Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[sfrench/cifs-2.6.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114                       unsigned long start, unsigned long nr_pages,
115                       unsigned int foll_flags, struct page **pages,
116                       struct vm_area_struct **vmas, int *nonblocking)
117 {
118         struct vm_area_struct *vma;
119         unsigned long vm_flags;
120         int i;
121
122         /* calculate required read or write permissions.
123          * If FOLL_FORCE is set, we only require the "MAY" flags.
124          */
125         vm_flags  = (foll_flags & FOLL_WRITE) ?
126                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127         vm_flags &= (foll_flags & FOLL_FORCE) ?
128                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130         for (i = 0; i < nr_pages; i++) {
131                 vma = find_vma(mm, start);
132                 if (!vma)
133                         goto finish_or_fault;
134
135                 /* protect what we can, including chardevs */
136                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137                     !(vm_flags & vma->vm_flags))
138                         goto finish_or_fault;
139
140                 if (pages) {
141                         pages[i] = virt_to_page(start);
142                         if (pages[i])
143                                 get_page(pages[i]);
144                 }
145                 if (vmas)
146                         vmas[i] = vma;
147                 start = (start + PAGE_SIZE) & PAGE_MASK;
148         }
149
150         return i;
151
152 finish_or_fault:
153         return i ? : -EFAULT;
154 }
155
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164                     unsigned int gup_flags, struct page **pages,
165                     struct vm_area_struct **vmas)
166 {
167         return __get_user_pages(current, current->mm, start, nr_pages,
168                                 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173                             unsigned int gup_flags, struct page **pages,
174                             int *locked)
175 {
176         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181                         struct mm_struct *mm, unsigned long start,
182                         unsigned long nr_pages, struct page **pages,
183                         unsigned int gup_flags)
184 {
185         long ret;
186         down_read(&mm->mmap_sem);
187         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188                                 NULL, NULL);
189         up_read(&mm->mmap_sem);
190         return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194                              struct page **pages, unsigned int gup_flags)
195 {
196         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197                                          pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212         unsigned long *pfn)
213 {
214         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215                 return -EINVAL;
216
217         *pfn = address >> PAGE_SHIFT;
218         return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226         kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232         /*
233          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234          * returns only a logical address.
235          */
236         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242         return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244
245 void *vmalloc_user(unsigned long size)
246 {
247         void *ret;
248
249         ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250         if (ret) {
251                 struct vm_area_struct *vma;
252
253                 down_write(&current->mm->mmap_sem);
254                 vma = find_vma(current->mm, (unsigned long)ret);
255                 if (vma)
256                         vma->vm_flags |= VM_USERMAP;
257                 up_write(&current->mm->mmap_sem);
258         }
259
260         return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263
264 struct page *vmalloc_to_page(const void *addr)
265 {
266         return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272         return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278         /* Don't allow overflow */
279         if ((unsigned long) buf + count < count)
280                 count = -(unsigned long) buf;
281
282         memcpy(buf, addr, count);
283         return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288         /* Don't allow overflow */
289         if ((unsigned long) addr + count < count)
290                 count = -(unsigned long) addr;
291
292         memcpy(addr, buf, count);
293         return count;
294 }
295
296 /*
297  *      vmalloc  -  allocate virtually contiguous memory
298  *
299  *      @size:          allocation size
300  *
301  *      Allocate enough pages to cover @size from the page level
302  *      allocator and map them into contiguous kernel virtual space.
303  *
304  *      For tight control over page level allocator and protection flags
305  *      use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314  *      vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *      @size:          allocation size
317  *
318  *      Allocate enough pages to cover @size from the page level
319  *      allocator and map them into contiguous kernel virtual space.
320  *      The memory allocated is set to zero.
321  *
322  *      For tight control over page level allocator and protection flags
323  *      use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328                         PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:       allocation size
335  * @node:       numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345         return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:       allocation size
352  * @node:       numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363         return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 /**
368  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
369  *      @size:          allocation size
370  *
371  *      Kernel-internal function to allocate enough pages to cover @size
372  *      the page level allocator and map them into contiguous and
373  *      executable kernel virtual space.
374  *
375  *      For tight control over page level allocator and protection flags
376  *      use __vmalloc() instead.
377  */
378
379 void *vmalloc_exec(unsigned long size)
380 {
381         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383
384 /**
385  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
386  *      @size:          allocation size
387  *
388  *      Allocate enough 32bit PA addressable pages to cover @size from the
389  *      page level allocator and map them into contiguous kernel virtual space.
390  */
391 void *vmalloc_32(unsigned long size)
392 {
393         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396
397 /**
398  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399  *      @size:          allocation size
400  *
401  * The resulting memory area is 32bit addressable and zeroed so it can be
402  * mapped to userspace without leaking data.
403  *
404  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405  * remap_vmalloc_range() are permissible.
406  */
407 void *vmalloc_32_user(unsigned long size)
408 {
409         /*
410          * We'll have to sort out the ZONE_DMA bits for 64-bit,
411          * but for now this can simply use vmalloc_user() directly.
412          */
413         return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419         BUG();
420         return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423
424 void vunmap(const void *addr)
425 {
426         BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432         BUG();
433         return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439         BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447
448 /*
449  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450  * have one.
451  */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455
456 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
457 {
458         BUG();
459         return NULL;
460 }
461 EXPORT_SYMBOL_GPL(alloc_vm_area);
462
463 void free_vm_area(struct vm_struct *area)
464 {
465         BUG();
466 }
467 EXPORT_SYMBOL_GPL(free_vm_area);
468
469 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
470                    struct page *page)
471 {
472         return -EINVAL;
473 }
474 EXPORT_SYMBOL(vm_insert_page);
475
476 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
477                         unsigned long num)
478 {
479         return -EINVAL;
480 }
481 EXPORT_SYMBOL(vm_map_pages);
482
483 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
484                                 unsigned long num)
485 {
486         return -EINVAL;
487 }
488 EXPORT_SYMBOL(vm_map_pages_zero);
489
490 /*
491  *  sys_brk() for the most part doesn't need the global kernel
492  *  lock, except when an application is doing something nasty
493  *  like trying to un-brk an area that has already been mapped
494  *  to a regular file.  in this case, the unmapping will need
495  *  to invoke file system routines that need the global lock.
496  */
497 SYSCALL_DEFINE1(brk, unsigned long, brk)
498 {
499         struct mm_struct *mm = current->mm;
500
501         if (brk < mm->start_brk || brk > mm->context.end_brk)
502                 return mm->brk;
503
504         if (mm->brk == brk)
505                 return mm->brk;
506
507         /*
508          * Always allow shrinking brk
509          */
510         if (brk <= mm->brk) {
511                 mm->brk = brk;
512                 return brk;
513         }
514
515         /*
516          * Ok, looks good - let it rip.
517          */
518         flush_icache_range(mm->brk, brk);
519         return mm->brk = brk;
520 }
521
522 /*
523  * initialise the percpu counter for VM and region record slabs
524  */
525 void __init mmap_init(void)
526 {
527         int ret;
528
529         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
530         VM_BUG_ON(ret);
531         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
532 }
533
534 /*
535  * validate the region tree
536  * - the caller must hold the region lock
537  */
538 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
539 static noinline void validate_nommu_regions(void)
540 {
541         struct vm_region *region, *last;
542         struct rb_node *p, *lastp;
543
544         lastp = rb_first(&nommu_region_tree);
545         if (!lastp)
546                 return;
547
548         last = rb_entry(lastp, struct vm_region, vm_rb);
549         BUG_ON(last->vm_end <= last->vm_start);
550         BUG_ON(last->vm_top < last->vm_end);
551
552         while ((p = rb_next(lastp))) {
553                 region = rb_entry(p, struct vm_region, vm_rb);
554                 last = rb_entry(lastp, struct vm_region, vm_rb);
555
556                 BUG_ON(region->vm_end <= region->vm_start);
557                 BUG_ON(region->vm_top < region->vm_end);
558                 BUG_ON(region->vm_start < last->vm_top);
559
560                 lastp = p;
561         }
562 }
563 #else
564 static void validate_nommu_regions(void)
565 {
566 }
567 #endif
568
569 /*
570  * add a region into the global tree
571  */
572 static void add_nommu_region(struct vm_region *region)
573 {
574         struct vm_region *pregion;
575         struct rb_node **p, *parent;
576
577         validate_nommu_regions();
578
579         parent = NULL;
580         p = &nommu_region_tree.rb_node;
581         while (*p) {
582                 parent = *p;
583                 pregion = rb_entry(parent, struct vm_region, vm_rb);
584                 if (region->vm_start < pregion->vm_start)
585                         p = &(*p)->rb_left;
586                 else if (region->vm_start > pregion->vm_start)
587                         p = &(*p)->rb_right;
588                 else if (pregion == region)
589                         return;
590                 else
591                         BUG();
592         }
593
594         rb_link_node(&region->vm_rb, parent, p);
595         rb_insert_color(&region->vm_rb, &nommu_region_tree);
596
597         validate_nommu_regions();
598 }
599
600 /*
601  * delete a region from the global tree
602  */
603 static void delete_nommu_region(struct vm_region *region)
604 {
605         BUG_ON(!nommu_region_tree.rb_node);
606
607         validate_nommu_regions();
608         rb_erase(&region->vm_rb, &nommu_region_tree);
609         validate_nommu_regions();
610 }
611
612 /*
613  * free a contiguous series of pages
614  */
615 static void free_page_series(unsigned long from, unsigned long to)
616 {
617         for (; from < to; from += PAGE_SIZE) {
618                 struct page *page = virt_to_page(from);
619
620                 atomic_long_dec(&mmap_pages_allocated);
621                 put_page(page);
622         }
623 }
624
625 /*
626  * release a reference to a region
627  * - the caller must hold the region semaphore for writing, which this releases
628  * - the region may not have been added to the tree yet, in which case vm_top
629  *   will equal vm_start
630  */
631 static void __put_nommu_region(struct vm_region *region)
632         __releases(nommu_region_sem)
633 {
634         BUG_ON(!nommu_region_tree.rb_node);
635
636         if (--region->vm_usage == 0) {
637                 if (region->vm_top > region->vm_start)
638                         delete_nommu_region(region);
639                 up_write(&nommu_region_sem);
640
641                 if (region->vm_file)
642                         fput(region->vm_file);
643
644                 /* IO memory and memory shared directly out of the pagecache
645                  * from ramfs/tmpfs mustn't be released here */
646                 if (region->vm_flags & VM_MAPPED_COPY)
647                         free_page_series(region->vm_start, region->vm_top);
648                 kmem_cache_free(vm_region_jar, region);
649         } else {
650                 up_write(&nommu_region_sem);
651         }
652 }
653
654 /*
655  * release a reference to a region
656  */
657 static void put_nommu_region(struct vm_region *region)
658 {
659         down_write(&nommu_region_sem);
660         __put_nommu_region(region);
661 }
662
663 /*
664  * add a VMA into a process's mm_struct in the appropriate place in the list
665  * and tree and add to the address space's page tree also if not an anonymous
666  * page
667  * - should be called with mm->mmap_sem held writelocked
668  */
669 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
670 {
671         struct vm_area_struct *pvma, *prev;
672         struct address_space *mapping;
673         struct rb_node **p, *parent, *rb_prev;
674
675         BUG_ON(!vma->vm_region);
676
677         mm->map_count++;
678         vma->vm_mm = mm;
679
680         /* add the VMA to the mapping */
681         if (vma->vm_file) {
682                 mapping = vma->vm_file->f_mapping;
683
684                 i_mmap_lock_write(mapping);
685                 flush_dcache_mmap_lock(mapping);
686                 vma_interval_tree_insert(vma, &mapping->i_mmap);
687                 flush_dcache_mmap_unlock(mapping);
688                 i_mmap_unlock_write(mapping);
689         }
690
691         /* add the VMA to the tree */
692         parent = rb_prev = NULL;
693         p = &mm->mm_rb.rb_node;
694         while (*p) {
695                 parent = *p;
696                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
697
698                 /* sort by: start addr, end addr, VMA struct addr in that order
699                  * (the latter is necessary as we may get identical VMAs) */
700                 if (vma->vm_start < pvma->vm_start)
701                         p = &(*p)->rb_left;
702                 else if (vma->vm_start > pvma->vm_start) {
703                         rb_prev = parent;
704                         p = &(*p)->rb_right;
705                 } else if (vma->vm_end < pvma->vm_end)
706                         p = &(*p)->rb_left;
707                 else if (vma->vm_end > pvma->vm_end) {
708                         rb_prev = parent;
709                         p = &(*p)->rb_right;
710                 } else if (vma < pvma)
711                         p = &(*p)->rb_left;
712                 else if (vma > pvma) {
713                         rb_prev = parent;
714                         p = &(*p)->rb_right;
715                 } else
716                         BUG();
717         }
718
719         rb_link_node(&vma->vm_rb, parent, p);
720         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
721
722         /* add VMA to the VMA list also */
723         prev = NULL;
724         if (rb_prev)
725                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
726
727         __vma_link_list(mm, vma, prev, parent);
728 }
729
730 /*
731  * delete a VMA from its owning mm_struct and address space
732  */
733 static void delete_vma_from_mm(struct vm_area_struct *vma)
734 {
735         int i;
736         struct address_space *mapping;
737         struct mm_struct *mm = vma->vm_mm;
738         struct task_struct *curr = current;
739
740         mm->map_count--;
741         for (i = 0; i < VMACACHE_SIZE; i++) {
742                 /* if the vma is cached, invalidate the entire cache */
743                 if (curr->vmacache.vmas[i] == vma) {
744                         vmacache_invalidate(mm);
745                         break;
746                 }
747         }
748
749         /* remove the VMA from the mapping */
750         if (vma->vm_file) {
751                 mapping = vma->vm_file->f_mapping;
752
753                 i_mmap_lock_write(mapping);
754                 flush_dcache_mmap_lock(mapping);
755                 vma_interval_tree_remove(vma, &mapping->i_mmap);
756                 flush_dcache_mmap_unlock(mapping);
757                 i_mmap_unlock_write(mapping);
758         }
759
760         /* remove from the MM's tree and list */
761         rb_erase(&vma->vm_rb, &mm->mm_rb);
762
763         if (vma->vm_prev)
764                 vma->vm_prev->vm_next = vma->vm_next;
765         else
766                 mm->mmap = vma->vm_next;
767
768         if (vma->vm_next)
769                 vma->vm_next->vm_prev = vma->vm_prev;
770 }
771
772 /*
773  * destroy a VMA record
774  */
775 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
776 {
777         if (vma->vm_ops && vma->vm_ops->close)
778                 vma->vm_ops->close(vma);
779         if (vma->vm_file)
780                 fput(vma->vm_file);
781         put_nommu_region(vma->vm_region);
782         vm_area_free(vma);
783 }
784
785 /*
786  * look up the first VMA in which addr resides, NULL if none
787  * - should be called with mm->mmap_sem at least held readlocked
788  */
789 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
790 {
791         struct vm_area_struct *vma;
792
793         /* check the cache first */
794         vma = vmacache_find(mm, addr);
795         if (likely(vma))
796                 return vma;
797
798         /* trawl the list (there may be multiple mappings in which addr
799          * resides) */
800         for (vma = mm->mmap; vma; vma = vma->vm_next) {
801                 if (vma->vm_start > addr)
802                         return NULL;
803                 if (vma->vm_end > addr) {
804                         vmacache_update(addr, vma);
805                         return vma;
806                 }
807         }
808
809         return NULL;
810 }
811 EXPORT_SYMBOL(find_vma);
812
813 /*
814  * find a VMA
815  * - we don't extend stack VMAs under NOMMU conditions
816  */
817 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
818 {
819         return find_vma(mm, addr);
820 }
821
822 /*
823  * expand a stack to a given address
824  * - not supported under NOMMU conditions
825  */
826 int expand_stack(struct vm_area_struct *vma, unsigned long address)
827 {
828         return -ENOMEM;
829 }
830
831 /*
832  * look up the first VMA exactly that exactly matches addr
833  * - should be called with mm->mmap_sem at least held readlocked
834  */
835 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
836                                              unsigned long addr,
837                                              unsigned long len)
838 {
839         struct vm_area_struct *vma;
840         unsigned long end = addr + len;
841
842         /* check the cache first */
843         vma = vmacache_find_exact(mm, addr, end);
844         if (vma)
845                 return vma;
846
847         /* trawl the list (there may be multiple mappings in which addr
848          * resides) */
849         for (vma = mm->mmap; vma; vma = vma->vm_next) {
850                 if (vma->vm_start < addr)
851                         continue;
852                 if (vma->vm_start > addr)
853                         return NULL;
854                 if (vma->vm_end == end) {
855                         vmacache_update(addr, vma);
856                         return vma;
857                 }
858         }
859
860         return NULL;
861 }
862
863 /*
864  * determine whether a mapping should be permitted and, if so, what sort of
865  * mapping we're capable of supporting
866  */
867 static int validate_mmap_request(struct file *file,
868                                  unsigned long addr,
869                                  unsigned long len,
870                                  unsigned long prot,
871                                  unsigned long flags,
872                                  unsigned long pgoff,
873                                  unsigned long *_capabilities)
874 {
875         unsigned long capabilities, rlen;
876         int ret;
877
878         /* do the simple checks first */
879         if (flags & MAP_FIXED)
880                 return -EINVAL;
881
882         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
883             (flags & MAP_TYPE) != MAP_SHARED)
884                 return -EINVAL;
885
886         if (!len)
887                 return -EINVAL;
888
889         /* Careful about overflows.. */
890         rlen = PAGE_ALIGN(len);
891         if (!rlen || rlen > TASK_SIZE)
892                 return -ENOMEM;
893
894         /* offset overflow? */
895         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
896                 return -EOVERFLOW;
897
898         if (file) {
899                 /* files must support mmap */
900                 if (!file->f_op->mmap)
901                         return -ENODEV;
902
903                 /* work out if what we've got could possibly be shared
904                  * - we support chardevs that provide their own "memory"
905                  * - we support files/blockdevs that are memory backed
906                  */
907                 if (file->f_op->mmap_capabilities) {
908                         capabilities = file->f_op->mmap_capabilities(file);
909                 } else {
910                         /* no explicit capabilities set, so assume some
911                          * defaults */
912                         switch (file_inode(file)->i_mode & S_IFMT) {
913                         case S_IFREG:
914                         case S_IFBLK:
915                                 capabilities = NOMMU_MAP_COPY;
916                                 break;
917
918                         case S_IFCHR:
919                                 capabilities =
920                                         NOMMU_MAP_DIRECT |
921                                         NOMMU_MAP_READ |
922                                         NOMMU_MAP_WRITE;
923                                 break;
924
925                         default:
926                                 return -EINVAL;
927                         }
928                 }
929
930                 /* eliminate any capabilities that we can't support on this
931                  * device */
932                 if (!file->f_op->get_unmapped_area)
933                         capabilities &= ~NOMMU_MAP_DIRECT;
934                 if (!(file->f_mode & FMODE_CAN_READ))
935                         capabilities &= ~NOMMU_MAP_COPY;
936
937                 /* The file shall have been opened with read permission. */
938                 if (!(file->f_mode & FMODE_READ))
939                         return -EACCES;
940
941                 if (flags & MAP_SHARED) {
942                         /* do checks for writing, appending and locking */
943                         if ((prot & PROT_WRITE) &&
944                             !(file->f_mode & FMODE_WRITE))
945                                 return -EACCES;
946
947                         if (IS_APPEND(file_inode(file)) &&
948                             (file->f_mode & FMODE_WRITE))
949                                 return -EACCES;
950
951                         if (locks_verify_locked(file))
952                                 return -EAGAIN;
953
954                         if (!(capabilities & NOMMU_MAP_DIRECT))
955                                 return -ENODEV;
956
957                         /* we mustn't privatise shared mappings */
958                         capabilities &= ~NOMMU_MAP_COPY;
959                 } else {
960                         /* we're going to read the file into private memory we
961                          * allocate */
962                         if (!(capabilities & NOMMU_MAP_COPY))
963                                 return -ENODEV;
964
965                         /* we don't permit a private writable mapping to be
966                          * shared with the backing device */
967                         if (prot & PROT_WRITE)
968                                 capabilities &= ~NOMMU_MAP_DIRECT;
969                 }
970
971                 if (capabilities & NOMMU_MAP_DIRECT) {
972                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
973                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
974                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
975                             ) {
976                                 capabilities &= ~NOMMU_MAP_DIRECT;
977                                 if (flags & MAP_SHARED) {
978                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
979                                         return -EINVAL;
980                                 }
981                         }
982                 }
983
984                 /* handle executable mappings and implied executable
985                  * mappings */
986                 if (path_noexec(&file->f_path)) {
987                         if (prot & PROT_EXEC)
988                                 return -EPERM;
989                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
990                         /* handle implication of PROT_EXEC by PROT_READ */
991                         if (current->personality & READ_IMPLIES_EXEC) {
992                                 if (capabilities & NOMMU_MAP_EXEC)
993                                         prot |= PROT_EXEC;
994                         }
995                 } else if ((prot & PROT_READ) &&
996                          (prot & PROT_EXEC) &&
997                          !(capabilities & NOMMU_MAP_EXEC)
998                          ) {
999                         /* backing file is not executable, try to copy */
1000                         capabilities &= ~NOMMU_MAP_DIRECT;
1001                 }
1002         } else {
1003                 /* anonymous mappings are always memory backed and can be
1004                  * privately mapped
1005                  */
1006                 capabilities = NOMMU_MAP_COPY;
1007
1008                 /* handle PROT_EXEC implication by PROT_READ */
1009                 if ((prot & PROT_READ) &&
1010                     (current->personality & READ_IMPLIES_EXEC))
1011                         prot |= PROT_EXEC;
1012         }
1013
1014         /* allow the security API to have its say */
1015         ret = security_mmap_addr(addr);
1016         if (ret < 0)
1017                 return ret;
1018
1019         /* looks okay */
1020         *_capabilities = capabilities;
1021         return 0;
1022 }
1023
1024 /*
1025  * we've determined that we can make the mapping, now translate what we
1026  * now know into VMA flags
1027  */
1028 static unsigned long determine_vm_flags(struct file *file,
1029                                         unsigned long prot,
1030                                         unsigned long flags,
1031                                         unsigned long capabilities)
1032 {
1033         unsigned long vm_flags;
1034
1035         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1036         /* vm_flags |= mm->def_flags; */
1037
1038         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1039                 /* attempt to share read-only copies of mapped file chunks */
1040                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1041                 if (file && !(prot & PROT_WRITE))
1042                         vm_flags |= VM_MAYSHARE;
1043         } else {
1044                 /* overlay a shareable mapping on the backing device or inode
1045                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1046                  * romfs/cramfs */
1047                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1048                 if (flags & MAP_SHARED)
1049                         vm_flags |= VM_SHARED;
1050         }
1051
1052         /* refuse to let anyone share private mappings with this process if
1053          * it's being traced - otherwise breakpoints set in it may interfere
1054          * with another untraced process
1055          */
1056         if ((flags & MAP_PRIVATE) && current->ptrace)
1057                 vm_flags &= ~VM_MAYSHARE;
1058
1059         return vm_flags;
1060 }
1061
1062 /*
1063  * set up a shared mapping on a file (the driver or filesystem provides and
1064  * pins the storage)
1065  */
1066 static int do_mmap_shared_file(struct vm_area_struct *vma)
1067 {
1068         int ret;
1069
1070         ret = call_mmap(vma->vm_file, vma);
1071         if (ret == 0) {
1072                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1073                 return 0;
1074         }
1075         if (ret != -ENOSYS)
1076                 return ret;
1077
1078         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1079          * opposed to tried but failed) so we can only give a suitable error as
1080          * it's not possible to make a private copy if MAP_SHARED was given */
1081         return -ENODEV;
1082 }
1083
1084 /*
1085  * set up a private mapping or an anonymous shared mapping
1086  */
1087 static int do_mmap_private(struct vm_area_struct *vma,
1088                            struct vm_region *region,
1089                            unsigned long len,
1090                            unsigned long capabilities)
1091 {
1092         unsigned long total, point;
1093         void *base;
1094         int ret, order;
1095
1096         /* invoke the file's mapping function so that it can keep track of
1097          * shared mappings on devices or memory
1098          * - VM_MAYSHARE will be set if it may attempt to share
1099          */
1100         if (capabilities & NOMMU_MAP_DIRECT) {
1101                 ret = call_mmap(vma->vm_file, vma);
1102                 if (ret == 0) {
1103                         /* shouldn't return success if we're not sharing */
1104                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1105                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1106                         return 0;
1107                 }
1108                 if (ret != -ENOSYS)
1109                         return ret;
1110
1111                 /* getting an ENOSYS error indicates that direct mmap isn't
1112                  * possible (as opposed to tried but failed) so we'll try to
1113                  * make a private copy of the data and map that instead */
1114         }
1115
1116
1117         /* allocate some memory to hold the mapping
1118          * - note that this may not return a page-aligned address if the object
1119          *   we're allocating is smaller than a page
1120          */
1121         order = get_order(len);
1122         total = 1 << order;
1123         point = len >> PAGE_SHIFT;
1124
1125         /* we don't want to allocate a power-of-2 sized page set */
1126         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1127                 total = point;
1128
1129         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1130         if (!base)
1131                 goto enomem;
1132
1133         atomic_long_add(total, &mmap_pages_allocated);
1134
1135         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1136         region->vm_start = (unsigned long) base;
1137         region->vm_end   = region->vm_start + len;
1138         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1139
1140         vma->vm_start = region->vm_start;
1141         vma->vm_end   = region->vm_start + len;
1142
1143         if (vma->vm_file) {
1144                 /* read the contents of a file into the copy */
1145                 loff_t fpos;
1146
1147                 fpos = vma->vm_pgoff;
1148                 fpos <<= PAGE_SHIFT;
1149
1150                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1151                 if (ret < 0)
1152                         goto error_free;
1153
1154                 /* clear the last little bit */
1155                 if (ret < len)
1156                         memset(base + ret, 0, len - ret);
1157
1158         } else {
1159                 vma_set_anonymous(vma);
1160         }
1161
1162         return 0;
1163
1164 error_free:
1165         free_page_series(region->vm_start, region->vm_top);
1166         region->vm_start = vma->vm_start = 0;
1167         region->vm_end   = vma->vm_end = 0;
1168         region->vm_top   = 0;
1169         return ret;
1170
1171 enomem:
1172         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173                len, current->pid, current->comm);
1174         show_free_areas(0, NULL);
1175         return -ENOMEM;
1176 }
1177
1178 /*
1179  * handle mapping creation for uClinux
1180  */
1181 unsigned long do_mmap(struct file *file,
1182                         unsigned long addr,
1183                         unsigned long len,
1184                         unsigned long prot,
1185                         unsigned long flags,
1186                         vm_flags_t vm_flags,
1187                         unsigned long pgoff,
1188                         unsigned long *populate,
1189                         struct list_head *uf)
1190 {
1191         struct vm_area_struct *vma;
1192         struct vm_region *region;
1193         struct rb_node *rb;
1194         unsigned long capabilities, result;
1195         int ret;
1196
1197         *populate = 0;
1198
1199         /* decide whether we should attempt the mapping, and if so what sort of
1200          * mapping */
1201         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202                                     &capabilities);
1203         if (ret < 0)
1204                 return ret;
1205
1206         /* we ignore the address hint */
1207         addr = 0;
1208         len = PAGE_ALIGN(len);
1209
1210         /* we've determined that we can make the mapping, now translate what we
1211          * now know into VMA flags */
1212         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213
1214         /* we're going to need to record the mapping */
1215         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216         if (!region)
1217                 goto error_getting_region;
1218
1219         vma = vm_area_alloc(current->mm);
1220         if (!vma)
1221                 goto error_getting_vma;
1222
1223         region->vm_usage = 1;
1224         region->vm_flags = vm_flags;
1225         region->vm_pgoff = pgoff;
1226
1227         vma->vm_flags = vm_flags;
1228         vma->vm_pgoff = pgoff;
1229
1230         if (file) {
1231                 region->vm_file = get_file(file);
1232                 vma->vm_file = get_file(file);
1233         }
1234
1235         down_write(&nommu_region_sem);
1236
1237         /* if we want to share, we need to check for regions created by other
1238          * mmap() calls that overlap with our proposed mapping
1239          * - we can only share with a superset match on most regular files
1240          * - shared mappings on character devices and memory backed files are
1241          *   permitted to overlap inexactly as far as we are concerned for in
1242          *   these cases, sharing is handled in the driver or filesystem rather
1243          *   than here
1244          */
1245         if (vm_flags & VM_MAYSHARE) {
1246                 struct vm_region *pregion;
1247                 unsigned long pglen, rpglen, pgend, rpgend, start;
1248
1249                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1250                 pgend = pgoff + pglen;
1251
1252                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1253                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1254
1255                         if (!(pregion->vm_flags & VM_MAYSHARE))
1256                                 continue;
1257
1258                         /* search for overlapping mappings on the same file */
1259                         if (file_inode(pregion->vm_file) !=
1260                             file_inode(file))
1261                                 continue;
1262
1263                         if (pregion->vm_pgoff >= pgend)
1264                                 continue;
1265
1266                         rpglen = pregion->vm_end - pregion->vm_start;
1267                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1268                         rpgend = pregion->vm_pgoff + rpglen;
1269                         if (pgoff >= rpgend)
1270                                 continue;
1271
1272                         /* handle inexactly overlapping matches between
1273                          * mappings */
1274                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1275                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1276                                 /* new mapping is not a subset of the region */
1277                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1278                                         goto sharing_violation;
1279                                 continue;
1280                         }
1281
1282                         /* we've found a region we can share */
1283                         pregion->vm_usage++;
1284                         vma->vm_region = pregion;
1285                         start = pregion->vm_start;
1286                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1287                         vma->vm_start = start;
1288                         vma->vm_end = start + len;
1289
1290                         if (pregion->vm_flags & VM_MAPPED_COPY)
1291                                 vma->vm_flags |= VM_MAPPED_COPY;
1292                         else {
1293                                 ret = do_mmap_shared_file(vma);
1294                                 if (ret < 0) {
1295                                         vma->vm_region = NULL;
1296                                         vma->vm_start = 0;
1297                                         vma->vm_end = 0;
1298                                         pregion->vm_usage--;
1299                                         pregion = NULL;
1300                                         goto error_just_free;
1301                                 }
1302                         }
1303                         fput(region->vm_file);
1304                         kmem_cache_free(vm_region_jar, region);
1305                         region = pregion;
1306                         result = start;
1307                         goto share;
1308                 }
1309
1310                 /* obtain the address at which to make a shared mapping
1311                  * - this is the hook for quasi-memory character devices to
1312                  *   tell us the location of a shared mapping
1313                  */
1314                 if (capabilities & NOMMU_MAP_DIRECT) {
1315                         addr = file->f_op->get_unmapped_area(file, addr, len,
1316                                                              pgoff, flags);
1317                         if (IS_ERR_VALUE(addr)) {
1318                                 ret = addr;
1319                                 if (ret != -ENOSYS)
1320                                         goto error_just_free;
1321
1322                                 /* the driver refused to tell us where to site
1323                                  * the mapping so we'll have to attempt to copy
1324                                  * it */
1325                                 ret = -ENODEV;
1326                                 if (!(capabilities & NOMMU_MAP_COPY))
1327                                         goto error_just_free;
1328
1329                                 capabilities &= ~NOMMU_MAP_DIRECT;
1330                         } else {
1331                                 vma->vm_start = region->vm_start = addr;
1332                                 vma->vm_end = region->vm_end = addr + len;
1333                         }
1334                 }
1335         }
1336
1337         vma->vm_region = region;
1338
1339         /* set up the mapping
1340          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1341          */
1342         if (file && vma->vm_flags & VM_SHARED)
1343                 ret = do_mmap_shared_file(vma);
1344         else
1345                 ret = do_mmap_private(vma, region, len, capabilities);
1346         if (ret < 0)
1347                 goto error_just_free;
1348         add_nommu_region(region);
1349
1350         /* clear anonymous mappings that don't ask for uninitialized data */
1351         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1352                 memset((void *)region->vm_start, 0,
1353                        region->vm_end - region->vm_start);
1354
1355         /* okay... we have a mapping; now we have to register it */
1356         result = vma->vm_start;
1357
1358         current->mm->total_vm += len >> PAGE_SHIFT;
1359
1360 share:
1361         add_vma_to_mm(current->mm, vma);
1362
1363         /* we flush the region from the icache only when the first executable
1364          * mapping of it is made  */
1365         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1366                 flush_icache_range(region->vm_start, region->vm_end);
1367                 region->vm_icache_flushed = true;
1368         }
1369
1370         up_write(&nommu_region_sem);
1371
1372         return result;
1373
1374 error_just_free:
1375         up_write(&nommu_region_sem);
1376 error:
1377         if (region->vm_file)
1378                 fput(region->vm_file);
1379         kmem_cache_free(vm_region_jar, region);
1380         if (vma->vm_file)
1381                 fput(vma->vm_file);
1382         vm_area_free(vma);
1383         return ret;
1384
1385 sharing_violation:
1386         up_write(&nommu_region_sem);
1387         pr_warn("Attempt to share mismatched mappings\n");
1388         ret = -EINVAL;
1389         goto error;
1390
1391 error_getting_vma:
1392         kmem_cache_free(vm_region_jar, region);
1393         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1394                         len, current->pid);
1395         show_free_areas(0, NULL);
1396         return -ENOMEM;
1397
1398 error_getting_region:
1399         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1400                         len, current->pid);
1401         show_free_areas(0, NULL);
1402         return -ENOMEM;
1403 }
1404
1405 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406                               unsigned long prot, unsigned long flags,
1407                               unsigned long fd, unsigned long pgoff)
1408 {
1409         struct file *file = NULL;
1410         unsigned long retval = -EBADF;
1411
1412         audit_mmap_fd(fd, flags);
1413         if (!(flags & MAP_ANONYMOUS)) {
1414                 file = fget(fd);
1415                 if (!file)
1416                         goto out;
1417         }
1418
1419         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1420
1421         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1422
1423         if (file)
1424                 fput(file);
1425 out:
1426         return retval;
1427 }
1428
1429 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1430                 unsigned long, prot, unsigned long, flags,
1431                 unsigned long, fd, unsigned long, pgoff)
1432 {
1433         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1434 }
1435
1436 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1437 struct mmap_arg_struct {
1438         unsigned long addr;
1439         unsigned long len;
1440         unsigned long prot;
1441         unsigned long flags;
1442         unsigned long fd;
1443         unsigned long offset;
1444 };
1445
1446 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1447 {
1448         struct mmap_arg_struct a;
1449
1450         if (copy_from_user(&a, arg, sizeof(a)))
1451                 return -EFAULT;
1452         if (offset_in_page(a.offset))
1453                 return -EINVAL;
1454
1455         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1456                                a.offset >> PAGE_SHIFT);
1457 }
1458 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1459
1460 /*
1461  * split a vma into two pieces at address 'addr', a new vma is allocated either
1462  * for the first part or the tail.
1463  */
1464 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1465               unsigned long addr, int new_below)
1466 {
1467         struct vm_area_struct *new;
1468         struct vm_region *region;
1469         unsigned long npages;
1470
1471         /* we're only permitted to split anonymous regions (these should have
1472          * only a single usage on the region) */
1473         if (vma->vm_file)
1474                 return -ENOMEM;
1475
1476         if (mm->map_count >= sysctl_max_map_count)
1477                 return -ENOMEM;
1478
1479         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1480         if (!region)
1481                 return -ENOMEM;
1482
1483         new = vm_area_dup(vma);
1484         if (!new) {
1485                 kmem_cache_free(vm_region_jar, region);
1486                 return -ENOMEM;
1487         }
1488
1489         /* most fields are the same, copy all, and then fixup */
1490         *region = *vma->vm_region;
1491         new->vm_region = region;
1492
1493         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1494
1495         if (new_below) {
1496                 region->vm_top = region->vm_end = new->vm_end = addr;
1497         } else {
1498                 region->vm_start = new->vm_start = addr;
1499                 region->vm_pgoff = new->vm_pgoff += npages;
1500         }
1501
1502         if (new->vm_ops && new->vm_ops->open)
1503                 new->vm_ops->open(new);
1504
1505         delete_vma_from_mm(vma);
1506         down_write(&nommu_region_sem);
1507         delete_nommu_region(vma->vm_region);
1508         if (new_below) {
1509                 vma->vm_region->vm_start = vma->vm_start = addr;
1510                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1511         } else {
1512                 vma->vm_region->vm_end = vma->vm_end = addr;
1513                 vma->vm_region->vm_top = addr;
1514         }
1515         add_nommu_region(vma->vm_region);
1516         add_nommu_region(new->vm_region);
1517         up_write(&nommu_region_sem);
1518         add_vma_to_mm(mm, vma);
1519         add_vma_to_mm(mm, new);
1520         return 0;
1521 }
1522
1523 /*
1524  * shrink a VMA by removing the specified chunk from either the beginning or
1525  * the end
1526  */
1527 static int shrink_vma(struct mm_struct *mm,
1528                       struct vm_area_struct *vma,
1529                       unsigned long from, unsigned long to)
1530 {
1531         struct vm_region *region;
1532
1533         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1534          * and list */
1535         delete_vma_from_mm(vma);
1536         if (from > vma->vm_start)
1537                 vma->vm_end = from;
1538         else
1539                 vma->vm_start = to;
1540         add_vma_to_mm(mm, vma);
1541
1542         /* cut the backing region down to size */
1543         region = vma->vm_region;
1544         BUG_ON(region->vm_usage != 1);
1545
1546         down_write(&nommu_region_sem);
1547         delete_nommu_region(region);
1548         if (from > region->vm_start) {
1549                 to = region->vm_top;
1550                 region->vm_top = region->vm_end = from;
1551         } else {
1552                 region->vm_start = to;
1553         }
1554         add_nommu_region(region);
1555         up_write(&nommu_region_sem);
1556
1557         free_page_series(from, to);
1558         return 0;
1559 }
1560
1561 /*
1562  * release a mapping
1563  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1564  *   VMA, though it need not cover the whole VMA
1565  */
1566 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1567 {
1568         struct vm_area_struct *vma;
1569         unsigned long end;
1570         int ret;
1571
1572         len = PAGE_ALIGN(len);
1573         if (len == 0)
1574                 return -EINVAL;
1575
1576         end = start + len;
1577
1578         /* find the first potentially overlapping VMA */
1579         vma = find_vma(mm, start);
1580         if (!vma) {
1581                 static int limit;
1582                 if (limit < 5) {
1583                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1584                                         current->pid, current->comm,
1585                                         start, start + len - 1);
1586                         limit++;
1587                 }
1588                 return -EINVAL;
1589         }
1590
1591         /* we're allowed to split an anonymous VMA but not a file-backed one */
1592         if (vma->vm_file) {
1593                 do {
1594                         if (start > vma->vm_start)
1595                                 return -EINVAL;
1596                         if (end == vma->vm_end)
1597                                 goto erase_whole_vma;
1598                         vma = vma->vm_next;
1599                 } while (vma);
1600                 return -EINVAL;
1601         } else {
1602                 /* the chunk must be a subset of the VMA found */
1603                 if (start == vma->vm_start && end == vma->vm_end)
1604                         goto erase_whole_vma;
1605                 if (start < vma->vm_start || end > vma->vm_end)
1606                         return -EINVAL;
1607                 if (offset_in_page(start))
1608                         return -EINVAL;
1609                 if (end != vma->vm_end && offset_in_page(end))
1610                         return -EINVAL;
1611                 if (start != vma->vm_start && end != vma->vm_end) {
1612                         ret = split_vma(mm, vma, start, 1);
1613                         if (ret < 0)
1614                                 return ret;
1615                 }
1616                 return shrink_vma(mm, vma, start, end);
1617         }
1618
1619 erase_whole_vma:
1620         delete_vma_from_mm(vma);
1621         delete_vma(mm, vma);
1622         return 0;
1623 }
1624 EXPORT_SYMBOL(do_munmap);
1625
1626 int vm_munmap(unsigned long addr, size_t len)
1627 {
1628         struct mm_struct *mm = current->mm;
1629         int ret;
1630
1631         down_write(&mm->mmap_sem);
1632         ret = do_munmap(mm, addr, len, NULL);
1633         up_write(&mm->mmap_sem);
1634         return ret;
1635 }
1636 EXPORT_SYMBOL(vm_munmap);
1637
1638 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1639 {
1640         return vm_munmap(addr, len);
1641 }
1642
1643 /*
1644  * release all the mappings made in a process's VM space
1645  */
1646 void exit_mmap(struct mm_struct *mm)
1647 {
1648         struct vm_area_struct *vma;
1649
1650         if (!mm)
1651                 return;
1652
1653         mm->total_vm = 0;
1654
1655         while ((vma = mm->mmap)) {
1656                 mm->mmap = vma->vm_next;
1657                 delete_vma_from_mm(vma);
1658                 delete_vma(mm, vma);
1659                 cond_resched();
1660         }
1661 }
1662
1663 int vm_brk(unsigned long addr, unsigned long len)
1664 {
1665         return -ENOMEM;
1666 }
1667
1668 /*
1669  * expand (or shrink) an existing mapping, potentially moving it at the same
1670  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1671  *
1672  * under NOMMU conditions, we only permit changing a mapping's size, and only
1673  * as long as it stays within the region allocated by do_mmap_private() and the
1674  * block is not shareable
1675  *
1676  * MREMAP_FIXED is not supported under NOMMU conditions
1677  */
1678 static unsigned long do_mremap(unsigned long addr,
1679                         unsigned long old_len, unsigned long new_len,
1680                         unsigned long flags, unsigned long new_addr)
1681 {
1682         struct vm_area_struct *vma;
1683
1684         /* insanity checks first */
1685         old_len = PAGE_ALIGN(old_len);
1686         new_len = PAGE_ALIGN(new_len);
1687         if (old_len == 0 || new_len == 0)
1688                 return (unsigned long) -EINVAL;
1689
1690         if (offset_in_page(addr))
1691                 return -EINVAL;
1692
1693         if (flags & MREMAP_FIXED && new_addr != addr)
1694                 return (unsigned long) -EINVAL;
1695
1696         vma = find_vma_exact(current->mm, addr, old_len);
1697         if (!vma)
1698                 return (unsigned long) -EINVAL;
1699
1700         if (vma->vm_end != vma->vm_start + old_len)
1701                 return (unsigned long) -EFAULT;
1702
1703         if (vma->vm_flags & VM_MAYSHARE)
1704                 return (unsigned long) -EPERM;
1705
1706         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1707                 return (unsigned long) -ENOMEM;
1708
1709         /* all checks complete - do it */
1710         vma->vm_end = vma->vm_start + new_len;
1711         return vma->vm_start;
1712 }
1713
1714 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1715                 unsigned long, new_len, unsigned long, flags,
1716                 unsigned long, new_addr)
1717 {
1718         unsigned long ret;
1719
1720         down_write(&current->mm->mmap_sem);
1721         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1722         up_write(&current->mm->mmap_sem);
1723         return ret;
1724 }
1725
1726 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1727                          unsigned int foll_flags)
1728 {
1729         return NULL;
1730 }
1731
1732 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1733                 unsigned long pfn, unsigned long size, pgprot_t prot)
1734 {
1735         if (addr != (pfn << PAGE_SHIFT))
1736                 return -EINVAL;
1737
1738         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1739         return 0;
1740 }
1741 EXPORT_SYMBOL(remap_pfn_range);
1742
1743 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1744 {
1745         unsigned long pfn = start >> PAGE_SHIFT;
1746         unsigned long vm_len = vma->vm_end - vma->vm_start;
1747
1748         pfn += vma->vm_pgoff;
1749         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1750 }
1751 EXPORT_SYMBOL(vm_iomap_memory);
1752
1753 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1754                         unsigned long pgoff)
1755 {
1756         unsigned int size = vma->vm_end - vma->vm_start;
1757
1758         if (!(vma->vm_flags & VM_USERMAP))
1759                 return -EINVAL;
1760
1761         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1762         vma->vm_end = vma->vm_start + size;
1763
1764         return 0;
1765 }
1766 EXPORT_SYMBOL(remap_vmalloc_range);
1767
1768 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1769         unsigned long len, unsigned long pgoff, unsigned long flags)
1770 {
1771         return -ENOMEM;
1772 }
1773
1774 vm_fault_t filemap_fault(struct vm_fault *vmf)
1775 {
1776         BUG();
1777         return 0;
1778 }
1779 EXPORT_SYMBOL(filemap_fault);
1780
1781 void filemap_map_pages(struct vm_fault *vmf,
1782                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1783 {
1784         BUG();
1785 }
1786 EXPORT_SYMBOL(filemap_map_pages);
1787
1788 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1789                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1790 {
1791         struct vm_area_struct *vma;
1792         int write = gup_flags & FOLL_WRITE;
1793
1794         down_read(&mm->mmap_sem);
1795
1796         /* the access must start within one of the target process's mappings */
1797         vma = find_vma(mm, addr);
1798         if (vma) {
1799                 /* don't overrun this mapping */
1800                 if (addr + len >= vma->vm_end)
1801                         len = vma->vm_end - addr;
1802
1803                 /* only read or write mappings where it is permitted */
1804                 if (write && vma->vm_flags & VM_MAYWRITE)
1805                         copy_to_user_page(vma, NULL, addr,
1806                                          (void *) addr, buf, len);
1807                 else if (!write && vma->vm_flags & VM_MAYREAD)
1808                         copy_from_user_page(vma, NULL, addr,
1809                                             buf, (void *) addr, len);
1810                 else
1811                         len = 0;
1812         } else {
1813                 len = 0;
1814         }
1815
1816         up_read(&mm->mmap_sem);
1817
1818         return len;
1819 }
1820
1821 /**
1822  * access_remote_vm - access another process' address space
1823  * @mm:         the mm_struct of the target address space
1824  * @addr:       start address to access
1825  * @buf:        source or destination buffer
1826  * @len:        number of bytes to transfer
1827  * @gup_flags:  flags modifying lookup behaviour
1828  *
1829  * The caller must hold a reference on @mm.
1830  */
1831 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1832                 void *buf, int len, unsigned int gup_flags)
1833 {
1834         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1835 }
1836
1837 /*
1838  * Access another process' address space.
1839  * - source/target buffer must be kernel space
1840  */
1841 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1842                 unsigned int gup_flags)
1843 {
1844         struct mm_struct *mm;
1845
1846         if (addr + len < addr)
1847                 return 0;
1848
1849         mm = get_task_mm(tsk);
1850         if (!mm)
1851                 return 0;
1852
1853         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1854
1855         mmput(mm);
1856         return len;
1857 }
1858 EXPORT_SYMBOL_GPL(access_process_vm);
1859
1860 /**
1861  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1862  * @inode: The inode to check
1863  * @size: The current filesize of the inode
1864  * @newsize: The proposed filesize of the inode
1865  *
1866  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1867  * make sure that that any outstanding VMAs aren't broken and then shrink the
1868  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1869  * automatically grant mappings that are too large.
1870  */
1871 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1872                                 size_t newsize)
1873 {
1874         struct vm_area_struct *vma;
1875         struct vm_region *region;
1876         pgoff_t low, high;
1877         size_t r_size, r_top;
1878
1879         low = newsize >> PAGE_SHIFT;
1880         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1881
1882         down_write(&nommu_region_sem);
1883         i_mmap_lock_read(inode->i_mapping);
1884
1885         /* search for VMAs that fall within the dead zone */
1886         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1887                 /* found one - only interested if it's shared out of the page
1888                  * cache */
1889                 if (vma->vm_flags & VM_SHARED) {
1890                         i_mmap_unlock_read(inode->i_mapping);
1891                         up_write(&nommu_region_sem);
1892                         return -ETXTBSY; /* not quite true, but near enough */
1893                 }
1894         }
1895
1896         /* reduce any regions that overlap the dead zone - if in existence,
1897          * these will be pointed to by VMAs that don't overlap the dead zone
1898          *
1899          * we don't check for any regions that start beyond the EOF as there
1900          * shouldn't be any
1901          */
1902         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1903                 if (!(vma->vm_flags & VM_SHARED))
1904                         continue;
1905
1906                 region = vma->vm_region;
1907                 r_size = region->vm_top - region->vm_start;
1908                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1909
1910                 if (r_top > newsize) {
1911                         region->vm_top -= r_top - newsize;
1912                         if (region->vm_end > region->vm_top)
1913                                 region->vm_end = region->vm_top;
1914                 }
1915         }
1916
1917         i_mmap_unlock_read(inode->i_mapping);
1918         up_write(&nommu_region_sem);
1919         return 0;
1920 }
1921
1922 /*
1923  * Initialise sysctl_user_reserve_kbytes.
1924  *
1925  * This is intended to prevent a user from starting a single memory hogging
1926  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1927  * mode.
1928  *
1929  * The default value is min(3% of free memory, 128MB)
1930  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1931  */
1932 static int __meminit init_user_reserve(void)
1933 {
1934         unsigned long free_kbytes;
1935
1936         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1937
1938         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1939         return 0;
1940 }
1941 subsys_initcall(init_user_reserve);
1942
1943 /*
1944  * Initialise sysctl_admin_reserve_kbytes.
1945  *
1946  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1947  * to log in and kill a memory hogging process.
1948  *
1949  * Systems with more than 256MB will reserve 8MB, enough to recover
1950  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1951  * only reserve 3% of free pages by default.
1952  */
1953 static int __meminit init_admin_reserve(void)
1954 {
1955         unsigned long free_kbytes;
1956
1957         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1958
1959         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1960         return 0;
1961 }
1962 subsys_initcall(init_admin_reserve);