84381b55b2bd5c535bd181b7670a69f37bb084a4
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 if (PageTransHuge(page) && PageMlocked(page))
279                         clear_page_mlock(page);
280
281                 /* No need to invalidate - it was non-present before */
282                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283         }
284
285         return true;
286 }
287
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294         struct rmap_walk_control rwc = {
295                 .rmap_one = remove_migration_pte,
296                 .arg = old,
297         };
298
299         if (locked)
300                 rmap_walk_locked(new, &rwc);
301         else
302                 rmap_walk(new, &rwc);
303 }
304
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311                                 spinlock_t *ptl)
312 {
313         pte_t pte;
314         swp_entry_t entry;
315         struct page *page;
316
317         spin_lock(ptl);
318         pte = *ptep;
319         if (!is_swap_pte(pte))
320                 goto out;
321
322         entry = pte_to_swp_entry(pte);
323         if (!is_migration_entry(entry))
324                 goto out;
325
326         page = migration_entry_to_page(entry);
327
328         /*
329          * Once radix-tree replacement of page migration started, page_count
330          * *must* be zero. And, we don't want to call wait_on_page_locked()
331          * against a page without get_page().
332          * So, we use get_page_unless_zero(), here. Even failed, page fault
333          * will occur again.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         wait_on_page_locked(page);
339         put_page(page);
340         return;
341 out:
342         pte_unmap_unlock(ptep, ptl);
343 }
344
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346                                 unsigned long address)
347 {
348         spinlock_t *ptl = pte_lockptr(mm, pmd);
349         pte_t *ptep = pte_offset_map(pmd, address);
350         __migration_entry_wait(mm, ptep, ptl);
351 }
352
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354                 struct mm_struct *mm, pte_t *pte)
355 {
356         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357         __migration_entry_wait(mm, pte, ptl);
358 }
359
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363         spinlock_t *ptl;
364         struct page *page;
365
366         ptl = pmd_lock(mm, pmd);
367         if (!is_pmd_migration_entry(*pmd))
368                 goto unlock;
369         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370         if (!get_page_unless_zero(page))
371                 goto unlock;
372         spin_unlock(ptl);
373         wait_on_page_locked(page);
374         put_page(page);
375         return;
376 unlock:
377         spin_unlock(ptl);
378 }
379 #endif
380
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384                                                         enum migrate_mode mode)
385 {
386         struct buffer_head *bh = head;
387
388         /* Simple case, sync compaction */
389         if (mode != MIGRATE_ASYNC) {
390                 do {
391                         get_bh(bh);
392                         lock_buffer(bh);
393                         bh = bh->b_this_page;
394
395                 } while (bh != head);
396
397                 return true;
398         }
399
400         /* async case, we cannot block on lock_buffer so use trylock_buffer */
401         do {
402                 get_bh(bh);
403                 if (!trylock_buffer(bh)) {
404                         /*
405                          * We failed to lock the buffer and cannot stall in
406                          * async migration. Release the taken locks
407                          */
408                         struct buffer_head *failed_bh = bh;
409                         put_bh(failed_bh);
410                         bh = head;
411                         while (bh != failed_bh) {
412                                 unlock_buffer(bh);
413                                 put_bh(bh);
414                                 bh = bh->b_this_page;
415                         }
416                         return false;
417                 }
418
419                 bh = bh->b_this_page;
420         } while (bh != head);
421         return true;
422 }
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425                                                         enum migrate_mode mode)
426 {
427         return true;
428 }
429 #endif /* CONFIG_BLOCK */
430
431 /*
432  * Replace the page in the mapping.
433  *
434  * The number of remaining references must be:
435  * 1 for anonymous pages without a mapping
436  * 2 for pages with a mapping
437  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438  */
439 int migrate_page_move_mapping(struct address_space *mapping,
440                 struct page *newpage, struct page *page,
441                 struct buffer_head *head, enum migrate_mode mode,
442                 int extra_count)
443 {
444         struct zone *oldzone, *newzone;
445         int dirty;
446         int expected_count = 1 + extra_count;
447         void **pslot;
448
449         /*
450          * Device public or private pages have an extra refcount as they are
451          * ZONE_DEVICE pages.
452          */
453         expected_count += is_device_private_page(page);
454         expected_count += is_device_public_page(page);
455
456         if (!mapping) {
457                 /* Anonymous page without mapping */
458                 if (page_count(page) != expected_count)
459                         return -EAGAIN;
460
461                 /* No turning back from here */
462                 newpage->index = page->index;
463                 newpage->mapping = page->mapping;
464                 if (PageSwapBacked(page))
465                         __SetPageSwapBacked(newpage);
466
467                 return MIGRATEPAGE_SUCCESS;
468         }
469
470         oldzone = page_zone(page);
471         newzone = page_zone(newpage);
472
473         xa_lock_irq(&mapping->i_pages);
474
475         pslot = radix_tree_lookup_slot(&mapping->i_pages,
476                                         page_index(page));
477
478         expected_count += hpage_nr_pages(page) + page_has_private(page);
479         if (page_count(page) != expected_count ||
480                 radix_tree_deref_slot_protected(pslot,
481                                         &mapping->i_pages.xa_lock) != page) {
482                 xa_unlock_irq(&mapping->i_pages);
483                 return -EAGAIN;
484         }
485
486         if (!page_ref_freeze(page, expected_count)) {
487                 xa_unlock_irq(&mapping->i_pages);
488                 return -EAGAIN;
489         }
490
491         /*
492          * In the async migration case of moving a page with buffers, lock the
493          * buffers using trylock before the mapping is moved. If the mapping
494          * was moved, we later failed to lock the buffers and could not move
495          * the mapping back due to an elevated page count, we would have to
496          * block waiting on other references to be dropped.
497          */
498         if (mode == MIGRATE_ASYNC && head &&
499                         !buffer_migrate_lock_buffers(head, mode)) {
500                 page_ref_unfreeze(page, expected_count);
501                 xa_unlock_irq(&mapping->i_pages);
502                 return -EAGAIN;
503         }
504
505         /*
506          * Now we know that no one else is looking at the page:
507          * no turning back from here.
508          */
509         newpage->index = page->index;
510         newpage->mapping = page->mapping;
511         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512         if (PageSwapBacked(page)) {
513                 __SetPageSwapBacked(newpage);
514                 if (PageSwapCache(page)) {
515                         SetPageSwapCache(newpage);
516                         set_page_private(newpage, page_private(page));
517                 }
518         } else {
519                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
520         }
521
522         /* Move dirty while page refs frozen and newpage not yet exposed */
523         dirty = PageDirty(page);
524         if (dirty) {
525                 ClearPageDirty(page);
526                 SetPageDirty(newpage);
527         }
528
529         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530         if (PageTransHuge(page)) {
531                 int i;
532                 int index = page_index(page);
533
534                 for (i = 1; i < HPAGE_PMD_NR; i++) {
535                         pslot = radix_tree_lookup_slot(&mapping->i_pages,
536                                                        index + i);
537                         radix_tree_replace_slot(&mapping->i_pages, pslot,
538                                                 newpage + i);
539                 }
540         }
541
542         /*
543          * Drop cache reference from old page by unfreezing
544          * to one less reference.
545          * We know this isn't the last reference.
546          */
547         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548
549         xa_unlock(&mapping->i_pages);
550         /* Leave irq disabled to prevent preemption while updating stats */
551
552         /*
553          * If moved to a different zone then also account
554          * the page for that zone. Other VM counters will be
555          * taken care of when we establish references to the
556          * new page and drop references to the old page.
557          *
558          * Note that anonymous pages are accounted for
559          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560          * are mapped to swap space.
561          */
562         if (newzone != oldzone) {
563                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
564                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
566                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
567                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568                 }
569                 if (dirty && mapping_cap_account_dirty(mapping)) {
570                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
574                 }
575         }
576         local_irq_enable();
577
578         return MIGRATEPAGE_SUCCESS;
579 }
580 EXPORT_SYMBOL(migrate_page_move_mapping);
581
582 /*
583  * The expected number of remaining references is the same as that
584  * of migrate_page_move_mapping().
585  */
586 int migrate_huge_page_move_mapping(struct address_space *mapping,
587                                    struct page *newpage, struct page *page)
588 {
589         int expected_count;
590         void **pslot;
591
592         xa_lock_irq(&mapping->i_pages);
593
594         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
595
596         expected_count = 2 + page_has_private(page);
597         if (page_count(page) != expected_count ||
598                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
599                 xa_unlock_irq(&mapping->i_pages);
600                 return -EAGAIN;
601         }
602
603         if (!page_ref_freeze(page, expected_count)) {
604                 xa_unlock_irq(&mapping->i_pages);
605                 return -EAGAIN;
606         }
607
608         newpage->index = page->index;
609         newpage->mapping = page->mapping;
610
611         get_page(newpage);
612
613         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
614
615         page_ref_unfreeze(page, expected_count - 1);
616
617         xa_unlock_irq(&mapping->i_pages);
618
619         return MIGRATEPAGE_SUCCESS;
620 }
621
622 /*
623  * Gigantic pages are so large that we do not guarantee that page++ pointer
624  * arithmetic will work across the entire page.  We need something more
625  * specialized.
626  */
627 static void __copy_gigantic_page(struct page *dst, struct page *src,
628                                 int nr_pages)
629 {
630         int i;
631         struct page *dst_base = dst;
632         struct page *src_base = src;
633
634         for (i = 0; i < nr_pages; ) {
635                 cond_resched();
636                 copy_highpage(dst, src);
637
638                 i++;
639                 dst = mem_map_next(dst, dst_base, i);
640                 src = mem_map_next(src, src_base, i);
641         }
642 }
643
644 static void copy_huge_page(struct page *dst, struct page *src)
645 {
646         int i;
647         int nr_pages;
648
649         if (PageHuge(src)) {
650                 /* hugetlbfs page */
651                 struct hstate *h = page_hstate(src);
652                 nr_pages = pages_per_huge_page(h);
653
654                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
655                         __copy_gigantic_page(dst, src, nr_pages);
656                         return;
657                 }
658         } else {
659                 /* thp page */
660                 BUG_ON(!PageTransHuge(src));
661                 nr_pages = hpage_nr_pages(src);
662         }
663
664         for (i = 0; i < nr_pages; i++) {
665                 cond_resched();
666                 copy_highpage(dst + i, src + i);
667         }
668 }
669
670 /*
671  * Copy the page to its new location
672  */
673 void migrate_page_states(struct page *newpage, struct page *page)
674 {
675         int cpupid;
676
677         if (PageError(page))
678                 SetPageError(newpage);
679         if (PageReferenced(page))
680                 SetPageReferenced(newpage);
681         if (PageUptodate(page))
682                 SetPageUptodate(newpage);
683         if (TestClearPageActive(page)) {
684                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
685                 SetPageActive(newpage);
686         } else if (TestClearPageUnevictable(page))
687                 SetPageUnevictable(newpage);
688         if (PageChecked(page))
689                 SetPageChecked(newpage);
690         if (PageMappedToDisk(page))
691                 SetPageMappedToDisk(newpage);
692
693         /* Move dirty on pages not done by migrate_page_move_mapping() */
694         if (PageDirty(page))
695                 SetPageDirty(newpage);
696
697         if (page_is_young(page))
698                 set_page_young(newpage);
699         if (page_is_idle(page))
700                 set_page_idle(newpage);
701
702         /*
703          * Copy NUMA information to the new page, to prevent over-eager
704          * future migrations of this same page.
705          */
706         cpupid = page_cpupid_xchg_last(page, -1);
707         page_cpupid_xchg_last(newpage, cpupid);
708
709         ksm_migrate_page(newpage, page);
710         /*
711          * Please do not reorder this without considering how mm/ksm.c's
712          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
713          */
714         if (PageSwapCache(page))
715                 ClearPageSwapCache(page);
716         ClearPagePrivate(page);
717         set_page_private(page, 0);
718
719         /*
720          * If any waiters have accumulated on the new page then
721          * wake them up.
722          */
723         if (PageWriteback(newpage))
724                 end_page_writeback(newpage);
725
726         copy_page_owner(page, newpage);
727
728         mem_cgroup_migrate(page, newpage);
729 }
730 EXPORT_SYMBOL(migrate_page_states);
731
732 void migrate_page_copy(struct page *newpage, struct page *page)
733 {
734         if (PageHuge(page) || PageTransHuge(page))
735                 copy_huge_page(newpage, page);
736         else
737                 copy_highpage(newpage, page);
738
739         migrate_page_states(newpage, page);
740 }
741 EXPORT_SYMBOL(migrate_page_copy);
742
743 /************************************************************
744  *                    Migration functions
745  ***********************************************************/
746
747 /*
748  * Common logic to directly migrate a single LRU page suitable for
749  * pages that do not use PagePrivate/PagePrivate2.
750  *
751  * Pages are locked upon entry and exit.
752  */
753 int migrate_page(struct address_space *mapping,
754                 struct page *newpage, struct page *page,
755                 enum migrate_mode mode)
756 {
757         int rc;
758
759         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
760
761         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
762
763         if (rc != MIGRATEPAGE_SUCCESS)
764                 return rc;
765
766         if (mode != MIGRATE_SYNC_NO_COPY)
767                 migrate_page_copy(newpage, page);
768         else
769                 migrate_page_states(newpage, page);
770         return MIGRATEPAGE_SUCCESS;
771 }
772 EXPORT_SYMBOL(migrate_page);
773
774 #ifdef CONFIG_BLOCK
775 /*
776  * Migration function for pages with buffers. This function can only be used
777  * if the underlying filesystem guarantees that no other references to "page"
778  * exist.
779  */
780 int buffer_migrate_page(struct address_space *mapping,
781                 struct page *newpage, struct page *page, enum migrate_mode mode)
782 {
783         struct buffer_head *bh, *head;
784         int rc;
785
786         if (!page_has_buffers(page))
787                 return migrate_page(mapping, newpage, page, mode);
788
789         head = page_buffers(page);
790
791         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
792
793         if (rc != MIGRATEPAGE_SUCCESS)
794                 return rc;
795
796         /*
797          * In the async case, migrate_page_move_mapping locked the buffers
798          * with an IRQ-safe spinlock held. In the sync case, the buffers
799          * need to be locked now
800          */
801         if (mode != MIGRATE_ASYNC)
802                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
803
804         ClearPagePrivate(page);
805         set_page_private(newpage, page_private(page));
806         set_page_private(page, 0);
807         put_page(page);
808         get_page(newpage);
809
810         bh = head;
811         do {
812                 set_bh_page(bh, newpage, bh_offset(bh));
813                 bh = bh->b_this_page;
814
815         } while (bh != head);
816
817         SetPagePrivate(newpage);
818
819         if (mode != MIGRATE_SYNC_NO_COPY)
820                 migrate_page_copy(newpage, page);
821         else
822                 migrate_page_states(newpage, page);
823
824         bh = head;
825         do {
826                 unlock_buffer(bh);
827                 put_bh(bh);
828                 bh = bh->b_this_page;
829
830         } while (bh != head);
831
832         return MIGRATEPAGE_SUCCESS;
833 }
834 EXPORT_SYMBOL(buffer_migrate_page);
835 #endif
836
837 /*
838  * Writeback a page to clean the dirty state
839  */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842         struct writeback_control wbc = {
843                 .sync_mode = WB_SYNC_NONE,
844                 .nr_to_write = 1,
845                 .range_start = 0,
846                 .range_end = LLONG_MAX,
847                 .for_reclaim = 1
848         };
849         int rc;
850
851         if (!mapping->a_ops->writepage)
852                 /* No write method for the address space */
853                 return -EINVAL;
854
855         if (!clear_page_dirty_for_io(page))
856                 /* Someone else already triggered a write */
857                 return -EAGAIN;
858
859         /*
860          * A dirty page may imply that the underlying filesystem has
861          * the page on some queue. So the page must be clean for
862          * migration. Writeout may mean we loose the lock and the
863          * page state is no longer what we checked for earlier.
864          * At this point we know that the migration attempt cannot
865          * be successful.
866          */
867         remove_migration_ptes(page, page, false);
868
869         rc = mapping->a_ops->writepage(page, &wbc);
870
871         if (rc != AOP_WRITEPAGE_ACTIVATE)
872                 /* unlocked. Relock */
873                 lock_page(page);
874
875         return (rc < 0) ? -EIO : -EAGAIN;
876 }
877
878 /*
879  * Default handling if a filesystem does not provide a migration function.
880  */
881 static int fallback_migrate_page(struct address_space *mapping,
882         struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884         if (PageDirty(page)) {
885                 /* Only writeback pages in full synchronous migration */
886                 switch (mode) {
887                 case MIGRATE_SYNC:
888                 case MIGRATE_SYNC_NO_COPY:
889                         break;
890                 default:
891                         return -EBUSY;
892                 }
893                 return writeout(mapping, page);
894         }
895
896         /*
897          * Buffers may be managed in a filesystem specific way.
898          * We must have no buffers or drop them.
899          */
900         if (page_has_private(page) &&
901             !try_to_release_page(page, GFP_KERNEL))
902                 return -EAGAIN;
903
904         return migrate_page(mapping, newpage, page, mode);
905 }
906
907 /*
908  * Move a page to a newly allocated page
909  * The page is locked and all ptes have been successfully removed.
910  *
911  * The new page will have replaced the old page if this function
912  * is successful.
913  *
914  * Return value:
915  *   < 0 - error code
916  *  MIGRATEPAGE_SUCCESS - success
917  */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919                                 enum migrate_mode mode)
920 {
921         struct address_space *mapping;
922         int rc = -EAGAIN;
923         bool is_lru = !__PageMovable(page);
924
925         VM_BUG_ON_PAGE(!PageLocked(page), page);
926         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927
928         mapping = page_mapping(page);
929
930         if (likely(is_lru)) {
931                 if (!mapping)
932                         rc = migrate_page(mapping, newpage, page, mode);
933                 else if (mapping->a_ops->migratepage)
934                         /*
935                          * Most pages have a mapping and most filesystems
936                          * provide a migratepage callback. Anonymous pages
937                          * are part of swap space which also has its own
938                          * migratepage callback. This is the most common path
939                          * for page migration.
940                          */
941                         rc = mapping->a_ops->migratepage(mapping, newpage,
942                                                         page, mode);
943                 else
944                         rc = fallback_migrate_page(mapping, newpage,
945                                                         page, mode);
946         } else {
947                 /*
948                  * In case of non-lru page, it could be released after
949                  * isolation step. In that case, we shouldn't try migration.
950                  */
951                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952                 if (!PageMovable(page)) {
953                         rc = MIGRATEPAGE_SUCCESS;
954                         __ClearPageIsolated(page);
955                         goto out;
956                 }
957
958                 rc = mapping->a_ops->migratepage(mapping, newpage,
959                                                 page, mode);
960                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961                         !PageIsolated(page));
962         }
963
964         /*
965          * When successful, old pagecache page->mapping must be cleared before
966          * page is freed; but stats require that PageAnon be left as PageAnon.
967          */
968         if (rc == MIGRATEPAGE_SUCCESS) {
969                 if (__PageMovable(page)) {
970                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
971
972                         /*
973                          * We clear PG_movable under page_lock so any compactor
974                          * cannot try to migrate this page.
975                          */
976                         __ClearPageIsolated(page);
977                 }
978
979                 /*
980                  * Anonymous and movable page->mapping will be cleard by
981                  * free_pages_prepare so don't reset it here for keeping
982                  * the type to work PageAnon, for example.
983                  */
984                 if (!PageMappingFlags(page))
985                         page->mapping = NULL;
986         }
987 out:
988         return rc;
989 }
990
991 static int __unmap_and_move(struct page *page, struct page *newpage,
992                                 int force, enum migrate_mode mode)
993 {
994         int rc = -EAGAIN;
995         int page_was_mapped = 0;
996         struct anon_vma *anon_vma = NULL;
997         bool is_lru = !__PageMovable(page);
998
999         if (!trylock_page(page)) {
1000                 if (!force || mode == MIGRATE_ASYNC)
1001                         goto out;
1002
1003                 /*
1004                  * It's not safe for direct compaction to call lock_page.
1005                  * For example, during page readahead pages are added locked
1006                  * to the LRU. Later, when the IO completes the pages are
1007                  * marked uptodate and unlocked. However, the queueing
1008                  * could be merging multiple pages for one bio (e.g.
1009                  * mpage_readpages). If an allocation happens for the
1010                  * second or third page, the process can end up locking
1011                  * the same page twice and deadlocking. Rather than
1012                  * trying to be clever about what pages can be locked,
1013                  * avoid the use of lock_page for direct compaction
1014                  * altogether.
1015                  */
1016                 if (current->flags & PF_MEMALLOC)
1017                         goto out;
1018
1019                 lock_page(page);
1020         }
1021
1022         if (PageWriteback(page)) {
1023                 /*
1024                  * Only in the case of a full synchronous migration is it
1025                  * necessary to wait for PageWriteback. In the async case,
1026                  * the retry loop is too short and in the sync-light case,
1027                  * the overhead of stalling is too much
1028                  */
1029                 switch (mode) {
1030                 case MIGRATE_SYNC:
1031                 case MIGRATE_SYNC_NO_COPY:
1032                         break;
1033                 default:
1034                         rc = -EBUSY;
1035                         goto out_unlock;
1036                 }
1037                 if (!force)
1038                         goto out_unlock;
1039                 wait_on_page_writeback(page);
1040         }
1041
1042         /*
1043          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1044          * we cannot notice that anon_vma is freed while we migrates a page.
1045          * This get_anon_vma() delays freeing anon_vma pointer until the end
1046          * of migration. File cache pages are no problem because of page_lock()
1047          * File Caches may use write_page() or lock_page() in migration, then,
1048          * just care Anon page here.
1049          *
1050          * Only page_get_anon_vma() understands the subtleties of
1051          * getting a hold on an anon_vma from outside one of its mms.
1052          * But if we cannot get anon_vma, then we won't need it anyway,
1053          * because that implies that the anon page is no longer mapped
1054          * (and cannot be remapped so long as we hold the page lock).
1055          */
1056         if (PageAnon(page) && !PageKsm(page))
1057                 anon_vma = page_get_anon_vma(page);
1058
1059         /*
1060          * Block others from accessing the new page when we get around to
1061          * establishing additional references. We are usually the only one
1062          * holding a reference to newpage at this point. We used to have a BUG
1063          * here if trylock_page(newpage) fails, but would like to allow for
1064          * cases where there might be a race with the previous use of newpage.
1065          * This is much like races on refcount of oldpage: just don't BUG().
1066          */
1067         if (unlikely(!trylock_page(newpage)))
1068                 goto out_unlock;
1069
1070         if (unlikely(!is_lru)) {
1071                 rc = move_to_new_page(newpage, page, mode);
1072                 goto out_unlock_both;
1073         }
1074
1075         /*
1076          * Corner case handling:
1077          * 1. When a new swap-cache page is read into, it is added to the LRU
1078          * and treated as swapcache but it has no rmap yet.
1079          * Calling try_to_unmap() against a page->mapping==NULL page will
1080          * trigger a BUG.  So handle it here.
1081          * 2. An orphaned page (see truncate_complete_page) might have
1082          * fs-private metadata. The page can be picked up due to memory
1083          * offlining.  Everywhere else except page reclaim, the page is
1084          * invisible to the vm, so the page can not be migrated.  So try to
1085          * free the metadata, so the page can be freed.
1086          */
1087         if (!page->mapping) {
1088                 VM_BUG_ON_PAGE(PageAnon(page), page);
1089                 if (page_has_private(page)) {
1090                         try_to_free_buffers(page);
1091                         goto out_unlock_both;
1092                 }
1093         } else if (page_mapped(page)) {
1094                 /* Establish migration ptes */
1095                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1096                                 page);
1097                 try_to_unmap(page,
1098                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1099                 page_was_mapped = 1;
1100         }
1101
1102         if (!page_mapped(page))
1103                 rc = move_to_new_page(newpage, page, mode);
1104
1105         if (page_was_mapped)
1106                 remove_migration_ptes(page,
1107                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1108
1109 out_unlock_both:
1110         unlock_page(newpage);
1111 out_unlock:
1112         /* Drop an anon_vma reference if we took one */
1113         if (anon_vma)
1114                 put_anon_vma(anon_vma);
1115         unlock_page(page);
1116 out:
1117         /*
1118          * If migration is successful, decrease refcount of the newpage
1119          * which will not free the page because new page owner increased
1120          * refcounter. As well, if it is LRU page, add the page to LRU
1121          * list in here.
1122          */
1123         if (rc == MIGRATEPAGE_SUCCESS) {
1124                 if (unlikely(__PageMovable(newpage)))
1125                         put_page(newpage);
1126                 else
1127                         putback_lru_page(newpage);
1128         }
1129
1130         return rc;
1131 }
1132
1133 /*
1134  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1135  * around it.
1136  */
1137 #if defined(CONFIG_ARM) && \
1138         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1139 #define ICE_noinline noinline
1140 #else
1141 #define ICE_noinline
1142 #endif
1143
1144 /*
1145  * Obtain the lock on page, remove all ptes and migrate the page
1146  * to the newly allocated page in newpage.
1147  */
1148 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1149                                    free_page_t put_new_page,
1150                                    unsigned long private, struct page *page,
1151                                    int force, enum migrate_mode mode,
1152                                    enum migrate_reason reason)
1153 {
1154         int rc = MIGRATEPAGE_SUCCESS;
1155         struct page *newpage;
1156
1157         if (!thp_migration_supported() && PageTransHuge(page))
1158                 return -ENOMEM;
1159
1160         newpage = get_new_page(page, private);
1161         if (!newpage)
1162                 return -ENOMEM;
1163
1164         if (page_count(page) == 1) {
1165                 /* page was freed from under us. So we are done. */
1166                 ClearPageActive(page);
1167                 ClearPageUnevictable(page);
1168                 if (unlikely(__PageMovable(page))) {
1169                         lock_page(page);
1170                         if (!PageMovable(page))
1171                                 __ClearPageIsolated(page);
1172                         unlock_page(page);
1173                 }
1174                 if (put_new_page)
1175                         put_new_page(newpage, private);
1176                 else
1177                         put_page(newpage);
1178                 goto out;
1179         }
1180
1181         rc = __unmap_and_move(page, newpage, force, mode);
1182         if (rc == MIGRATEPAGE_SUCCESS)
1183                 set_page_owner_migrate_reason(newpage, reason);
1184
1185 out:
1186         if (rc != -EAGAIN) {
1187                 /*
1188                  * A page that has been migrated has all references
1189                  * removed and will be freed. A page that has not been
1190                  * migrated will have kepts its references and be
1191                  * restored.
1192                  */
1193                 list_del(&page->lru);
1194
1195                 /*
1196                  * Compaction can migrate also non-LRU pages which are
1197                  * not accounted to NR_ISOLATED_*. They can be recognized
1198                  * as __PageMovable
1199                  */
1200                 if (likely(!__PageMovable(page)))
1201                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1202                                         page_is_file_cache(page), -hpage_nr_pages(page));
1203         }
1204
1205         /*
1206          * If migration is successful, releases reference grabbed during
1207          * isolation. Otherwise, restore the page to right list unless
1208          * we want to retry.
1209          */
1210         if (rc == MIGRATEPAGE_SUCCESS) {
1211                 put_page(page);
1212                 if (reason == MR_MEMORY_FAILURE) {
1213                         /*
1214                          * Set PG_HWPoison on just freed page
1215                          * intentionally. Although it's rather weird,
1216                          * it's how HWPoison flag works at the moment.
1217                          */
1218                         if (set_hwpoison_free_buddy_page(page))
1219                                 num_poisoned_pages_inc();
1220                 }
1221         } else {
1222                 if (rc != -EAGAIN) {
1223                         if (likely(!__PageMovable(page))) {
1224                                 putback_lru_page(page);
1225                                 goto put_new;
1226                         }
1227
1228                         lock_page(page);
1229                         if (PageMovable(page))
1230                                 putback_movable_page(page);
1231                         else
1232                                 __ClearPageIsolated(page);
1233                         unlock_page(page);
1234                         put_page(page);
1235                 }
1236 put_new:
1237                 if (put_new_page)
1238                         put_new_page(newpage, private);
1239                 else
1240                         put_page(newpage);
1241         }
1242
1243         return rc;
1244 }
1245
1246 /*
1247  * Counterpart of unmap_and_move_page() for hugepage migration.
1248  *
1249  * This function doesn't wait the completion of hugepage I/O
1250  * because there is no race between I/O and migration for hugepage.
1251  * Note that currently hugepage I/O occurs only in direct I/O
1252  * where no lock is held and PG_writeback is irrelevant,
1253  * and writeback status of all subpages are counted in the reference
1254  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1255  * under direct I/O, the reference of the head page is 512 and a bit more.)
1256  * This means that when we try to migrate hugepage whose subpages are
1257  * doing direct I/O, some references remain after try_to_unmap() and
1258  * hugepage migration fails without data corruption.
1259  *
1260  * There is also no race when direct I/O is issued on the page under migration,
1261  * because then pte is replaced with migration swap entry and direct I/O code
1262  * will wait in the page fault for migration to complete.
1263  */
1264 static int unmap_and_move_huge_page(new_page_t get_new_page,
1265                                 free_page_t put_new_page, unsigned long private,
1266                                 struct page *hpage, int force,
1267                                 enum migrate_mode mode, int reason)
1268 {
1269         int rc = -EAGAIN;
1270         int page_was_mapped = 0;
1271         struct page *new_hpage;
1272         struct anon_vma *anon_vma = NULL;
1273
1274         /*
1275          * Movability of hugepages depends on architectures and hugepage size.
1276          * This check is necessary because some callers of hugepage migration
1277          * like soft offline and memory hotremove don't walk through page
1278          * tables or check whether the hugepage is pmd-based or not before
1279          * kicking migration.
1280          */
1281         if (!hugepage_migration_supported(page_hstate(hpage))) {
1282                 putback_active_hugepage(hpage);
1283                 return -ENOSYS;
1284         }
1285
1286         new_hpage = get_new_page(hpage, private);
1287         if (!new_hpage)
1288                 return -ENOMEM;
1289
1290         if (!trylock_page(hpage)) {
1291                 if (!force)
1292                         goto out;
1293                 switch (mode) {
1294                 case MIGRATE_SYNC:
1295                 case MIGRATE_SYNC_NO_COPY:
1296                         break;
1297                 default:
1298                         goto out;
1299                 }
1300                 lock_page(hpage);
1301         }
1302
1303         if (PageAnon(hpage))
1304                 anon_vma = page_get_anon_vma(hpage);
1305
1306         if (unlikely(!trylock_page(new_hpage)))
1307                 goto put_anon;
1308
1309         if (page_mapped(hpage)) {
1310                 try_to_unmap(hpage,
1311                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312                 page_was_mapped = 1;
1313         }
1314
1315         if (!page_mapped(hpage))
1316                 rc = move_to_new_page(new_hpage, hpage, mode);
1317
1318         if (page_was_mapped)
1319                 remove_migration_ptes(hpage,
1320                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1321
1322         unlock_page(new_hpage);
1323
1324 put_anon:
1325         if (anon_vma)
1326                 put_anon_vma(anon_vma);
1327
1328         if (rc == MIGRATEPAGE_SUCCESS) {
1329                 move_hugetlb_state(hpage, new_hpage, reason);
1330                 put_new_page = NULL;
1331         }
1332
1333         unlock_page(hpage);
1334 out:
1335         if (rc != -EAGAIN)
1336                 putback_active_hugepage(hpage);
1337
1338         /*
1339          * If migration was not successful and there's a freeing callback, use
1340          * it.  Otherwise, put_page() will drop the reference grabbed during
1341          * isolation.
1342          */
1343         if (put_new_page)
1344                 put_new_page(new_hpage, private);
1345         else
1346                 putback_active_hugepage(new_hpage);
1347
1348         return rc;
1349 }
1350
1351 /*
1352  * migrate_pages - migrate the pages specified in a list, to the free pages
1353  *                 supplied as the target for the page migration
1354  *
1355  * @from:               The list of pages to be migrated.
1356  * @get_new_page:       The function used to allocate free pages to be used
1357  *                      as the target of the page migration.
1358  * @put_new_page:       The function used to free target pages if migration
1359  *                      fails, or NULL if no special handling is necessary.
1360  * @private:            Private data to be passed on to get_new_page()
1361  * @mode:               The migration mode that specifies the constraints for
1362  *                      page migration, if any.
1363  * @reason:             The reason for page migration.
1364  *
1365  * The function returns after 10 attempts or if no pages are movable any more
1366  * because the list has become empty or no retryable pages exist any more.
1367  * The caller should call putback_movable_pages() to return pages to the LRU
1368  * or free list only if ret != 0.
1369  *
1370  * Returns the number of pages that were not migrated, or an error code.
1371  */
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373                 free_page_t put_new_page, unsigned long private,
1374                 enum migrate_mode mode, int reason)
1375 {
1376         int retry = 1;
1377         int nr_failed = 0;
1378         int nr_succeeded = 0;
1379         int pass = 0;
1380         struct page *page;
1381         struct page *page2;
1382         int swapwrite = current->flags & PF_SWAPWRITE;
1383         int rc;
1384
1385         if (!swapwrite)
1386                 current->flags |= PF_SWAPWRITE;
1387
1388         for(pass = 0; pass < 10 && retry; pass++) {
1389                 retry = 0;
1390
1391                 list_for_each_entry_safe(page, page2, from, lru) {
1392 retry:
1393                         cond_resched();
1394
1395                         if (PageHuge(page))
1396                                 rc = unmap_and_move_huge_page(get_new_page,
1397                                                 put_new_page, private, page,
1398                                                 pass > 2, mode, reason);
1399                         else
1400                                 rc = unmap_and_move(get_new_page, put_new_page,
1401                                                 private, page, pass > 2, mode,
1402                                                 reason);
1403
1404                         switch(rc) {
1405                         case -ENOMEM:
1406                                 /*
1407                                  * THP migration might be unsupported or the
1408                                  * allocation could've failed so we should
1409                                  * retry on the same page with the THP split
1410                                  * to base pages.
1411                                  *
1412                                  * Head page is retried immediately and tail
1413                                  * pages are added to the tail of the list so
1414                                  * we encounter them after the rest of the list
1415                                  * is processed.
1416                                  */
1417                                 if (PageTransHuge(page) && !PageHuge(page)) {
1418                                         lock_page(page);
1419                                         rc = split_huge_page_to_list(page, from);
1420                                         unlock_page(page);
1421                                         if (!rc) {
1422                                                 list_safe_reset_next(page, page2, lru);
1423                                                 goto retry;
1424                                         }
1425                                 }
1426                                 nr_failed++;
1427                                 goto out;
1428                         case -EAGAIN:
1429                                 retry++;
1430                                 break;
1431                         case MIGRATEPAGE_SUCCESS:
1432                                 nr_succeeded++;
1433                                 break;
1434                         default:
1435                                 /*
1436                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437                                  * unlike -EAGAIN case, the failed page is
1438                                  * removed from migration page list and not
1439                                  * retried in the next outer loop.
1440                                  */
1441                                 nr_failed++;
1442                                 break;
1443                         }
1444                 }
1445         }
1446         nr_failed += retry;
1447         rc = nr_failed;
1448 out:
1449         if (nr_succeeded)
1450                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451         if (nr_failed)
1452                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454
1455         if (!swapwrite)
1456                 current->flags &= ~PF_SWAPWRITE;
1457
1458         return rc;
1459 }
1460
1461 #ifdef CONFIG_NUMA
1462
1463 static int store_status(int __user *status, int start, int value, int nr)
1464 {
1465         while (nr-- > 0) {
1466                 if (put_user(value, status + start))
1467                         return -EFAULT;
1468                 start++;
1469         }
1470
1471         return 0;
1472 }
1473
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475                 struct list_head *pagelist, int node)
1476 {
1477         int err;
1478
1479         if (list_empty(pagelist))
1480                 return 0;
1481
1482         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483                         MIGRATE_SYNC, MR_SYSCALL);
1484         if (err)
1485                 putback_movable_pages(pagelist);
1486         return err;
1487 }
1488
1489 /*
1490  * Resolves the given address to a struct page, isolates it from the LRU and
1491  * puts it to the given pagelist.
1492  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493  * queued or the page doesn't need to be migrated because it is already on
1494  * the target node
1495  */
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497                 int node, struct list_head *pagelist, bool migrate_all)
1498 {
1499         struct vm_area_struct *vma;
1500         struct page *page;
1501         unsigned int follflags;
1502         int err;
1503
1504         down_read(&mm->mmap_sem);
1505         err = -EFAULT;
1506         vma = find_vma(mm, addr);
1507         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508                 goto out;
1509
1510         /* FOLL_DUMP to ignore special (like zero) pages */
1511         follflags = FOLL_GET | FOLL_DUMP;
1512         page = follow_page(vma, addr, follflags);
1513
1514         err = PTR_ERR(page);
1515         if (IS_ERR(page))
1516                 goto out;
1517
1518         err = -ENOENT;
1519         if (!page)
1520                 goto out;
1521
1522         err = 0;
1523         if (page_to_nid(page) == node)
1524                 goto out_putpage;
1525
1526         err = -EACCES;
1527         if (page_mapcount(page) > 1 && !migrate_all)
1528                 goto out_putpage;
1529
1530         if (PageHuge(page)) {
1531                 if (PageHead(page)) {
1532                         isolate_huge_page(page, pagelist);
1533                         err = 0;
1534                 }
1535         } else {
1536                 struct page *head;
1537
1538                 head = compound_head(page);
1539                 err = isolate_lru_page(head);
1540                 if (err)
1541                         goto out_putpage;
1542
1543                 err = 0;
1544                 list_add_tail(&head->lru, pagelist);
1545                 mod_node_page_state(page_pgdat(head),
1546                         NR_ISOLATED_ANON + page_is_file_cache(head),
1547                         hpage_nr_pages(head));
1548         }
1549 out_putpage:
1550         /*
1551          * Either remove the duplicate refcount from
1552          * isolate_lru_page() or drop the page ref if it was
1553          * not isolated.
1554          */
1555         put_page(page);
1556 out:
1557         up_read(&mm->mmap_sem);
1558         return err;
1559 }
1560
1561 /*
1562  * Migrate an array of page address onto an array of nodes and fill
1563  * the corresponding array of status.
1564  */
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566                          unsigned long nr_pages,
1567                          const void __user * __user *pages,
1568                          const int __user *nodes,
1569                          int __user *status, int flags)
1570 {
1571         int current_node = NUMA_NO_NODE;
1572         LIST_HEAD(pagelist);
1573         int start, i;
1574         int err = 0, err1;
1575
1576         migrate_prep();
1577
1578         for (i = start = 0; i < nr_pages; i++) {
1579                 const void __user *p;
1580                 unsigned long addr;
1581                 int node;
1582
1583                 err = -EFAULT;
1584                 if (get_user(p, pages + i))
1585                         goto out_flush;
1586                 if (get_user(node, nodes + i))
1587                         goto out_flush;
1588                 addr = (unsigned long)p;
1589
1590                 err = -ENODEV;
1591                 if (node < 0 || node >= MAX_NUMNODES)
1592                         goto out_flush;
1593                 if (!node_state(node, N_MEMORY))
1594                         goto out_flush;
1595
1596                 err = -EACCES;
1597                 if (!node_isset(node, task_nodes))
1598                         goto out_flush;
1599
1600                 if (current_node == NUMA_NO_NODE) {
1601                         current_node = node;
1602                         start = i;
1603                 } else if (node != current_node) {
1604                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1605                         if (err)
1606                                 goto out;
1607                         err = store_status(status, start, current_node, i - start);
1608                         if (err)
1609                                 goto out;
1610                         start = i;
1611                         current_node = node;
1612                 }
1613
1614                 /*
1615                  * Errors in the page lookup or isolation are not fatal and we simply
1616                  * report them via status
1617                  */
1618                 err = add_page_for_migration(mm, addr, current_node,
1619                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1620                 if (!err)
1621                         continue;
1622
1623                 err = store_status(status, i, err, 1);
1624                 if (err)
1625                         goto out_flush;
1626
1627                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1628                 if (err)
1629                         goto out;
1630                 if (i > start) {
1631                         err = store_status(status, start, current_node, i - start);
1632                         if (err)
1633                                 goto out;
1634                 }
1635                 current_node = NUMA_NO_NODE;
1636         }
1637 out_flush:
1638         if (list_empty(&pagelist))
1639                 return err;
1640
1641         /* Make sure we do not overwrite the existing error */
1642         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643         if (!err1)
1644                 err1 = store_status(status, start, current_node, i - start);
1645         if (!err)
1646                 err = err1;
1647 out:
1648         return err;
1649 }
1650
1651 /*
1652  * Determine the nodes of an array of pages and store it in an array of status.
1653  */
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655                                 const void __user **pages, int *status)
1656 {
1657         unsigned long i;
1658
1659         down_read(&mm->mmap_sem);
1660
1661         for (i = 0; i < nr_pages; i++) {
1662                 unsigned long addr = (unsigned long)(*pages);
1663                 struct vm_area_struct *vma;
1664                 struct page *page;
1665                 int err = -EFAULT;
1666
1667                 vma = find_vma(mm, addr);
1668                 if (!vma || addr < vma->vm_start)
1669                         goto set_status;
1670
1671                 /* FOLL_DUMP to ignore special (like zero) pages */
1672                 page = follow_page(vma, addr, FOLL_DUMP);
1673
1674                 err = PTR_ERR(page);
1675                 if (IS_ERR(page))
1676                         goto set_status;
1677
1678                 err = page ? page_to_nid(page) : -ENOENT;
1679 set_status:
1680                 *status = err;
1681
1682                 pages++;
1683                 status++;
1684         }
1685
1686         up_read(&mm->mmap_sem);
1687 }
1688
1689 /*
1690  * Determine the nodes of a user array of pages and store it in
1691  * a user array of status.
1692  */
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694                          const void __user * __user *pages,
1695                          int __user *status)
1696 {
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1700
1701         while (nr_pages) {
1702                 unsigned long chunk_nr;
1703
1704                 chunk_nr = nr_pages;
1705                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707
1708                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709                         break;
1710
1711                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712
1713                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714                         break;
1715
1716                 pages += chunk_nr;
1717                 status += chunk_nr;
1718                 nr_pages -= chunk_nr;
1719         }
1720         return nr_pages ? -EFAULT : 0;
1721 }
1722
1723 /*
1724  * Move a list of pages in the address space of the currently executing
1725  * process.
1726  */
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728                              const void __user * __user *pages,
1729                              const int __user *nodes,
1730                              int __user *status, int flags)
1731 {
1732         struct task_struct *task;
1733         struct mm_struct *mm;
1734         int err;
1735         nodemask_t task_nodes;
1736
1737         /* Check flags */
1738         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739                 return -EINVAL;
1740
1741         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742                 return -EPERM;
1743
1744         /* Find the mm_struct */
1745         rcu_read_lock();
1746         task = pid ? find_task_by_vpid(pid) : current;
1747         if (!task) {
1748                 rcu_read_unlock();
1749                 return -ESRCH;
1750         }
1751         get_task_struct(task);
1752
1753         /*
1754          * Check if this process has the right to modify the specified
1755          * process. Use the regular "ptrace_may_access()" checks.
1756          */
1757         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758                 rcu_read_unlock();
1759                 err = -EPERM;
1760                 goto out;
1761         }
1762         rcu_read_unlock();
1763
1764         err = security_task_movememory(task);
1765         if (err)
1766                 goto out;
1767
1768         task_nodes = cpuset_mems_allowed(task);
1769         mm = get_task_mm(task);
1770         put_task_struct(task);
1771
1772         if (!mm)
1773                 return -EINVAL;
1774
1775         if (nodes)
1776                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777                                     nodes, status, flags);
1778         else
1779                 err = do_pages_stat(mm, nr_pages, pages, status);
1780
1781         mmput(mm);
1782         return err;
1783
1784 out:
1785         put_task_struct(task);
1786         return err;
1787 }
1788
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790                 const void __user * __user *, pages,
1791                 const int __user *, nodes,
1792                 int __user *, status, int, flags)
1793 {
1794         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795 }
1796
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799                        compat_uptr_t __user *, pages32,
1800                        const int __user *, nodes,
1801                        int __user *, status,
1802                        int, flags)
1803 {
1804         const void __user * __user *pages;
1805         int i;
1806
1807         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808         for (i = 0; i < nr_pages; i++) {
1809                 compat_uptr_t p;
1810
1811                 if (get_user(p, pages32 + i) ||
1812                         put_user(compat_ptr(p), pages + i))
1813                         return -EFAULT;
1814         }
1815         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816 }
1817 #endif /* CONFIG_COMPAT */
1818
1819 #ifdef CONFIG_NUMA_BALANCING
1820 /*
1821  * Returns true if this is a safe migration target node for misplaced NUMA
1822  * pages. Currently it only checks the watermarks which crude
1823  */
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825                                    unsigned long nr_migrate_pages)
1826 {
1827         int z;
1828
1829         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830                 struct zone *zone = pgdat->node_zones + z;
1831
1832                 if (!populated_zone(zone))
1833                         continue;
1834
1835                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836                 if (!zone_watermark_ok(zone, 0,
1837                                        high_wmark_pages(zone) +
1838                                        nr_migrate_pages,
1839                                        0, 0))
1840                         continue;
1841                 return true;
1842         }
1843         return false;
1844 }
1845
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1847                                            unsigned long data)
1848 {
1849         int nid = (int) data;
1850         struct page *newpage;
1851
1852         newpage = __alloc_pages_node(nid,
1853                                          (GFP_HIGHUSER_MOVABLE |
1854                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1855                                           __GFP_NORETRY | __GFP_NOWARN) &
1856                                          ~__GFP_RECLAIM, 0);
1857
1858         return newpage;
1859 }
1860
1861 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1862 {
1863         int page_lru;
1864
1865         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1866
1867         /* Avoid migrating to a node that is nearly full */
1868         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1869                 return 0;
1870
1871         if (isolate_lru_page(page))
1872                 return 0;
1873
1874         /*
1875          * migrate_misplaced_transhuge_page() skips page migration's usual
1876          * check on page_count(), so we must do it here, now that the page
1877          * has been isolated: a GUP pin, or any other pin, prevents migration.
1878          * The expected page count is 3: 1 for page's mapcount and 1 for the
1879          * caller's pin and 1 for the reference taken by isolate_lru_page().
1880          */
1881         if (PageTransHuge(page) && page_count(page) != 3) {
1882                 putback_lru_page(page);
1883                 return 0;
1884         }
1885
1886         page_lru = page_is_file_cache(page);
1887         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1888                                 hpage_nr_pages(page));
1889
1890         /*
1891          * Isolating the page has taken another reference, so the
1892          * caller's reference can be safely dropped without the page
1893          * disappearing underneath us during migration.
1894          */
1895         put_page(page);
1896         return 1;
1897 }
1898
1899 bool pmd_trans_migrating(pmd_t pmd)
1900 {
1901         struct page *page = pmd_page(pmd);
1902         return PageLocked(page);
1903 }
1904
1905 /*
1906  * Attempt to migrate a misplaced page to the specified destination
1907  * node. Caller is expected to have an elevated reference count on
1908  * the page that will be dropped by this function before returning.
1909  */
1910 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1911                            int node)
1912 {
1913         pg_data_t *pgdat = NODE_DATA(node);
1914         int isolated;
1915         int nr_remaining;
1916         LIST_HEAD(migratepages);
1917
1918         /*
1919          * Don't migrate file pages that are mapped in multiple processes
1920          * with execute permissions as they are probably shared libraries.
1921          */
1922         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1923             (vma->vm_flags & VM_EXEC))
1924                 goto out;
1925
1926         /*
1927          * Also do not migrate dirty pages as not all filesystems can move
1928          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1929          */
1930         if (page_is_file_cache(page) && PageDirty(page))
1931                 goto out;
1932
1933         isolated = numamigrate_isolate_page(pgdat, page);
1934         if (!isolated)
1935                 goto out;
1936
1937         list_add(&page->lru, &migratepages);
1938         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1939                                      NULL, node, MIGRATE_ASYNC,
1940                                      MR_NUMA_MISPLACED);
1941         if (nr_remaining) {
1942                 if (!list_empty(&migratepages)) {
1943                         list_del(&page->lru);
1944                         dec_node_page_state(page, NR_ISOLATED_ANON +
1945                                         page_is_file_cache(page));
1946                         putback_lru_page(page);
1947                 }
1948                 isolated = 0;
1949         } else
1950                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1951         BUG_ON(!list_empty(&migratepages));
1952         return isolated;
1953
1954 out:
1955         put_page(page);
1956         return 0;
1957 }
1958 #endif /* CONFIG_NUMA_BALANCING */
1959
1960 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1961 /*
1962  * Migrates a THP to a given target node. page must be locked and is unlocked
1963  * before returning.
1964  */
1965 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1966                                 struct vm_area_struct *vma,
1967                                 pmd_t *pmd, pmd_t entry,
1968                                 unsigned long address,
1969                                 struct page *page, int node)
1970 {
1971         spinlock_t *ptl;
1972         pg_data_t *pgdat = NODE_DATA(node);
1973         int isolated = 0;
1974         struct page *new_page = NULL;
1975         int page_lru = page_is_file_cache(page);
1976         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1977         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1978
1979         new_page = alloc_pages_node(node,
1980                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1981                 HPAGE_PMD_ORDER);
1982         if (!new_page)
1983                 goto out_fail;
1984         prep_transhuge_page(new_page);
1985
1986         isolated = numamigrate_isolate_page(pgdat, page);
1987         if (!isolated) {
1988                 put_page(new_page);
1989                 goto out_fail;
1990         }
1991
1992         /* Prepare a page as a migration target */
1993         __SetPageLocked(new_page);
1994         if (PageSwapBacked(page))
1995                 __SetPageSwapBacked(new_page);
1996
1997         /* anon mapping, we can simply copy page->mapping to the new page: */
1998         new_page->mapping = page->mapping;
1999         new_page->index = page->index;
2000         migrate_page_copy(new_page, page);
2001         WARN_ON(PageLRU(new_page));
2002
2003         /* Recheck the target PMD */
2004         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2005         ptl = pmd_lock(mm, pmd);
2006         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2007                 spin_unlock(ptl);
2008                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2009
2010                 /* Reverse changes made by migrate_page_copy() */
2011                 if (TestClearPageActive(new_page))
2012                         SetPageActive(page);
2013                 if (TestClearPageUnevictable(new_page))
2014                         SetPageUnevictable(page);
2015
2016                 unlock_page(new_page);
2017                 put_page(new_page);             /* Free it */
2018
2019                 /* Retake the callers reference and putback on LRU */
2020                 get_page(page);
2021                 putback_lru_page(page);
2022                 mod_node_page_state(page_pgdat(page),
2023                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2024
2025                 goto out_unlock;
2026         }
2027
2028         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2029         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2030
2031         /*
2032          * Clear the old entry under pagetable lock and establish the new PTE.
2033          * Any parallel GUP will either observe the old page blocking on the
2034          * page lock, block on the page table lock or observe the new page.
2035          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2036          * guarantee the copy is visible before the pagetable update.
2037          */
2038         flush_cache_range(vma, mmun_start, mmun_end);
2039         page_add_anon_rmap(new_page, vma, mmun_start, true);
2040         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2041         set_pmd_at(mm, mmun_start, pmd, entry);
2042         update_mmu_cache_pmd(vma, address, &entry);
2043
2044         page_ref_unfreeze(page, 2);
2045         mlock_migrate_page(new_page, page);
2046         page_remove_rmap(page, true);
2047         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2048
2049         spin_unlock(ptl);
2050         /*
2051          * No need to double call mmu_notifier->invalidate_range() callback as
2052          * the above pmdp_huge_clear_flush_notify() did already call it.
2053          */
2054         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2055
2056         /* Take an "isolate" reference and put new page on the LRU. */
2057         get_page(new_page);
2058         putback_lru_page(new_page);
2059
2060         unlock_page(new_page);
2061         unlock_page(page);
2062         put_page(page);                 /* Drop the rmap reference */
2063         put_page(page);                 /* Drop the LRU isolation reference */
2064
2065         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2066         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2067
2068         mod_node_page_state(page_pgdat(page),
2069                         NR_ISOLATED_ANON + page_lru,
2070                         -HPAGE_PMD_NR);
2071         return isolated;
2072
2073 out_fail:
2074         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2075         ptl = pmd_lock(mm, pmd);
2076         if (pmd_same(*pmd, entry)) {
2077                 entry = pmd_modify(entry, vma->vm_page_prot);
2078                 set_pmd_at(mm, mmun_start, pmd, entry);
2079                 update_mmu_cache_pmd(vma, address, &entry);
2080         }
2081         spin_unlock(ptl);
2082
2083 out_unlock:
2084         unlock_page(page);
2085         put_page(page);
2086         return 0;
2087 }
2088 #endif /* CONFIG_NUMA_BALANCING */
2089
2090 #endif /* CONFIG_NUMA */
2091
2092 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2093 struct migrate_vma {
2094         struct vm_area_struct   *vma;
2095         unsigned long           *dst;
2096         unsigned long           *src;
2097         unsigned long           cpages;
2098         unsigned long           npages;
2099         unsigned long           start;
2100         unsigned long           end;
2101 };
2102
2103 static int migrate_vma_collect_hole(unsigned long start,
2104                                     unsigned long end,
2105                                     struct mm_walk *walk)
2106 {
2107         struct migrate_vma *migrate = walk->private;
2108         unsigned long addr;
2109
2110         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2111                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2112                 migrate->dst[migrate->npages] = 0;
2113                 migrate->npages++;
2114                 migrate->cpages++;
2115         }
2116
2117         return 0;
2118 }
2119
2120 static int migrate_vma_collect_skip(unsigned long start,
2121                                     unsigned long end,
2122                                     struct mm_walk *walk)
2123 {
2124         struct migrate_vma *migrate = walk->private;
2125         unsigned long addr;
2126
2127         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2128                 migrate->dst[migrate->npages] = 0;
2129                 migrate->src[migrate->npages++] = 0;
2130         }
2131
2132         return 0;
2133 }
2134
2135 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2136                                    unsigned long start,
2137                                    unsigned long end,
2138                                    struct mm_walk *walk)
2139 {
2140         struct migrate_vma *migrate = walk->private;
2141         struct vm_area_struct *vma = walk->vma;
2142         struct mm_struct *mm = vma->vm_mm;
2143         unsigned long addr = start, unmapped = 0;
2144         spinlock_t *ptl;
2145         pte_t *ptep;
2146
2147 again:
2148         if (pmd_none(*pmdp))
2149                 return migrate_vma_collect_hole(start, end, walk);
2150
2151         if (pmd_trans_huge(*pmdp)) {
2152                 struct page *page;
2153
2154                 ptl = pmd_lock(mm, pmdp);
2155                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2156                         spin_unlock(ptl);
2157                         goto again;
2158                 }
2159
2160                 page = pmd_page(*pmdp);
2161                 if (is_huge_zero_page(page)) {
2162                         spin_unlock(ptl);
2163                         split_huge_pmd(vma, pmdp, addr);
2164                         if (pmd_trans_unstable(pmdp))
2165                                 return migrate_vma_collect_skip(start, end,
2166                                                                 walk);
2167                 } else {
2168                         int ret;
2169
2170                         get_page(page);
2171                         spin_unlock(ptl);
2172                         if (unlikely(!trylock_page(page)))
2173                                 return migrate_vma_collect_skip(start, end,
2174                                                                 walk);
2175                         ret = split_huge_page(page);
2176                         unlock_page(page);
2177                         put_page(page);
2178                         if (ret)
2179                                 return migrate_vma_collect_skip(start, end,
2180                                                                 walk);
2181                         if (pmd_none(*pmdp))
2182                                 return migrate_vma_collect_hole(start, end,
2183                                                                 walk);
2184                 }
2185         }
2186
2187         if (unlikely(pmd_bad(*pmdp)))
2188                 return migrate_vma_collect_skip(start, end, walk);
2189
2190         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2191         arch_enter_lazy_mmu_mode();
2192
2193         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2194                 unsigned long mpfn, pfn;
2195                 struct page *page;
2196                 swp_entry_t entry;
2197                 pte_t pte;
2198
2199                 pte = *ptep;
2200                 pfn = pte_pfn(pte);
2201
2202                 if (pte_none(pte)) {
2203                         mpfn = MIGRATE_PFN_MIGRATE;
2204                         migrate->cpages++;
2205                         pfn = 0;
2206                         goto next;
2207                 }
2208
2209                 if (!pte_present(pte)) {
2210                         mpfn = pfn = 0;
2211
2212                         /*
2213                          * Only care about unaddressable device page special
2214                          * page table entry. Other special swap entries are not
2215                          * migratable, and we ignore regular swapped page.
2216                          */
2217                         entry = pte_to_swp_entry(pte);
2218                         if (!is_device_private_entry(entry))
2219                                 goto next;
2220
2221                         page = device_private_entry_to_page(entry);
2222                         mpfn = migrate_pfn(page_to_pfn(page))|
2223                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2224                         if (is_write_device_private_entry(entry))
2225                                 mpfn |= MIGRATE_PFN_WRITE;
2226                 } else {
2227                         if (is_zero_pfn(pfn)) {
2228                                 mpfn = MIGRATE_PFN_MIGRATE;
2229                                 migrate->cpages++;
2230                                 pfn = 0;
2231                                 goto next;
2232                         }
2233                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2234                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2235                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2236                 }
2237
2238                 /* FIXME support THP */
2239                 if (!page || !page->mapping || PageTransCompound(page)) {
2240                         mpfn = pfn = 0;
2241                         goto next;
2242                 }
2243                 pfn = page_to_pfn(page);
2244
2245                 /*
2246                  * By getting a reference on the page we pin it and that blocks
2247                  * any kind of migration. Side effect is that it "freezes" the
2248                  * pte.
2249                  *
2250                  * We drop this reference after isolating the page from the lru
2251                  * for non device page (device page are not on the lru and thus
2252                  * can't be dropped from it).
2253                  */
2254                 get_page(page);
2255                 migrate->cpages++;
2256
2257                 /*
2258                  * Optimize for the common case where page is only mapped once
2259                  * in one process. If we can lock the page, then we can safely
2260                  * set up a special migration page table entry now.
2261                  */
2262                 if (trylock_page(page)) {
2263                         pte_t swp_pte;
2264
2265                         mpfn |= MIGRATE_PFN_LOCKED;
2266                         ptep_get_and_clear(mm, addr, ptep);
2267
2268                         /* Setup special migration page table entry */
2269                         entry = make_migration_entry(page, mpfn &
2270                                                      MIGRATE_PFN_WRITE);
2271                         swp_pte = swp_entry_to_pte(entry);
2272                         if (pte_soft_dirty(pte))
2273                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2274                         set_pte_at(mm, addr, ptep, swp_pte);
2275
2276                         /*
2277                          * This is like regular unmap: we remove the rmap and
2278                          * drop page refcount. Page won't be freed, as we took
2279                          * a reference just above.
2280                          */
2281                         page_remove_rmap(page, false);
2282                         put_page(page);
2283
2284                         if (pte_present(pte))
2285                                 unmapped++;
2286                 }
2287
2288 next:
2289                 migrate->dst[migrate->npages] = 0;
2290                 migrate->src[migrate->npages++] = mpfn;
2291         }
2292         arch_leave_lazy_mmu_mode();
2293         pte_unmap_unlock(ptep - 1, ptl);
2294
2295         /* Only flush the TLB if we actually modified any entries */
2296         if (unmapped)
2297                 flush_tlb_range(walk->vma, start, end);
2298
2299         return 0;
2300 }
2301
2302 /*
2303  * migrate_vma_collect() - collect pages over a range of virtual addresses
2304  * @migrate: migrate struct containing all migration information
2305  *
2306  * This will walk the CPU page table. For each virtual address backed by a
2307  * valid page, it updates the src array and takes a reference on the page, in
2308  * order to pin the page until we lock it and unmap it.
2309  */
2310 static void migrate_vma_collect(struct migrate_vma *migrate)
2311 {
2312         struct mm_walk mm_walk;
2313
2314         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2315         mm_walk.pte_entry = NULL;
2316         mm_walk.pte_hole = migrate_vma_collect_hole;
2317         mm_walk.hugetlb_entry = NULL;
2318         mm_walk.test_walk = NULL;
2319         mm_walk.vma = migrate->vma;
2320         mm_walk.mm = migrate->vma->vm_mm;
2321         mm_walk.private = migrate;
2322
2323         mmu_notifier_invalidate_range_start(mm_walk.mm,
2324                                             migrate->start,
2325                                             migrate->end);
2326         walk_page_range(migrate->start, migrate->end, &mm_walk);
2327         mmu_notifier_invalidate_range_end(mm_walk.mm,
2328                                           migrate->start,
2329                                           migrate->end);
2330
2331         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2332 }
2333
2334 /*
2335  * migrate_vma_check_page() - check if page is pinned or not
2336  * @page: struct page to check
2337  *
2338  * Pinned pages cannot be migrated. This is the same test as in
2339  * migrate_page_move_mapping(), except that here we allow migration of a
2340  * ZONE_DEVICE page.
2341  */
2342 static bool migrate_vma_check_page(struct page *page)
2343 {
2344         /*
2345          * One extra ref because caller holds an extra reference, either from
2346          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2347          * a device page.
2348          */
2349         int extra = 1;
2350
2351         /*
2352          * FIXME support THP (transparent huge page), it is bit more complex to
2353          * check them than regular pages, because they can be mapped with a pmd
2354          * or with a pte (split pte mapping).
2355          */
2356         if (PageCompound(page))
2357                 return false;
2358
2359         /* Page from ZONE_DEVICE have one extra reference */
2360         if (is_zone_device_page(page)) {
2361                 /*
2362                  * Private page can never be pin as they have no valid pte and
2363                  * GUP will fail for those. Yet if there is a pending migration
2364                  * a thread might try to wait on the pte migration entry and
2365                  * will bump the page reference count. Sadly there is no way to
2366                  * differentiate a regular pin from migration wait. Hence to
2367                  * avoid 2 racing thread trying to migrate back to CPU to enter
2368                  * infinite loop (one stoping migration because the other is
2369                  * waiting on pte migration entry). We always return true here.
2370                  *
2371                  * FIXME proper solution is to rework migration_entry_wait() so
2372                  * it does not need to take a reference on page.
2373                  */
2374                 if (is_device_private_page(page))
2375                         return true;
2376
2377                 /*
2378                  * Only allow device public page to be migrated and account for
2379                  * the extra reference count imply by ZONE_DEVICE pages.
2380                  */
2381                 if (!is_device_public_page(page))
2382                         return false;
2383                 extra++;
2384         }
2385
2386         /* For file back page */
2387         if (page_mapping(page))
2388                 extra += 1 + page_has_private(page);
2389
2390         if ((page_count(page) - extra) > page_mapcount(page))
2391                 return false;
2392
2393         return true;
2394 }
2395
2396 /*
2397  * migrate_vma_prepare() - lock pages and isolate them from the lru
2398  * @migrate: migrate struct containing all migration information
2399  *
2400  * This locks pages that have been collected by migrate_vma_collect(). Once each
2401  * page is locked it is isolated from the lru (for non-device pages). Finally,
2402  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2403  * migrated by concurrent kernel threads.
2404  */
2405 static void migrate_vma_prepare(struct migrate_vma *migrate)
2406 {
2407         const unsigned long npages = migrate->npages;
2408         const unsigned long start = migrate->start;
2409         unsigned long addr, i, restore = 0;
2410         bool allow_drain = true;
2411
2412         lru_add_drain();
2413
2414         for (i = 0; (i < npages) && migrate->cpages; i++) {
2415                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2416                 bool remap = true;
2417
2418                 if (!page)
2419                         continue;
2420
2421                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2422                         /*
2423                          * Because we are migrating several pages there can be
2424                          * a deadlock between 2 concurrent migration where each
2425                          * are waiting on each other page lock.
2426                          *
2427                          * Make migrate_vma() a best effort thing and backoff
2428                          * for any page we can not lock right away.
2429                          */
2430                         if (!trylock_page(page)) {
2431                                 migrate->src[i] = 0;
2432                                 migrate->cpages--;
2433                                 put_page(page);
2434                                 continue;
2435                         }
2436                         remap = false;
2437                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2438                 }
2439
2440                 /* ZONE_DEVICE pages are not on LRU */
2441                 if (!is_zone_device_page(page)) {
2442                         if (!PageLRU(page) && allow_drain) {
2443                                 /* Drain CPU's pagevec */
2444                                 lru_add_drain_all();
2445                                 allow_drain = false;
2446                         }
2447
2448                         if (isolate_lru_page(page)) {
2449                                 if (remap) {
2450                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2451                                         migrate->cpages--;
2452                                         restore++;
2453                                 } else {
2454                                         migrate->src[i] = 0;
2455                                         unlock_page(page);
2456                                         migrate->cpages--;
2457                                         put_page(page);
2458                                 }
2459                                 continue;
2460                         }
2461
2462                         /* Drop the reference we took in collect */
2463                         put_page(page);
2464                 }
2465
2466                 if (!migrate_vma_check_page(page)) {
2467                         if (remap) {
2468                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469                                 migrate->cpages--;
2470                                 restore++;
2471
2472                                 if (!is_zone_device_page(page)) {
2473                                         get_page(page);
2474                                         putback_lru_page(page);
2475                                 }
2476                         } else {
2477                                 migrate->src[i] = 0;
2478                                 unlock_page(page);
2479                                 migrate->cpages--;
2480
2481                                 if (!is_zone_device_page(page))
2482                                         putback_lru_page(page);
2483                                 else
2484                                         put_page(page);
2485                         }
2486                 }
2487         }
2488
2489         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2490                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2491
2492                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2493                         continue;
2494
2495                 remove_migration_pte(page, migrate->vma, addr, page);
2496
2497                 migrate->src[i] = 0;
2498                 unlock_page(page);
2499                 put_page(page);
2500                 restore--;
2501         }
2502 }
2503
2504 /*
2505  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2506  * @migrate: migrate struct containing all migration information
2507  *
2508  * Replace page mapping (CPU page table pte) with a special migration pte entry
2509  * and check again if it has been pinned. Pinned pages are restored because we
2510  * cannot migrate them.
2511  *
2512  * This is the last step before we call the device driver callback to allocate
2513  * destination memory and copy contents of original page over to new page.
2514  */
2515 static void migrate_vma_unmap(struct migrate_vma *migrate)
2516 {
2517         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2518         const unsigned long npages = migrate->npages;
2519         const unsigned long start = migrate->start;
2520         unsigned long addr, i, restore = 0;
2521
2522         for (i = 0; i < npages; i++) {
2523                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2524
2525                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2526                         continue;
2527
2528                 if (page_mapped(page)) {
2529                         try_to_unmap(page, flags);
2530                         if (page_mapped(page))
2531                                 goto restore;
2532                 }
2533
2534                 if (migrate_vma_check_page(page))
2535                         continue;
2536
2537 restore:
2538                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2539                 migrate->cpages--;
2540                 restore++;
2541         }
2542
2543         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2544                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545
2546                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547                         continue;
2548
2549                 remove_migration_ptes(page, page, false);
2550
2551                 migrate->src[i] = 0;
2552                 unlock_page(page);
2553                 restore--;
2554
2555                 if (is_zone_device_page(page))
2556                         put_page(page);
2557                 else
2558                         putback_lru_page(page);
2559         }
2560 }
2561
2562 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2563                                     unsigned long addr,
2564                                     struct page *page,
2565                                     unsigned long *src,
2566                                     unsigned long *dst)
2567 {
2568         struct vm_area_struct *vma = migrate->vma;
2569         struct mm_struct *mm = vma->vm_mm;
2570         struct mem_cgroup *memcg;
2571         bool flush = false;
2572         spinlock_t *ptl;
2573         pte_t entry;
2574         pgd_t *pgdp;
2575         p4d_t *p4dp;
2576         pud_t *pudp;
2577         pmd_t *pmdp;
2578         pte_t *ptep;
2579
2580         /* Only allow populating anonymous memory */
2581         if (!vma_is_anonymous(vma))
2582                 goto abort;
2583
2584         pgdp = pgd_offset(mm, addr);
2585         p4dp = p4d_alloc(mm, pgdp, addr);
2586         if (!p4dp)
2587                 goto abort;
2588         pudp = pud_alloc(mm, p4dp, addr);
2589         if (!pudp)
2590                 goto abort;
2591         pmdp = pmd_alloc(mm, pudp, addr);
2592         if (!pmdp)
2593                 goto abort;
2594
2595         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2596                 goto abort;
2597
2598         /*
2599          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2600          * pte_offset_map() on pmds where a huge pmd might be created
2601          * from a different thread.
2602          *
2603          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2604          * parallel threads are excluded by other means.
2605          *
2606          * Here we only have down_read(mmap_sem).
2607          */
2608         if (pte_alloc(mm, pmdp, addr))
2609                 goto abort;
2610
2611         /* See the comment in pte_alloc_one_map() */
2612         if (unlikely(pmd_trans_unstable(pmdp)))
2613                 goto abort;
2614
2615         if (unlikely(anon_vma_prepare(vma)))
2616                 goto abort;
2617         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2618                 goto abort;
2619
2620         /*
2621          * The memory barrier inside __SetPageUptodate makes sure that
2622          * preceding stores to the page contents become visible before
2623          * the set_pte_at() write.
2624          */
2625         __SetPageUptodate(page);
2626
2627         if (is_zone_device_page(page)) {
2628                 if (is_device_private_page(page)) {
2629                         swp_entry_t swp_entry;
2630
2631                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2632                         entry = swp_entry_to_pte(swp_entry);
2633                 } else if (is_device_public_page(page)) {
2634                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2635                         if (vma->vm_flags & VM_WRITE)
2636                                 entry = pte_mkwrite(pte_mkdirty(entry));
2637                         entry = pte_mkdevmap(entry);
2638                 }
2639         } else {
2640                 entry = mk_pte(page, vma->vm_page_prot);
2641                 if (vma->vm_flags & VM_WRITE)
2642                         entry = pte_mkwrite(pte_mkdirty(entry));
2643         }
2644
2645         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2646
2647         if (pte_present(*ptep)) {
2648                 unsigned long pfn = pte_pfn(*ptep);
2649
2650                 if (!is_zero_pfn(pfn)) {
2651                         pte_unmap_unlock(ptep, ptl);
2652                         mem_cgroup_cancel_charge(page, memcg, false);
2653                         goto abort;
2654                 }
2655                 flush = true;
2656         } else if (!pte_none(*ptep)) {
2657                 pte_unmap_unlock(ptep, ptl);
2658                 mem_cgroup_cancel_charge(page, memcg, false);
2659                 goto abort;
2660         }
2661
2662         /*
2663          * Check for usefaultfd but do not deliver the fault. Instead,
2664          * just back off.
2665          */
2666         if (userfaultfd_missing(vma)) {
2667                 pte_unmap_unlock(ptep, ptl);
2668                 mem_cgroup_cancel_charge(page, memcg, false);
2669                 goto abort;
2670         }
2671
2672         inc_mm_counter(mm, MM_ANONPAGES);
2673         page_add_new_anon_rmap(page, vma, addr, false);
2674         mem_cgroup_commit_charge(page, memcg, false, false);
2675         if (!is_zone_device_page(page))
2676                 lru_cache_add_active_or_unevictable(page, vma);
2677         get_page(page);
2678
2679         if (flush) {
2680                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2681                 ptep_clear_flush_notify(vma, addr, ptep);
2682                 set_pte_at_notify(mm, addr, ptep, entry);
2683                 update_mmu_cache(vma, addr, ptep);
2684         } else {
2685                 /* No need to invalidate - it was non-present before */
2686                 set_pte_at(mm, addr, ptep, entry);
2687                 update_mmu_cache(vma, addr, ptep);
2688         }
2689
2690         pte_unmap_unlock(ptep, ptl);
2691         *src = MIGRATE_PFN_MIGRATE;
2692         return;
2693
2694 abort:
2695         *src &= ~MIGRATE_PFN_MIGRATE;
2696 }
2697
2698 /*
2699  * migrate_vma_pages() - migrate meta-data from src page to dst page
2700  * @migrate: migrate struct containing all migration information
2701  *
2702  * This migrates struct page meta-data from source struct page to destination
2703  * struct page. This effectively finishes the migration from source page to the
2704  * destination page.
2705  */
2706 static void migrate_vma_pages(struct migrate_vma *migrate)
2707 {
2708         const unsigned long npages = migrate->npages;
2709         const unsigned long start = migrate->start;
2710         struct vm_area_struct *vma = migrate->vma;
2711         struct mm_struct *mm = vma->vm_mm;
2712         unsigned long addr, i, mmu_start;
2713         bool notified = false;
2714
2715         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2716                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2717                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718                 struct address_space *mapping;
2719                 int r;
2720
2721                 if (!newpage) {
2722                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2723                         continue;
2724                 }
2725
2726                 if (!page) {
2727                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2728                                 continue;
2729                         }
2730                         if (!notified) {
2731                                 mmu_start = addr;
2732                                 notified = true;
2733                                 mmu_notifier_invalidate_range_start(mm,
2734                                                                 mmu_start,
2735                                                                 migrate->end);
2736                         }
2737                         migrate_vma_insert_page(migrate, addr, newpage,
2738                                                 &migrate->src[i],
2739                                                 &migrate->dst[i]);
2740                         continue;
2741                 }
2742
2743                 mapping = page_mapping(page);
2744
2745                 if (is_zone_device_page(newpage)) {
2746                         if (is_device_private_page(newpage)) {
2747                                 /*
2748                                  * For now only support private anonymous when
2749                                  * migrating to un-addressable device memory.
2750                                  */
2751                                 if (mapping) {
2752                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2753                                         continue;
2754                                 }
2755                         } else if (!is_device_public_page(newpage)) {
2756                                 /*
2757                                  * Other types of ZONE_DEVICE page are not
2758                                  * supported.
2759                                  */
2760                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2761                                 continue;
2762                         }
2763                 }
2764
2765                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2766                 if (r != MIGRATEPAGE_SUCCESS)
2767                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768         }
2769
2770         /*
2771          * No need to double call mmu_notifier->invalidate_range() callback as
2772          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2773          * did already call it.
2774          */
2775         if (notified)
2776                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2777                                                        migrate->end);
2778 }
2779
2780 /*
2781  * migrate_vma_finalize() - restore CPU page table entry
2782  * @migrate: migrate struct containing all migration information
2783  *
2784  * This replaces the special migration pte entry with either a mapping to the
2785  * new page if migration was successful for that page, or to the original page
2786  * otherwise.
2787  *
2788  * This also unlocks the pages and puts them back on the lru, or drops the extra
2789  * refcount, for device pages.
2790  */
2791 static void migrate_vma_finalize(struct migrate_vma *migrate)
2792 {
2793         const unsigned long npages = migrate->npages;
2794         unsigned long i;
2795
2796         for (i = 0; i < npages; i++) {
2797                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2798                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2799
2800                 if (!page) {
2801                         if (newpage) {
2802                                 unlock_page(newpage);
2803                                 put_page(newpage);
2804                         }
2805                         continue;
2806                 }
2807
2808                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2809                         if (newpage) {
2810                                 unlock_page(newpage);
2811                                 put_page(newpage);
2812                         }
2813                         newpage = page;
2814                 }
2815
2816                 remove_migration_ptes(page, newpage, false);
2817                 unlock_page(page);
2818                 migrate->cpages--;
2819
2820                 if (is_zone_device_page(page))
2821                         put_page(page);
2822                 else
2823                         putback_lru_page(page);
2824
2825                 if (newpage != page) {
2826                         unlock_page(newpage);
2827                         if (is_zone_device_page(newpage))
2828                                 put_page(newpage);
2829                         else
2830                                 putback_lru_page(newpage);
2831                 }
2832         }
2833 }
2834
2835 /*
2836  * migrate_vma() - migrate a range of memory inside vma
2837  *
2838  * @ops: migration callback for allocating destination memory and copying
2839  * @vma: virtual memory area containing the range to be migrated
2840  * @start: start address of the range to migrate (inclusive)
2841  * @end: end address of the range to migrate (exclusive)
2842  * @src: array of hmm_pfn_t containing source pfns
2843  * @dst: array of hmm_pfn_t containing destination pfns
2844  * @private: pointer passed back to each of the callback
2845  * Returns: 0 on success, error code otherwise
2846  *
2847  * This function tries to migrate a range of memory virtual address range, using
2848  * callbacks to allocate and copy memory from source to destination. First it
2849  * collects all the pages backing each virtual address in the range, saving this
2850  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2851  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2852  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2853  * in the corresponding src array entry. It then restores any pages that are
2854  * pinned, by remapping and unlocking those pages.
2855  *
2856  * At this point it calls the alloc_and_copy() callback. For documentation on
2857  * what is expected from that callback, see struct migrate_vma_ops comments in
2858  * include/linux/migrate.h
2859  *
2860  * After the alloc_and_copy() callback, this function goes over each entry in
2861  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2862  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2863  * then the function tries to migrate struct page information from the source
2864  * struct page to the destination struct page. If it fails to migrate the struct
2865  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2866  * array.
2867  *
2868  * At this point all successfully migrated pages have an entry in the src
2869  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2870  * array entry with MIGRATE_PFN_VALID flag set.
2871  *
2872  * It then calls the finalize_and_map() callback. See comments for "struct
2873  * migrate_vma_ops", in include/linux/migrate.h for details about
2874  * finalize_and_map() behavior.
2875  *
2876  * After the finalize_and_map() callback, for successfully migrated pages, this
2877  * function updates the CPU page table to point to new pages, otherwise it
2878  * restores the CPU page table to point to the original source pages.
2879  *
2880  * Function returns 0 after the above steps, even if no pages were migrated
2881  * (The function only returns an error if any of the arguments are invalid.)
2882  *
2883  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2884  * unsigned long entries.
2885  */
2886 int migrate_vma(const struct migrate_vma_ops *ops,
2887                 struct vm_area_struct *vma,
2888                 unsigned long start,
2889                 unsigned long end,
2890                 unsigned long *src,
2891                 unsigned long *dst,
2892                 void *private)
2893 {
2894         struct migrate_vma migrate;
2895
2896         /* Sanity check the arguments */
2897         start &= PAGE_MASK;
2898         end &= PAGE_MASK;
2899         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2900                         vma_is_dax(vma))
2901                 return -EINVAL;
2902         if (start < vma->vm_start || start >= vma->vm_end)
2903                 return -EINVAL;
2904         if (end <= vma->vm_start || end > vma->vm_end)
2905                 return -EINVAL;
2906         if (!ops || !src || !dst || start >= end)
2907                 return -EINVAL;
2908
2909         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2910         migrate.src = src;
2911         migrate.dst = dst;
2912         migrate.start = start;
2913         migrate.npages = 0;
2914         migrate.cpages = 0;
2915         migrate.end = end;
2916         migrate.vma = vma;
2917
2918         /* Collect, and try to unmap source pages */
2919         migrate_vma_collect(&migrate);
2920         if (!migrate.cpages)
2921                 return 0;
2922
2923         /* Lock and isolate page */
2924         migrate_vma_prepare(&migrate);
2925         if (!migrate.cpages)
2926                 return 0;
2927
2928         /* Unmap pages */
2929         migrate_vma_unmap(&migrate);
2930         if (!migrate.cpages)
2931                 return 0;
2932
2933         /*
2934          * At this point pages are locked and unmapped, and thus they have
2935          * stable content and can safely be copied to destination memory that
2936          * is allocated by the callback.
2937          *
2938          * Note that migration can fail in migrate_vma_struct_page() for each
2939          * individual page.
2940          */
2941         ops->alloc_and_copy(vma, src, dst, start, end, private);
2942
2943         /* This does the real migration of struct page */
2944         migrate_vma_pages(&migrate);
2945
2946         ops->finalize_and_map(vma, src, dst, start, end, private);
2947
2948         /* Unlock and remap pages */
2949         migrate_vma_finalize(&migrate);
2950
2951         return 0;
2952 }
2953 EXPORT_SYMBOL(migrate_vma);
2954 #endif /* defined(MIGRATE_VMA_HELPER) */