Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155         return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
159 {
160         void *ret;
161
162         ret = __vmalloc(size, flags, PAGE_KERNEL);
163         if (ret) {
164                 struct vm_area_struct *vma;
165
166                 down_write(&current->mm->mmap_sem);
167                 vma = find_vma(current->mm, (unsigned long)ret);
168                 if (vma)
169                         vma->vm_flags |= VM_USERMAP;
170                 up_write(&current->mm->mmap_sem);
171         }
172
173         return ret;
174 }
175
176 void *vmalloc_user(unsigned long size)
177 {
178         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
179 }
180 EXPORT_SYMBOL(vmalloc_user);
181
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
183 {
184         return __vmalloc_user_flags(size, flags | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
187
188 struct page *vmalloc_to_page(const void *addr)
189 {
190         return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196         return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199
200 long vread(char *buf, char *addr, unsigned long count)
201 {
202         /* Don't allow overflow */
203         if ((unsigned long) buf + count < count)
204                 count = -(unsigned long) buf;
205
206         memcpy(buf, addr, count);
207         return count;
208 }
209
210 long vwrite(char *buf, char *addr, unsigned long count)
211 {
212         /* Don't allow overflow */
213         if ((unsigned long) addr + count < count)
214                 count = -(unsigned long) addr;
215
216         memcpy(addr, buf, count);
217         return count;
218 }
219
220 /*
221  *      vmalloc  -  allocate virtually contiguous memory
222  *
223  *      @size:          allocation size
224  *
225  *      Allocate enough pages to cover @size from the page level
226  *      allocator and map them into contiguous kernel virtual space.
227  *
228  *      For tight control over page level allocator and protection flags
229  *      use __vmalloc() instead.
230  */
231 void *vmalloc(unsigned long size)
232 {
233        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
234 }
235 EXPORT_SYMBOL(vmalloc);
236
237 /*
238  *      vzalloc - allocate virtually contiguous memory with zero fill
239  *
240  *      @size:          allocation size
241  *
242  *      Allocate enough pages to cover @size from the page level
243  *      allocator and map them into contiguous kernel virtual space.
244  *      The memory allocated is set to zero.
245  *
246  *      For tight control over page level allocator and protection flags
247  *      use __vmalloc() instead.
248  */
249 void *vzalloc(unsigned long size)
250 {
251         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252                         PAGE_KERNEL);
253 }
254 EXPORT_SYMBOL(vzalloc);
255
256 /**
257  * vmalloc_node - allocate memory on a specific node
258  * @size:       allocation size
259  * @node:       numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  *
264  * For tight control over page level allocator and protection flags
265  * use __vmalloc() instead.
266  */
267 void *vmalloc_node(unsigned long size, int node)
268 {
269         return vmalloc(size);
270 }
271 EXPORT_SYMBOL(vmalloc_node);
272
273 /**
274  * vzalloc_node - allocate memory on a specific node with zero fill
275  * @size:       allocation size
276  * @node:       numa node
277  *
278  * Allocate enough pages to cover @size from the page level
279  * allocator and map them into contiguous kernel virtual space.
280  * The memory allocated is set to zero.
281  *
282  * For tight control over page level allocator and protection flags
283  * use __vmalloc() instead.
284  */
285 void *vzalloc_node(unsigned long size, int node)
286 {
287         return vzalloc(size);
288 }
289 EXPORT_SYMBOL(vzalloc_node);
290
291 /**
292  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
293  *      @size:          allocation size
294  *
295  *      Kernel-internal function to allocate enough pages to cover @size
296  *      the page level allocator and map them into contiguous and
297  *      executable kernel virtual space.
298  *
299  *      For tight control over page level allocator and protection flags
300  *      use __vmalloc() instead.
301  */
302
303 void *vmalloc_exec(unsigned long size)
304 {
305         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
306 }
307
308 /**
309  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
310  *      @size:          allocation size
311  *
312  *      Allocate enough 32bit PA addressable pages to cover @size from the
313  *      page level allocator and map them into contiguous kernel virtual space.
314  */
315 void *vmalloc_32(unsigned long size)
316 {
317         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc_32);
320
321 /**
322  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323  *      @size:          allocation size
324  *
325  * The resulting memory area is 32bit addressable and zeroed so it can be
326  * mapped to userspace without leaking data.
327  *
328  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329  * remap_vmalloc_range() are permissible.
330  */
331 void *vmalloc_32_user(unsigned long size)
332 {
333         /*
334          * We'll have to sort out the ZONE_DMA bits for 64-bit,
335          * but for now this can simply use vmalloc_user() directly.
336          */
337         return vmalloc_user(size);
338 }
339 EXPORT_SYMBOL(vmalloc_32_user);
340
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
342 {
343         BUG();
344         return NULL;
345 }
346 EXPORT_SYMBOL(vmap);
347
348 void vunmap(const void *addr)
349 {
350         BUG();
351 }
352 EXPORT_SYMBOL(vunmap);
353
354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
355 {
356         BUG();
357         return NULL;
358 }
359 EXPORT_SYMBOL(vm_map_ram);
360
361 void vm_unmap_ram(const void *mem, unsigned int count)
362 {
363         BUG();
364 }
365 EXPORT_SYMBOL(vm_unmap_ram);
366
367 void vm_unmap_aliases(void)
368 {
369 }
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
371
372 /*
373  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
374  * have one.
375  */
376 void __weak vmalloc_sync_all(void)
377 {
378 }
379
380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
381 {
382         BUG();
383         return NULL;
384 }
385 EXPORT_SYMBOL_GPL(alloc_vm_area);
386
387 void free_vm_area(struct vm_struct *area)
388 {
389         BUG();
390 }
391 EXPORT_SYMBOL_GPL(free_vm_area);
392
393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
394                    struct page *page)
395 {
396         return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_insert_page);
399
400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
401                         unsigned long num)
402 {
403         return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages);
406
407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
408                                 unsigned long num)
409 {
410         return -EINVAL;
411 }
412 EXPORT_SYMBOL(vm_map_pages_zero);
413
414 /*
415  *  sys_brk() for the most part doesn't need the global kernel
416  *  lock, except when an application is doing something nasty
417  *  like trying to un-brk an area that has already been mapped
418  *  to a regular file.  in this case, the unmapping will need
419  *  to invoke file system routines that need the global lock.
420  */
421 SYSCALL_DEFINE1(brk, unsigned long, brk)
422 {
423         struct mm_struct *mm = current->mm;
424
425         if (brk < mm->start_brk || brk > mm->context.end_brk)
426                 return mm->brk;
427
428         if (mm->brk == brk)
429                 return mm->brk;
430
431         /*
432          * Always allow shrinking brk
433          */
434         if (brk <= mm->brk) {
435                 mm->brk = brk;
436                 return brk;
437         }
438
439         /*
440          * Ok, looks good - let it rip.
441          */
442         flush_icache_range(mm->brk, brk);
443         return mm->brk = brk;
444 }
445
446 /*
447  * initialise the percpu counter for VM and region record slabs
448  */
449 void __init mmap_init(void)
450 {
451         int ret;
452
453         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
454         VM_BUG_ON(ret);
455         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
456 }
457
458 /*
459  * validate the region tree
460  * - the caller must hold the region lock
461  */
462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
463 static noinline void validate_nommu_regions(void)
464 {
465         struct vm_region *region, *last;
466         struct rb_node *p, *lastp;
467
468         lastp = rb_first(&nommu_region_tree);
469         if (!lastp)
470                 return;
471
472         last = rb_entry(lastp, struct vm_region, vm_rb);
473         BUG_ON(last->vm_end <= last->vm_start);
474         BUG_ON(last->vm_top < last->vm_end);
475
476         while ((p = rb_next(lastp))) {
477                 region = rb_entry(p, struct vm_region, vm_rb);
478                 last = rb_entry(lastp, struct vm_region, vm_rb);
479
480                 BUG_ON(region->vm_end <= region->vm_start);
481                 BUG_ON(region->vm_top < region->vm_end);
482                 BUG_ON(region->vm_start < last->vm_top);
483
484                 lastp = p;
485         }
486 }
487 #else
488 static void validate_nommu_regions(void)
489 {
490 }
491 #endif
492
493 /*
494  * add a region into the global tree
495  */
496 static void add_nommu_region(struct vm_region *region)
497 {
498         struct vm_region *pregion;
499         struct rb_node **p, *parent;
500
501         validate_nommu_regions();
502
503         parent = NULL;
504         p = &nommu_region_tree.rb_node;
505         while (*p) {
506                 parent = *p;
507                 pregion = rb_entry(parent, struct vm_region, vm_rb);
508                 if (region->vm_start < pregion->vm_start)
509                         p = &(*p)->rb_left;
510                 else if (region->vm_start > pregion->vm_start)
511                         p = &(*p)->rb_right;
512                 else if (pregion == region)
513                         return;
514                 else
515                         BUG();
516         }
517
518         rb_link_node(&region->vm_rb, parent, p);
519         rb_insert_color(&region->vm_rb, &nommu_region_tree);
520
521         validate_nommu_regions();
522 }
523
524 /*
525  * delete a region from the global tree
526  */
527 static void delete_nommu_region(struct vm_region *region)
528 {
529         BUG_ON(!nommu_region_tree.rb_node);
530
531         validate_nommu_regions();
532         rb_erase(&region->vm_rb, &nommu_region_tree);
533         validate_nommu_regions();
534 }
535
536 /*
537  * free a contiguous series of pages
538  */
539 static void free_page_series(unsigned long from, unsigned long to)
540 {
541         for (; from < to; from += PAGE_SIZE) {
542                 struct page *page = virt_to_page(from);
543
544                 atomic_long_dec(&mmap_pages_allocated);
545                 put_page(page);
546         }
547 }
548
549 /*
550  * release a reference to a region
551  * - the caller must hold the region semaphore for writing, which this releases
552  * - the region may not have been added to the tree yet, in which case vm_top
553  *   will equal vm_start
554  */
555 static void __put_nommu_region(struct vm_region *region)
556         __releases(nommu_region_sem)
557 {
558         BUG_ON(!nommu_region_tree.rb_node);
559
560         if (--region->vm_usage == 0) {
561                 if (region->vm_top > region->vm_start)
562                         delete_nommu_region(region);
563                 up_write(&nommu_region_sem);
564
565                 if (region->vm_file)
566                         fput(region->vm_file);
567
568                 /* IO memory and memory shared directly out of the pagecache
569                  * from ramfs/tmpfs mustn't be released here */
570                 if (region->vm_flags & VM_MAPPED_COPY)
571                         free_page_series(region->vm_start, region->vm_top);
572                 kmem_cache_free(vm_region_jar, region);
573         } else {
574                 up_write(&nommu_region_sem);
575         }
576 }
577
578 /*
579  * release a reference to a region
580  */
581 static void put_nommu_region(struct vm_region *region)
582 {
583         down_write(&nommu_region_sem);
584         __put_nommu_region(region);
585 }
586
587 /*
588  * add a VMA into a process's mm_struct in the appropriate place in the list
589  * and tree and add to the address space's page tree also if not an anonymous
590  * page
591  * - should be called with mm->mmap_sem held writelocked
592  */
593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
594 {
595         struct vm_area_struct *pvma, *prev;
596         struct address_space *mapping;
597         struct rb_node **p, *parent, *rb_prev;
598
599         BUG_ON(!vma->vm_region);
600
601         mm->map_count++;
602         vma->vm_mm = mm;
603
604         /* add the VMA to the mapping */
605         if (vma->vm_file) {
606                 mapping = vma->vm_file->f_mapping;
607
608                 i_mmap_lock_write(mapping);
609                 flush_dcache_mmap_lock(mapping);
610                 vma_interval_tree_insert(vma, &mapping->i_mmap);
611                 flush_dcache_mmap_unlock(mapping);
612                 i_mmap_unlock_write(mapping);
613         }
614
615         /* add the VMA to the tree */
616         parent = rb_prev = NULL;
617         p = &mm->mm_rb.rb_node;
618         while (*p) {
619                 parent = *p;
620                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
621
622                 /* sort by: start addr, end addr, VMA struct addr in that order
623                  * (the latter is necessary as we may get identical VMAs) */
624                 if (vma->vm_start < pvma->vm_start)
625                         p = &(*p)->rb_left;
626                 else if (vma->vm_start > pvma->vm_start) {
627                         rb_prev = parent;
628                         p = &(*p)->rb_right;
629                 } else if (vma->vm_end < pvma->vm_end)
630                         p = &(*p)->rb_left;
631                 else if (vma->vm_end > pvma->vm_end) {
632                         rb_prev = parent;
633                         p = &(*p)->rb_right;
634                 } else if (vma < pvma)
635                         p = &(*p)->rb_left;
636                 else if (vma > pvma) {
637                         rb_prev = parent;
638                         p = &(*p)->rb_right;
639                 } else
640                         BUG();
641         }
642
643         rb_link_node(&vma->vm_rb, parent, p);
644         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
645
646         /* add VMA to the VMA list also */
647         prev = NULL;
648         if (rb_prev)
649                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
650
651         __vma_link_list(mm, vma, prev, parent);
652 }
653
654 /*
655  * delete a VMA from its owning mm_struct and address space
656  */
657 static void delete_vma_from_mm(struct vm_area_struct *vma)
658 {
659         int i;
660         struct address_space *mapping;
661         struct mm_struct *mm = vma->vm_mm;
662         struct task_struct *curr = current;
663
664         mm->map_count--;
665         for (i = 0; i < VMACACHE_SIZE; i++) {
666                 /* if the vma is cached, invalidate the entire cache */
667                 if (curr->vmacache.vmas[i] == vma) {
668                         vmacache_invalidate(mm);
669                         break;
670                 }
671         }
672
673         /* remove the VMA from the mapping */
674         if (vma->vm_file) {
675                 mapping = vma->vm_file->f_mapping;
676
677                 i_mmap_lock_write(mapping);
678                 flush_dcache_mmap_lock(mapping);
679                 vma_interval_tree_remove(vma, &mapping->i_mmap);
680                 flush_dcache_mmap_unlock(mapping);
681                 i_mmap_unlock_write(mapping);
682         }
683
684         /* remove from the MM's tree and list */
685         rb_erase(&vma->vm_rb, &mm->mm_rb);
686
687         if (vma->vm_prev)
688                 vma->vm_prev->vm_next = vma->vm_next;
689         else
690                 mm->mmap = vma->vm_next;
691
692         if (vma->vm_next)
693                 vma->vm_next->vm_prev = vma->vm_prev;
694 }
695
696 /*
697  * destroy a VMA record
698  */
699 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
700 {
701         if (vma->vm_ops && vma->vm_ops->close)
702                 vma->vm_ops->close(vma);
703         if (vma->vm_file)
704                 fput(vma->vm_file);
705         put_nommu_region(vma->vm_region);
706         vm_area_free(vma);
707 }
708
709 /*
710  * look up the first VMA in which addr resides, NULL if none
711  * - should be called with mm->mmap_sem at least held readlocked
712  */
713 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
714 {
715         struct vm_area_struct *vma;
716
717         /* check the cache first */
718         vma = vmacache_find(mm, addr);
719         if (likely(vma))
720                 return vma;
721
722         /* trawl the list (there may be multiple mappings in which addr
723          * resides) */
724         for (vma = mm->mmap; vma; vma = vma->vm_next) {
725                 if (vma->vm_start > addr)
726                         return NULL;
727                 if (vma->vm_end > addr) {
728                         vmacache_update(addr, vma);
729                         return vma;
730                 }
731         }
732
733         return NULL;
734 }
735 EXPORT_SYMBOL(find_vma);
736
737 /*
738  * find a VMA
739  * - we don't extend stack VMAs under NOMMU conditions
740  */
741 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
742 {
743         return find_vma(mm, addr);
744 }
745
746 /*
747  * expand a stack to a given address
748  * - not supported under NOMMU conditions
749  */
750 int expand_stack(struct vm_area_struct *vma, unsigned long address)
751 {
752         return -ENOMEM;
753 }
754
755 /*
756  * look up the first VMA exactly that exactly matches addr
757  * - should be called with mm->mmap_sem at least held readlocked
758  */
759 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
760                                              unsigned long addr,
761                                              unsigned long len)
762 {
763         struct vm_area_struct *vma;
764         unsigned long end = addr + len;
765
766         /* check the cache first */
767         vma = vmacache_find_exact(mm, addr, end);
768         if (vma)
769                 return vma;
770
771         /* trawl the list (there may be multiple mappings in which addr
772          * resides) */
773         for (vma = mm->mmap; vma; vma = vma->vm_next) {
774                 if (vma->vm_start < addr)
775                         continue;
776                 if (vma->vm_start > addr)
777                         return NULL;
778                 if (vma->vm_end == end) {
779                         vmacache_update(addr, vma);
780                         return vma;
781                 }
782         }
783
784         return NULL;
785 }
786
787 /*
788  * determine whether a mapping should be permitted and, if so, what sort of
789  * mapping we're capable of supporting
790  */
791 static int validate_mmap_request(struct file *file,
792                                  unsigned long addr,
793                                  unsigned long len,
794                                  unsigned long prot,
795                                  unsigned long flags,
796                                  unsigned long pgoff,
797                                  unsigned long *_capabilities)
798 {
799         unsigned long capabilities, rlen;
800         int ret;
801
802         /* do the simple checks first */
803         if (flags & MAP_FIXED)
804                 return -EINVAL;
805
806         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
807             (flags & MAP_TYPE) != MAP_SHARED)
808                 return -EINVAL;
809
810         if (!len)
811                 return -EINVAL;
812
813         /* Careful about overflows.. */
814         rlen = PAGE_ALIGN(len);
815         if (!rlen || rlen > TASK_SIZE)
816                 return -ENOMEM;
817
818         /* offset overflow? */
819         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
820                 return -EOVERFLOW;
821
822         if (file) {
823                 /* files must support mmap */
824                 if (!file->f_op->mmap)
825                         return -ENODEV;
826
827                 /* work out if what we've got could possibly be shared
828                  * - we support chardevs that provide their own "memory"
829                  * - we support files/blockdevs that are memory backed
830                  */
831                 if (file->f_op->mmap_capabilities) {
832                         capabilities = file->f_op->mmap_capabilities(file);
833                 } else {
834                         /* no explicit capabilities set, so assume some
835                          * defaults */
836                         switch (file_inode(file)->i_mode & S_IFMT) {
837                         case S_IFREG:
838                         case S_IFBLK:
839                                 capabilities = NOMMU_MAP_COPY;
840                                 break;
841
842                         case S_IFCHR:
843                                 capabilities =
844                                         NOMMU_MAP_DIRECT |
845                                         NOMMU_MAP_READ |
846                                         NOMMU_MAP_WRITE;
847                                 break;
848
849                         default:
850                                 return -EINVAL;
851                         }
852                 }
853
854                 /* eliminate any capabilities that we can't support on this
855                  * device */
856                 if (!file->f_op->get_unmapped_area)
857                         capabilities &= ~NOMMU_MAP_DIRECT;
858                 if (!(file->f_mode & FMODE_CAN_READ))
859                         capabilities &= ~NOMMU_MAP_COPY;
860
861                 /* The file shall have been opened with read permission. */
862                 if (!(file->f_mode & FMODE_READ))
863                         return -EACCES;
864
865                 if (flags & MAP_SHARED) {
866                         /* do checks for writing, appending and locking */
867                         if ((prot & PROT_WRITE) &&
868                             !(file->f_mode & FMODE_WRITE))
869                                 return -EACCES;
870
871                         if (IS_APPEND(file_inode(file)) &&
872                             (file->f_mode & FMODE_WRITE))
873                                 return -EACCES;
874
875                         if (locks_verify_locked(file))
876                                 return -EAGAIN;
877
878                         if (!(capabilities & NOMMU_MAP_DIRECT))
879                                 return -ENODEV;
880
881                         /* we mustn't privatise shared mappings */
882                         capabilities &= ~NOMMU_MAP_COPY;
883                 } else {
884                         /* we're going to read the file into private memory we
885                          * allocate */
886                         if (!(capabilities & NOMMU_MAP_COPY))
887                                 return -ENODEV;
888
889                         /* we don't permit a private writable mapping to be
890                          * shared with the backing device */
891                         if (prot & PROT_WRITE)
892                                 capabilities &= ~NOMMU_MAP_DIRECT;
893                 }
894
895                 if (capabilities & NOMMU_MAP_DIRECT) {
896                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
897                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
898                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
899                             ) {
900                                 capabilities &= ~NOMMU_MAP_DIRECT;
901                                 if (flags & MAP_SHARED) {
902                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
903                                         return -EINVAL;
904                                 }
905                         }
906                 }
907
908                 /* handle executable mappings and implied executable
909                  * mappings */
910                 if (path_noexec(&file->f_path)) {
911                         if (prot & PROT_EXEC)
912                                 return -EPERM;
913                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
914                         /* handle implication of PROT_EXEC by PROT_READ */
915                         if (current->personality & READ_IMPLIES_EXEC) {
916                                 if (capabilities & NOMMU_MAP_EXEC)
917                                         prot |= PROT_EXEC;
918                         }
919                 } else if ((prot & PROT_READ) &&
920                          (prot & PROT_EXEC) &&
921                          !(capabilities & NOMMU_MAP_EXEC)
922                          ) {
923                         /* backing file is not executable, try to copy */
924                         capabilities &= ~NOMMU_MAP_DIRECT;
925                 }
926         } else {
927                 /* anonymous mappings are always memory backed and can be
928                  * privately mapped
929                  */
930                 capabilities = NOMMU_MAP_COPY;
931
932                 /* handle PROT_EXEC implication by PROT_READ */
933                 if ((prot & PROT_READ) &&
934                     (current->personality & READ_IMPLIES_EXEC))
935                         prot |= PROT_EXEC;
936         }
937
938         /* allow the security API to have its say */
939         ret = security_mmap_addr(addr);
940         if (ret < 0)
941                 return ret;
942
943         /* looks okay */
944         *_capabilities = capabilities;
945         return 0;
946 }
947
948 /*
949  * we've determined that we can make the mapping, now translate what we
950  * now know into VMA flags
951  */
952 static unsigned long determine_vm_flags(struct file *file,
953                                         unsigned long prot,
954                                         unsigned long flags,
955                                         unsigned long capabilities)
956 {
957         unsigned long vm_flags;
958
959         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
960         /* vm_flags |= mm->def_flags; */
961
962         if (!(capabilities & NOMMU_MAP_DIRECT)) {
963                 /* attempt to share read-only copies of mapped file chunks */
964                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
965                 if (file && !(prot & PROT_WRITE))
966                         vm_flags |= VM_MAYSHARE;
967         } else {
968                 /* overlay a shareable mapping on the backing device or inode
969                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
970                  * romfs/cramfs */
971                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
972                 if (flags & MAP_SHARED)
973                         vm_flags |= VM_SHARED;
974         }
975
976         /* refuse to let anyone share private mappings with this process if
977          * it's being traced - otherwise breakpoints set in it may interfere
978          * with another untraced process
979          */
980         if ((flags & MAP_PRIVATE) && current->ptrace)
981                 vm_flags &= ~VM_MAYSHARE;
982
983         return vm_flags;
984 }
985
986 /*
987  * set up a shared mapping on a file (the driver or filesystem provides and
988  * pins the storage)
989  */
990 static int do_mmap_shared_file(struct vm_area_struct *vma)
991 {
992         int ret;
993
994         ret = call_mmap(vma->vm_file, vma);
995         if (ret == 0) {
996                 vma->vm_region->vm_top = vma->vm_region->vm_end;
997                 return 0;
998         }
999         if (ret != -ENOSYS)
1000                 return ret;
1001
1002         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1003          * opposed to tried but failed) so we can only give a suitable error as
1004          * it's not possible to make a private copy if MAP_SHARED was given */
1005         return -ENODEV;
1006 }
1007
1008 /*
1009  * set up a private mapping or an anonymous shared mapping
1010  */
1011 static int do_mmap_private(struct vm_area_struct *vma,
1012                            struct vm_region *region,
1013                            unsigned long len,
1014                            unsigned long capabilities)
1015 {
1016         unsigned long total, point;
1017         void *base;
1018         int ret, order;
1019
1020         /* invoke the file's mapping function so that it can keep track of
1021          * shared mappings on devices or memory
1022          * - VM_MAYSHARE will be set if it may attempt to share
1023          */
1024         if (capabilities & NOMMU_MAP_DIRECT) {
1025                 ret = call_mmap(vma->vm_file, vma);
1026                 if (ret == 0) {
1027                         /* shouldn't return success if we're not sharing */
1028                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1029                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1030                         return 0;
1031                 }
1032                 if (ret != -ENOSYS)
1033                         return ret;
1034
1035                 /* getting an ENOSYS error indicates that direct mmap isn't
1036                  * possible (as opposed to tried but failed) so we'll try to
1037                  * make a private copy of the data and map that instead */
1038         }
1039
1040
1041         /* allocate some memory to hold the mapping
1042          * - note that this may not return a page-aligned address if the object
1043          *   we're allocating is smaller than a page
1044          */
1045         order = get_order(len);
1046         total = 1 << order;
1047         point = len >> PAGE_SHIFT;
1048
1049         /* we don't want to allocate a power-of-2 sized page set */
1050         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1051                 total = point;
1052
1053         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1054         if (!base)
1055                 goto enomem;
1056
1057         atomic_long_add(total, &mmap_pages_allocated);
1058
1059         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1060         region->vm_start = (unsigned long) base;
1061         region->vm_end   = region->vm_start + len;
1062         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1063
1064         vma->vm_start = region->vm_start;
1065         vma->vm_end   = region->vm_start + len;
1066
1067         if (vma->vm_file) {
1068                 /* read the contents of a file into the copy */
1069                 loff_t fpos;
1070
1071                 fpos = vma->vm_pgoff;
1072                 fpos <<= PAGE_SHIFT;
1073
1074                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1075                 if (ret < 0)
1076                         goto error_free;
1077
1078                 /* clear the last little bit */
1079                 if (ret < len)
1080                         memset(base + ret, 0, len - ret);
1081
1082         } else {
1083                 vma_set_anonymous(vma);
1084         }
1085
1086         return 0;
1087
1088 error_free:
1089         free_page_series(region->vm_start, region->vm_top);
1090         region->vm_start = vma->vm_start = 0;
1091         region->vm_end   = vma->vm_end = 0;
1092         region->vm_top   = 0;
1093         return ret;
1094
1095 enomem:
1096         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1097                len, current->pid, current->comm);
1098         show_free_areas(0, NULL);
1099         return -ENOMEM;
1100 }
1101
1102 /*
1103  * handle mapping creation for uClinux
1104  */
1105 unsigned long do_mmap(struct file *file,
1106                         unsigned long addr,
1107                         unsigned long len,
1108                         unsigned long prot,
1109                         unsigned long flags,
1110                         vm_flags_t vm_flags,
1111                         unsigned long pgoff,
1112                         unsigned long *populate,
1113                         struct list_head *uf)
1114 {
1115         struct vm_area_struct *vma;
1116         struct vm_region *region;
1117         struct rb_node *rb;
1118         unsigned long capabilities, result;
1119         int ret;
1120
1121         *populate = 0;
1122
1123         /* decide whether we should attempt the mapping, and if so what sort of
1124          * mapping */
1125         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1126                                     &capabilities);
1127         if (ret < 0)
1128                 return ret;
1129
1130         /* we ignore the address hint */
1131         addr = 0;
1132         len = PAGE_ALIGN(len);
1133
1134         /* we've determined that we can make the mapping, now translate what we
1135          * now know into VMA flags */
1136         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1137
1138         /* we're going to need to record the mapping */
1139         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1140         if (!region)
1141                 goto error_getting_region;
1142
1143         vma = vm_area_alloc(current->mm);
1144         if (!vma)
1145                 goto error_getting_vma;
1146
1147         region->vm_usage = 1;
1148         region->vm_flags = vm_flags;
1149         region->vm_pgoff = pgoff;
1150
1151         vma->vm_flags = vm_flags;
1152         vma->vm_pgoff = pgoff;
1153
1154         if (file) {
1155                 region->vm_file = get_file(file);
1156                 vma->vm_file = get_file(file);
1157         }
1158
1159         down_write(&nommu_region_sem);
1160
1161         /* if we want to share, we need to check for regions created by other
1162          * mmap() calls that overlap with our proposed mapping
1163          * - we can only share with a superset match on most regular files
1164          * - shared mappings on character devices and memory backed files are
1165          *   permitted to overlap inexactly as far as we are concerned for in
1166          *   these cases, sharing is handled in the driver or filesystem rather
1167          *   than here
1168          */
1169         if (vm_flags & VM_MAYSHARE) {
1170                 struct vm_region *pregion;
1171                 unsigned long pglen, rpglen, pgend, rpgend, start;
1172
1173                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1174                 pgend = pgoff + pglen;
1175
1176                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1177                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1178
1179                         if (!(pregion->vm_flags & VM_MAYSHARE))
1180                                 continue;
1181
1182                         /* search for overlapping mappings on the same file */
1183                         if (file_inode(pregion->vm_file) !=
1184                             file_inode(file))
1185                                 continue;
1186
1187                         if (pregion->vm_pgoff >= pgend)
1188                                 continue;
1189
1190                         rpglen = pregion->vm_end - pregion->vm_start;
1191                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192                         rpgend = pregion->vm_pgoff + rpglen;
1193                         if (pgoff >= rpgend)
1194                                 continue;
1195
1196                         /* handle inexactly overlapping matches between
1197                          * mappings */
1198                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1199                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1200                                 /* new mapping is not a subset of the region */
1201                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1202                                         goto sharing_violation;
1203                                 continue;
1204                         }
1205
1206                         /* we've found a region we can share */
1207                         pregion->vm_usage++;
1208                         vma->vm_region = pregion;
1209                         start = pregion->vm_start;
1210                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1211                         vma->vm_start = start;
1212                         vma->vm_end = start + len;
1213
1214                         if (pregion->vm_flags & VM_MAPPED_COPY)
1215                                 vma->vm_flags |= VM_MAPPED_COPY;
1216                         else {
1217                                 ret = do_mmap_shared_file(vma);
1218                                 if (ret < 0) {
1219                                         vma->vm_region = NULL;
1220                                         vma->vm_start = 0;
1221                                         vma->vm_end = 0;
1222                                         pregion->vm_usage--;
1223                                         pregion = NULL;
1224                                         goto error_just_free;
1225                                 }
1226                         }
1227                         fput(region->vm_file);
1228                         kmem_cache_free(vm_region_jar, region);
1229                         region = pregion;
1230                         result = start;
1231                         goto share;
1232                 }
1233
1234                 /* obtain the address at which to make a shared mapping
1235                  * - this is the hook for quasi-memory character devices to
1236                  *   tell us the location of a shared mapping
1237                  */
1238                 if (capabilities & NOMMU_MAP_DIRECT) {
1239                         addr = file->f_op->get_unmapped_area(file, addr, len,
1240                                                              pgoff, flags);
1241                         if (IS_ERR_VALUE(addr)) {
1242                                 ret = addr;
1243                                 if (ret != -ENOSYS)
1244                                         goto error_just_free;
1245
1246                                 /* the driver refused to tell us where to site
1247                                  * the mapping so we'll have to attempt to copy
1248                                  * it */
1249                                 ret = -ENODEV;
1250                                 if (!(capabilities & NOMMU_MAP_COPY))
1251                                         goto error_just_free;
1252
1253                                 capabilities &= ~NOMMU_MAP_DIRECT;
1254                         } else {
1255                                 vma->vm_start = region->vm_start = addr;
1256                                 vma->vm_end = region->vm_end = addr + len;
1257                         }
1258                 }
1259         }
1260
1261         vma->vm_region = region;
1262
1263         /* set up the mapping
1264          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1265          */
1266         if (file && vma->vm_flags & VM_SHARED)
1267                 ret = do_mmap_shared_file(vma);
1268         else
1269                 ret = do_mmap_private(vma, region, len, capabilities);
1270         if (ret < 0)
1271                 goto error_just_free;
1272         add_nommu_region(region);
1273
1274         /* clear anonymous mappings that don't ask for uninitialized data */
1275         if (!vma->vm_file &&
1276             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1277              !(flags & MAP_UNINITIALIZED)))
1278                 memset((void *)region->vm_start, 0,
1279                        region->vm_end - region->vm_start);
1280
1281         /* okay... we have a mapping; now we have to register it */
1282         result = vma->vm_start;
1283
1284         current->mm->total_vm += len >> PAGE_SHIFT;
1285
1286 share:
1287         add_vma_to_mm(current->mm, vma);
1288
1289         /* we flush the region from the icache only when the first executable
1290          * mapping of it is made  */
1291         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1292                 flush_icache_range(region->vm_start, region->vm_end);
1293                 region->vm_icache_flushed = true;
1294         }
1295
1296         up_write(&nommu_region_sem);
1297
1298         return result;
1299
1300 error_just_free:
1301         up_write(&nommu_region_sem);
1302 error:
1303         if (region->vm_file)
1304                 fput(region->vm_file);
1305         kmem_cache_free(vm_region_jar, region);
1306         if (vma->vm_file)
1307                 fput(vma->vm_file);
1308         vm_area_free(vma);
1309         return ret;
1310
1311 sharing_violation:
1312         up_write(&nommu_region_sem);
1313         pr_warn("Attempt to share mismatched mappings\n");
1314         ret = -EINVAL;
1315         goto error;
1316
1317 error_getting_vma:
1318         kmem_cache_free(vm_region_jar, region);
1319         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1320                         len, current->pid);
1321         show_free_areas(0, NULL);
1322         return -ENOMEM;
1323
1324 error_getting_region:
1325         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1326                         len, current->pid);
1327         show_free_areas(0, NULL);
1328         return -ENOMEM;
1329 }
1330
1331 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1332                               unsigned long prot, unsigned long flags,
1333                               unsigned long fd, unsigned long pgoff)
1334 {
1335         struct file *file = NULL;
1336         unsigned long retval = -EBADF;
1337
1338         audit_mmap_fd(fd, flags);
1339         if (!(flags & MAP_ANONYMOUS)) {
1340                 file = fget(fd);
1341                 if (!file)
1342                         goto out;
1343         }
1344
1345         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1346
1347         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1348
1349         if (file)
1350                 fput(file);
1351 out:
1352         return retval;
1353 }
1354
1355 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356                 unsigned long, prot, unsigned long, flags,
1357                 unsigned long, fd, unsigned long, pgoff)
1358 {
1359         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1360 }
1361
1362 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1363 struct mmap_arg_struct {
1364         unsigned long addr;
1365         unsigned long len;
1366         unsigned long prot;
1367         unsigned long flags;
1368         unsigned long fd;
1369         unsigned long offset;
1370 };
1371
1372 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1373 {
1374         struct mmap_arg_struct a;
1375
1376         if (copy_from_user(&a, arg, sizeof(a)))
1377                 return -EFAULT;
1378         if (offset_in_page(a.offset))
1379                 return -EINVAL;
1380
1381         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1382                                a.offset >> PAGE_SHIFT);
1383 }
1384 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1385
1386 /*
1387  * split a vma into two pieces at address 'addr', a new vma is allocated either
1388  * for the first part or the tail.
1389  */
1390 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1391               unsigned long addr, int new_below)
1392 {
1393         struct vm_area_struct *new;
1394         struct vm_region *region;
1395         unsigned long npages;
1396
1397         /* we're only permitted to split anonymous regions (these should have
1398          * only a single usage on the region) */
1399         if (vma->vm_file)
1400                 return -ENOMEM;
1401
1402         if (mm->map_count >= sysctl_max_map_count)
1403                 return -ENOMEM;
1404
1405         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1406         if (!region)
1407                 return -ENOMEM;
1408
1409         new = vm_area_dup(vma);
1410         if (!new) {
1411                 kmem_cache_free(vm_region_jar, region);
1412                 return -ENOMEM;
1413         }
1414
1415         /* most fields are the same, copy all, and then fixup */
1416         *region = *vma->vm_region;
1417         new->vm_region = region;
1418
1419         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1420
1421         if (new_below) {
1422                 region->vm_top = region->vm_end = new->vm_end = addr;
1423         } else {
1424                 region->vm_start = new->vm_start = addr;
1425                 region->vm_pgoff = new->vm_pgoff += npages;
1426         }
1427
1428         if (new->vm_ops && new->vm_ops->open)
1429                 new->vm_ops->open(new);
1430
1431         delete_vma_from_mm(vma);
1432         down_write(&nommu_region_sem);
1433         delete_nommu_region(vma->vm_region);
1434         if (new_below) {
1435                 vma->vm_region->vm_start = vma->vm_start = addr;
1436                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1437         } else {
1438                 vma->vm_region->vm_end = vma->vm_end = addr;
1439                 vma->vm_region->vm_top = addr;
1440         }
1441         add_nommu_region(vma->vm_region);
1442         add_nommu_region(new->vm_region);
1443         up_write(&nommu_region_sem);
1444         add_vma_to_mm(mm, vma);
1445         add_vma_to_mm(mm, new);
1446         return 0;
1447 }
1448
1449 /*
1450  * shrink a VMA by removing the specified chunk from either the beginning or
1451  * the end
1452  */
1453 static int shrink_vma(struct mm_struct *mm,
1454                       struct vm_area_struct *vma,
1455                       unsigned long from, unsigned long to)
1456 {
1457         struct vm_region *region;
1458
1459         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1460          * and list */
1461         delete_vma_from_mm(vma);
1462         if (from > vma->vm_start)
1463                 vma->vm_end = from;
1464         else
1465                 vma->vm_start = to;
1466         add_vma_to_mm(mm, vma);
1467
1468         /* cut the backing region down to size */
1469         region = vma->vm_region;
1470         BUG_ON(region->vm_usage != 1);
1471
1472         down_write(&nommu_region_sem);
1473         delete_nommu_region(region);
1474         if (from > region->vm_start) {
1475                 to = region->vm_top;
1476                 region->vm_top = region->vm_end = from;
1477         } else {
1478                 region->vm_start = to;
1479         }
1480         add_nommu_region(region);
1481         up_write(&nommu_region_sem);
1482
1483         free_page_series(from, to);
1484         return 0;
1485 }
1486
1487 /*
1488  * release a mapping
1489  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1490  *   VMA, though it need not cover the whole VMA
1491  */
1492 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1493 {
1494         struct vm_area_struct *vma;
1495         unsigned long end;
1496         int ret;
1497
1498         len = PAGE_ALIGN(len);
1499         if (len == 0)
1500                 return -EINVAL;
1501
1502         end = start + len;
1503
1504         /* find the first potentially overlapping VMA */
1505         vma = find_vma(mm, start);
1506         if (!vma) {
1507                 static int limit;
1508                 if (limit < 5) {
1509                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1510                                         current->pid, current->comm,
1511                                         start, start + len - 1);
1512                         limit++;
1513                 }
1514                 return -EINVAL;
1515         }
1516
1517         /* we're allowed to split an anonymous VMA but not a file-backed one */
1518         if (vma->vm_file) {
1519                 do {
1520                         if (start > vma->vm_start)
1521                                 return -EINVAL;
1522                         if (end == vma->vm_end)
1523                                 goto erase_whole_vma;
1524                         vma = vma->vm_next;
1525                 } while (vma);
1526                 return -EINVAL;
1527         } else {
1528                 /* the chunk must be a subset of the VMA found */
1529                 if (start == vma->vm_start && end == vma->vm_end)
1530                         goto erase_whole_vma;
1531                 if (start < vma->vm_start || end > vma->vm_end)
1532                         return -EINVAL;
1533                 if (offset_in_page(start))
1534                         return -EINVAL;
1535                 if (end != vma->vm_end && offset_in_page(end))
1536                         return -EINVAL;
1537                 if (start != vma->vm_start && end != vma->vm_end) {
1538                         ret = split_vma(mm, vma, start, 1);
1539                         if (ret < 0)
1540                                 return ret;
1541                 }
1542                 return shrink_vma(mm, vma, start, end);
1543         }
1544
1545 erase_whole_vma:
1546         delete_vma_from_mm(vma);
1547         delete_vma(mm, vma);
1548         return 0;
1549 }
1550 EXPORT_SYMBOL(do_munmap);
1551
1552 int vm_munmap(unsigned long addr, size_t len)
1553 {
1554         struct mm_struct *mm = current->mm;
1555         int ret;
1556
1557         down_write(&mm->mmap_sem);
1558         ret = do_munmap(mm, addr, len, NULL);
1559         up_write(&mm->mmap_sem);
1560         return ret;
1561 }
1562 EXPORT_SYMBOL(vm_munmap);
1563
1564 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1565 {
1566         return vm_munmap(addr, len);
1567 }
1568
1569 /*
1570  * release all the mappings made in a process's VM space
1571  */
1572 void exit_mmap(struct mm_struct *mm)
1573 {
1574         struct vm_area_struct *vma;
1575
1576         if (!mm)
1577                 return;
1578
1579         mm->total_vm = 0;
1580
1581         while ((vma = mm->mmap)) {
1582                 mm->mmap = vma->vm_next;
1583                 delete_vma_from_mm(vma);
1584                 delete_vma(mm, vma);
1585                 cond_resched();
1586         }
1587 }
1588
1589 int vm_brk(unsigned long addr, unsigned long len)
1590 {
1591         return -ENOMEM;
1592 }
1593
1594 /*
1595  * expand (or shrink) an existing mapping, potentially moving it at the same
1596  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1597  *
1598  * under NOMMU conditions, we only permit changing a mapping's size, and only
1599  * as long as it stays within the region allocated by do_mmap_private() and the
1600  * block is not shareable
1601  *
1602  * MREMAP_FIXED is not supported under NOMMU conditions
1603  */
1604 static unsigned long do_mremap(unsigned long addr,
1605                         unsigned long old_len, unsigned long new_len,
1606                         unsigned long flags, unsigned long new_addr)
1607 {
1608         struct vm_area_struct *vma;
1609
1610         /* insanity checks first */
1611         old_len = PAGE_ALIGN(old_len);
1612         new_len = PAGE_ALIGN(new_len);
1613         if (old_len == 0 || new_len == 0)
1614                 return (unsigned long) -EINVAL;
1615
1616         if (offset_in_page(addr))
1617                 return -EINVAL;
1618
1619         if (flags & MREMAP_FIXED && new_addr != addr)
1620                 return (unsigned long) -EINVAL;
1621
1622         vma = find_vma_exact(current->mm, addr, old_len);
1623         if (!vma)
1624                 return (unsigned long) -EINVAL;
1625
1626         if (vma->vm_end != vma->vm_start + old_len)
1627                 return (unsigned long) -EFAULT;
1628
1629         if (vma->vm_flags & VM_MAYSHARE)
1630                 return (unsigned long) -EPERM;
1631
1632         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1633                 return (unsigned long) -ENOMEM;
1634
1635         /* all checks complete - do it */
1636         vma->vm_end = vma->vm_start + new_len;
1637         return vma->vm_start;
1638 }
1639
1640 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1641                 unsigned long, new_len, unsigned long, flags,
1642                 unsigned long, new_addr)
1643 {
1644         unsigned long ret;
1645
1646         down_write(&current->mm->mmap_sem);
1647         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1648         up_write(&current->mm->mmap_sem);
1649         return ret;
1650 }
1651
1652 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1653                          unsigned int foll_flags)
1654 {
1655         return NULL;
1656 }
1657
1658 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1659                 unsigned long pfn, unsigned long size, pgprot_t prot)
1660 {
1661         if (addr != (pfn << PAGE_SHIFT))
1662                 return -EINVAL;
1663
1664         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1665         return 0;
1666 }
1667 EXPORT_SYMBOL(remap_pfn_range);
1668
1669 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1670 {
1671         unsigned long pfn = start >> PAGE_SHIFT;
1672         unsigned long vm_len = vma->vm_end - vma->vm_start;
1673
1674         pfn += vma->vm_pgoff;
1675         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1676 }
1677 EXPORT_SYMBOL(vm_iomap_memory);
1678
1679 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1680                         unsigned long pgoff)
1681 {
1682         unsigned int size = vma->vm_end - vma->vm_start;
1683
1684         if (!(vma->vm_flags & VM_USERMAP))
1685                 return -EINVAL;
1686
1687         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1688         vma->vm_end = vma->vm_start + size;
1689
1690         return 0;
1691 }
1692 EXPORT_SYMBOL(remap_vmalloc_range);
1693
1694 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1695         unsigned long len, unsigned long pgoff, unsigned long flags)
1696 {
1697         return -ENOMEM;
1698 }
1699
1700 vm_fault_t filemap_fault(struct vm_fault *vmf)
1701 {
1702         BUG();
1703         return 0;
1704 }
1705 EXPORT_SYMBOL(filemap_fault);
1706
1707 void filemap_map_pages(struct vm_fault *vmf,
1708                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1709 {
1710         BUG();
1711 }
1712 EXPORT_SYMBOL(filemap_map_pages);
1713
1714 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1715                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1716 {
1717         struct vm_area_struct *vma;
1718         int write = gup_flags & FOLL_WRITE;
1719
1720         if (down_read_killable(&mm->mmap_sem))
1721                 return 0;
1722
1723         /* the access must start within one of the target process's mappings */
1724         vma = find_vma(mm, addr);
1725         if (vma) {
1726                 /* don't overrun this mapping */
1727                 if (addr + len >= vma->vm_end)
1728                         len = vma->vm_end - addr;
1729
1730                 /* only read or write mappings where it is permitted */
1731                 if (write && vma->vm_flags & VM_MAYWRITE)
1732                         copy_to_user_page(vma, NULL, addr,
1733                                          (void *) addr, buf, len);
1734                 else if (!write && vma->vm_flags & VM_MAYREAD)
1735                         copy_from_user_page(vma, NULL, addr,
1736                                             buf, (void *) addr, len);
1737                 else
1738                         len = 0;
1739         } else {
1740                 len = 0;
1741         }
1742
1743         up_read(&mm->mmap_sem);
1744
1745         return len;
1746 }
1747
1748 /**
1749  * access_remote_vm - access another process' address space
1750  * @mm:         the mm_struct of the target address space
1751  * @addr:       start address to access
1752  * @buf:        source or destination buffer
1753  * @len:        number of bytes to transfer
1754  * @gup_flags:  flags modifying lookup behaviour
1755  *
1756  * The caller must hold a reference on @mm.
1757  */
1758 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1759                 void *buf, int len, unsigned int gup_flags)
1760 {
1761         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1762 }
1763
1764 /*
1765  * Access another process' address space.
1766  * - source/target buffer must be kernel space
1767  */
1768 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1769                 unsigned int gup_flags)
1770 {
1771         struct mm_struct *mm;
1772
1773         if (addr + len < addr)
1774                 return 0;
1775
1776         mm = get_task_mm(tsk);
1777         if (!mm)
1778                 return 0;
1779
1780         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1781
1782         mmput(mm);
1783         return len;
1784 }
1785 EXPORT_SYMBOL_GPL(access_process_vm);
1786
1787 /**
1788  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1789  * @inode: The inode to check
1790  * @size: The current filesize of the inode
1791  * @newsize: The proposed filesize of the inode
1792  *
1793  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1794  * make sure that that any outstanding VMAs aren't broken and then shrink the
1795  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1796  * automatically grant mappings that are too large.
1797  */
1798 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1799                                 size_t newsize)
1800 {
1801         struct vm_area_struct *vma;
1802         struct vm_region *region;
1803         pgoff_t low, high;
1804         size_t r_size, r_top;
1805
1806         low = newsize >> PAGE_SHIFT;
1807         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1808
1809         down_write(&nommu_region_sem);
1810         i_mmap_lock_read(inode->i_mapping);
1811
1812         /* search for VMAs that fall within the dead zone */
1813         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1814                 /* found one - only interested if it's shared out of the page
1815                  * cache */
1816                 if (vma->vm_flags & VM_SHARED) {
1817                         i_mmap_unlock_read(inode->i_mapping);
1818                         up_write(&nommu_region_sem);
1819                         return -ETXTBSY; /* not quite true, but near enough */
1820                 }
1821         }
1822
1823         /* reduce any regions that overlap the dead zone - if in existence,
1824          * these will be pointed to by VMAs that don't overlap the dead zone
1825          *
1826          * we don't check for any regions that start beyond the EOF as there
1827          * shouldn't be any
1828          */
1829         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1830                 if (!(vma->vm_flags & VM_SHARED))
1831                         continue;
1832
1833                 region = vma->vm_region;
1834                 r_size = region->vm_top - region->vm_start;
1835                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1836
1837                 if (r_top > newsize) {
1838                         region->vm_top -= r_top - newsize;
1839                         if (region->vm_end > region->vm_top)
1840                                 region->vm_end = region->vm_top;
1841                 }
1842         }
1843
1844         i_mmap_unlock_read(inode->i_mapping);
1845         up_write(&nommu_region_sem);
1846         return 0;
1847 }
1848
1849 /*
1850  * Initialise sysctl_user_reserve_kbytes.
1851  *
1852  * This is intended to prevent a user from starting a single memory hogging
1853  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1854  * mode.
1855  *
1856  * The default value is min(3% of free memory, 128MB)
1857  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1858  */
1859 static int __meminit init_user_reserve(void)
1860 {
1861         unsigned long free_kbytes;
1862
1863         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1864
1865         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1866         return 0;
1867 }
1868 subsys_initcall(init_user_reserve);
1869
1870 /*
1871  * Initialise sysctl_admin_reserve_kbytes.
1872  *
1873  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1874  * to log in and kill a memory hogging process.
1875  *
1876  * Systems with more than 256MB will reserve 8MB, enough to recover
1877  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1878  * only reserve 3% of free pages by default.
1879  */
1880 static int __meminit init_admin_reserve(void)
1881 {
1882         unsigned long free_kbytes;
1883
1884         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1885
1886         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1887         return 0;
1888 }
1889 subsys_initcall(init_admin_reserve);