Merge tag 'imx-dt-4.7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo...
[sfrench/cifs-2.6.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #define __DISABLE_GUP_DEPRECATED
19
20 #include <linux/export.h>
21 #include <linux/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return PAGE_SIZE << compound_order(page);
112 }
113
114 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
115                       unsigned long start, unsigned long nr_pages,
116                       unsigned int foll_flags, struct page **pages,
117                       struct vm_area_struct **vmas, int *nonblocking)
118 {
119         struct vm_area_struct *vma;
120         unsigned long vm_flags;
121         int i;
122
123         /* calculate required read or write permissions.
124          * If FOLL_FORCE is set, we only require the "MAY" flags.
125          */
126         vm_flags  = (foll_flags & FOLL_WRITE) ?
127                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
128         vm_flags &= (foll_flags & FOLL_FORCE) ?
129                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
130
131         for (i = 0; i < nr_pages; i++) {
132                 vma = find_vma(mm, start);
133                 if (!vma)
134                         goto finish_or_fault;
135
136                 /* protect what we can, including chardevs */
137                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
138                     !(vm_flags & vma->vm_flags))
139                         goto finish_or_fault;
140
141                 if (pages) {
142                         pages[i] = virt_to_page(start);
143                         if (pages[i])
144                                 get_page(pages[i]);
145                 }
146                 if (vmas)
147                         vmas[i] = vma;
148                 start = (start + PAGE_SIZE) & PAGE_MASK;
149         }
150
151         return i;
152
153 finish_or_fault:
154         return i ? : -EFAULT;
155 }
156
157 /*
158  * get a list of pages in an address range belonging to the specified process
159  * and indicate the VMA that covers each page
160  * - this is potentially dodgy as we may end incrementing the page count of a
161  *   slab page or a secondary page from a compound page
162  * - don't permit access to VMAs that don't support it, such as I/O mappings
163  */
164 long get_user_pages6(unsigned long start, unsigned long nr_pages,
165                     int write, int force, struct page **pages,
166                     struct vm_area_struct **vmas)
167 {
168         int flags = 0;
169
170         if (write)
171                 flags |= FOLL_WRITE;
172         if (force)
173                 flags |= FOLL_FORCE;
174
175         return __get_user_pages(current, current->mm, start, nr_pages, flags,
176                                 pages, vmas, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages6);
179
180 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
181                             int write, int force, struct page **pages,
182                             int *locked)
183 {
184         return get_user_pages6(start, nr_pages, write, force, pages, NULL);
185 }
186 EXPORT_SYMBOL(get_user_pages_locked6);
187
188 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
189                                unsigned long start, unsigned long nr_pages,
190                                int write, int force, struct page **pages,
191                                unsigned int gup_flags)
192 {
193         long ret;
194         down_read(&mm->mmap_sem);
195         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
196                                 NULL, NULL);
197         up_read(&mm->mmap_sem);
198         return ret;
199 }
200 EXPORT_SYMBOL(__get_user_pages_unlocked);
201
202 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
203                              int write, int force, struct page **pages)
204 {
205         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
206                                          write, force, pages, 0);
207 }
208 EXPORT_SYMBOL(get_user_pages_unlocked5);
209
210 /**
211  * follow_pfn - look up PFN at a user virtual address
212  * @vma: memory mapping
213  * @address: user virtual address
214  * @pfn: location to store found PFN
215  *
216  * Only IO mappings and raw PFN mappings are allowed.
217  *
218  * Returns zero and the pfn at @pfn on success, -ve otherwise.
219  */
220 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
221         unsigned long *pfn)
222 {
223         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
224                 return -EINVAL;
225
226         *pfn = address >> PAGE_SHIFT;
227         return 0;
228 }
229 EXPORT_SYMBOL(follow_pfn);
230
231 LIST_HEAD(vmap_area_list);
232
233 void vfree(const void *addr)
234 {
235         kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241         /*
242          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243          * returns only a logical address.
244          */
245         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248
249 void *vmalloc_user(unsigned long size)
250 {
251         void *ret;
252
253         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254                         PAGE_KERNEL);
255         if (ret) {
256                 struct vm_area_struct *vma;
257
258                 down_write(&current->mm->mmap_sem);
259                 vma = find_vma(current->mm, (unsigned long)ret);
260                 if (vma)
261                         vma->vm_flags |= VM_USERMAP;
262                 up_write(&current->mm->mmap_sem);
263         }
264
265         return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268
269 struct page *vmalloc_to_page(const void *addr)
270 {
271         return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277         return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283         /* Don't allow overflow */
284         if ((unsigned long) buf + count < count)
285                 count = -(unsigned long) buf;
286
287         memcpy(buf, addr, count);
288         return count;
289 }
290
291 long vwrite(char *buf, char *addr, unsigned long count)
292 {
293         /* Don't allow overflow */
294         if ((unsigned long) addr + count < count)
295                 count = -(unsigned long) addr;
296
297         memcpy(addr, buf, count);
298         return count;
299 }
300
301 /*
302  *      vmalloc  -  allocate virtually contiguous memory
303  *
304  *      @size:          allocation size
305  *
306  *      Allocate enough pages to cover @size from the page level
307  *      allocator and map them into contiguous kernel virtual space.
308  *
309  *      For tight control over page level allocator and protection flags
310  *      use __vmalloc() instead.
311  */
312 void *vmalloc(unsigned long size)
313 {
314        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vmalloc);
317
318 /*
319  *      vzalloc - allocate virtually contiguous memory with zero fill
320  *
321  *      @size:          allocation size
322  *
323  *      Allocate enough pages to cover @size from the page level
324  *      allocator and map them into contiguous kernel virtual space.
325  *      The memory allocated is set to zero.
326  *
327  *      For tight control over page level allocator and protection flags
328  *      use __vmalloc() instead.
329  */
330 void *vzalloc(unsigned long size)
331 {
332         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
333                         PAGE_KERNEL);
334 }
335 EXPORT_SYMBOL(vzalloc);
336
337 /**
338  * vmalloc_node - allocate memory on a specific node
339  * @size:       allocation size
340  * @node:       numa node
341  *
342  * Allocate enough pages to cover @size from the page level
343  * allocator and map them into contiguous kernel virtual space.
344  *
345  * For tight control over page level allocator and protection flags
346  * use __vmalloc() instead.
347  */
348 void *vmalloc_node(unsigned long size, int node)
349 {
350         return vmalloc(size);
351 }
352 EXPORT_SYMBOL(vmalloc_node);
353
354 /**
355  * vzalloc_node - allocate memory on a specific node with zero fill
356  * @size:       allocation size
357  * @node:       numa node
358  *
359  * Allocate enough pages to cover @size from the page level
360  * allocator and map them into contiguous kernel virtual space.
361  * The memory allocated is set to zero.
362  *
363  * For tight control over page level allocator and protection flags
364  * use __vmalloc() instead.
365  */
366 void *vzalloc_node(unsigned long size, int node)
367 {
368         return vzalloc(size);
369 }
370 EXPORT_SYMBOL(vzalloc_node);
371
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 #endif
375
376 /**
377  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
378  *      @size:          allocation size
379  *
380  *      Kernel-internal function to allocate enough pages to cover @size
381  *      the page level allocator and map them into contiguous and
382  *      executable kernel virtual space.
383  *
384  *      For tight control over page level allocator and protection flags
385  *      use __vmalloc() instead.
386  */
387
388 void *vmalloc_exec(unsigned long size)
389 {
390         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
391 }
392
393 /**
394  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
395  *      @size:          allocation size
396  *
397  *      Allocate enough 32bit PA addressable pages to cover @size from the
398  *      page level allocator and map them into contiguous kernel virtual space.
399  */
400 void *vmalloc_32(unsigned long size)
401 {
402         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
403 }
404 EXPORT_SYMBOL(vmalloc_32);
405
406 /**
407  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408  *      @size:          allocation size
409  *
410  * The resulting memory area is 32bit addressable and zeroed so it can be
411  * mapped to userspace without leaking data.
412  *
413  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414  * remap_vmalloc_range() are permissible.
415  */
416 void *vmalloc_32_user(unsigned long size)
417 {
418         /*
419          * We'll have to sort out the ZONE_DMA bits for 64-bit,
420          * but for now this can simply use vmalloc_user() directly.
421          */
422         return vmalloc_user(size);
423 }
424 EXPORT_SYMBOL(vmalloc_32_user);
425
426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
427 {
428         BUG();
429         return NULL;
430 }
431 EXPORT_SYMBOL(vmap);
432
433 void vunmap(const void *addr)
434 {
435         BUG();
436 }
437 EXPORT_SYMBOL(vunmap);
438
439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
440 {
441         BUG();
442         return NULL;
443 }
444 EXPORT_SYMBOL(vm_map_ram);
445
446 void vm_unmap_ram(const void *mem, unsigned int count)
447 {
448         BUG();
449 }
450 EXPORT_SYMBOL(vm_unmap_ram);
451
452 void vm_unmap_aliases(void)
453 {
454 }
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
456
457 /*
458  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459  * have one.
460  */
461 void __weak vmalloc_sync_all(void)
462 {
463 }
464
465 /**
466  *      alloc_vm_area - allocate a range of kernel address space
467  *      @size:          size of the area
468  *
469  *      Returns:        NULL on failure, vm_struct on success
470  *
471  *      This function reserves a range of kernel address space, and
472  *      allocates pagetables to map that range.  No actual mappings
473  *      are created.  If the kernel address space is not shared
474  *      between processes, it syncs the pagetable across all
475  *      processes.
476  */
477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
478 {
479         BUG();
480         return NULL;
481 }
482 EXPORT_SYMBOL_GPL(alloc_vm_area);
483
484 void free_vm_area(struct vm_struct *area)
485 {
486         BUG();
487 }
488 EXPORT_SYMBOL_GPL(free_vm_area);
489
490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491                    struct page *page)
492 {
493         return -EINVAL;
494 }
495 EXPORT_SYMBOL(vm_insert_page);
496
497 /*
498  *  sys_brk() for the most part doesn't need the global kernel
499  *  lock, except when an application is doing something nasty
500  *  like trying to un-brk an area that has already been mapped
501  *  to a regular file.  in this case, the unmapping will need
502  *  to invoke file system routines that need the global lock.
503  */
504 SYSCALL_DEFINE1(brk, unsigned long, brk)
505 {
506         struct mm_struct *mm = current->mm;
507
508         if (brk < mm->start_brk || brk > mm->context.end_brk)
509                 return mm->brk;
510
511         if (mm->brk == brk)
512                 return mm->brk;
513
514         /*
515          * Always allow shrinking brk
516          */
517         if (brk <= mm->brk) {
518                 mm->brk = brk;
519                 return brk;
520         }
521
522         /*
523          * Ok, looks good - let it rip.
524          */
525         flush_icache_range(mm->brk, brk);
526         return mm->brk = brk;
527 }
528
529 /*
530  * initialise the VMA and region record slabs
531  */
532 void __init mmap_init(void)
533 {
534         int ret;
535
536         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
537         VM_BUG_ON(ret);
538         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
539 }
540
541 /*
542  * validate the region tree
543  * - the caller must hold the region lock
544  */
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline void validate_nommu_regions(void)
547 {
548         struct vm_region *region, *last;
549         struct rb_node *p, *lastp;
550
551         lastp = rb_first(&nommu_region_tree);
552         if (!lastp)
553                 return;
554
555         last = rb_entry(lastp, struct vm_region, vm_rb);
556         BUG_ON(last->vm_end <= last->vm_start);
557         BUG_ON(last->vm_top < last->vm_end);
558
559         while ((p = rb_next(lastp))) {
560                 region = rb_entry(p, struct vm_region, vm_rb);
561                 last = rb_entry(lastp, struct vm_region, vm_rb);
562
563                 BUG_ON(region->vm_end <= region->vm_start);
564                 BUG_ON(region->vm_top < region->vm_end);
565                 BUG_ON(region->vm_start < last->vm_top);
566
567                 lastp = p;
568         }
569 }
570 #else
571 static void validate_nommu_regions(void)
572 {
573 }
574 #endif
575
576 /*
577  * add a region into the global tree
578  */
579 static void add_nommu_region(struct vm_region *region)
580 {
581         struct vm_region *pregion;
582         struct rb_node **p, *parent;
583
584         validate_nommu_regions();
585
586         parent = NULL;
587         p = &nommu_region_tree.rb_node;
588         while (*p) {
589                 parent = *p;
590                 pregion = rb_entry(parent, struct vm_region, vm_rb);
591                 if (region->vm_start < pregion->vm_start)
592                         p = &(*p)->rb_left;
593                 else if (region->vm_start > pregion->vm_start)
594                         p = &(*p)->rb_right;
595                 else if (pregion == region)
596                         return;
597                 else
598                         BUG();
599         }
600
601         rb_link_node(&region->vm_rb, parent, p);
602         rb_insert_color(&region->vm_rb, &nommu_region_tree);
603
604         validate_nommu_regions();
605 }
606
607 /*
608  * delete a region from the global tree
609  */
610 static void delete_nommu_region(struct vm_region *region)
611 {
612         BUG_ON(!nommu_region_tree.rb_node);
613
614         validate_nommu_regions();
615         rb_erase(&region->vm_rb, &nommu_region_tree);
616         validate_nommu_regions();
617 }
618
619 /*
620  * free a contiguous series of pages
621  */
622 static void free_page_series(unsigned long from, unsigned long to)
623 {
624         for (; from < to; from += PAGE_SIZE) {
625                 struct page *page = virt_to_page(from);
626
627                 atomic_long_dec(&mmap_pages_allocated);
628                 put_page(page);
629         }
630 }
631
632 /*
633  * release a reference to a region
634  * - the caller must hold the region semaphore for writing, which this releases
635  * - the region may not have been added to the tree yet, in which case vm_top
636  *   will equal vm_start
637  */
638 static void __put_nommu_region(struct vm_region *region)
639         __releases(nommu_region_sem)
640 {
641         BUG_ON(!nommu_region_tree.rb_node);
642
643         if (--region->vm_usage == 0) {
644                 if (region->vm_top > region->vm_start)
645                         delete_nommu_region(region);
646                 up_write(&nommu_region_sem);
647
648                 if (region->vm_file)
649                         fput(region->vm_file);
650
651                 /* IO memory and memory shared directly out of the pagecache
652                  * from ramfs/tmpfs mustn't be released here */
653                 if (region->vm_flags & VM_MAPPED_COPY)
654                         free_page_series(region->vm_start, region->vm_top);
655                 kmem_cache_free(vm_region_jar, region);
656         } else {
657                 up_write(&nommu_region_sem);
658         }
659 }
660
661 /*
662  * release a reference to a region
663  */
664 static void put_nommu_region(struct vm_region *region)
665 {
666         down_write(&nommu_region_sem);
667         __put_nommu_region(region);
668 }
669
670 /*
671  * update protection on a vma
672  */
673 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
674 {
675 #ifdef CONFIG_MPU
676         struct mm_struct *mm = vma->vm_mm;
677         long start = vma->vm_start & PAGE_MASK;
678         while (start < vma->vm_end) {
679                 protect_page(mm, start, flags);
680                 start += PAGE_SIZE;
681         }
682         update_protections(mm);
683 #endif
684 }
685
686 /*
687  * add a VMA into a process's mm_struct in the appropriate place in the list
688  * and tree and add to the address space's page tree also if not an anonymous
689  * page
690  * - should be called with mm->mmap_sem held writelocked
691  */
692 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694         struct vm_area_struct *pvma, *prev;
695         struct address_space *mapping;
696         struct rb_node **p, *parent, *rb_prev;
697
698         BUG_ON(!vma->vm_region);
699
700         mm->map_count++;
701         vma->vm_mm = mm;
702
703         protect_vma(vma, vma->vm_flags);
704
705         /* add the VMA to the mapping */
706         if (vma->vm_file) {
707                 mapping = vma->vm_file->f_mapping;
708
709                 i_mmap_lock_write(mapping);
710                 flush_dcache_mmap_lock(mapping);
711                 vma_interval_tree_insert(vma, &mapping->i_mmap);
712                 flush_dcache_mmap_unlock(mapping);
713                 i_mmap_unlock_write(mapping);
714         }
715
716         /* add the VMA to the tree */
717         parent = rb_prev = NULL;
718         p = &mm->mm_rb.rb_node;
719         while (*p) {
720                 parent = *p;
721                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
722
723                 /* sort by: start addr, end addr, VMA struct addr in that order
724                  * (the latter is necessary as we may get identical VMAs) */
725                 if (vma->vm_start < pvma->vm_start)
726                         p = &(*p)->rb_left;
727                 else if (vma->vm_start > pvma->vm_start) {
728                         rb_prev = parent;
729                         p = &(*p)->rb_right;
730                 } else if (vma->vm_end < pvma->vm_end)
731                         p = &(*p)->rb_left;
732                 else if (vma->vm_end > pvma->vm_end) {
733                         rb_prev = parent;
734                         p = &(*p)->rb_right;
735                 } else if (vma < pvma)
736                         p = &(*p)->rb_left;
737                 else if (vma > pvma) {
738                         rb_prev = parent;
739                         p = &(*p)->rb_right;
740                 } else
741                         BUG();
742         }
743
744         rb_link_node(&vma->vm_rb, parent, p);
745         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
746
747         /* add VMA to the VMA list also */
748         prev = NULL;
749         if (rb_prev)
750                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
751
752         __vma_link_list(mm, vma, prev, parent);
753 }
754
755 /*
756  * delete a VMA from its owning mm_struct and address space
757  */
758 static void delete_vma_from_mm(struct vm_area_struct *vma)
759 {
760         int i;
761         struct address_space *mapping;
762         struct mm_struct *mm = vma->vm_mm;
763         struct task_struct *curr = current;
764
765         protect_vma(vma, 0);
766
767         mm->map_count--;
768         for (i = 0; i < VMACACHE_SIZE; i++) {
769                 /* if the vma is cached, invalidate the entire cache */
770                 if (curr->vmacache[i] == vma) {
771                         vmacache_invalidate(mm);
772                         break;
773                 }
774         }
775
776         /* remove the VMA from the mapping */
777         if (vma->vm_file) {
778                 mapping = vma->vm_file->f_mapping;
779
780                 i_mmap_lock_write(mapping);
781                 flush_dcache_mmap_lock(mapping);
782                 vma_interval_tree_remove(vma, &mapping->i_mmap);
783                 flush_dcache_mmap_unlock(mapping);
784                 i_mmap_unlock_write(mapping);
785         }
786
787         /* remove from the MM's tree and list */
788         rb_erase(&vma->vm_rb, &mm->mm_rb);
789
790         if (vma->vm_prev)
791                 vma->vm_prev->vm_next = vma->vm_next;
792         else
793                 mm->mmap = vma->vm_next;
794
795         if (vma->vm_next)
796                 vma->vm_next->vm_prev = vma->vm_prev;
797 }
798
799 /*
800  * destroy a VMA record
801  */
802 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
803 {
804         if (vma->vm_ops && vma->vm_ops->close)
805                 vma->vm_ops->close(vma);
806         if (vma->vm_file)
807                 fput(vma->vm_file);
808         put_nommu_region(vma->vm_region);
809         kmem_cache_free(vm_area_cachep, vma);
810 }
811
812 /*
813  * look up the first VMA in which addr resides, NULL if none
814  * - should be called with mm->mmap_sem at least held readlocked
815  */
816 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
817 {
818         struct vm_area_struct *vma;
819
820         /* check the cache first */
821         vma = vmacache_find(mm, addr);
822         if (likely(vma))
823                 return vma;
824
825         /* trawl the list (there may be multiple mappings in which addr
826          * resides) */
827         for (vma = mm->mmap; vma; vma = vma->vm_next) {
828                 if (vma->vm_start > addr)
829                         return NULL;
830                 if (vma->vm_end > addr) {
831                         vmacache_update(addr, vma);
832                         return vma;
833                 }
834         }
835
836         return NULL;
837 }
838 EXPORT_SYMBOL(find_vma);
839
840 /*
841  * find a VMA
842  * - we don't extend stack VMAs under NOMMU conditions
843  */
844 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
845 {
846         return find_vma(mm, addr);
847 }
848
849 /*
850  * expand a stack to a given address
851  * - not supported under NOMMU conditions
852  */
853 int expand_stack(struct vm_area_struct *vma, unsigned long address)
854 {
855         return -ENOMEM;
856 }
857
858 /*
859  * look up the first VMA exactly that exactly matches addr
860  * - should be called with mm->mmap_sem at least held readlocked
861  */
862 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
863                                              unsigned long addr,
864                                              unsigned long len)
865 {
866         struct vm_area_struct *vma;
867         unsigned long end = addr + len;
868
869         /* check the cache first */
870         vma = vmacache_find_exact(mm, addr, end);
871         if (vma)
872                 return vma;
873
874         /* trawl the list (there may be multiple mappings in which addr
875          * resides) */
876         for (vma = mm->mmap; vma; vma = vma->vm_next) {
877                 if (vma->vm_start < addr)
878                         continue;
879                 if (vma->vm_start > addr)
880                         return NULL;
881                 if (vma->vm_end == end) {
882                         vmacache_update(addr, vma);
883                         return vma;
884                 }
885         }
886
887         return NULL;
888 }
889
890 /*
891  * determine whether a mapping should be permitted and, if so, what sort of
892  * mapping we're capable of supporting
893  */
894 static int validate_mmap_request(struct file *file,
895                                  unsigned long addr,
896                                  unsigned long len,
897                                  unsigned long prot,
898                                  unsigned long flags,
899                                  unsigned long pgoff,
900                                  unsigned long *_capabilities)
901 {
902         unsigned long capabilities, rlen;
903         int ret;
904
905         /* do the simple checks first */
906         if (flags & MAP_FIXED)
907                 return -EINVAL;
908
909         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
910             (flags & MAP_TYPE) != MAP_SHARED)
911                 return -EINVAL;
912
913         if (!len)
914                 return -EINVAL;
915
916         /* Careful about overflows.. */
917         rlen = PAGE_ALIGN(len);
918         if (!rlen || rlen > TASK_SIZE)
919                 return -ENOMEM;
920
921         /* offset overflow? */
922         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
923                 return -EOVERFLOW;
924
925         if (file) {
926                 /* files must support mmap */
927                 if (!file->f_op->mmap)
928                         return -ENODEV;
929
930                 /* work out if what we've got could possibly be shared
931                  * - we support chardevs that provide their own "memory"
932                  * - we support files/blockdevs that are memory backed
933                  */
934                 if (file->f_op->mmap_capabilities) {
935                         capabilities = file->f_op->mmap_capabilities(file);
936                 } else {
937                         /* no explicit capabilities set, so assume some
938                          * defaults */
939                         switch (file_inode(file)->i_mode & S_IFMT) {
940                         case S_IFREG:
941                         case S_IFBLK:
942                                 capabilities = NOMMU_MAP_COPY;
943                                 break;
944
945                         case S_IFCHR:
946                                 capabilities =
947                                         NOMMU_MAP_DIRECT |
948                                         NOMMU_MAP_READ |
949                                         NOMMU_MAP_WRITE;
950                                 break;
951
952                         default:
953                                 return -EINVAL;
954                         }
955                 }
956
957                 /* eliminate any capabilities that we can't support on this
958                  * device */
959                 if (!file->f_op->get_unmapped_area)
960                         capabilities &= ~NOMMU_MAP_DIRECT;
961                 if (!(file->f_mode & FMODE_CAN_READ))
962                         capabilities &= ~NOMMU_MAP_COPY;
963
964                 /* The file shall have been opened with read permission. */
965                 if (!(file->f_mode & FMODE_READ))
966                         return -EACCES;
967
968                 if (flags & MAP_SHARED) {
969                         /* do checks for writing, appending and locking */
970                         if ((prot & PROT_WRITE) &&
971                             !(file->f_mode & FMODE_WRITE))
972                                 return -EACCES;
973
974                         if (IS_APPEND(file_inode(file)) &&
975                             (file->f_mode & FMODE_WRITE))
976                                 return -EACCES;
977
978                         if (locks_verify_locked(file))
979                                 return -EAGAIN;
980
981                         if (!(capabilities & NOMMU_MAP_DIRECT))
982                                 return -ENODEV;
983
984                         /* we mustn't privatise shared mappings */
985                         capabilities &= ~NOMMU_MAP_COPY;
986                 } else {
987                         /* we're going to read the file into private memory we
988                          * allocate */
989                         if (!(capabilities & NOMMU_MAP_COPY))
990                                 return -ENODEV;
991
992                         /* we don't permit a private writable mapping to be
993                          * shared with the backing device */
994                         if (prot & PROT_WRITE)
995                                 capabilities &= ~NOMMU_MAP_DIRECT;
996                 }
997
998                 if (capabilities & NOMMU_MAP_DIRECT) {
999                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1000                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1001                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1002                             ) {
1003                                 capabilities &= ~NOMMU_MAP_DIRECT;
1004                                 if (flags & MAP_SHARED) {
1005                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1006                                         return -EINVAL;
1007                                 }
1008                         }
1009                 }
1010
1011                 /* handle executable mappings and implied executable
1012                  * mappings */
1013                 if (path_noexec(&file->f_path)) {
1014                         if (prot & PROT_EXEC)
1015                                 return -EPERM;
1016                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1017                         /* handle implication of PROT_EXEC by PROT_READ */
1018                         if (current->personality & READ_IMPLIES_EXEC) {
1019                                 if (capabilities & NOMMU_MAP_EXEC)
1020                                         prot |= PROT_EXEC;
1021                         }
1022                 } else if ((prot & PROT_READ) &&
1023                          (prot & PROT_EXEC) &&
1024                          !(capabilities & NOMMU_MAP_EXEC)
1025                          ) {
1026                         /* backing file is not executable, try to copy */
1027                         capabilities &= ~NOMMU_MAP_DIRECT;
1028                 }
1029         } else {
1030                 /* anonymous mappings are always memory backed and can be
1031                  * privately mapped
1032                  */
1033                 capabilities = NOMMU_MAP_COPY;
1034
1035                 /* handle PROT_EXEC implication by PROT_READ */
1036                 if ((prot & PROT_READ) &&
1037                     (current->personality & READ_IMPLIES_EXEC))
1038                         prot |= PROT_EXEC;
1039         }
1040
1041         /* allow the security API to have its say */
1042         ret = security_mmap_addr(addr);
1043         if (ret < 0)
1044                 return ret;
1045
1046         /* looks okay */
1047         *_capabilities = capabilities;
1048         return 0;
1049 }
1050
1051 /*
1052  * we've determined that we can make the mapping, now translate what we
1053  * now know into VMA flags
1054  */
1055 static unsigned long determine_vm_flags(struct file *file,
1056                                         unsigned long prot,
1057                                         unsigned long flags,
1058                                         unsigned long capabilities)
1059 {
1060         unsigned long vm_flags;
1061
1062         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1063         /* vm_flags |= mm->def_flags; */
1064
1065         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1066                 /* attempt to share read-only copies of mapped file chunks */
1067                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1068                 if (file && !(prot & PROT_WRITE))
1069                         vm_flags |= VM_MAYSHARE;
1070         } else {
1071                 /* overlay a shareable mapping on the backing device or inode
1072                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1073                  * romfs/cramfs */
1074                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1075                 if (flags & MAP_SHARED)
1076                         vm_flags |= VM_SHARED;
1077         }
1078
1079         /* refuse to let anyone share private mappings with this process if
1080          * it's being traced - otherwise breakpoints set in it may interfere
1081          * with another untraced process
1082          */
1083         if ((flags & MAP_PRIVATE) && current->ptrace)
1084                 vm_flags &= ~VM_MAYSHARE;
1085
1086         return vm_flags;
1087 }
1088
1089 /*
1090  * set up a shared mapping on a file (the driver or filesystem provides and
1091  * pins the storage)
1092  */
1093 static int do_mmap_shared_file(struct vm_area_struct *vma)
1094 {
1095         int ret;
1096
1097         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1098         if (ret == 0) {
1099                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1100                 return 0;
1101         }
1102         if (ret != -ENOSYS)
1103                 return ret;
1104
1105         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1106          * opposed to tried but failed) so we can only give a suitable error as
1107          * it's not possible to make a private copy if MAP_SHARED was given */
1108         return -ENODEV;
1109 }
1110
1111 /*
1112  * set up a private mapping or an anonymous shared mapping
1113  */
1114 static int do_mmap_private(struct vm_area_struct *vma,
1115                            struct vm_region *region,
1116                            unsigned long len,
1117                            unsigned long capabilities)
1118 {
1119         unsigned long total, point;
1120         void *base;
1121         int ret, order;
1122
1123         /* invoke the file's mapping function so that it can keep track of
1124          * shared mappings on devices or memory
1125          * - VM_MAYSHARE will be set if it may attempt to share
1126          */
1127         if (capabilities & NOMMU_MAP_DIRECT) {
1128                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1129                 if (ret == 0) {
1130                         /* shouldn't return success if we're not sharing */
1131                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1132                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1133                         return 0;
1134                 }
1135                 if (ret != -ENOSYS)
1136                         return ret;
1137
1138                 /* getting an ENOSYS error indicates that direct mmap isn't
1139                  * possible (as opposed to tried but failed) so we'll try to
1140                  * make a private copy of the data and map that instead */
1141         }
1142
1143
1144         /* allocate some memory to hold the mapping
1145          * - note that this may not return a page-aligned address if the object
1146          *   we're allocating is smaller than a page
1147          */
1148         order = get_order(len);
1149         total = 1 << order;
1150         point = len >> PAGE_SHIFT;
1151
1152         /* we don't want to allocate a power-of-2 sized page set */
1153         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1154                 total = point;
1155
1156         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1157         if (!base)
1158                 goto enomem;
1159
1160         atomic_long_add(total, &mmap_pages_allocated);
1161
1162         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1163         region->vm_start = (unsigned long) base;
1164         region->vm_end   = region->vm_start + len;
1165         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1166
1167         vma->vm_start = region->vm_start;
1168         vma->vm_end   = region->vm_start + len;
1169
1170         if (vma->vm_file) {
1171                 /* read the contents of a file into the copy */
1172                 mm_segment_t old_fs;
1173                 loff_t fpos;
1174
1175                 fpos = vma->vm_pgoff;
1176                 fpos <<= PAGE_SHIFT;
1177
1178                 old_fs = get_fs();
1179                 set_fs(KERNEL_DS);
1180                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1181                 set_fs(old_fs);
1182
1183                 if (ret < 0)
1184                         goto error_free;
1185
1186                 /* clear the last little bit */
1187                 if (ret < len)
1188                         memset(base + ret, 0, len - ret);
1189
1190         }
1191
1192         return 0;
1193
1194 error_free:
1195         free_page_series(region->vm_start, region->vm_top);
1196         region->vm_start = vma->vm_start = 0;
1197         region->vm_end   = vma->vm_end = 0;
1198         region->vm_top   = 0;
1199         return ret;
1200
1201 enomem:
1202         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1203                len, current->pid, current->comm);
1204         show_free_areas(0);
1205         return -ENOMEM;
1206 }
1207
1208 /*
1209  * handle mapping creation for uClinux
1210  */
1211 unsigned long do_mmap(struct file *file,
1212                         unsigned long addr,
1213                         unsigned long len,
1214                         unsigned long prot,
1215                         unsigned long flags,
1216                         vm_flags_t vm_flags,
1217                         unsigned long pgoff,
1218                         unsigned long *populate)
1219 {
1220         struct vm_area_struct *vma;
1221         struct vm_region *region;
1222         struct rb_node *rb;
1223         unsigned long capabilities, result;
1224         int ret;
1225
1226         *populate = 0;
1227
1228         /* decide whether we should attempt the mapping, and if so what sort of
1229          * mapping */
1230         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1231                                     &capabilities);
1232         if (ret < 0)
1233                 return ret;
1234
1235         /* we ignore the address hint */
1236         addr = 0;
1237         len = PAGE_ALIGN(len);
1238
1239         /* we've determined that we can make the mapping, now translate what we
1240          * now know into VMA flags */
1241         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1242
1243         /* we're going to need to record the mapping */
1244         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1245         if (!region)
1246                 goto error_getting_region;
1247
1248         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1249         if (!vma)
1250                 goto error_getting_vma;
1251
1252         region->vm_usage = 1;
1253         region->vm_flags = vm_flags;
1254         region->vm_pgoff = pgoff;
1255
1256         INIT_LIST_HEAD(&vma->anon_vma_chain);
1257         vma->vm_flags = vm_flags;
1258         vma->vm_pgoff = pgoff;
1259
1260         if (file) {
1261                 region->vm_file = get_file(file);
1262                 vma->vm_file = get_file(file);
1263         }
1264
1265         down_write(&nommu_region_sem);
1266
1267         /* if we want to share, we need to check for regions created by other
1268          * mmap() calls that overlap with our proposed mapping
1269          * - we can only share with a superset match on most regular files
1270          * - shared mappings on character devices and memory backed files are
1271          *   permitted to overlap inexactly as far as we are concerned for in
1272          *   these cases, sharing is handled in the driver or filesystem rather
1273          *   than here
1274          */
1275         if (vm_flags & VM_MAYSHARE) {
1276                 struct vm_region *pregion;
1277                 unsigned long pglen, rpglen, pgend, rpgend, start;
1278
1279                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1280                 pgend = pgoff + pglen;
1281
1282                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1283                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1284
1285                         if (!(pregion->vm_flags & VM_MAYSHARE))
1286                                 continue;
1287
1288                         /* search for overlapping mappings on the same file */
1289                         if (file_inode(pregion->vm_file) !=
1290                             file_inode(file))
1291                                 continue;
1292
1293                         if (pregion->vm_pgoff >= pgend)
1294                                 continue;
1295
1296                         rpglen = pregion->vm_end - pregion->vm_start;
1297                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1298                         rpgend = pregion->vm_pgoff + rpglen;
1299                         if (pgoff >= rpgend)
1300                                 continue;
1301
1302                         /* handle inexactly overlapping matches between
1303                          * mappings */
1304                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1305                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1306                                 /* new mapping is not a subset of the region */
1307                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1308                                         goto sharing_violation;
1309                                 continue;
1310                         }
1311
1312                         /* we've found a region we can share */
1313                         pregion->vm_usage++;
1314                         vma->vm_region = pregion;
1315                         start = pregion->vm_start;
1316                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1317                         vma->vm_start = start;
1318                         vma->vm_end = start + len;
1319
1320                         if (pregion->vm_flags & VM_MAPPED_COPY)
1321                                 vma->vm_flags |= VM_MAPPED_COPY;
1322                         else {
1323                                 ret = do_mmap_shared_file(vma);
1324                                 if (ret < 0) {
1325                                         vma->vm_region = NULL;
1326                                         vma->vm_start = 0;
1327                                         vma->vm_end = 0;
1328                                         pregion->vm_usage--;
1329                                         pregion = NULL;
1330                                         goto error_just_free;
1331                                 }
1332                         }
1333                         fput(region->vm_file);
1334                         kmem_cache_free(vm_region_jar, region);
1335                         region = pregion;
1336                         result = start;
1337                         goto share;
1338                 }
1339
1340                 /* obtain the address at which to make a shared mapping
1341                  * - this is the hook for quasi-memory character devices to
1342                  *   tell us the location of a shared mapping
1343                  */
1344                 if (capabilities & NOMMU_MAP_DIRECT) {
1345                         addr = file->f_op->get_unmapped_area(file, addr, len,
1346                                                              pgoff, flags);
1347                         if (IS_ERR_VALUE(addr)) {
1348                                 ret = addr;
1349                                 if (ret != -ENOSYS)
1350                                         goto error_just_free;
1351
1352                                 /* the driver refused to tell us where to site
1353                                  * the mapping so we'll have to attempt to copy
1354                                  * it */
1355                                 ret = -ENODEV;
1356                                 if (!(capabilities & NOMMU_MAP_COPY))
1357                                         goto error_just_free;
1358
1359                                 capabilities &= ~NOMMU_MAP_DIRECT;
1360                         } else {
1361                                 vma->vm_start = region->vm_start = addr;
1362                                 vma->vm_end = region->vm_end = addr + len;
1363                         }
1364                 }
1365         }
1366
1367         vma->vm_region = region;
1368
1369         /* set up the mapping
1370          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1371          */
1372         if (file && vma->vm_flags & VM_SHARED)
1373                 ret = do_mmap_shared_file(vma);
1374         else
1375                 ret = do_mmap_private(vma, region, len, capabilities);
1376         if (ret < 0)
1377                 goto error_just_free;
1378         add_nommu_region(region);
1379
1380         /* clear anonymous mappings that don't ask for uninitialized data */
1381         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1382                 memset((void *)region->vm_start, 0,
1383                        region->vm_end - region->vm_start);
1384
1385         /* okay... we have a mapping; now we have to register it */
1386         result = vma->vm_start;
1387
1388         current->mm->total_vm += len >> PAGE_SHIFT;
1389
1390 share:
1391         add_vma_to_mm(current->mm, vma);
1392
1393         /* we flush the region from the icache only when the first executable
1394          * mapping of it is made  */
1395         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1396                 flush_icache_range(region->vm_start, region->vm_end);
1397                 region->vm_icache_flushed = true;
1398         }
1399
1400         up_write(&nommu_region_sem);
1401
1402         return result;
1403
1404 error_just_free:
1405         up_write(&nommu_region_sem);
1406 error:
1407         if (region->vm_file)
1408                 fput(region->vm_file);
1409         kmem_cache_free(vm_region_jar, region);
1410         if (vma->vm_file)
1411                 fput(vma->vm_file);
1412         kmem_cache_free(vm_area_cachep, vma);
1413         return ret;
1414
1415 sharing_violation:
1416         up_write(&nommu_region_sem);
1417         pr_warn("Attempt to share mismatched mappings\n");
1418         ret = -EINVAL;
1419         goto error;
1420
1421 error_getting_vma:
1422         kmem_cache_free(vm_region_jar, region);
1423         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1424                         len, current->pid);
1425         show_free_areas(0);
1426         return -ENOMEM;
1427
1428 error_getting_region:
1429         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1430                         len, current->pid);
1431         show_free_areas(0);
1432         return -ENOMEM;
1433 }
1434
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436                 unsigned long, prot, unsigned long, flags,
1437                 unsigned long, fd, unsigned long, pgoff)
1438 {
1439         struct file *file = NULL;
1440         unsigned long retval = -EBADF;
1441
1442         audit_mmap_fd(fd, flags);
1443         if (!(flags & MAP_ANONYMOUS)) {
1444                 file = fget(fd);
1445                 if (!file)
1446                         goto out;
1447         }
1448
1449         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1450
1451         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1452
1453         if (file)
1454                 fput(file);
1455 out:
1456         return retval;
1457 }
1458
1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1460 struct mmap_arg_struct {
1461         unsigned long addr;
1462         unsigned long len;
1463         unsigned long prot;
1464         unsigned long flags;
1465         unsigned long fd;
1466         unsigned long offset;
1467 };
1468
1469 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1470 {
1471         struct mmap_arg_struct a;
1472
1473         if (copy_from_user(&a, arg, sizeof(a)))
1474                 return -EFAULT;
1475         if (offset_in_page(a.offset))
1476                 return -EINVAL;
1477
1478         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1479                               a.offset >> PAGE_SHIFT);
1480 }
1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1482
1483 /*
1484  * split a vma into two pieces at address 'addr', a new vma is allocated either
1485  * for the first part or the tail.
1486  */
1487 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1488               unsigned long addr, int new_below)
1489 {
1490         struct vm_area_struct *new;
1491         struct vm_region *region;
1492         unsigned long npages;
1493
1494         /* we're only permitted to split anonymous regions (these should have
1495          * only a single usage on the region) */
1496         if (vma->vm_file)
1497                 return -ENOMEM;
1498
1499         if (mm->map_count >= sysctl_max_map_count)
1500                 return -ENOMEM;
1501
1502         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1503         if (!region)
1504                 return -ENOMEM;
1505
1506         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1507         if (!new) {
1508                 kmem_cache_free(vm_region_jar, region);
1509                 return -ENOMEM;
1510         }
1511
1512         /* most fields are the same, copy all, and then fixup */
1513         *new = *vma;
1514         *region = *vma->vm_region;
1515         new->vm_region = region;
1516
1517         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1518
1519         if (new_below) {
1520                 region->vm_top = region->vm_end = new->vm_end = addr;
1521         } else {
1522                 region->vm_start = new->vm_start = addr;
1523                 region->vm_pgoff = new->vm_pgoff += npages;
1524         }
1525
1526         if (new->vm_ops && new->vm_ops->open)
1527                 new->vm_ops->open(new);
1528
1529         delete_vma_from_mm(vma);
1530         down_write(&nommu_region_sem);
1531         delete_nommu_region(vma->vm_region);
1532         if (new_below) {
1533                 vma->vm_region->vm_start = vma->vm_start = addr;
1534                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1535         } else {
1536                 vma->vm_region->vm_end = vma->vm_end = addr;
1537                 vma->vm_region->vm_top = addr;
1538         }
1539         add_nommu_region(vma->vm_region);
1540         add_nommu_region(new->vm_region);
1541         up_write(&nommu_region_sem);
1542         add_vma_to_mm(mm, vma);
1543         add_vma_to_mm(mm, new);
1544         return 0;
1545 }
1546
1547 /*
1548  * shrink a VMA by removing the specified chunk from either the beginning or
1549  * the end
1550  */
1551 static int shrink_vma(struct mm_struct *mm,
1552                       struct vm_area_struct *vma,
1553                       unsigned long from, unsigned long to)
1554 {
1555         struct vm_region *region;
1556
1557         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1558          * and list */
1559         delete_vma_from_mm(vma);
1560         if (from > vma->vm_start)
1561                 vma->vm_end = from;
1562         else
1563                 vma->vm_start = to;
1564         add_vma_to_mm(mm, vma);
1565
1566         /* cut the backing region down to size */
1567         region = vma->vm_region;
1568         BUG_ON(region->vm_usage != 1);
1569
1570         down_write(&nommu_region_sem);
1571         delete_nommu_region(region);
1572         if (from > region->vm_start) {
1573                 to = region->vm_top;
1574                 region->vm_top = region->vm_end = from;
1575         } else {
1576                 region->vm_start = to;
1577         }
1578         add_nommu_region(region);
1579         up_write(&nommu_region_sem);
1580
1581         free_page_series(from, to);
1582         return 0;
1583 }
1584
1585 /*
1586  * release a mapping
1587  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1588  *   VMA, though it need not cover the whole VMA
1589  */
1590 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1591 {
1592         struct vm_area_struct *vma;
1593         unsigned long end;
1594         int ret;
1595
1596         len = PAGE_ALIGN(len);
1597         if (len == 0)
1598                 return -EINVAL;
1599
1600         end = start + len;
1601
1602         /* find the first potentially overlapping VMA */
1603         vma = find_vma(mm, start);
1604         if (!vma) {
1605                 static int limit;
1606                 if (limit < 5) {
1607                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1608                                         current->pid, current->comm,
1609                                         start, start + len - 1);
1610                         limit++;
1611                 }
1612                 return -EINVAL;
1613         }
1614
1615         /* we're allowed to split an anonymous VMA but not a file-backed one */
1616         if (vma->vm_file) {
1617                 do {
1618                         if (start > vma->vm_start)
1619                                 return -EINVAL;
1620                         if (end == vma->vm_end)
1621                                 goto erase_whole_vma;
1622                         vma = vma->vm_next;
1623                 } while (vma);
1624                 return -EINVAL;
1625         } else {
1626                 /* the chunk must be a subset of the VMA found */
1627                 if (start == vma->vm_start && end == vma->vm_end)
1628                         goto erase_whole_vma;
1629                 if (start < vma->vm_start || end > vma->vm_end)
1630                         return -EINVAL;
1631                 if (offset_in_page(start))
1632                         return -EINVAL;
1633                 if (end != vma->vm_end && offset_in_page(end))
1634                         return -EINVAL;
1635                 if (start != vma->vm_start && end != vma->vm_end) {
1636                         ret = split_vma(mm, vma, start, 1);
1637                         if (ret < 0)
1638                                 return ret;
1639                 }
1640                 return shrink_vma(mm, vma, start, end);
1641         }
1642
1643 erase_whole_vma:
1644         delete_vma_from_mm(vma);
1645         delete_vma(mm, vma);
1646         return 0;
1647 }
1648 EXPORT_SYMBOL(do_munmap);
1649
1650 int vm_munmap(unsigned long addr, size_t len)
1651 {
1652         struct mm_struct *mm = current->mm;
1653         int ret;
1654
1655         down_write(&mm->mmap_sem);
1656         ret = do_munmap(mm, addr, len);
1657         up_write(&mm->mmap_sem);
1658         return ret;
1659 }
1660 EXPORT_SYMBOL(vm_munmap);
1661
1662 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1663 {
1664         return vm_munmap(addr, len);
1665 }
1666
1667 /*
1668  * release all the mappings made in a process's VM space
1669  */
1670 void exit_mmap(struct mm_struct *mm)
1671 {
1672         struct vm_area_struct *vma;
1673
1674         if (!mm)
1675                 return;
1676
1677         mm->total_vm = 0;
1678
1679         while ((vma = mm->mmap)) {
1680                 mm->mmap = vma->vm_next;
1681                 delete_vma_from_mm(vma);
1682                 delete_vma(mm, vma);
1683                 cond_resched();
1684         }
1685 }
1686
1687 unsigned long vm_brk(unsigned long addr, unsigned long len)
1688 {
1689         return -ENOMEM;
1690 }
1691
1692 /*
1693  * expand (or shrink) an existing mapping, potentially moving it at the same
1694  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1695  *
1696  * under NOMMU conditions, we only permit changing a mapping's size, and only
1697  * as long as it stays within the region allocated by do_mmap_private() and the
1698  * block is not shareable
1699  *
1700  * MREMAP_FIXED is not supported under NOMMU conditions
1701  */
1702 static unsigned long do_mremap(unsigned long addr,
1703                         unsigned long old_len, unsigned long new_len,
1704                         unsigned long flags, unsigned long new_addr)
1705 {
1706         struct vm_area_struct *vma;
1707
1708         /* insanity checks first */
1709         old_len = PAGE_ALIGN(old_len);
1710         new_len = PAGE_ALIGN(new_len);
1711         if (old_len == 0 || new_len == 0)
1712                 return (unsigned long) -EINVAL;
1713
1714         if (offset_in_page(addr))
1715                 return -EINVAL;
1716
1717         if (flags & MREMAP_FIXED && new_addr != addr)
1718                 return (unsigned long) -EINVAL;
1719
1720         vma = find_vma_exact(current->mm, addr, old_len);
1721         if (!vma)
1722                 return (unsigned long) -EINVAL;
1723
1724         if (vma->vm_end != vma->vm_start + old_len)
1725                 return (unsigned long) -EFAULT;
1726
1727         if (vma->vm_flags & VM_MAYSHARE)
1728                 return (unsigned long) -EPERM;
1729
1730         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1731                 return (unsigned long) -ENOMEM;
1732
1733         /* all checks complete - do it */
1734         vma->vm_end = vma->vm_start + new_len;
1735         return vma->vm_start;
1736 }
1737
1738 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1739                 unsigned long, new_len, unsigned long, flags,
1740                 unsigned long, new_addr)
1741 {
1742         unsigned long ret;
1743
1744         down_write(&current->mm->mmap_sem);
1745         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1746         up_write(&current->mm->mmap_sem);
1747         return ret;
1748 }
1749
1750 struct page *follow_page_mask(struct vm_area_struct *vma,
1751                               unsigned long address, unsigned int flags,
1752                               unsigned int *page_mask)
1753 {
1754         *page_mask = 0;
1755         return NULL;
1756 }
1757
1758 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1759                 unsigned long pfn, unsigned long size, pgprot_t prot)
1760 {
1761         if (addr != (pfn << PAGE_SHIFT))
1762                 return -EINVAL;
1763
1764         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1765         return 0;
1766 }
1767 EXPORT_SYMBOL(remap_pfn_range);
1768
1769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1770 {
1771         unsigned long pfn = start >> PAGE_SHIFT;
1772         unsigned long vm_len = vma->vm_end - vma->vm_start;
1773
1774         pfn += vma->vm_pgoff;
1775         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1776 }
1777 EXPORT_SYMBOL(vm_iomap_memory);
1778
1779 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1780                         unsigned long pgoff)
1781 {
1782         unsigned int size = vma->vm_end - vma->vm_start;
1783
1784         if (!(vma->vm_flags & VM_USERMAP))
1785                 return -EINVAL;
1786
1787         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1788         vma->vm_end = vma->vm_start + size;
1789
1790         return 0;
1791 }
1792 EXPORT_SYMBOL(remap_vmalloc_range);
1793
1794 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1795         unsigned long len, unsigned long pgoff, unsigned long flags)
1796 {
1797         return -ENOMEM;
1798 }
1799
1800 void unmap_mapping_range(struct address_space *mapping,
1801                          loff_t const holebegin, loff_t const holelen,
1802                          int even_cows)
1803 {
1804 }
1805 EXPORT_SYMBOL(unmap_mapping_range);
1806
1807 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1808 {
1809         BUG();
1810         return 0;
1811 }
1812 EXPORT_SYMBOL(filemap_fault);
1813
1814 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1815 {
1816         BUG();
1817 }
1818 EXPORT_SYMBOL(filemap_map_pages);
1819
1820 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1821                 unsigned long addr, void *buf, int len, int write)
1822 {
1823         struct vm_area_struct *vma;
1824
1825         down_read(&mm->mmap_sem);
1826
1827         /* the access must start within one of the target process's mappings */
1828         vma = find_vma(mm, addr);
1829         if (vma) {
1830                 /* don't overrun this mapping */
1831                 if (addr + len >= vma->vm_end)
1832                         len = vma->vm_end - addr;
1833
1834                 /* only read or write mappings where it is permitted */
1835                 if (write && vma->vm_flags & VM_MAYWRITE)
1836                         copy_to_user_page(vma, NULL, addr,
1837                                          (void *) addr, buf, len);
1838                 else if (!write && vma->vm_flags & VM_MAYREAD)
1839                         copy_from_user_page(vma, NULL, addr,
1840                                             buf, (void *) addr, len);
1841                 else
1842                         len = 0;
1843         } else {
1844                 len = 0;
1845         }
1846
1847         up_read(&mm->mmap_sem);
1848
1849         return len;
1850 }
1851
1852 /**
1853  * @access_remote_vm - access another process' address space
1854  * @mm:         the mm_struct of the target address space
1855  * @addr:       start address to access
1856  * @buf:        source or destination buffer
1857  * @len:        number of bytes to transfer
1858  * @write:      whether the access is a write
1859  *
1860  * The caller must hold a reference on @mm.
1861  */
1862 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1863                 void *buf, int len, int write)
1864 {
1865         return __access_remote_vm(NULL, mm, addr, buf, len, write);
1866 }
1867
1868 /*
1869  * Access another process' address space.
1870  * - source/target buffer must be kernel space
1871  */
1872 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1873 {
1874         struct mm_struct *mm;
1875
1876         if (addr + len < addr)
1877                 return 0;
1878
1879         mm = get_task_mm(tsk);
1880         if (!mm)
1881                 return 0;
1882
1883         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1884
1885         mmput(mm);
1886         return len;
1887 }
1888
1889 /**
1890  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1891  * @inode: The inode to check
1892  * @size: The current filesize of the inode
1893  * @newsize: The proposed filesize of the inode
1894  *
1895  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1896  * make sure that that any outstanding VMAs aren't broken and then shrink the
1897  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1898  * automatically grant mappings that are too large.
1899  */
1900 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1901                                 size_t newsize)
1902 {
1903         struct vm_area_struct *vma;
1904         struct vm_region *region;
1905         pgoff_t low, high;
1906         size_t r_size, r_top;
1907
1908         low = newsize >> PAGE_SHIFT;
1909         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1910
1911         down_write(&nommu_region_sem);
1912         i_mmap_lock_read(inode->i_mapping);
1913
1914         /* search for VMAs that fall within the dead zone */
1915         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1916                 /* found one - only interested if it's shared out of the page
1917                  * cache */
1918                 if (vma->vm_flags & VM_SHARED) {
1919                         i_mmap_unlock_read(inode->i_mapping);
1920                         up_write(&nommu_region_sem);
1921                         return -ETXTBSY; /* not quite true, but near enough */
1922                 }
1923         }
1924
1925         /* reduce any regions that overlap the dead zone - if in existence,
1926          * these will be pointed to by VMAs that don't overlap the dead zone
1927          *
1928          * we don't check for any regions that start beyond the EOF as there
1929          * shouldn't be any
1930          */
1931         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1932                 if (!(vma->vm_flags & VM_SHARED))
1933                         continue;
1934
1935                 region = vma->vm_region;
1936                 r_size = region->vm_top - region->vm_start;
1937                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1938
1939                 if (r_top > newsize) {
1940                         region->vm_top -= r_top - newsize;
1941                         if (region->vm_end > region->vm_top)
1942                                 region->vm_end = region->vm_top;
1943                 }
1944         }
1945
1946         i_mmap_unlock_read(inode->i_mapping);
1947         up_write(&nommu_region_sem);
1948         return 0;
1949 }
1950
1951 /*
1952  * Initialise sysctl_user_reserve_kbytes.
1953  *
1954  * This is intended to prevent a user from starting a single memory hogging
1955  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1956  * mode.
1957  *
1958  * The default value is min(3% of free memory, 128MB)
1959  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1960  */
1961 static int __meminit init_user_reserve(void)
1962 {
1963         unsigned long free_kbytes;
1964
1965         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1966
1967         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1968         return 0;
1969 }
1970 subsys_initcall(init_user_reserve);
1971
1972 /*
1973  * Initialise sysctl_admin_reserve_kbytes.
1974  *
1975  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1976  * to log in and kill a memory hogging process.
1977  *
1978  * Systems with more than 256MB will reserve 8MB, enough to recover
1979  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1980  * only reserve 3% of free pages by default.
1981  */
1982 static int __meminit init_admin_reserve(void)
1983 {
1984         unsigned long free_kbytes;
1985
1986         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1987
1988         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1989         return 0;
1990 }
1991 subsys_initcall(init_admin_reserve);
1992
1993 long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1994                      unsigned long start, unsigned long nr_pages,
1995                      int write, int force, struct page **pages,
1996                      struct vm_area_struct **vmas)
1997 {
1998         return get_user_pages6(start, nr_pages, write, force, pages, vmas);
1999 }
2000 EXPORT_SYMBOL(get_user_pages8);
2001
2002 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
2003                             unsigned long start, unsigned long nr_pages,
2004                             int write, int force, struct page **pages,
2005                             int *locked)
2006 {
2007         return get_user_pages_locked6(start, nr_pages, write,
2008                                       force, pages, locked);
2009 }
2010 EXPORT_SYMBOL(get_user_pages_locked8);
2011
2012 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
2013                               unsigned long start, unsigned long nr_pages,
2014                               int write, int force, struct page **pages)
2015 {
2016         return get_user_pages_unlocked5(start, nr_pages, write, force, pages);
2017 }
2018 EXPORT_SYMBOL(get_user_pages_unlocked7);
2019