is also used when a single buffer is being dirtied: we want to set the
2466  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2467  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2468  *
2469  * The caller must ensure this doesn't race with truncation.  Most will simply
2470  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471  * the pte lock held, which also locks out truncation.
2472  */
2473 int __set_page_dirty_nobuffers(struct page *page)
2474 {
2475         lock_page_memcg(page);
2476         if (!TestSetPageDirty(page)) {
2477                 struct address_space *mapping = page_mapping(page);
2478                 unsigned long flags;
2479
2480                 if (!mapping) {
2481                         unlock_page_memcg(page);
2482                         return 1;
2483                 }
2484
2485                 spin_lock_irqsave(&mapping->tree_lock, flags);
2486                 BUG_ON(page_mapping(page) != mapping);
2487                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488                 account_page_dirtied(page, mapping);
2489                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2490                                    PAGECACHE_TAG_DIRTY);
2491                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2492                 unlock_page_memcg(page);
2493
2494                 if (mapping->host) {
2495                         /* !PageAnon && !swapper_space */
2496                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2497                 }
2498                 return 1;
2499         }
2500         unlock_page_memcg(page);
2501         return 0;
2502 }
2503 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504
2505 /*
2506  * Call this whenever redirtying a page, to de-account the dirty counters
2507  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2508  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2509  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510  * control.
2511  */
2512 void account_page_redirty(struct page *page)
2513 {
2514         struct address_space *mapping = page->mapping;
2515
2516         if (mapping && mapping_cap_account_dirty(mapping)) {
2517                 struct inode *inode = mapping->host;
2518                 struct bdi_writeback *wb;
2519                 bool locked;
2520
2521                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2522                 current->nr_dirtied--;
2523                 dec_node_page_state(page, NR_DIRTIED);
2524                 dec_wb_stat(wb, WB_DIRTIED);
2525                 unlocked_inode_to_wb_end(inode, locked);
2526         }
2527 }
2528 EXPORT_SYMBOL(account_page_redirty);
2529
2530 /*
2531  * When a writepage implementation decides that it doesn't want to write this
2532  * page for some reason, it should redirty the locked page via
2533  * redirty_page_for_writepage() and it should then unlock the page and return 0
2534  */
2535 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2536 {
2537         int ret;
2538
2539         wbc->pages_skipped++;
2540         ret = __set_page_dirty_nobuffers(page);
2541         account_page_redirty(page);
2542         return ret;
2543 }
2544 EXPORT_SYMBOL(redirty_page_for_writepage);
2545
2546 /*
2547  * Dirty a page.
2548  *
2549  * For pages with a mapping this should be done under the page lock
2550  * for the benefit of asynchronous memory errors who prefer a consistent
2551  * dirty state. This rule can be broken in some special cases,
2552  * but should be better not to.
2553  *
2554  * If the mapping doesn't provide a set_page_dirty a_op, then
2555  * just fall through and assume that it wants buffer_heads.
2556  */
2557 int set_page_dirty(struct page *page)
2558 {
2559         struct address_space *mapping = page_mapping(page);
2560
2561         page = compound_head(page);
2562         if (likely(mapping)) {
2563                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2564                 /*
2565                  * readahead/lru_deactivate_page could remain
2566                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2567                  * About readahead, if the page is written, the flags would be
2568                  * reset. So no problem.
2569                  * About lru_deactivate_page, if the page is redirty, the flag
2570                  * will be reset. So no problem. but if the page is used by readahead
2571                  * it will confuse readahead and make it restart the size rampup
2572                  * process. But it's a trivial problem.
2573                  */
2574                 if (PageReclaim(page))
2575                         ClearPageReclaim(page);
2576 #ifdef CONFIG_BLOCK
2577                 if (!spd)
2578                         spd = __set_page_dirty_buffers;
2579 #endif
2580                 return (*spd)(page);
2581         }
2582         if (!PageDirty(page)) {
2583                 if (!TestSetPageDirty(page))
2584                         return 1;
2585         }
2586         return 0;
2587 }
2588 EXPORT_SYMBOL(set_page_dirty);
2589
2590 /*
2591  * set_page_dirty() is racy if the caller has no reference against
2592  * page->mapping->host, and if the page is unlocked.  This is because another
2593  * CPU could truncate the page off the mapping and then free the mapping.
2594  *
2595  * Usually, the page _is_ locked, or the caller is a user-space process which
2596  * holds a reference on the inode by having an open file.
2597  *
2598  * In other cases, the page should be locked before running set_page_dirty().
2599  */
2600 int set_page_dirty_lock(struct page *page)
2601 {
2602         int ret;
2603
2604         lock_page(page);
2605         ret = set_page_dirty(page);
2606         unlock_page(page);
2607         return ret;
2608 }
2609 EXPORT_SYMBOL(set_page_dirty_lock);
2610
2611 /*
2612  * This cancels just the dirty bit on the kernel page itself, it does NOT
2613  * actually remove dirty bits on any mmap's that may be around. It also
2614  * leaves the page tagged dirty, so any sync activity will still find it on
2615  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616  * look at the dirty bits in the VM.
2617  *
2618  * Doing this should *normally* only ever be done when a page is truncated,
2619  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620  * this when it notices that somebody has cleaned out all the buffers on a
2621  * page without actually doing it through the VM. Can you say "ext3 is
2622  * horribly ugly"? Thought you could.
2623  */
2624 void cancel_dirty_page(struct page *page)
2625 {
2626         struct address_space *mapping = page_mapping(page);
2627
2628         if (mapping_cap_account_dirty(mapping)) {
2629                 struct inode *inode = mapping->host;
2630                 struct bdi_writeback *wb;
2631                 bool locked;
2632
2633                 lock_page_memcg(page);
2634                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2635
2636                 if (TestClearPageDirty(page))
2637                         account_page_cleaned(page, mapping, wb);
2638
2639                 unlocked_inode_to_wb_end(inode, locked);
2640                 unlock_page_memcg(page);
2641         } else {
2642                 ClearPageDirty(page);
2643         }
2644 }
2645 EXPORT_SYMBOL(cancel_dirty_page);
2646
2647 /*
2648  * Clear a page's dirty flag, while caring for dirty memory accounting.
2649  * Returns true if the page was previously dirty.
2650  *
2651  * This is for preparing to put the page under writeout.  We leave the page
2652  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2653  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2654  * implementation will run either set_page_writeback() or set_page_dirty(),
2655  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2656  * back into sync.
2657  *
2658  * This incoherency between the page's dirty flag and radix-tree tag is
2659  * unfortunate, but it only exists while the page is locked.
2660  */
2661 int clear_page_dirty_for_io(struct page *page)
2662 {
2663         struct address_space *mapping = page_mapping(page);
2664         int ret = 0;
2665
2666         BUG_ON(!PageLocked(page));
2667
2668         if (mapping && mapping_cap_account_dirty(mapping)) {
2669                 struct inode *inode = mapping->host;
2670                 struct bdi_writeback *wb;
2671                 bool locked;
2672
2673                 /*
2674                  * Yes, Virginia, this is indeed insane.
2675                  *
2676                  * We use this sequence to make sure that
2677                  *  (a) we account for dirty stats properly
2678                  *  (b) we tell the low-level filesystem to
2679                  *      mark the whole page dirty if it was
2680                  *      dirty in a pagetable. Only to then
2681                  *  (c) clean the page again and return 1 to
2682                  *      cause the writeback.
2683                  *
2684                  * This way we avoid all nasty races with the
2685                  * dirty bit in multiple places and clearing
2686                  * them concurrently from different threads.
2687                  *
2688                  * Note! Normally the "set_page_dirty(page)"
2689                  * has no effect on the actual dirty bit - since
2690                  * that will already usually be set. But we
2691                  * need the side effects, and it can help us
2692                  * avoid races.
2693                  *
2694                  * We basically use the page "master dirty bit"
2695                  * as a serialization point for all the different
2696                  * threads doing their things.
2697                  */
2698                 if (page_mkclean(page))
2699                         set_page_dirty(page);
2700                 /*
2701                  * We carefully synchronise fault handlers against
2702                  * installing a dirty pte and marking the page dirty
2703                  * at this point.  We do this by having them hold the
2704                  * page lock while dirtying the page, and pages are
2705                  * always locked coming in here, so we get the desired
2706                  * exclusion.
2707                  */
2708                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2709                 if (TestClearPageDirty(page)) {
2710                         mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2711                         dec_node_page_state(page, NR_FILE_DIRTY);
2712                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2713                         dec_wb_stat(wb, WB_RECLAIMABLE);
2714                         ret = 1;
2715                 }
2716                 unlocked_inode_to_wb_end(inode, locked);
2717                 return ret;
2718         }
2719         return TestClearPageDirty(page);
2720 }
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2722
2723 int test_clear_page_writeback(struct page *page)
2724 {
2725         struct address_space *mapping = page_mapping(page);
2726         int ret;
2727
2728         lock_page_memcg(page);
2729         if (mapping && mapping_use_writeback_tags(mapping)) {
2730                 struct inode *inode = mapping->host;
2731                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2732                 unsigned long flags;
2733
2734                 spin_lock_irqsave(&mapping->tree_lock, flags);
2735                 ret = TestClearPageWriteback(page);
2736                 if (ret) {
2737                         radix_tree_tag_clear(&mapping->page_tree,
2738                                                 page_index(page),
2739                                                 PAGECACHE_TAG_WRITEBACK);
2740                         if (bdi_cap_account_writeback(bdi)) {
2741                                 struct bdi_writeback *wb = inode_to_wb(inode);
2742
2743                                 __dec_wb_stat(wb, WB_WRITEBACK);
2744                                 __wb_writeout_inc(wb);
2745                         }
2746                 }
2747
2748                 if (mapping->host && !mapping_tagged(mapping,
2749                                                      PAGECACHE_TAG_WRITEBACK))
2750                         sb_clear_inode_writeback(mapping->host);
2751
2752                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2753         } else {
2754                 ret = TestClearPageWriteback(page);
2755         }
2756         if (ret) {
2757                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2758                 dec_node_page_state(page, NR_WRITEBACK);
2759                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2760                 inc_node_page_state(page, NR_WRITTEN);
2761         }
2762         unlock_page_memcg(page);
2763         return ret;
2764 }
2765
2766 int __test_set_page_writeback(struct page *page, bool keep_write)
2767 {
2768         struct address_space *mapping = page_mapping(page);
2769         int ret;
2770
2771         lock_page_memcg(page);
2772         if (mapping && mapping_use_writeback_tags(mapping)) {
2773                 struct inode *inode = mapping->host;
2774                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2775                 unsigned long flags;
2776
2777                 spin_lock_irqsave(&mapping->tree_lock, flags);
2778                 ret = TestSetPageWriteback(page);
2779                 if (!ret) {
2780                         bool on_wblist;
2781
2782                         on_wblist = mapping_tagged(mapping,
2783                                                    PAGECACHE_TAG_WRITEBACK);
2784
2785                         radix_tree_tag_set(&mapping->page_tree,
2786                                                 page_index(page),
2787                                                 PAGECACHE_TAG_WRITEBACK);
2788                         if (bdi_cap_account_writeback(bdi))
2789                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2790
2791                         /*
2792                          * We can come through here when swapping anonymous
2793                          * pages, so we don't necessarily have an inode to track
2794                          * for sync.
2795                          */
2796                         if (mapping->host && !on_wblist)
2797                                 sb_mark_inode_writeback(mapping->host);
2798                 }
2799                 if (!PageDirty(page))
2800                         radix_tree_tag_clear(&mapping->page_tree,
2801                                                 page_index(page),
2802                                                 PAGECACHE_TAG_DIRTY);
2803                 if (!keep_write)
2804                         radix_tree_tag_clear(&mapping->page_tree,
2805                                                 page_index(page),
2806                                                 PAGECACHE_TAG_TOWRITE);
2807                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2808         } else {
2809                 ret = TestSetPageWriteback(page);
2810         }
2811         if (!ret) {
2812                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2813                 inc_node_page_state(page, NR_WRITEBACK);
2814                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2815         }
2816         unlock_page_memcg(page);
2817         return ret;
2818
2819 }
2820 EXPORT_SYMBOL(__test_set_page_writeback);
2821
2822 /*
2823  * Return true if any of the pages in the mapping are marked with the
2824  * passed tag.
2825  */
2826 int mapping_tagged(struct address_space *mapping, int tag)
2827 {
2828         return radix_tree_tagged(&mapping->page_tree, tag);
2829 }
2830 EXPORT_SYMBOL(mapping_tagged);
2831
2832 /**
2833  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2834  * @page:       The page to wait on.
2835  *
2836  * This function determines if the given page is related to a backing device
2837  * that requires page contents to be held stable during writeback.  If so, then
2838  * it will wait for any pending writeback to complete.
2839  */
2840 void wait_for_stable_page(struct page *page)
2841 {
2842         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2843                 wait_on_page_writeback(page);
2844 }
2845 EXPORT_SYMBOL_GPL(wait_for_stable_page);