Merge tag 'char-misc-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[sfrench/cifs-2.6.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return PAGE_SIZE << compound_order(page);
112 }
113
114 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
115                       unsigned long start, unsigned long nr_pages,
116                       unsigned int foll_flags, struct page **pages,
117                       struct vm_area_struct **vmas, int *nonblocking)
118 {
119         struct vm_area_struct *vma;
120         unsigned long vm_flags;
121         int i;
122
123         /* calculate required read or write permissions.
124          * If FOLL_FORCE is set, we only require the "MAY" flags.
125          */
126         vm_flags  = (foll_flags & FOLL_WRITE) ?
127                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
128         vm_flags &= (foll_flags & FOLL_FORCE) ?
129                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
130
131         for (i = 0; i < nr_pages; i++) {
132                 vma = find_vma(mm, start);
133                 if (!vma)
134                         goto finish_or_fault;
135
136                 /* protect what we can, including chardevs */
137                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
138                     !(vm_flags & vma->vm_flags))
139                         goto finish_or_fault;
140
141                 if (pages) {
142                         pages[i] = virt_to_page(start);
143                         if (pages[i])
144                                 get_page(pages[i]);
145                 }
146                 if (vmas)
147                         vmas[i] = vma;
148                 start = (start + PAGE_SIZE) & PAGE_MASK;
149         }
150
151         return i;
152
153 finish_or_fault:
154         return i ? : -EFAULT;
155 }
156
157 /*
158  * get a list of pages in an address range belonging to the specified process
159  * and indicate the VMA that covers each page
160  * - this is potentially dodgy as we may end incrementing the page count of a
161  *   slab page or a secondary page from a compound page
162  * - don't permit access to VMAs that don't support it, such as I/O mappings
163  */
164 long get_user_pages(unsigned long start, unsigned long nr_pages,
165                     unsigned int gup_flags, struct page **pages,
166                     struct vm_area_struct **vmas)
167 {
168         return __get_user_pages(current, current->mm, start, nr_pages,
169                                 gup_flags, pages, vmas, NULL);
170 }
171 EXPORT_SYMBOL(get_user_pages);
172
173 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
174                             unsigned int gup_flags, struct page **pages,
175                             int *locked)
176 {
177         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
178 }
179 EXPORT_SYMBOL(get_user_pages_locked);
180
181 static long __get_user_pages_unlocked(struct task_struct *tsk,
182                         struct mm_struct *mm, unsigned long start,
183                         unsigned long nr_pages, struct page **pages,
184                         unsigned int gup_flags)
185 {
186         long ret;
187         down_read(&mm->mmap_sem);
188         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
189                                 NULL, NULL);
190         up_read(&mm->mmap_sem);
191         return ret;
192 }
193
194 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
195                              struct page **pages, unsigned int gup_flags)
196 {
197         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
198                                          pages, gup_flags);
199 }
200 EXPORT_SYMBOL(get_user_pages_unlocked);
201
202 /**
203  * follow_pfn - look up PFN at a user virtual address
204  * @vma: memory mapping
205  * @address: user virtual address
206  * @pfn: location to store found PFN
207  *
208  * Only IO mappings and raw PFN mappings are allowed.
209  *
210  * Returns zero and the pfn at @pfn on success, -ve otherwise.
211  */
212 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
213         unsigned long *pfn)
214 {
215         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
216                 return -EINVAL;
217
218         *pfn = address >> PAGE_SHIFT;
219         return 0;
220 }
221 EXPORT_SYMBOL(follow_pfn);
222
223 LIST_HEAD(vmap_area_list);
224
225 void vfree(const void *addr)
226 {
227         kfree(addr);
228 }
229 EXPORT_SYMBOL(vfree);
230
231 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
232 {
233         /*
234          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
235          * returns only a logical address.
236          */
237         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
238 }
239 EXPORT_SYMBOL(__vmalloc);
240
241 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
242 {
243         return __vmalloc(size, flags, PAGE_KERNEL);
244 }
245
246 void *vmalloc_user(unsigned long size)
247 {
248         void *ret;
249
250         ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
251         if (ret) {
252                 struct vm_area_struct *vma;
253
254                 down_write(&current->mm->mmap_sem);
255                 vma = find_vma(current->mm, (unsigned long)ret);
256                 if (vma)
257                         vma->vm_flags |= VM_USERMAP;
258                 up_write(&current->mm->mmap_sem);
259         }
260
261         return ret;
262 }
263 EXPORT_SYMBOL(vmalloc_user);
264
265 struct page *vmalloc_to_page(const void *addr)
266 {
267         return virt_to_page(addr);
268 }
269 EXPORT_SYMBOL(vmalloc_to_page);
270
271 unsigned long vmalloc_to_pfn(const void *addr)
272 {
273         return page_to_pfn(virt_to_page(addr));
274 }
275 EXPORT_SYMBOL(vmalloc_to_pfn);
276
277 long vread(char *buf, char *addr, unsigned long count)
278 {
279         /* Don't allow overflow */
280         if ((unsigned long) buf + count < count)
281                 count = -(unsigned long) buf;
282
283         memcpy(buf, addr, count);
284         return count;
285 }
286
287 long vwrite(char *buf, char *addr, unsigned long count)
288 {
289         /* Don't allow overflow */
290         if ((unsigned long) addr + count < count)
291                 count = -(unsigned long) addr;
292
293         memcpy(addr, buf, count);
294         return count;
295 }
296
297 /*
298  *      vmalloc  -  allocate virtually contiguous memory
299  *
300  *      @size:          allocation size
301  *
302  *      Allocate enough pages to cover @size from the page level
303  *      allocator and map them into contiguous kernel virtual space.
304  *
305  *      For tight control over page level allocator and protection flags
306  *      use __vmalloc() instead.
307  */
308 void *vmalloc(unsigned long size)
309 {
310        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
311 }
312 EXPORT_SYMBOL(vmalloc);
313
314 /*
315  *      vzalloc - allocate virtually contiguous memory with zero fill
316  *
317  *      @size:          allocation size
318  *
319  *      Allocate enough pages to cover @size from the page level
320  *      allocator and map them into contiguous kernel virtual space.
321  *      The memory allocated is set to zero.
322  *
323  *      For tight control over page level allocator and protection flags
324  *      use __vmalloc() instead.
325  */
326 void *vzalloc(unsigned long size)
327 {
328         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
329                         PAGE_KERNEL);
330 }
331 EXPORT_SYMBOL(vzalloc);
332
333 /**
334  * vmalloc_node - allocate memory on a specific node
335  * @size:       allocation size
336  * @node:       numa node
337  *
338  * Allocate enough pages to cover @size from the page level
339  * allocator and map them into contiguous kernel virtual space.
340  *
341  * For tight control over page level allocator and protection flags
342  * use __vmalloc() instead.
343  */
344 void *vmalloc_node(unsigned long size, int node)
345 {
346         return vmalloc(size);
347 }
348 EXPORT_SYMBOL(vmalloc_node);
349
350 /**
351  * vzalloc_node - allocate memory on a specific node with zero fill
352  * @size:       allocation size
353  * @node:       numa node
354  *
355  * Allocate enough pages to cover @size from the page level
356  * allocator and map them into contiguous kernel virtual space.
357  * The memory allocated is set to zero.
358  *
359  * For tight control over page level allocator and protection flags
360  * use __vmalloc() instead.
361  */
362 void *vzalloc_node(unsigned long size, int node)
363 {
364         return vzalloc(size);
365 }
366 EXPORT_SYMBOL(vzalloc_node);
367
368 /**
369  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
370  *      @size:          allocation size
371  *
372  *      Kernel-internal function to allocate enough pages to cover @size
373  *      the page level allocator and map them into contiguous and
374  *      executable kernel virtual space.
375  *
376  *      For tight control over page level allocator and protection flags
377  *      use __vmalloc() instead.
378  */
379
380 void *vmalloc_exec(unsigned long size)
381 {
382         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
383 }
384
385 /**
386  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
387  *      @size:          allocation size
388  *
389  *      Allocate enough 32bit PA addressable pages to cover @size from the
390  *      page level allocator and map them into contiguous kernel virtual space.
391  */
392 void *vmalloc_32(unsigned long size)
393 {
394         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
395 }
396 EXPORT_SYMBOL(vmalloc_32);
397
398 /**
399  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
400  *      @size:          allocation size
401  *
402  * The resulting memory area is 32bit addressable and zeroed so it can be
403  * mapped to userspace without leaking data.
404  *
405  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
406  * remap_vmalloc_range() are permissible.
407  */
408 void *vmalloc_32_user(unsigned long size)
409 {
410         /*
411          * We'll have to sort out the ZONE_DMA bits for 64-bit,
412          * but for now this can simply use vmalloc_user() directly.
413          */
414         return vmalloc_user(size);
415 }
416 EXPORT_SYMBOL(vmalloc_32_user);
417
418 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
419 {
420         BUG();
421         return NULL;
422 }
423 EXPORT_SYMBOL(vmap);
424
425 void vunmap(const void *addr)
426 {
427         BUG();
428 }
429 EXPORT_SYMBOL(vunmap);
430
431 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
432 {
433         BUG();
434         return NULL;
435 }
436 EXPORT_SYMBOL(vm_map_ram);
437
438 void vm_unmap_ram(const void *mem, unsigned int count)
439 {
440         BUG();
441 }
442 EXPORT_SYMBOL(vm_unmap_ram);
443
444 void vm_unmap_aliases(void)
445 {
446 }
447 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
448
449 /*
450  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
451  * have one.
452  */
453 void __weak vmalloc_sync_all(void)
454 {
455 }
456
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459         BUG();
460         return NULL;
461 }
462 EXPORT_SYMBOL_GPL(alloc_vm_area);
463
464 void free_vm_area(struct vm_struct *area)
465 {
466         BUG();
467 }
468 EXPORT_SYMBOL_GPL(free_vm_area);
469
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471                    struct page *page)
472 {
473         return -EINVAL;
474 }
475 EXPORT_SYMBOL(vm_insert_page);
476
477 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
478                         unsigned long num)
479 {
480         return -EINVAL;
481 }
482 EXPORT_SYMBOL(vm_map_pages);
483
484 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
485                                 unsigned long num)
486 {
487         return -EINVAL;
488 }
489 EXPORT_SYMBOL(vm_map_pages_zero);
490
491 /*
492  *  sys_brk() for the most part doesn't need the global kernel
493  *  lock, except when an application is doing something nasty
494  *  like trying to un-brk an area that has already been mapped
495  *  to a regular file.  in this case, the unmapping will need
496  *  to invoke file system routines that need the global lock.
497  */
498 SYSCALL_DEFINE1(brk, unsigned long, brk)
499 {
500         struct mm_struct *mm = current->mm;
501
502         if (brk < mm->start_brk || brk > mm->context.end_brk)
503                 return mm->brk;
504
505         if (mm->brk == brk)
506                 return mm->brk;
507
508         /*
509          * Always allow shrinking brk
510          */
511         if (brk <= mm->brk) {
512                 mm->brk = brk;
513                 return brk;
514         }
515
516         /*
517          * Ok, looks good - let it rip.
518          */
519         flush_icache_range(mm->brk, brk);
520         return mm->brk = brk;
521 }
522
523 /*
524  * initialise the percpu counter for VM and region record slabs
525  */
526 void __init mmap_init(void)
527 {
528         int ret;
529
530         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
531         VM_BUG_ON(ret);
532         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
533 }
534
535 /*
536  * validate the region tree
537  * - the caller must hold the region lock
538  */
539 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
540 static noinline void validate_nommu_regions(void)
541 {
542         struct vm_region *region, *last;
543         struct rb_node *p, *lastp;
544
545         lastp = rb_first(&nommu_region_tree);
546         if (!lastp)
547                 return;
548
549         last = rb_entry(lastp, struct vm_region, vm_rb);
550         BUG_ON(last->vm_end <= last->vm_start);
551         BUG_ON(last->vm_top < last->vm_end);
552
553         while ((p = rb_next(lastp))) {
554                 region = rb_entry(p, struct vm_region, vm_rb);
555                 last = rb_entry(lastp, struct vm_region, vm_rb);
556
557                 BUG_ON(region->vm_end <= region->vm_start);
558                 BUG_ON(region->vm_top < region->vm_end);
559                 BUG_ON(region->vm_start < last->vm_top);
560
561                 lastp = p;
562         }
563 }
564 #else
565 static void validate_nommu_regions(void)
566 {
567 }
568 #endif
569
570 /*
571  * add a region into the global tree
572  */
573 static void add_nommu_region(struct vm_region *region)
574 {
575         struct vm_region *pregion;
576         struct rb_node **p, *parent;
577
578         validate_nommu_regions();
579
580         parent = NULL;
581         p = &nommu_region_tree.rb_node;
582         while (*p) {
583                 parent = *p;
584                 pregion = rb_entry(parent, struct vm_region, vm_rb);
585                 if (region->vm_start < pregion->vm_start)
586                         p = &(*p)->rb_left;
587                 else if (region->vm_start > pregion->vm_start)
588                         p = &(*p)->rb_right;
589                 else if (pregion == region)
590                         return;
591                 else
592                         BUG();
593         }
594
595         rb_link_node(&region->vm_rb, parent, p);
596         rb_insert_color(&region->vm_rb, &nommu_region_tree);
597
598         validate_nommu_regions();
599 }
600
601 /*
602  * delete a region from the global tree
603  */
604 static void delete_nommu_region(struct vm_region *region)
605 {
606         BUG_ON(!nommu_region_tree.rb_node);
607
608         validate_nommu_regions();
609         rb_erase(&region->vm_rb, &nommu_region_tree);
610         validate_nommu_regions();
611 }
612
613 /*
614  * free a contiguous series of pages
615  */
616 static void free_page_series(unsigned long from, unsigned long to)
617 {
618         for (; from < to; from += PAGE_SIZE) {
619                 struct page *page = virt_to_page(from);
620
621                 atomic_long_dec(&mmap_pages_allocated);
622                 put_page(page);
623         }
624 }
625
626 /*
627  * release a reference to a region
628  * - the caller must hold the region semaphore for writing, which this releases
629  * - the region may not have been added to the tree yet, in which case vm_top
630  *   will equal vm_start
631  */
632 static void __put_nommu_region(struct vm_region *region)
633         __releases(nommu_region_sem)
634 {
635         BUG_ON(!nommu_region_tree.rb_node);
636
637         if (--region->vm_usage == 0) {
638                 if (region->vm_top > region->vm_start)
639                         delete_nommu_region(region);
640                 up_write(&nommu_region_sem);
641
642                 if (region->vm_file)
643                         fput(region->vm_file);
644
645                 /* IO memory and memory shared directly out of the pagecache
646                  * from ramfs/tmpfs mustn't be released here */
647                 if (region->vm_flags & VM_MAPPED_COPY)
648                         free_page_series(region->vm_start, region->vm_top);
649                 kmem_cache_free(vm_region_jar, region);
650         } else {
651                 up_write(&nommu_region_sem);
652         }
653 }
654
655 /*
656  * release a reference to a region
657  */
658 static void put_nommu_region(struct vm_region *region)
659 {
660         down_write(&nommu_region_sem);
661         __put_nommu_region(region);
662 }
663
664 /*
665  * add a VMA into a process's mm_struct in the appropriate place in the list
666  * and tree and add to the address space's page tree also if not an anonymous
667  * page
668  * - should be called with mm->mmap_sem held writelocked
669  */
670 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672         struct vm_area_struct *pvma, *prev;
673         struct address_space *mapping;
674         struct rb_node **p, *parent, *rb_prev;
675
676         BUG_ON(!vma->vm_region);
677
678         mm->map_count++;
679         vma->vm_mm = mm;
680
681         /* add the VMA to the mapping */
682         if (vma->vm_file) {
683                 mapping = vma->vm_file->f_mapping;
684
685                 i_mmap_lock_write(mapping);
686                 flush_dcache_mmap_lock(mapping);
687                 vma_interval_tree_insert(vma, &mapping->i_mmap);
688                 flush_dcache_mmap_unlock(mapping);
689                 i_mmap_unlock_write(mapping);
690         }
691
692         /* add the VMA to the tree */
693         parent = rb_prev = NULL;
694         p = &mm->mm_rb.rb_node;
695         while (*p) {
696                 parent = *p;
697                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
698
699                 /* sort by: start addr, end addr, VMA struct addr in that order
700                  * (the latter is necessary as we may get identical VMAs) */
701                 if (vma->vm_start < pvma->vm_start)
702                         p = &(*p)->rb_left;
703                 else if (vma->vm_start > pvma->vm_start) {
704                         rb_prev = parent;
705                         p = &(*p)->rb_right;
706                 } else if (vma->vm_end < pvma->vm_end)
707                         p = &(*p)->rb_left;
708                 else if (vma->vm_end > pvma->vm_end) {
709                         rb_prev = parent;
710                         p = &(*p)->rb_right;
711                 } else if (vma < pvma)
712                         p = &(*p)->rb_left;
713                 else if (vma > pvma) {
714                         rb_prev = parent;
715                         p = &(*p)->rb_right;
716                 } else
717                         BUG();
718         }
719
720         rb_link_node(&vma->vm_rb, parent, p);
721         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
722
723         /* add VMA to the VMA list also */
724         prev = NULL;
725         if (rb_prev)
726                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
727
728         __vma_link_list(mm, vma, prev, parent);
729 }
730
731 /*
732  * delete a VMA from its owning mm_struct and address space
733  */
734 static void delete_vma_from_mm(struct vm_area_struct *vma)
735 {
736         int i;
737         struct address_space *mapping;
738         struct mm_struct *mm = vma->vm_mm;
739         struct task_struct *curr = current;
740
741         mm->map_count--;
742         for (i = 0; i < VMACACHE_SIZE; i++) {
743                 /* if the vma is cached, invalidate the entire cache */
744                 if (curr->vmacache.vmas[i] == vma) {
745                         vmacache_invalidate(mm);
746                         break;
747                 }
748         }
749
750         /* remove the VMA from the mapping */
751         if (vma->vm_file) {
752                 mapping = vma->vm_file->f_mapping;
753
754                 i_mmap_lock_write(mapping);
755                 flush_dcache_mmap_lock(mapping);
756                 vma_interval_tree_remove(vma, &mapping->i_mmap);
757                 flush_dcache_mmap_unlock(mapping);
758                 i_mmap_unlock_write(mapping);
759         }
760
761         /* remove from the MM's tree and list */
762         rb_erase(&vma->vm_rb, &mm->mm_rb);
763
764         if (vma->vm_prev)
765                 vma->vm_prev->vm_next = vma->vm_next;
766         else
767                 mm->mmap = vma->vm_next;
768
769         if (vma->vm_next)
770                 vma->vm_next->vm_prev = vma->vm_prev;
771 }
772
773 /*
774  * destroy a VMA record
775  */
776 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
777 {
778         if (vma->vm_ops && vma->vm_ops->close)
779                 vma->vm_ops->close(vma);
780         if (vma->vm_file)
781                 fput(vma->vm_file);
782         put_nommu_region(vma->vm_region);
783         vm_area_free(vma);
784 }
785
786 /*
787  * look up the first VMA in which addr resides, NULL if none
788  * - should be called with mm->mmap_sem at least held readlocked
789  */
790 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
791 {
792         struct vm_area_struct *vma;
793
794         /* check the cache first */
795         vma = vmacache_find(mm, addr);
796         if (likely(vma))
797                 return vma;
798
799         /* trawl the list (there may be multiple mappings in which addr
800          * resides) */
801         for (vma = mm->mmap; vma; vma = vma->vm_next) {
802                 if (vma->vm_start > addr)
803                         return NULL;
804                 if (vma->vm_end > addr) {
805                         vmacache_update(addr, vma);
806                         return vma;
807                 }
808         }
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(find_vma);
813
814 /*
815  * find a VMA
816  * - we don't extend stack VMAs under NOMMU conditions
817  */
818 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
819 {
820         return find_vma(mm, addr);
821 }
822
823 /*
824  * expand a stack to a given address
825  * - not supported under NOMMU conditions
826  */
827 int expand_stack(struct vm_area_struct *vma, unsigned long address)
828 {
829         return -ENOMEM;
830 }
831
832 /*
833  * look up the first VMA exactly that exactly matches addr
834  * - should be called with mm->mmap_sem at least held readlocked
835  */
836 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
837                                              unsigned long addr,
838                                              unsigned long len)
839 {
840         struct vm_area_struct *vma;
841         unsigned long end = addr + len;
842
843         /* check the cache first */
844         vma = vmacache_find_exact(mm, addr, end);
845         if (vma)
846                 return vma;
847
848         /* trawl the list (there may be multiple mappings in which addr
849          * resides) */
850         for (vma = mm->mmap; vma; vma = vma->vm_next) {
851                 if (vma->vm_start < addr)
852                         continue;
853                 if (vma->vm_start > addr)
854                         return NULL;
855                 if (vma->vm_end == end) {
856                         vmacache_update(addr, vma);
857                         return vma;
858                 }
859         }
860
861         return NULL;
862 }
863
864 /*
865  * determine whether a mapping should be permitted and, if so, what sort of
866  * mapping we're capable of supporting
867  */
868 static int validate_mmap_request(struct file *file,
869                                  unsigned long addr,
870                                  unsigned long len,
871                                  unsigned long prot,
872                                  unsigned long flags,
873                                  unsigned long pgoff,
874                                  unsigned long *_capabilities)
875 {
876         unsigned long capabilities, rlen;
877         int ret;
878
879         /* do the simple checks first */
880         if (flags & MAP_FIXED)
881                 return -EINVAL;
882
883         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
884             (flags & MAP_TYPE) != MAP_SHARED)
885                 return -EINVAL;
886
887         if (!len)
888                 return -EINVAL;
889
890         /* Careful about overflows.. */
891         rlen = PAGE_ALIGN(len);
892         if (!rlen || rlen > TASK_SIZE)
893                 return -ENOMEM;
894
895         /* offset overflow? */
896         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
897                 return -EOVERFLOW;
898
899         if (file) {
900                 /* files must support mmap */
901                 if (!file->f_op->mmap)
902                         return -ENODEV;
903
904                 /* work out if what we've got could possibly be shared
905                  * - we support chardevs that provide their own "memory"
906                  * - we support files/blockdevs that are memory backed
907                  */
908                 if (file->f_op->mmap_capabilities) {
909                         capabilities = file->f_op->mmap_capabilities(file);
910                 } else {
911                         /* no explicit capabilities set, so assume some
912                          * defaults */
913                         switch (file_inode(file)->i_mode & S_IFMT) {
914                         case S_IFREG:
915                         case S_IFBLK:
916                                 capabilities = NOMMU_MAP_COPY;
917                                 break;
918
919                         case S_IFCHR:
920                                 capabilities =
921                                         NOMMU_MAP_DIRECT |
922                                         NOMMU_MAP_READ |
923                                         NOMMU_MAP_WRITE;
924                                 break;
925
926                         default:
927                                 return -EINVAL;
928                         }
929                 }
930
931                 /* eliminate any capabilities that we can't support on this
932                  * device */
933                 if (!file->f_op->get_unmapped_area)
934                         capabilities &= ~NOMMU_MAP_DIRECT;
935                 if (!(file->f_mode & FMODE_CAN_READ))
936                         capabilities &= ~NOMMU_MAP_COPY;
937
938                 /* The file shall have been opened with read permission. */
939                 if (!(file->f_mode & FMODE_READ))
940                         return -EACCES;
941
942                 if (flags & MAP_SHARED) {
943                         /* do checks for writing, appending and locking */
944                         if ((prot & PROT_WRITE) &&
945                             !(file->f_mode & FMODE_WRITE))
946                                 return -EACCES;
947
948                         if (IS_APPEND(file_inode(file)) &&
949                             (file->f_mode & FMODE_WRITE))
950                                 return -EACCES;
951
952                         if (locks_verify_locked(file))
953                                 return -EAGAIN;
954
955                         if (!(capabilities & NOMMU_MAP_DIRECT))
956                                 return -ENODEV;
957
958                         /* we mustn't privatise shared mappings */
959                         capabilities &= ~NOMMU_MAP_COPY;
960                 } else {
961                         /* we're going to read the file into private memory we
962                          * allocate */
963                         if (!(capabilities & NOMMU_MAP_COPY))
964                                 return -ENODEV;
965
966                         /* we don't permit a private writable mapping to be
967                          * shared with the backing device */
968                         if (prot & PROT_WRITE)
969                                 capabilities &= ~NOMMU_MAP_DIRECT;
970                 }
971
972                 if (capabilities & NOMMU_MAP_DIRECT) {
973                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
974                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
975                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
976                             ) {
977                                 capabilities &= ~NOMMU_MAP_DIRECT;
978                                 if (flags & MAP_SHARED) {
979                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
980                                         return -EINVAL;
981                                 }
982                         }
983                 }
984
985                 /* handle executable mappings and implied executable
986                  * mappings */
987                 if (path_noexec(&file->f_path)) {
988                         if (prot & PROT_EXEC)
989                                 return -EPERM;
990                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
991                         /* handle implication of PROT_EXEC by PROT_READ */
992                         if (current->personality & READ_IMPLIES_EXEC) {
993                                 if (capabilities & NOMMU_MAP_EXEC)
994                                         prot |= PROT_EXEC;
995                         }
996                 } else if ((prot & PROT_READ) &&
997                          (prot & PROT_EXEC) &&
998                          !(capabilities & NOMMU_MAP_EXEC)
999                          ) {
1000                         /* backing file is not executable, try to copy */
1001                         capabilities &= ~NOMMU_MAP_DIRECT;
1002                 }
1003         } else {
1004                 /* anonymous mappings are always memory backed and can be
1005                  * privately mapped
1006                  */
1007                 capabilities = NOMMU_MAP_COPY;
1008
1009                 /* handle PROT_EXEC implication by PROT_READ */
1010                 if ((prot & PROT_READ) &&
1011                     (current->personality & READ_IMPLIES_EXEC))
1012                         prot |= PROT_EXEC;
1013         }
1014
1015         /* allow the security API to have its say */
1016         ret = security_mmap_addr(addr);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /* looks okay */
1021         *_capabilities = capabilities;
1022         return 0;
1023 }
1024
1025 /*
1026  * we've determined that we can make the mapping, now translate what we
1027  * now know into VMA flags
1028  */
1029 static unsigned long determine_vm_flags(struct file *file,
1030                                         unsigned long prot,
1031                                         unsigned long flags,
1032                                         unsigned long capabilities)
1033 {
1034         unsigned long vm_flags;
1035
1036         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1037         /* vm_flags |= mm->def_flags; */
1038
1039         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1040                 /* attempt to share read-only copies of mapped file chunks */
1041                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1042                 if (file && !(prot & PROT_WRITE))
1043                         vm_flags |= VM_MAYSHARE;
1044         } else {
1045                 /* overlay a shareable mapping on the backing device or inode
1046                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1047                  * romfs/cramfs */
1048                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1049                 if (flags & MAP_SHARED)
1050                         vm_flags |= VM_SHARED;
1051         }
1052
1053         /* refuse to let anyone share private mappings with this process if
1054          * it's being traced - otherwise breakpoints set in it may interfere
1055          * with another untraced process
1056          */
1057         if ((flags & MAP_PRIVATE) && current->ptrace)
1058                 vm_flags &= ~VM_MAYSHARE;
1059
1060         return vm_flags;
1061 }
1062
1063 /*
1064  * set up a shared mapping on a file (the driver or filesystem provides and
1065  * pins the storage)
1066  */
1067 static int do_mmap_shared_file(struct vm_area_struct *vma)
1068 {
1069         int ret;
1070
1071         ret = call_mmap(vma->vm_file, vma);
1072         if (ret == 0) {
1073                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1074                 return 0;
1075         }
1076         if (ret != -ENOSYS)
1077                 return ret;
1078
1079         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1080          * opposed to tried but failed) so we can only give a suitable error as
1081          * it's not possible to make a private copy if MAP_SHARED was given */
1082         return -ENODEV;
1083 }
1084
1085 /*
1086  * set up a private mapping or an anonymous shared mapping
1087  */
1088 static int do_mmap_private(struct vm_area_struct *vma,
1089                            struct vm_region *region,
1090                            unsigned long len,
1091                            unsigned long capabilities)
1092 {
1093         unsigned long total, point;
1094         void *base;
1095         int ret, order;
1096
1097         /* invoke the file's mapping function so that it can keep track of
1098          * shared mappings on devices or memory
1099          * - VM_MAYSHARE will be set if it may attempt to share
1100          */
1101         if (capabilities & NOMMU_MAP_DIRECT) {
1102                 ret = call_mmap(vma->vm_file, vma);
1103                 if (ret == 0) {
1104                         /* shouldn't return success if we're not sharing */
1105                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1106                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1107                         return 0;
1108                 }
1109                 if (ret != -ENOSYS)
1110                         return ret;
1111
1112                 /* getting an ENOSYS error indicates that direct mmap isn't
1113                  * possible (as opposed to tried but failed) so we'll try to
1114                  * make a private copy of the data and map that instead */
1115         }
1116
1117
1118         /* allocate some memory to hold the mapping
1119          * - note that this may not return a page-aligned address if the object
1120          *   we're allocating is smaller than a page
1121          */
1122         order = get_order(len);
1123         total = 1 << order;
1124         point = len >> PAGE_SHIFT;
1125
1126         /* we don't want to allocate a power-of-2 sized page set */
1127         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1128                 total = point;
1129
1130         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1131         if (!base)
1132                 goto enomem;
1133
1134         atomic_long_add(total, &mmap_pages_allocated);
1135
1136         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1137         region->vm_start = (unsigned long) base;
1138         region->vm_end   = region->vm_start + len;
1139         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1140
1141         vma->vm_start = region->vm_start;
1142         vma->vm_end   = region->vm_start + len;
1143
1144         if (vma->vm_file) {
1145                 /* read the contents of a file into the copy */
1146                 loff_t fpos;
1147
1148                 fpos = vma->vm_pgoff;
1149                 fpos <<= PAGE_SHIFT;
1150
1151                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1152                 if (ret < 0)
1153                         goto error_free;
1154
1155                 /* clear the last little bit */
1156                 if (ret < len)
1157                         memset(base + ret, 0, len - ret);
1158
1159         } else {
1160                 vma_set_anonymous(vma);
1161         }
1162
1163         return 0;
1164
1165 error_free:
1166         free_page_series(region->vm_start, region->vm_top);
1167         region->vm_start = vma->vm_start = 0;
1168         region->vm_end   = vma->vm_end = 0;
1169         region->vm_top   = 0;
1170         return ret;
1171
1172 enomem:
1173         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1174                len, current->pid, current->comm);
1175         show_free_areas(0, NULL);
1176         return -ENOMEM;
1177 }
1178
1179 /*
1180  * handle mapping creation for uClinux
1181  */
1182 unsigned long do_mmap(struct file *file,
1183                         unsigned long addr,
1184                         unsigned long len,
1185                         unsigned long prot,
1186                         unsigned long flags,
1187                         vm_flags_t vm_flags,
1188                         unsigned long pgoff,
1189                         unsigned long *populate,
1190                         struct list_head *uf)
1191 {
1192         struct vm_area_struct *vma;
1193         struct vm_region *region;
1194         struct rb_node *rb;
1195         unsigned long capabilities, result;
1196         int ret;
1197
1198         *populate = 0;
1199
1200         /* decide whether we should attempt the mapping, and if so what sort of
1201          * mapping */
1202         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1203                                     &capabilities);
1204         if (ret < 0)
1205                 return ret;
1206
1207         /* we ignore the address hint */
1208         addr = 0;
1209         len = PAGE_ALIGN(len);
1210
1211         /* we've determined that we can make the mapping, now translate what we
1212          * now know into VMA flags */
1213         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1214
1215         /* we're going to need to record the mapping */
1216         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1217         if (!region)
1218                 goto error_getting_region;
1219
1220         vma = vm_area_alloc(current->mm);
1221         if (!vma)
1222                 goto error_getting_vma;
1223
1224         region->vm_usage = 1;
1225         region->vm_flags = vm_flags;
1226         region->vm_pgoff = pgoff;
1227
1228         vma->vm_flags = vm_flags;
1229         vma->vm_pgoff = pgoff;
1230
1231         if (file) {
1232                 region->vm_file = get_file(file);
1233                 vma->vm_file = get_file(file);
1234         }
1235
1236         down_write(&nommu_region_sem);
1237
1238         /* if we want to share, we need to check for regions created by other
1239          * mmap() calls that overlap with our proposed mapping
1240          * - we can only share with a superset match on most regular files
1241          * - shared mappings on character devices and memory backed files are
1242          *   permitted to overlap inexactly as far as we are concerned for in
1243          *   these cases, sharing is handled in the driver or filesystem rather
1244          *   than here
1245          */
1246         if (vm_flags & VM_MAYSHARE) {
1247                 struct vm_region *pregion;
1248                 unsigned long pglen, rpglen, pgend, rpgend, start;
1249
1250                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251                 pgend = pgoff + pglen;
1252
1253                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1255
1256                         if (!(pregion->vm_flags & VM_MAYSHARE))
1257                                 continue;
1258
1259                         /* search for overlapping mappings on the same file */
1260                         if (file_inode(pregion->vm_file) !=
1261                             file_inode(file))
1262                                 continue;
1263
1264                         if (pregion->vm_pgoff >= pgend)
1265                                 continue;
1266
1267                         rpglen = pregion->vm_end - pregion->vm_start;
1268                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269                         rpgend = pregion->vm_pgoff + rpglen;
1270                         if (pgoff >= rpgend)
1271                                 continue;
1272
1273                         /* handle inexactly overlapping matches between
1274                          * mappings */
1275                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277                                 /* new mapping is not a subset of the region */
1278                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1279                                         goto sharing_violation;
1280                                 continue;
1281                         }
1282
1283                         /* we've found a region we can share */
1284                         pregion->vm_usage++;
1285                         vma->vm_region = pregion;
1286                         start = pregion->vm_start;
1287                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288                         vma->vm_start = start;
1289                         vma->vm_end = start + len;
1290
1291                         if (pregion->vm_flags & VM_MAPPED_COPY)
1292                                 vma->vm_flags |= VM_MAPPED_COPY;
1293                         else {
1294                                 ret = do_mmap_shared_file(vma);
1295                                 if (ret < 0) {
1296                                         vma->vm_region = NULL;
1297                                         vma->vm_start = 0;
1298                                         vma->vm_end = 0;
1299                                         pregion->vm_usage--;
1300                                         pregion = NULL;
1301                                         goto error_just_free;
1302                                 }
1303                         }
1304                         fput(region->vm_file);
1305                         kmem_cache_free(vm_region_jar, region);
1306                         region = pregion;
1307                         result = start;
1308                         goto share;
1309                 }
1310
1311                 /* obtain the address at which to make a shared mapping
1312                  * - this is the hook for quasi-memory character devices to
1313                  *   tell us the location of a shared mapping
1314                  */
1315                 if (capabilities & NOMMU_MAP_DIRECT) {
1316                         addr = file->f_op->get_unmapped_area(file, addr, len,
1317                                                              pgoff, flags);
1318                         if (IS_ERR_VALUE(addr)) {
1319                                 ret = addr;
1320                                 if (ret != -ENOSYS)
1321                                         goto error_just_free;
1322
1323                                 /* the driver refused to tell us where to site
1324                                  * the mapping so we'll have to attempt to copy
1325                                  * it */
1326                                 ret = -ENODEV;
1327                                 if (!(capabilities & NOMMU_MAP_COPY))
1328                                         goto error_just_free;
1329
1330                                 capabilities &= ~NOMMU_MAP_DIRECT;
1331                         } else {
1332                                 vma->vm_start = region->vm_start = addr;
1333                                 vma->vm_end = region->vm_end = addr + len;
1334                         }
1335                 }
1336         }
1337
1338         vma->vm_region = region;
1339
1340         /* set up the mapping
1341          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1342          */
1343         if (file && vma->vm_flags & VM_SHARED)
1344                 ret = do_mmap_shared_file(vma);
1345         else
1346                 ret = do_mmap_private(vma, region, len, capabilities);
1347         if (ret < 0)
1348                 goto error_just_free;
1349         add_nommu_region(region);
1350
1351         /* clear anonymous mappings that don't ask for uninitialized data */
1352         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1353                 memset((void *)region->vm_start, 0,
1354                        region->vm_end - region->vm_start);
1355
1356         /* okay... we have a mapping; now we have to register it */
1357         result = vma->vm_start;
1358
1359         current->mm->total_vm += len >> PAGE_SHIFT;
1360
1361 share:
1362         add_vma_to_mm(current->mm, vma);
1363
1364         /* we flush the region from the icache only when the first executable
1365          * mapping of it is made  */
1366         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1367                 flush_icache_range(region->vm_start, region->vm_end);
1368                 region->vm_icache_flushed = true;
1369         }
1370
1371         up_write(&nommu_region_sem);
1372
1373         return result;
1374
1375 error_just_free:
1376         up_write(&nommu_region_sem);
1377 error:
1378         if (region->vm_file)
1379                 fput(region->vm_file);
1380         kmem_cache_free(vm_region_jar, region);
1381         if (vma->vm_file)
1382                 fput(vma->vm_file);
1383         vm_area_free(vma);
1384         return ret;
1385
1386 sharing_violation:
1387         up_write(&nommu_region_sem);
1388         pr_warn("Attempt to share mismatched mappings\n");
1389         ret = -EINVAL;
1390         goto error;
1391
1392 error_getting_vma:
1393         kmem_cache_free(vm_region_jar, region);
1394         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1395                         len, current->pid);
1396         show_free_areas(0, NULL);
1397         return -ENOMEM;
1398
1399 error_getting_region:
1400         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1401                         len, current->pid);
1402         show_free_areas(0, NULL);
1403         return -ENOMEM;
1404 }
1405
1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1407                               unsigned long prot, unsigned long flags,
1408                               unsigned long fd, unsigned long pgoff)
1409 {
1410         struct file *file = NULL;
1411         unsigned long retval = -EBADF;
1412
1413         audit_mmap_fd(fd, flags);
1414         if (!(flags & MAP_ANONYMOUS)) {
1415                 file = fget(fd);
1416                 if (!file)
1417                         goto out;
1418         }
1419
1420         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423
1424         if (file)
1425                 fput(file);
1426 out:
1427         return retval;
1428 }
1429
1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431                 unsigned long, prot, unsigned long, flags,
1432                 unsigned long, fd, unsigned long, pgoff)
1433 {
1434         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1435 }
1436
1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1438 struct mmap_arg_struct {
1439         unsigned long addr;
1440         unsigned long len;
1441         unsigned long prot;
1442         unsigned long flags;
1443         unsigned long fd;
1444         unsigned long offset;
1445 };
1446
1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1448 {
1449         struct mmap_arg_struct a;
1450
1451         if (copy_from_user(&a, arg, sizeof(a)))
1452                 return -EFAULT;
1453         if (offset_in_page(a.offset))
1454                 return -EINVAL;
1455
1456         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1457                                a.offset >> PAGE_SHIFT);
1458 }
1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1460
1461 /*
1462  * split a vma into two pieces at address 'addr', a new vma is allocated either
1463  * for the first part or the tail.
1464  */
1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1466               unsigned long addr, int new_below)
1467 {
1468         struct vm_area_struct *new;
1469         struct vm_region *region;
1470         unsigned long npages;
1471
1472         /* we're only permitted to split anonymous regions (these should have
1473          * only a single usage on the region) */
1474         if (vma->vm_file)
1475                 return -ENOMEM;
1476
1477         if (mm->map_count >= sysctl_max_map_count)
1478                 return -ENOMEM;
1479
1480         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1481         if (!region)
1482                 return -ENOMEM;
1483
1484         new = vm_area_dup(vma);
1485         if (!new) {
1486                 kmem_cache_free(vm_region_jar, region);
1487                 return -ENOMEM;
1488         }
1489
1490         /* most fields are the same, copy all, and then fixup */
1491         *region = *vma->vm_region;
1492         new->vm_region = region;
1493
1494         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1495
1496         if (new_below) {
1497                 region->vm_top = region->vm_end = new->vm_end = addr;
1498         } else {
1499                 region->vm_start = new->vm_start = addr;
1500                 region->vm_pgoff = new->vm_pgoff += npages;
1501         }
1502
1503         if (new->vm_ops && new->vm_ops->open)
1504                 new->vm_ops->open(new);
1505
1506         delete_vma_from_mm(vma);
1507         down_write(&nommu_region_sem);
1508         delete_nommu_region(vma->vm_region);
1509         if (new_below) {
1510                 vma->vm_region->vm_start = vma->vm_start = addr;
1511                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1512         } else {
1513                 vma->vm_region->vm_end = vma->vm_end = addr;
1514                 vma->vm_region->vm_top = addr;
1515         }
1516         add_nommu_region(vma->vm_region);
1517         add_nommu_region(new->vm_region);
1518         up_write(&nommu_region_sem);
1519         add_vma_to_mm(mm, vma);
1520         add_vma_to_mm(mm, new);
1521         return 0;
1522 }
1523
1524 /*
1525  * shrink a VMA by removing the specified chunk from either the beginning or
1526  * the end
1527  */
1528 static int shrink_vma(struct mm_struct *mm,
1529                       struct vm_area_struct *vma,
1530                       unsigned long from, unsigned long to)
1531 {
1532         struct vm_region *region;
1533
1534         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1535          * and list */
1536         delete_vma_from_mm(vma);
1537         if (from > vma->vm_start)
1538                 vma->vm_end = from;
1539         else
1540                 vma->vm_start = to;
1541         add_vma_to_mm(mm, vma);
1542
1543         /* cut the backing region down to size */
1544         region = vma->vm_region;
1545         BUG_ON(region->vm_usage != 1);
1546
1547         down_write(&nommu_region_sem);
1548         delete_nommu_region(region);
1549         if (from > region->vm_start) {
1550                 to = region->vm_top;
1551                 region->vm_top = region->vm_end = from;
1552         } else {
1553                 region->vm_start = to;
1554         }
1555         add_nommu_region(region);
1556         up_write(&nommu_region_sem);
1557
1558         free_page_series(from, to);
1559         return 0;
1560 }
1561
1562 /*
1563  * release a mapping
1564  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1565  *   VMA, though it need not cover the whole VMA
1566  */
1567 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1568 {
1569         struct vm_area_struct *vma;
1570         unsigned long end;
1571         int ret;
1572
1573         len = PAGE_ALIGN(len);
1574         if (len == 0)
1575                 return -EINVAL;
1576
1577         end = start + len;
1578
1579         /* find the first potentially overlapping VMA */
1580         vma = find_vma(mm, start);
1581         if (!vma) {
1582                 static int limit;
1583                 if (limit < 5) {
1584                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1585                                         current->pid, current->comm,
1586                                         start, start + len - 1);
1587                         limit++;
1588                 }
1589                 return -EINVAL;
1590         }
1591
1592         /* we're allowed to split an anonymous VMA but not a file-backed one */
1593         if (vma->vm_file) {
1594                 do {
1595                         if (start > vma->vm_start)
1596                                 return -EINVAL;
1597                         if (end == vma->vm_end)
1598                                 goto erase_whole_vma;
1599                         vma = vma->vm_next;
1600                 } while (vma);
1601                 return -EINVAL;
1602         } else {
1603                 /* the chunk must be a subset of the VMA found */
1604                 if (start == vma->vm_start && end == vma->vm_end)
1605                         goto erase_whole_vma;
1606                 if (start < vma->vm_start || end > vma->vm_end)
1607                         return -EINVAL;
1608                 if (offset_in_page(start))
1609                         return -EINVAL;
1610                 if (end != vma->vm_end && offset_in_page(end))
1611                         return -EINVAL;
1612                 if (start != vma->vm_start && end != vma->vm_end) {
1613                         ret = split_vma(mm, vma, start, 1);
1614                         if (ret < 0)
1615                                 return ret;
1616                 }
1617                 return shrink_vma(mm, vma, start, end);
1618         }
1619
1620 erase_whole_vma:
1621         delete_vma_from_mm(vma);
1622         delete_vma(mm, vma);
1623         return 0;
1624 }
1625 EXPORT_SYMBOL(do_munmap);
1626
1627 int vm_munmap(unsigned long addr, size_t len)
1628 {
1629         struct mm_struct *mm = current->mm;
1630         int ret;
1631
1632         down_write(&mm->mmap_sem);
1633         ret = do_munmap(mm, addr, len, NULL);
1634         up_write(&mm->mmap_sem);
1635         return ret;
1636 }
1637 EXPORT_SYMBOL(vm_munmap);
1638
1639 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1640 {
1641         return vm_munmap(addr, len);
1642 }
1643
1644 /*
1645  * release all the mappings made in a process's VM space
1646  */
1647 void exit_mmap(struct mm_struct *mm)
1648 {
1649         struct vm_area_struct *vma;
1650
1651         if (!mm)
1652                 return;
1653
1654         mm->total_vm = 0;
1655
1656         while ((vma = mm->mmap)) {
1657                 mm->mmap = vma->vm_next;
1658                 delete_vma_from_mm(vma);
1659                 delete_vma(mm, vma);
1660                 cond_resched();
1661         }
1662 }
1663
1664 int vm_brk(unsigned long addr, unsigned long len)
1665 {
1666         return -ENOMEM;
1667 }
1668
1669 /*
1670  * expand (or shrink) an existing mapping, potentially moving it at the same
1671  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1672  *
1673  * under NOMMU conditions, we only permit changing a mapping's size, and only
1674  * as long as it stays within the region allocated by do_mmap_private() and the
1675  * block is not shareable
1676  *
1677  * MREMAP_FIXED is not supported under NOMMU conditions
1678  */
1679 static unsigned long do_mremap(unsigned long addr,
1680                         unsigned long old_len, unsigned long new_len,
1681                         unsigned long flags, unsigned long new_addr)
1682 {
1683         struct vm_area_struct *vma;
1684
1685         /* insanity checks first */
1686         old_len = PAGE_ALIGN(old_len);
1687         new_len = PAGE_ALIGN(new_len);
1688         if (old_len == 0 || new_len == 0)
1689                 return (unsigned long) -EINVAL;
1690
1691         if (offset_in_page(addr))
1692                 return -EINVAL;
1693
1694         if (flags & MREMAP_FIXED && new_addr != addr)
1695                 return (unsigned long) -EINVAL;
1696
1697         vma = find_vma_exact(current->mm, addr, old_len);
1698         if (!vma)
1699                 return (unsigned long) -EINVAL;
1700
1701         if (vma->vm_end != vma->vm_start + old_len)
1702                 return (unsigned long) -EFAULT;
1703
1704         if (vma->vm_flags & VM_MAYSHARE)
1705                 return (unsigned long) -EPERM;
1706
1707         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1708                 return (unsigned long) -ENOMEM;
1709
1710         /* all checks complete - do it */
1711         vma->vm_end = vma->vm_start + new_len;
1712         return vma->vm_start;
1713 }
1714
1715 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1716                 unsigned long, new_len, unsigned long, flags,
1717                 unsigned long, new_addr)
1718 {
1719         unsigned long ret;
1720
1721         down_write(&current->mm->mmap_sem);
1722         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1723         up_write(&current->mm->mmap_sem);
1724         return ret;
1725 }
1726
1727 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1728                          unsigned int foll_flags)
1729 {
1730         return NULL;
1731 }
1732
1733 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1734                 unsigned long pfn, unsigned long size, pgprot_t prot)
1735 {
1736         if (addr != (pfn << PAGE_SHIFT))
1737                 return -EINVAL;
1738
1739         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1740         return 0;
1741 }
1742 EXPORT_SYMBOL(remap_pfn_range);
1743
1744 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1745 {
1746         unsigned long pfn = start >> PAGE_SHIFT;
1747         unsigned long vm_len = vma->vm_end - vma->vm_start;
1748
1749         pfn += vma->vm_pgoff;
1750         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1751 }
1752 EXPORT_SYMBOL(vm_iomap_memory);
1753
1754 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1755                         unsigned long pgoff)
1756 {
1757         unsigned int size = vma->vm_end - vma->vm_start;
1758
1759         if (!(vma->vm_flags & VM_USERMAP))
1760                 return -EINVAL;
1761
1762         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1763         vma->vm_end = vma->vm_start + size;
1764
1765         return 0;
1766 }
1767 EXPORT_SYMBOL(remap_vmalloc_range);
1768
1769 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1770         unsigned long len, unsigned long pgoff, unsigned long flags)
1771 {
1772         return -ENOMEM;
1773 }
1774
1775 vm_fault_t filemap_fault(struct vm_fault *vmf)
1776 {
1777         BUG();
1778         return 0;
1779 }
1780 EXPORT_SYMBOL(filemap_fault);
1781
1782 void filemap_map_pages(struct vm_fault *vmf,
1783                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1784 {
1785         BUG();
1786 }
1787 EXPORT_SYMBOL(filemap_map_pages);
1788
1789 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1790                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1791 {
1792         struct vm_area_struct *vma;
1793         int write = gup_flags & FOLL_WRITE;
1794
1795         down_read(&mm->mmap_sem);
1796
1797         /* the access must start within one of the target process's mappings */
1798         vma = find_vma(mm, addr);
1799         if (vma) {
1800                 /* don't overrun this mapping */
1801                 if (addr + len >= vma->vm_end)
1802                         len = vma->vm_end - addr;
1803
1804                 /* only read or write mappings where it is permitted */
1805                 if (write && vma->vm_flags & VM_MAYWRITE)
1806                         copy_to_user_page(vma, NULL, addr,
1807                                          (void *) addr, buf, len);
1808                 else if (!write && vma->vm_flags & VM_MAYREAD)
1809                         copy_from_user_page(vma, NULL, addr,
1810                                             buf, (void *) addr, len);
1811                 else
1812                         len = 0;
1813         } else {
1814                 len = 0;
1815         }
1816
1817         up_read(&mm->mmap_sem);
1818
1819         return len;
1820 }
1821
1822 /**
1823  * access_remote_vm - access another process' address space
1824  * @mm:         the mm_struct of the target address space
1825  * @addr:       start address to access
1826  * @buf:        source or destination buffer
1827  * @len:        number of bytes to transfer
1828  * @gup_flags:  flags modifying lookup behaviour
1829  *
1830  * The caller must hold a reference on @mm.
1831  */
1832 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1833                 void *buf, int len, unsigned int gup_flags)
1834 {
1835         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1836 }
1837
1838 /*
1839  * Access another process' address space.
1840  * - source/target buffer must be kernel space
1841  */
1842 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1843                 unsigned int gup_flags)
1844 {
1845         struct mm_struct *mm;
1846
1847         if (addr + len < addr)
1848                 return 0;
1849
1850         mm = get_task_mm(tsk);
1851         if (!mm)
1852                 return 0;
1853
1854         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1855
1856         mmput(mm);
1857         return len;
1858 }
1859 EXPORT_SYMBOL_GPL(access_process_vm);
1860
1861 /**
1862  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1863  * @inode: The inode to check
1864  * @size: The current filesize of the inode
1865  * @newsize: The proposed filesize of the inode
1866  *
1867  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1868  * make sure that that any outstanding VMAs aren't broken and then shrink the
1869  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1870  * automatically grant mappings that are too large.
1871  */
1872 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1873                                 size_t newsize)
1874 {
1875         struct vm_area_struct *vma;
1876         struct vm_region *region;
1877         pgoff_t low, high;
1878         size_t r_size, r_top;
1879
1880         low = newsize >> PAGE_SHIFT;
1881         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1882
1883         down_write(&nommu_region_sem);
1884         i_mmap_lock_read(inode->i_mapping);
1885
1886         /* search for VMAs that fall within the dead zone */
1887         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1888                 /* found one - only interested if it's shared out of the page
1889                  * cache */
1890                 if (vma->vm_flags & VM_SHARED) {
1891                         i_mmap_unlock_read(inode->i_mapping);
1892                         up_write(&nommu_region_sem);
1893                         return -ETXTBSY; /* not quite true, but near enough */
1894                 }
1895         }
1896
1897         /* reduce any regions that overlap the dead zone - if in existence,
1898          * these will be pointed to by VMAs that don't overlap the dead zone
1899          *
1900          * we don't check for any regions that start beyond the EOF as there
1901          * shouldn't be any
1902          */
1903         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1904                 if (!(vma->vm_flags & VM_SHARED))
1905                         continue;
1906
1907                 region = vma->vm_region;
1908                 r_size = region->vm_top - region->vm_start;
1909                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1910
1911                 if (r_top > newsize) {
1912                         region->vm_top -= r_top - newsize;
1913                         if (region->vm_end > region->vm_top)
1914                                 region->vm_end = region->vm_top;
1915                 }
1916         }
1917
1918         i_mmap_unlock_read(inode->i_mapping);
1919         up_write(&nommu_region_sem);
1920         return 0;
1921 }
1922
1923 /*
1924  * Initialise sysctl_user_reserve_kbytes.
1925  *
1926  * This is intended to prevent a user from starting a single memory hogging
1927  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1928  * mode.
1929  *
1930  * The default value is min(3% of free memory, 128MB)
1931  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1932  */
1933 static int __meminit init_user_reserve(void)
1934 {
1935         unsigned long free_kbytes;
1936
1937         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1938
1939         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1940         return 0;
1941 }
1942 subsys_initcall(init_user_reserve);
1943
1944 /*
1945  * Initialise sysctl_admin_reserve_kbytes.
1946  *
1947  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1948  * to log in and kill a memory hogging process.
1949  *
1950  * Systems with more than 256MB will reserve 8MB, enough to recover
1951  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1952  * only reserve 3% of free pages by default.
1953  */
1954 static int __meminit init_admin_reserve(void)
1955 {
1956         unsigned long free_kbytes;
1957
1958         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1959
1960         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1961         return 0;
1962 }
1963 subsys_initcall(init_admin_reserve);