Merge tag 'gfs2-4.19.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2...
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331         struct mm_struct __maybe_unused *mm = arg;
332         /*
333          * On most architectures this does nothing. Simply delivering the
334          * interrupt is enough to prevent races with software page table
335          * walking like that done in get_user_pages_fast.
336          *
337          * See the comment near struct mmu_table_batch.
338          */
339         tlb_flush_remove_tables_local(mm);
340 }
341
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344         /*
345          * This isn't an RCU grace period and hence the page-tables cannot be
346          * assumed to be actually RCU-freed.
347          *
348          * It is however sufficient for software page-table walkers that rely on
349          * IRQ disabling. See the comment near struct mmu_table_batch.
350          */
351         smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352         __tlb_remove_table(table);
353 }
354
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357         struct mmu_table_batch *batch;
358         int i;
359
360         batch = container_of(head, struct mmu_table_batch, rcu);
361
362         for (i = 0; i < batch->nr; i++)
363                 __tlb_remove_table(batch->tables[i]);
364
365         free_page((unsigned long)batch);
366 }
367
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370         struct mmu_table_batch **batch = &tlb->batch;
371
372         tlb_flush_remove_tables(tlb->mm);
373
374         if (*batch) {
375                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376                 *batch = NULL;
377         }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382         struct mmu_table_batch **batch = &tlb->batch;
383
384         /*
385          * When there's less then two users of this mm there cannot be a
386          * concurrent page-table walk.
387          */
388         if (atomic_read(&tlb->mm->mm_users) < 2) {
389                 __tlb_remove_table(table);
390                 return;
391         }
392
393         if (*batch == NULL) {
394                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395                 if (*batch == NULL) {
396                         tlb_remove_table_one(table, tlb);
397                         return;
398                 }
399                 (*batch)->nr = 0;
400         }
401         (*batch)->tables[(*batch)->nr++] = table;
402         if ((*batch)->nr == MAX_TABLE_BATCH)
403                 tlb_table_flush(tlb);
404 }
405
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407
408 /**
409  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410  * @tlb: the mmu_gather structure to initialize
411  * @mm: the mm_struct of the target address space
412  * @start: start of the region that will be removed from the page-table
413  * @end: end of the region that will be removed from the page-table
414  *
415  * Called to initialize an (on-stack) mmu_gather structure for page-table
416  * tear-down from @mm. The @start and @end are set to 0 and -1
417  * respectively when @mm is without users and we're going to destroy
418  * the full address space (exit/execve).
419  */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421                         unsigned long start, unsigned long end)
422 {
423         arch_tlb_gather_mmu(tlb, mm, start, end);
424         inc_tlb_flush_pending(tlb->mm);
425 }
426
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428                 unsigned long start, unsigned long end)
429 {
430         /*
431          * If there are parallel threads are doing PTE changes on same range
432          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433          * flush by batching, a thread has stable TLB entry can fail to flush
434          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435          * forcefully if we detect parallel PTE batching threads.
436          */
437         bool force = mm_tlb_flush_nested(tlb->mm);
438
439         arch_tlb_finish_mmu(tlb, start, end, force);
440         dec_tlb_flush_pending(tlb->mm);
441 }
442
443 /*
444  * Note: this doesn't free the actual pages themselves. That
445  * has been handled earlier when unmapping all the memory regions.
446  */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448                            unsigned long addr)
449 {
450         pgtable_t token = pmd_pgtable(*pmd);
451         pmd_clear(pmd);
452         pte_free_tlb(tlb, token, addr);
453         mm_dec_nr_ptes(tlb->mm);
454 }
455
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457                                 unsigned long addr, unsigned long end,
458                                 unsigned long floor, unsigned long ceiling)
459 {
460         pmd_t *pmd;
461         unsigned long next;
462         unsigned long start;
463
464         start = addr;
465         pmd = pmd_offset(pud, addr);
466         do {
467                 next = pmd_addr_end(addr, end);
468                 if (pmd_none_or_clear_bad(pmd))
469                         continue;
470                 free_pte_range(tlb, pmd, addr);
471         } while (pmd++, addr = next, addr != end);
472
473         start &= PUD_MASK;
474         if (start < floor)
475                 return;
476         if (ceiling) {
477                 ceiling &= PUD_MASK;
478                 if (!ceiling)
479                         return;
480         }
481         if (end - 1 > ceiling - 1)
482                 return;
483
484         pmd = pmd_offset(pud, start);
485         pud_clear(pud);
486         pmd_free_tlb(tlb, pmd, start);
487         mm_dec_nr_pmds(tlb->mm);
488 }
489
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491                                 unsigned long addr, unsigned long end,
492                                 unsigned long floor, unsigned long ceiling)
493 {
494         pud_t *pud;
495         unsigned long next;
496         unsigned long start;
497
498         start = addr;
499         pud = pud_offset(p4d, addr);
500         do {
501                 next = pud_addr_end(addr, end);
502                 if (pud_none_or_clear_bad(pud))
503                         continue;
504                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505         } while (pud++, addr = next, addr != end);
506
507         start &= P4D_MASK;
508         if (start < floor)
509                 return;
510         if (ceiling) {
511                 ceiling &= P4D_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 return;
517
518         pud = pud_offset(p4d, start);
519         p4d_clear(p4d);
520         pud_free_tlb(tlb, pud, start);
521         mm_dec_nr_puds(tlb->mm);
522 }
523
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525                                 unsigned long addr, unsigned long end,
526                                 unsigned long floor, unsigned long ceiling)
527 {
528         p4d_t *p4d;
529         unsigned long next;
530         unsigned long start;
531
532         start = addr;
533         p4d = p4d_offset(pgd, addr);
534         do {
535                 next = p4d_addr_end(addr, end);
536                 if (p4d_none_or_clear_bad(p4d))
537                         continue;
538                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539         } while (p4d++, addr = next, addr != end);
540
541         start &= PGDIR_MASK;
542         if (start < floor)
543                 return;
544         if (ceiling) {
545                 ceiling &= PGDIR_MASK;
546                 if (!ceiling)
547                         return;
548         }
549         if (end - 1 > ceiling - 1)
550                 return;
551
552         p4d = p4d_offset(pgd, start);
553         pgd_clear(pgd);
554         p4d_free_tlb(tlb, p4d, start);
555 }
556
557 /*
558  * This function frees user-level page tables of a process.
559  */
560 void free_pgd_range(struct mmu_gather *tlb,
561                         unsigned long addr, unsigned long end,
562                         unsigned long floor, unsigned long ceiling)
563 {
564         pgd_t *pgd;
565         unsigned long next;
566
567         /*
568          * The next few lines have given us lots of grief...
569          *
570          * Why are we testing PMD* at this top level?  Because often
571          * there will be no work to do at all, and we'd prefer not to
572          * go all the way down to the bottom just to discover that.
573          *
574          * Why all these "- 1"s?  Because 0 represents both the bottom
575          * of the address space and the top of it (using -1 for the
576          * top wouldn't help much: the masks would do the wrong thing).
577          * The rule is that addr 0 and floor 0 refer to the bottom of
578          * the address space, but end 0 and ceiling 0 refer to the top
579          * Comparisons need to use "end - 1" and "ceiling - 1" (though
580          * that end 0 case should be mythical).
581          *
582          * Wherever addr is brought up or ceiling brought down, we must
583          * be careful to reject "the opposite 0" before it confuses the
584          * subsequent tests.  But what about where end is brought down
585          * by PMD_SIZE below? no, end can't go down to 0 there.
586          *
587          * Whereas we round start (addr) and ceiling down, by different
588          * masks at different levels, in order to test whether a table
589          * now has no other vmas using it, so can be freed, we don't
590          * bother to round floor or end up - the tests don't need that.
591          */
592
593         addr &= PMD_MASK;
594         if (addr < floor) {
595                 addr += PMD_SIZE;
596                 if (!addr)
597                         return;
598         }
599         if (ceiling) {
600                 ceiling &= PMD_MASK;
601                 if (!ceiling)
602                         return;
603         }
604         if (end - 1 > ceiling - 1)
605                 end -= PMD_SIZE;
606         if (addr > end - 1)
607                 return;
608         /*
609          * We add page table cache pages with PAGE_SIZE,
610          * (see pte_free_tlb()), flush the tlb if we need
611          */
612         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613         pgd = pgd_offset(tlb->mm, addr);
614         do {
615                 next = pgd_addr_end(addr, end);
616                 if (pgd_none_or_clear_bad(pgd))
617                         continue;
618                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619         } while (pgd++, addr = next, addr != end);
620 }
621
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623                 unsigned long floor, unsigned long ceiling)
624 {
625         while (vma) {
626                 struct vm_area_struct *next = vma->vm_next;
627                 unsigned long addr = vma->vm_start;
628
629                 /*
630                  * Hide vma from rmap and truncate_pagecache before freeing
631                  * pgtables
632                  */
633                 unlink_anon_vmas(vma);
634                 unlink_file_vma(vma);
635
636                 if (is_vm_hugetlb_page(vma)) {
637                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638                                 floor, next ? next->vm_start : ceiling);
639                 } else {
640                         /*
641                          * Optimization: gather nearby vmas into one call down
642                          */
643                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644                                && !is_vm_hugetlb_page(next)) {
645                                 vma = next;
646                                 next = vma->vm_next;
647                                 unlink_anon_vmas(vma);
648                                 unlink_file_vma(vma);
649                         }
650                         free_pgd_range(tlb, addr, vma->vm_end,
651                                 floor, next ? next->vm_start : ceiling);
652                 }
653                 vma = next;
654         }
655 }
656
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659         spinlock_t *ptl;
660         pgtable_t new = pte_alloc_one(mm, address);
661         if (!new)
662                 return -ENOMEM;
663
664         /*
665          * Ensure all pte setup (eg. pte page lock and page clearing) are
666          * visible before the pte is made visible to other CPUs by being
667          * put into page tables.
668          *
669          * The other side of the story is the pointer chasing in the page
670          * table walking code (when walking the page table without locking;
671          * ie. most of the time). Fortunately, these data accesses consist
672          * of a chain of data-dependent loads, meaning most CPUs (alpha
673          * being the notable exception) will already guarantee loads are
674          * seen in-order. See the alpha page table accessors for the
675          * smp_read_barrier_depends() barriers in page table walking code.
676          */
677         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678
679         ptl = pmd_lock(mm, pmd);
680         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
681                 mm_inc_nr_ptes(mm);
682                 pmd_populate(mm, pmd, new);
683                 new = NULL;
684         }
685         spin_unlock(ptl);
686         if (new)
687                 pte_free(mm, new);
688         return 0;
689 }
690
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694         if (!new)
695                 return -ENOMEM;
696
697         smp_wmb(); /* See comment in __pte_alloc */
698
699         spin_lock(&init_mm.page_table_lock);
700         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
701                 pmd_populate_kernel(&init_mm, pmd, new);
702                 new = NULL;
703         }
704         spin_unlock(&init_mm.page_table_lock);
705         if (new)
706                 pte_free_kernel(&init_mm, new);
707         return 0;
708 }
709
710 static inline void init_rss_vec(int *rss)
711 {
712         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717         int i;
718
719         if (current->mm == mm)
720                 sync_mm_rss(mm);
721         for (i = 0; i < NR_MM_COUNTERS; i++)
722                 if (rss[i])
723                         add_mm_counter(mm, i, rss[i]);
724 }
725
726 /*
727  * This function is called to print an error when a bad pte
728  * is found. For example, we might have a PFN-mapped pte in
729  * a region that doesn't allow it.
730  *
731  * The calling function must still handle the error.
732  */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734                           pte_t pte, struct page *page)
735 {
736         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737         p4d_t *p4d = p4d_offset(pgd, addr);
738         pud_t *pud = pud_offset(p4d, addr);
739         pmd_t *pmd = pmd_offset(pud, addr);
740         struct address_space *mapping;
741         pgoff_t index;
742         static unsigned long resume;
743         static unsigned long nr_shown;
744         static unsigned long nr_unshown;
745
746         /*
747          * Allow a burst of 60 reports, then keep quiet for that minute;
748          * or allow a steady drip of one report per second.
749          */
750         if (nr_shown == 60) {
751                 if (time_before(jiffies, resume)) {
752                         nr_unshown++;
753                         return;
754                 }
755                 if (nr_unshown) {
756                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757                                  nr_unshown);
758                         nr_unshown = 0;
759                 }
760                 nr_shown = 0;
761         }
762         if (nr_shown++ == 0)
763                 resume = jiffies + 60 * HZ;
764
765         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766         index = linear_page_index(vma, addr);
767
768         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
769                  current->comm,
770                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
771         if (page)
772                 dump_page(page, "bad pte");
773         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776                  vma->vm_file,
777                  vma->vm_ops ? vma->vm_ops->fault : NULL,
778                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779                  mapping ? mapping->a_ops->readpage : NULL);
780         dump_stack();
781         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785  * vm_normal_page -- This function gets the "struct page" associated with a pte.
786  *
787  * "Special" mappings do not wish to be associated with a "struct page" (either
788  * it doesn't exist, or it exists but they don't want to touch it). In this
789  * case, NULL is returned here. "Normal" mappings do have a struct page.
790  *
791  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792  * pte bit, in which case this function is trivial. Secondly, an architecture
793  * may not have a spare pte bit, which requires a more complicated scheme,
794  * described below.
795  *
796  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797  * special mapping (even if there are underlying and valid "struct pages").
798  * COWed pages of a VM_PFNMAP are always normal.
799  *
800  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803  * mapping will always honor the rule
804  *
805  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806  *
807  * And for normal mappings this is false.
808  *
809  * This restricts such mappings to be a linear translation from virtual address
810  * to pfn. To get around this restriction, we allow arbitrary mappings so long
811  * as the vma is not a COW mapping; in that case, we know that all ptes are
812  * special (because none can have been COWed).
813  *
814  *
815  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816  *
817  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818  * page" backing, however the difference is that _all_ pages with a struct
819  * page (that is, those where pfn_valid is true) are refcounted and considered
820  * normal pages by the VM. The disadvantage is that pages are refcounted
821  * (which can be slower and simply not an option for some PFNMAP users). The
822  * advantage is that we don't have to follow the strict linearity rule of
823  * PFNMAP mappings in order to support COWable mappings.
824  *
825  */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827                              pte_t pte, bool with_public_device)
828 {
829         unsigned long pfn = pte_pfn(pte);
830
831         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832                 if (likely(!pte_special(pte)))
833                         goto check_pfn;
834                 if (vma->vm_ops && vma->vm_ops->find_special_page)
835                         return vma->vm_ops->find_special_page(vma, addr);
836                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837                         return NULL;
838                 if (is_zero_pfn(pfn))
839                         return NULL;
840
841                 /*
842                  * Device public pages are special pages (they are ZONE_DEVICE
843                  * pages but different from persistent memory). They behave
844                  * allmost like normal pages. The difference is that they are
845                  * not on the lru and thus should never be involve with any-
846                  * thing that involve lru manipulation (mlock, numa balancing,
847                  * ...).
848                  *
849                  * This is why we still want to return NULL for such page from
850                  * vm_normal_page() so that we do not have to special case all
851                  * call site of vm_normal_page().
852                  */
853                 if (likely(pfn <= highest_memmap_pfn)) {
854                         struct page *page = pfn_to_page(pfn);
855
856                         if (is_device_public_page(page)) {
857                                 if (with_public_device)
858                                         return page;
859                                 return NULL;
860                         }
861                 }
862                 print_bad_pte(vma, addr, pte, NULL);
863                 return NULL;
864         }
865
866         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
867
868         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
869                 if (vma->vm_flags & VM_MIXEDMAP) {
870                         if (!pfn_valid(pfn))
871                                 return NULL;
872                         goto out;
873                 } else {
874                         unsigned long off;
875                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
876                         if (pfn == vma->vm_pgoff + off)
877                                 return NULL;
878                         if (!is_cow_mapping(vma->vm_flags))
879                                 return NULL;
880                 }
881         }
882
883         if (is_zero_pfn(pfn))
884                 return NULL;
885
886 check_pfn:
887         if (unlikely(pfn > highest_memmap_pfn)) {
888                 print_bad_pte(vma, addr, pte, NULL);
889                 return NULL;
890         }
891
892         /*
893          * NOTE! We still have PageReserved() pages in the page tables.
894          * eg. VDSO mappings can cause them to exist.
895          */
896 out:
897         return pfn_to_page(pfn);
898 }
899
900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
901 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
902                                 pmd_t pmd)
903 {
904         unsigned long pfn = pmd_pfn(pmd);
905
906         /*
907          * There is no pmd_special() but there may be special pmds, e.g.
908          * in a direct-access (dax) mapping, so let's just replicate the
909          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
910          */
911         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
912                 if (vma->vm_flags & VM_MIXEDMAP) {
913                         if (!pfn_valid(pfn))
914                                 return NULL;
915                         goto out;
916                 } else {
917                         unsigned long off;
918                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
919                         if (pfn == vma->vm_pgoff + off)
920                                 return NULL;
921                         if (!is_cow_mapping(vma->vm_flags))
922                                 return NULL;
923                 }
924         }
925
926         if (is_zero_pfn(pfn))
927                 return NULL;
928         if (unlikely(pfn > highest_memmap_pfn))
929                 return NULL;
930
931         /*
932          * NOTE! We still have PageReserved() pages in the page tables.
933          * eg. VDSO mappings can cause them to exist.
934          */
935 out:
936         return pfn_to_page(pfn);
937 }
938 #endif
939
940 /*
941  * copy one vm_area from one task to the other. Assumes the page tables
942  * already present in the new task to be cleared in the whole range
943  * covered by this vma.
944  */
945
946 static inline unsigned long
947 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
949                 unsigned long addr, int *rss)
950 {
951         unsigned long vm_flags = vma->vm_flags;
952         pte_t pte = *src_pte;
953         struct page *page;
954
955         /* pte contains position in swap or file, so copy. */
956         if (unlikely(!pte_present(pte))) {
957                 swp_entry_t entry = pte_to_swp_entry(pte);
958
959                 if (likely(!non_swap_entry(entry))) {
960                         if (swap_duplicate(entry) < 0)
961                                 return entry.val;
962
963                         /* make sure dst_mm is on swapoff's mmlist. */
964                         if (unlikely(list_empty(&dst_mm->mmlist))) {
965                                 spin_lock(&mmlist_lock);
966                                 if (list_empty(&dst_mm->mmlist))
967                                         list_add(&dst_mm->mmlist,
968                                                         &src_mm->mmlist);
969                                 spin_unlock(&mmlist_lock);
970                         }
971                         rss[MM_SWAPENTS]++;
972                 } else if (is_migration_entry(entry)) {
973                         page = migration_entry_to_page(entry);
974
975                         rss[mm_counter(page)]++;
976
977                         if (is_write_migration_entry(entry) &&
978                                         is_cow_mapping(vm_flags)) {
979                                 /*
980                                  * COW mappings require pages in both
981                                  * parent and child to be set to read.
982                                  */
983                                 make_migration_entry_read(&entry);
984                                 pte = swp_entry_to_pte(entry);
985                                 if (pte_swp_soft_dirty(*src_pte))
986                                         pte = pte_swp_mksoft_dirty(pte);
987                                 set_pte_at(src_mm, addr, src_pte, pte);
988                         }
989                 } else if (is_device_private_entry(entry)) {
990                         page = device_private_entry_to_page(entry);
991
992                         /*
993                          * Update rss count even for unaddressable pages, as
994                          * they should treated just like normal pages in this
995                          * respect.
996                          *
997                          * We will likely want to have some new rss counters
998                          * for unaddressable pages, at some point. But for now
999                          * keep things as they are.
1000                          */
1001                         get_page(page);
1002                         rss[mm_counter(page)]++;
1003                         page_dup_rmap(page, false);
1004
1005                         /*
1006                          * We do not preserve soft-dirty information, because so
1007                          * far, checkpoint/restore is the only feature that
1008                          * requires that. And checkpoint/restore does not work
1009                          * when a device driver is involved (you cannot easily
1010                          * save and restore device driver state).
1011                          */
1012                         if (is_write_device_private_entry(entry) &&
1013                             is_cow_mapping(vm_flags)) {
1014                                 make_device_private_entry_read(&entry);
1015                                 pte = swp_entry_to_pte(entry);
1016                                 set_pte_at(src_mm, addr, src_pte, pte);
1017                         }
1018                 }
1019                 goto out_set_pte;
1020         }
1021
1022         /*
1023          * If it's a COW mapping, write protect it both
1024          * in the parent and the child
1025          */
1026         if (is_cow_mapping(vm_flags)) {
1027                 ptep_set_wrprotect(src_mm, addr, src_pte);
1028                 pte = pte_wrprotect(pte);
1029         }
1030
1031         /*
1032          * If it's a shared mapping, mark it clean in
1033          * the child
1034          */
1035         if (vm_flags & VM_SHARED)
1036                 pte = pte_mkclean(pte);
1037         pte = pte_mkold(pte);
1038
1039         page = vm_normal_page(vma, addr, pte);
1040         if (page) {
1041                 get_page(page);
1042                 page_dup_rmap(page, false);
1043                 rss[mm_counter(page)]++;
1044         } else if (pte_devmap(pte)) {
1045                 page = pte_page(pte);
1046
1047                 /*
1048                  * Cache coherent device memory behave like regular page and
1049                  * not like persistent memory page. For more informations see
1050                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1051                  */
1052                 if (is_device_public_page(page)) {
1053                         get_page(page);
1054                         page_dup_rmap(page, false);
1055                         rss[mm_counter(page)]++;
1056                 }
1057         }
1058
1059 out_set_pte:
1060         set_pte_at(dst_mm, addr, dst_pte, pte);
1061         return 0;
1062 }
1063
1064 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1066                    unsigned long addr, unsigned long end)
1067 {
1068         pte_t *orig_src_pte, *orig_dst_pte;
1069         pte_t *src_pte, *dst_pte;
1070         spinlock_t *src_ptl, *dst_ptl;
1071         int progress = 0;
1072         int rss[NR_MM_COUNTERS];
1073         swp_entry_t entry = (swp_entry_t){0};
1074
1075 again:
1076         init_rss_vec(rss);
1077
1078         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1079         if (!dst_pte)
1080                 return -ENOMEM;
1081         src_pte = pte_offset_map(src_pmd, addr);
1082         src_ptl = pte_lockptr(src_mm, src_pmd);
1083         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1084         orig_src_pte = src_pte;
1085         orig_dst_pte = dst_pte;
1086         arch_enter_lazy_mmu_mode();
1087
1088         do {
1089                 /*
1090                  * We are holding two locks at this point - either of them
1091                  * could generate latencies in another task on another CPU.
1092                  */
1093                 if (progress >= 32) {
1094                         progress = 0;
1095                         if (need_resched() ||
1096                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1097                                 break;
1098                 }
1099                 if (pte_none(*src_pte)) {
1100                         progress++;
1101                         continue;
1102                 }
1103                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1104                                                         vma, addr, rss);
1105                 if (entry.val)
1106                         break;
1107                 progress += 8;
1108         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1109
1110         arch_leave_lazy_mmu_mode();
1111         spin_unlock(src_ptl);
1112         pte_unmap(orig_src_pte);
1113         add_mm_rss_vec(dst_mm, rss);
1114         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1115         cond_resched();
1116
1117         if (entry.val) {
1118                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1119                         return -ENOMEM;
1120                 progress = 0;
1121         }
1122         if (addr != end)
1123                 goto again;
1124         return 0;
1125 }
1126
1127 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1128                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1129                 unsigned long addr, unsigned long end)
1130 {
1131         pmd_t *src_pmd, *dst_pmd;
1132         unsigned long next;
1133
1134         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1135         if (!dst_pmd)
1136                 return -ENOMEM;
1137         src_pmd = pmd_offset(src_pud, addr);
1138         do {
1139                 next = pmd_addr_end(addr, end);
1140                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1141                         || pmd_devmap(*src_pmd)) {
1142                         int err;
1143                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1144                         err = copy_huge_pmd(dst_mm, src_mm,
1145                                             dst_pmd, src_pmd, addr, vma);
1146                         if (err == -ENOMEM)
1147                                 return -ENOMEM;
1148                         if (!err)
1149                                 continue;
1150                         /* fall through */
1151                 }
1152                 if (pmd_none_or_clear_bad(src_pmd))
1153                         continue;
1154                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1155                                                 vma, addr, next))
1156                         return -ENOMEM;
1157         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1158         return 0;
1159 }
1160
1161 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1162                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1163                 unsigned long addr, unsigned long end)
1164 {
1165         pud_t *src_pud, *dst_pud;
1166         unsigned long next;
1167
1168         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1169         if (!dst_pud)
1170                 return -ENOMEM;
1171         src_pud = pud_offset(src_p4d, addr);
1172         do {
1173                 next = pud_addr_end(addr, end);
1174                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1175                         int err;
1176
1177                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1178                         err = copy_huge_pud(dst_mm, src_mm,
1179                                             dst_pud, src_pud, addr, vma);
1180                         if (err == -ENOMEM)
1181                                 return -ENOMEM;
1182                         if (!err)
1183                                 continue;
1184                         /* fall through */
1185                 }
1186                 if (pud_none_or_clear_bad(src_pud))
1187                         continue;
1188                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1189                                                 vma, addr, next))
1190                         return -ENOMEM;
1191         } while (dst_pud++, src_pud++, addr = next, addr != end);
1192         return 0;
1193 }
1194
1195 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1196                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1197                 unsigned long addr, unsigned long end)
1198 {
1199         p4d_t *src_p4d, *dst_p4d;
1200         unsigned long next;
1201
1202         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1203         if (!dst_p4d)
1204                 return -ENOMEM;
1205         src_p4d = p4d_offset(src_pgd, addr);
1206         do {
1207                 next = p4d_addr_end(addr, end);
1208                 if (p4d_none_or_clear_bad(src_p4d))
1209                         continue;
1210                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1211                                                 vma, addr, next))
1212                         return -ENOMEM;
1213         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1214         return 0;
1215 }
1216
1217 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1218                 struct vm_area_struct *vma)
1219 {
1220         pgd_t *src_pgd, *dst_pgd;
1221         unsigned long next;
1222         unsigned long addr = vma->vm_start;
1223         unsigned long end = vma->vm_end;
1224         unsigned long mmun_start;       /* For mmu_notifiers */
1225         unsigned long mmun_end;         /* For mmu_notifiers */
1226         bool is_cow;
1227         int ret;
1228
1229         /*
1230          * Don't copy ptes where a page fault will fill them correctly.
1231          * Fork becomes much lighter when there are big shared or private
1232          * readonly mappings. The tradeoff is that copy_page_range is more
1233          * efficient than faulting.
1234          */
1235         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1236                         !vma->anon_vma)
1237                 return 0;
1238
1239         if (is_vm_hugetlb_page(vma))
1240                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1241
1242         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1243                 /*
1244                  * We do not free on error cases below as remove_vma
1245                  * gets called on error from higher level routine
1246                  */
1247                 ret = track_pfn_copy(vma);
1248                 if (ret)
1249                         return ret;
1250         }
1251
1252         /*
1253          * We need to invalidate the secondary MMU mappings only when
1254          * there could be a permission downgrade on the ptes of the
1255          * parent mm. And a permission downgrade will only happen if
1256          * is_cow_mapping() returns true.
1257          */
1258         is_cow = is_cow_mapping(vma->vm_flags);
1259         mmun_start = addr;
1260         mmun_end   = end;
1261         if (is_cow)
1262                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1263                                                     mmun_end);
1264
1265         ret = 0;
1266         dst_pgd = pgd_offset(dst_mm, addr);
1267         src_pgd = pgd_offset(src_mm, addr);
1268         do {
1269                 next = pgd_addr_end(addr, end);
1270                 if (pgd_none_or_clear_bad(src_pgd))
1271                         continue;
1272                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1273                                             vma, addr, next))) {
1274                         ret = -ENOMEM;
1275                         break;
1276                 }
1277         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1278
1279         if (is_cow)
1280                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1281         return ret;
1282 }
1283
1284 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1285                                 struct vm_area_struct *vma, pmd_t *pmd,
1286                                 unsigned long addr, unsigned long end,
1287                                 struct zap_details *details)
1288 {
1289         struct mm_struct *mm = tlb->mm;
1290         int force_flush = 0;
1291         int rss[NR_MM_COUNTERS];
1292         spinlock_t *ptl;
1293         pte_t *start_pte;
1294         pte_t *pte;
1295         swp_entry_t entry;
1296
1297         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1298 again:
1299         init_rss_vec(rss);
1300         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1301         pte = start_pte;
1302         flush_tlb_batched_pending(mm);
1303         arch_enter_lazy_mmu_mode();
1304         do {
1305                 pte_t ptent = *pte;
1306                 if (pte_none(ptent))
1307                         continue;
1308
1309                 if (pte_present(ptent)) {
1310                         struct page *page;
1311
1312                         page = _vm_normal_page(vma, addr, ptent, true);
1313                         if (unlikely(details) && page) {
1314                                 /*
1315                                  * unmap_shared_mapping_pages() wants to
1316                                  * invalidate cache without truncating:
1317                                  * unmap shared but keep private pages.
1318                                  */
1319                                 if (details->check_mapping &&
1320                                     details->check_mapping != page_rmapping(page))
1321                                         continue;
1322                         }
1323                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1324                                                         tlb->fullmm);
1325                         tlb_remove_tlb_entry(tlb, pte, addr);
1326                         if (unlikely(!page))
1327                                 continue;
1328
1329                         if (!PageAnon(page)) {
1330                                 if (pte_dirty(ptent)) {
1331                                         force_flush = 1;
1332                                         set_page_dirty(page);
1333                                 }
1334                                 if (pte_young(ptent) &&
1335                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1336                                         mark_page_accessed(page);
1337                         }
1338                         rss[mm_counter(page)]--;
1339                         page_remove_rmap(page, false);
1340                         if (unlikely(page_mapcount(page) < 0))
1341                                 print_bad_pte(vma, addr, ptent, page);
1342                         if (unlikely(__tlb_remove_page(tlb, page))) {
1343                                 force_flush = 1;
1344                                 addr += PAGE_SIZE;
1345                                 break;
1346                         }
1347                         continue;
1348                 }
1349
1350                 entry = pte_to_swp_entry(ptent);
1351                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1352                         struct page *page = device_private_entry_to_page(entry);
1353
1354                         if (unlikely(details && details->check_mapping)) {
1355                                 /*
1356                                  * unmap_shared_mapping_pages() wants to
1357                                  * invalidate cache without truncating:
1358                                  * unmap shared but keep private pages.
1359                                  */
1360                                 if (details->check_mapping !=
1361                                     page_rmapping(page))
1362                                         continue;
1363                         }
1364
1365                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1366                         rss[mm_counter(page)]--;
1367                         page_remove_rmap(page, false);
1368                         put_page(page);
1369                         continue;
1370                 }
1371
1372                 /* If details->check_mapping, we leave swap entries. */
1373                 if (unlikely(details))
1374                         continue;
1375
1376                 entry = pte_to_swp_entry(ptent);
1377                 if (!non_swap_entry(entry))
1378                         rss[MM_SWAPENTS]--;
1379                 else if (is_migration_entry(entry)) {
1380                         struct page *page;
1381
1382                         page = migration_entry_to_page(entry);
1383                         rss[mm_counter(page)]--;
1384                 }
1385                 if (unlikely(!free_swap_and_cache(entry)))
1386                         print_bad_pte(vma, addr, ptent, NULL);
1387                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1388         } while (pte++, addr += PAGE_SIZE, addr != end);
1389
1390         add_mm_rss_vec(mm, rss);
1391         arch_leave_lazy_mmu_mode();
1392
1393         /* Do the actual TLB flush before dropping ptl */
1394         if (force_flush)
1395                 tlb_flush_mmu_tlbonly(tlb);
1396         pte_unmap_unlock(start_pte, ptl);
1397
1398         /*
1399          * If we forced a TLB flush (either due to running out of
1400          * batch buffers or because we needed to flush dirty TLB
1401          * entries before releasing the ptl), free the batched
1402          * memory too. Restart if we didn't do everything.
1403          */
1404         if (force_flush) {
1405                 force_flush = 0;
1406                 tlb_flush_mmu_free(tlb);
1407                 if (addr != end)
1408                         goto again;
1409         }
1410
1411         return addr;
1412 }
1413
1414 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1415                                 struct vm_area_struct *vma, pud_t *pud,
1416                                 unsigned long addr, unsigned long end,
1417                                 struct zap_details *details)
1418 {
1419         pmd_t *pmd;
1420         unsigned long next;
1421
1422         pmd = pmd_offset(pud, addr);
1423         do {
1424                 next = pmd_addr_end(addr, end);
1425                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1426                         if (next - addr != HPAGE_PMD_SIZE)
1427                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1428                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429                                 goto next;
1430                         /* fall through */
1431                 }
1432                 /*
1433                  * Here there can be other concurrent MADV_DONTNEED or
1434                  * trans huge page faults running, and if the pmd is
1435                  * none or trans huge it can change under us. This is
1436                  * because MADV_DONTNEED holds the mmap_sem in read
1437                  * mode.
1438                  */
1439                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440                         goto next;
1441                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442 next:
1443                 cond_resched();
1444         } while (pmd++, addr = next, addr != end);
1445
1446         return addr;
1447 }
1448
1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450                                 struct vm_area_struct *vma, p4d_t *p4d,
1451                                 unsigned long addr, unsigned long end,
1452                                 struct zap_details *details)
1453 {
1454         pud_t *pud;
1455         unsigned long next;
1456
1457         pud = pud_offset(p4d, addr);
1458         do {
1459                 next = pud_addr_end(addr, end);
1460                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461                         if (next - addr != HPAGE_PUD_SIZE) {
1462                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463                                 split_huge_pud(vma, pud, addr);
1464                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1465                                 goto next;
1466                         /* fall through */
1467                 }
1468                 if (pud_none_or_clear_bad(pud))
1469                         continue;
1470                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471 next:
1472                 cond_resched();
1473         } while (pud++, addr = next, addr != end);
1474
1475         return addr;
1476 }
1477
1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479                                 struct vm_area_struct *vma, pgd_t *pgd,
1480                                 unsigned long addr, unsigned long end,
1481                                 struct zap_details *details)
1482 {
1483         p4d_t *p4d;
1484         unsigned long next;
1485
1486         p4d = p4d_offset(pgd, addr);
1487         do {
1488                 next = p4d_addr_end(addr, end);
1489                 if (p4d_none_or_clear_bad(p4d))
1490                         continue;
1491                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492         } while (p4d++, addr = next, addr != end);
1493
1494         return addr;
1495 }
1496
1497 void unmap_page_range(struct mmu_gather *tlb,
1498                              struct vm_area_struct *vma,
1499                              unsigned long addr, unsigned long end,
1500                              struct zap_details *details)
1501 {
1502         pgd_t *pgd;
1503         unsigned long next;
1504
1505         BUG_ON(addr >= end);
1506         tlb_start_vma(tlb, vma);
1507         pgd = pgd_offset(vma->vm_mm, addr);
1508         do {
1509                 next = pgd_addr_end(addr, end);
1510                 if (pgd_none_or_clear_bad(pgd))
1511                         continue;
1512                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513         } while (pgd++, addr = next, addr != end);
1514         tlb_end_vma(tlb, vma);
1515 }
1516
1517
1518 static void unmap_single_vma(struct mmu_gather *tlb,
1519                 struct vm_area_struct *vma, unsigned long start_addr,
1520                 unsigned long end_addr,
1521                 struct zap_details *details)
1522 {
1523         unsigned long start = max(vma->vm_start, start_addr);
1524         unsigned long end;
1525
1526         if (start >= vma->vm_end)
1527                 return;
1528         end = min(vma->vm_end, end_addr);
1529         if (end <= vma->vm_start)
1530                 return;
1531
1532         if (vma->vm_file)
1533                 uprobe_munmap(vma, start, end);
1534
1535         if (unlikely(vma->vm_flags & VM_PFNMAP))
1536                 untrack_pfn(vma, 0, 0);
1537
1538         if (start != end) {
1539                 if (unlikely(is_vm_hugetlb_page(vma))) {
1540                         /*
1541                          * It is undesirable to test vma->vm_file as it
1542                          * should be non-null for valid hugetlb area.
1543                          * However, vm_file will be NULL in the error
1544                          * cleanup path of mmap_region. When
1545                          * hugetlbfs ->mmap method fails,
1546                          * mmap_region() nullifies vma->vm_file
1547                          * before calling this function to clean up.
1548                          * Since no pte has actually been setup, it is
1549                          * safe to do nothing in this case.
1550                          */
1551                         if (vma->vm_file) {
1552                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1553                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1555                         }
1556                 } else
1557                         unmap_page_range(tlb, vma, start, end, details);
1558         }
1559 }
1560
1561 /**
1562  * unmap_vmas - unmap a range of memory covered by a list of vma's
1563  * @tlb: address of the caller's struct mmu_gather
1564  * @vma: the starting vma
1565  * @start_addr: virtual address at which to start unmapping
1566  * @end_addr: virtual address at which to end unmapping
1567  *
1568  * Unmap all pages in the vma list.
1569  *
1570  * Only addresses between `start' and `end' will be unmapped.
1571  *
1572  * The VMA list must be sorted in ascending virtual address order.
1573  *
1574  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575  * range after unmap_vmas() returns.  So the only responsibility here is to
1576  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577  * drops the lock and schedules.
1578  */
1579 void unmap_vmas(struct mmu_gather *tlb,
1580                 struct vm_area_struct *vma, unsigned long start_addr,
1581                 unsigned long end_addr)
1582 {
1583         struct mm_struct *mm = vma->vm_mm;
1584
1585         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 }
1590
1591 /**
1592  * zap_page_range - remove user pages in a given range
1593  * @vma: vm_area_struct holding the applicable pages
1594  * @start: starting address of pages to zap
1595  * @size: number of bytes to zap
1596  *
1597  * Caller must protect the VMA list
1598  */
1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600                 unsigned long size)
1601 {
1602         struct mm_struct *mm = vma->vm_mm;
1603         struct mmu_gather tlb;
1604         unsigned long end = start + size;
1605
1606         lru_add_drain();
1607         tlb_gather_mmu(&tlb, mm, start, end);
1608         update_hiwater_rss(mm);
1609         mmu_notifier_invalidate_range_start(mm, start, end);
1610         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611                 unmap_single_vma(&tlb, vma, start, end, NULL);
1612
1613                 /*
1614                  * zap_page_range does not specify whether mmap_sem should be
1615                  * held for read or write. That allows parallel zap_page_range
1616                  * operations to unmap a PTE and defer a flush meaning that
1617                  * this call observes pte_none and fails to flush the TLB.
1618                  * Rather than adding a complex API, ensure that no stale
1619                  * TLB entries exist when this call returns.
1620                  */
1621                 flush_tlb_range(vma, start, end);
1622         }
1623
1624         mmu_notifier_invalidate_range_end(mm, start, end);
1625         tlb_finish_mmu(&tlb, start, end);
1626 }
1627
1628 /**
1629  * zap_page_range_single - remove user pages in a given range
1630  * @vma: vm_area_struct holding the applicable pages
1631  * @address: starting address of pages to zap
1632  * @size: number of bytes to zap
1633  * @details: details of shared cache invalidation
1634  *
1635  * The range must fit into one VMA.
1636  */
1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638                 unsigned long size, struct zap_details *details)
1639 {
1640         struct mm_struct *mm = vma->vm_mm;
1641         struct mmu_gather tlb;
1642         unsigned long end = address + size;
1643
1644         lru_add_drain();
1645         tlb_gather_mmu(&tlb, mm, address, end);
1646         update_hiwater_rss(mm);
1647         mmu_notifier_invalidate_range_start(mm, address, end);
1648         unmap_single_vma(&tlb, vma, address, end, details);
1649         mmu_notifier_invalidate_range_end(mm, address, end);
1650         tlb_finish_mmu(&tlb, address, end);
1651 }
1652
1653 /**
1654  * zap_vma_ptes - remove ptes mapping the vma
1655  * @vma: vm_area_struct holding ptes to be zapped
1656  * @address: starting address of pages to zap
1657  * @size: number of bytes to zap
1658  *
1659  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660  *
1661  * The entire address range must be fully contained within the vma.
1662  *
1663  */
1664 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1665                 unsigned long size)
1666 {
1667         if (address < vma->vm_start || address + size > vma->vm_end ||
1668                         !(vma->vm_flags & VM_PFNMAP))
1669                 return;
1670
1671         zap_page_range_single(vma, address, size, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1674
1675 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1676                         spinlock_t **ptl)
1677 {
1678         pgd_t *pgd;
1679         p4d_t *p4d;
1680         pud_t *pud;
1681         pmd_t *pmd;
1682
1683         pgd = pgd_offset(mm, addr);
1684         p4d = p4d_alloc(mm, pgd, addr);
1685         if (!p4d)
1686                 return NULL;
1687         pud = pud_alloc(mm, p4d, addr);
1688         if (!pud)
1689                 return NULL;
1690         pmd = pmd_alloc(mm, pud, addr);
1691         if (!pmd)
1692                 return NULL;
1693
1694         VM_BUG_ON(pmd_trans_huge(*pmd));
1695         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1696 }
1697
1698 /*
1699  * This is the old fallback for page remapping.
1700  *
1701  * For historical reasons, it only allows reserved pages. Only
1702  * old drivers should use this, and they needed to mark their
1703  * pages reserved for the old functions anyway.
1704  */
1705 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1706                         struct page *page, pgprot_t prot)
1707 {
1708         struct mm_struct *mm = vma->vm_mm;
1709         int retval;
1710         pte_t *pte;
1711         spinlock_t *ptl;
1712
1713         retval = -EINVAL;
1714         if (PageAnon(page))
1715                 goto out;
1716         retval = -ENOMEM;
1717         flush_dcache_page(page);
1718         pte = get_locked_pte(mm, addr, &ptl);
1719         if (!pte)
1720                 goto out;
1721         retval = -EBUSY;
1722         if (!pte_none(*pte))
1723                 goto out_unlock;
1724
1725         /* Ok, finally just insert the thing.. */
1726         get_page(page);
1727         inc_mm_counter_fast(mm, mm_counter_file(page));
1728         page_add_file_rmap(page, false);
1729         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1730
1731         retval = 0;
1732         pte_unmap_unlock(pte, ptl);
1733         return retval;
1734 out_unlock:
1735         pte_unmap_unlock(pte, ptl);
1736 out:
1737         return retval;
1738 }
1739
1740 /**
1741  * vm_insert_page - insert single page into user vma
1742  * @vma: user vma to map to
1743  * @addr: target user address of this page
1744  * @page: source kernel page
1745  *
1746  * This allows drivers to insert individual pages they've allocated
1747  * into a user vma.
1748  *
1749  * The page has to be a nice clean _individual_ kernel allocation.
1750  * If you allocate a compound page, you need to have marked it as
1751  * such (__GFP_COMP), or manually just split the page up yourself
1752  * (see split_page()).
1753  *
1754  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1755  * took an arbitrary page protection parameter. This doesn't allow
1756  * that. Your vma protection will have to be set up correctly, which
1757  * means that if you want a shared writable mapping, you'd better
1758  * ask for a shared writable mapping!
1759  *
1760  * The page does not need to be reserved.
1761  *
1762  * Usually this function is called from f_op->mmap() handler
1763  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1764  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1765  * function from other places, for example from page-fault handler.
1766  */
1767 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1768                         struct page *page)
1769 {
1770         if (addr < vma->vm_start || addr >= vma->vm_end)
1771                 return -EFAULT;
1772         if (!page_count(page))
1773                 return -EINVAL;
1774         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1775                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1776                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1777                 vma->vm_flags |= VM_MIXEDMAP;
1778         }
1779         return insert_page(vma, addr, page, vma->vm_page_prot);
1780 }
1781 EXPORT_SYMBOL(vm_insert_page);
1782
1783 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1784                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1785 {
1786         struct mm_struct *mm = vma->vm_mm;
1787         int retval;
1788         pte_t *pte, entry;
1789         spinlock_t *ptl;
1790
1791         retval = -ENOMEM;
1792         pte = get_locked_pte(mm, addr, &ptl);
1793         if (!pte)
1794                 goto out;
1795         retval = -EBUSY;
1796         if (!pte_none(*pte)) {
1797                 if (mkwrite) {
1798                         /*
1799                          * For read faults on private mappings the PFN passed
1800                          * in may not match the PFN we have mapped if the
1801                          * mapped PFN is a writeable COW page.  In the mkwrite
1802                          * case we are creating a writable PTE for a shared
1803                          * mapping and we expect the PFNs to match.
1804                          */
1805                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1806                                 goto out_unlock;
1807                         entry = *pte;
1808                         goto out_mkwrite;
1809                 } else
1810                         goto out_unlock;
1811         }
1812
1813         /* Ok, finally just insert the thing.. */
1814         if (pfn_t_devmap(pfn))
1815                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1816         else
1817                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1818
1819 out_mkwrite:
1820         if (mkwrite) {
1821                 entry = pte_mkyoung(entry);
1822                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1823         }
1824
1825         set_pte_at(mm, addr, pte, entry);
1826         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1827
1828         retval = 0;
1829 out_unlock:
1830         pte_unmap_unlock(pte, ptl);
1831 out:
1832         return retval;
1833 }
1834
1835 /**
1836  * vm_insert_pfn - insert single pfn into user vma
1837  * @vma: user vma to map to
1838  * @addr: target user address of this page
1839  * @pfn: source kernel pfn
1840  *
1841  * Similar to vm_insert_page, this allows drivers to insert individual pages
1842  * they've allocated into a user vma. Same comments apply.
1843  *
1844  * This function should only be called from a vm_ops->fault handler, and
1845  * in that case the handler should return NULL.
1846  *
1847  * vma cannot be a COW mapping.
1848  *
1849  * As this is called only for pages that do not currently exist, we
1850  * do not need to flush old virtual caches or the TLB.
1851  */
1852 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1853                         unsigned long pfn)
1854 {
1855         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1856 }
1857 EXPORT_SYMBOL(vm_insert_pfn);
1858
1859 /**
1860  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1861  * @vma: user vma to map to
1862  * @addr: target user address of this page
1863  * @pfn: source kernel pfn
1864  * @pgprot: pgprot flags for the inserted page
1865  *
1866  * This is exactly like vm_insert_pfn, except that it allows drivers to
1867  * to override pgprot on a per-page basis.
1868  *
1869  * This only makes sense for IO mappings, and it makes no sense for
1870  * cow mappings.  In general, using multiple vmas is preferable;
1871  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1872  * impractical.
1873  */
1874 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1875                         unsigned long pfn, pgprot_t pgprot)
1876 {
1877         int ret;
1878         /*
1879          * Technically, architectures with pte_special can avoid all these
1880          * restrictions (same for remap_pfn_range).  However we would like
1881          * consistency in testing and feature parity among all, so we should
1882          * try to keep these invariants in place for everybody.
1883          */
1884         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1885         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1886                                                 (VM_PFNMAP|VM_MIXEDMAP));
1887         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1888         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1889
1890         if (addr < vma->vm_start || addr >= vma->vm_end)
1891                 return -EFAULT;
1892
1893         if (!pfn_modify_allowed(pfn, pgprot))
1894                 return -EACCES;
1895
1896         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1897
1898         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1899                         false);
1900
1901         return ret;
1902 }
1903 EXPORT_SYMBOL(vm_insert_pfn_prot);
1904
1905 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1906 {
1907         /* these checks mirror the abort conditions in vm_normal_page */
1908         if (vma->vm_flags & VM_MIXEDMAP)
1909                 return true;
1910         if (pfn_t_devmap(pfn))
1911                 return true;
1912         if (pfn_t_special(pfn))
1913                 return true;
1914         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1915                 return true;
1916         return false;
1917 }
1918
1919 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1920                         pfn_t pfn, bool mkwrite)
1921 {
1922         pgprot_t pgprot = vma->vm_page_prot;
1923
1924         BUG_ON(!vm_mixed_ok(vma, pfn));
1925
1926         if (addr < vma->vm_start || addr >= vma->vm_end)
1927                 return -EFAULT;
1928
1929         track_pfn_insert(vma, &pgprot, pfn);
1930
1931         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1932                 return -EACCES;
1933
1934         /*
1935          * If we don't have pte special, then we have to use the pfn_valid()
1936          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1937          * refcount the page if pfn_valid is true (hence insert_page rather
1938          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1939          * without pte special, it would there be refcounted as a normal page.
1940          */
1941         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1942             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1943                 struct page *page;
1944
1945                 /*
1946                  * At this point we are committed to insert_page()
1947                  * regardless of whether the caller specified flags that
1948                  * result in pfn_t_has_page() == false.
1949                  */
1950                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1951                 return insert_page(vma, addr, page, pgprot);
1952         }
1953         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1954 }
1955
1956 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1957                         pfn_t pfn)
1958 {
1959         return __vm_insert_mixed(vma, addr, pfn, false);
1960
1961 }
1962 EXPORT_SYMBOL(vm_insert_mixed);
1963
1964 /*
1965  *  If the insertion of PTE failed because someone else already added a
1966  *  different entry in the mean time, we treat that as success as we assume
1967  *  the same entry was actually inserted.
1968  */
1969
1970 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1971                 unsigned long addr, pfn_t pfn)
1972 {
1973         int err;
1974
1975         err =  __vm_insert_mixed(vma, addr, pfn, true);
1976         if (err == -ENOMEM)
1977                 return VM_FAULT_OOM;
1978         if (err < 0 && err != -EBUSY)
1979                 return VM_FAULT_SIGBUS;
1980         return VM_FAULT_NOPAGE;
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983
1984 /*
1985  * maps a range of physical memory into the requested pages. the old
1986  * mappings are removed. any references to nonexistent pages results
1987  * in null mappings (currently treated as "copy-on-access")
1988  */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990                         unsigned long addr, unsigned long end,
1991                         unsigned long pfn, pgprot_t prot)
1992 {
1993         pte_t *pte;
1994         spinlock_t *ptl;
1995         int err = 0;
1996
1997         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998         if (!pte)
1999                 return -ENOMEM;
2000         arch_enter_lazy_mmu_mode();
2001         do {
2002                 BUG_ON(!pte_none(*pte));
2003                 if (!pfn_modify_allowed(pfn, prot)) {
2004                         err = -EACCES;
2005                         break;
2006                 }
2007                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008                 pfn++;
2009         } while (pte++, addr += PAGE_SIZE, addr != end);
2010         arch_leave_lazy_mmu_mode();
2011         pte_unmap_unlock(pte - 1, ptl);
2012         return err;
2013 }
2014
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016                         unsigned long addr, unsigned long end,
2017                         unsigned long pfn, pgprot_t prot)
2018 {
2019         pmd_t *pmd;
2020         unsigned long next;
2021         int err;
2022
2023         pfn -= addr >> PAGE_SHIFT;
2024         pmd = pmd_alloc(mm, pud, addr);
2025         if (!pmd)
2026                 return -ENOMEM;
2027         VM_BUG_ON(pmd_trans_huge(*pmd));
2028         do {
2029                 next = pmd_addr_end(addr, end);
2030                 err = remap_pte_range(mm, pmd, addr, next,
2031                                 pfn + (addr >> PAGE_SHIFT), prot);
2032                 if (err)
2033                         return err;
2034         } while (pmd++, addr = next, addr != end);
2035         return 0;
2036 }
2037
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039                         unsigned long addr, unsigned long end,
2040                         unsigned long pfn, pgprot_t prot)
2041 {
2042         pud_t *pud;
2043         unsigned long next;
2044         int err;
2045
2046         pfn -= addr >> PAGE_SHIFT;
2047         pud = pud_alloc(mm, p4d, addr);
2048         if (!pud)
2049                 return -ENOMEM;
2050         do {
2051                 next = pud_addr_end(addr, end);
2052                 err = remap_pmd_range(mm, pud, addr, next,
2053                                 pfn + (addr >> PAGE_SHIFT), prot);
2054                 if (err)
2055                         return err;
2056         } while (pud++, addr = next, addr != end);
2057         return 0;
2058 }
2059
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061                         unsigned long addr, unsigned long end,
2062                         unsigned long pfn, pgprot_t prot)
2063 {
2064         p4d_t *p4d;
2065         unsigned long next;
2066         int err;
2067
2068         pfn -= addr >> PAGE_SHIFT;
2069         p4d = p4d_alloc(mm, pgd, addr);
2070         if (!p4d)
2071                 return -ENOMEM;
2072         do {
2073                 next = p4d_addr_end(addr, end);
2074                 err = remap_pud_range(mm, p4d, addr, next,
2075                                 pfn + (addr >> PAGE_SHIFT), prot);
2076                 if (err)
2077                         return err;
2078         } while (p4d++, addr = next, addr != end);
2079         return 0;
2080 }
2081
2082 /**
2083  * remap_pfn_range - remap kernel memory to userspace
2084  * @vma: user vma to map to
2085  * @addr: target user address to start at
2086  * @pfn: physical address of kernel memory
2087  * @size: size of map area
2088  * @prot: page protection flags for this mapping
2089  *
2090  *  Note: this is only safe if the mm semaphore is held when called.
2091  */
2092 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2093                     unsigned long pfn, unsigned long size, pgprot_t prot)
2094 {
2095         pgd_t *pgd;
2096         unsigned long next;
2097         unsigned long end = addr + PAGE_ALIGN(size);
2098         struct mm_struct *mm = vma->vm_mm;
2099         unsigned long remap_pfn = pfn;
2100         int err;
2101
2102         /*
2103          * Physically remapped pages are special. Tell the
2104          * rest of the world about it:
2105          *   VM_IO tells people not to look at these pages
2106          *      (accesses can have side effects).
2107          *   VM_PFNMAP tells the core MM that the base pages are just
2108          *      raw PFN mappings, and do not have a "struct page" associated
2109          *      with them.
2110          *   VM_DONTEXPAND
2111          *      Disable vma merging and expanding with mremap().
2112          *   VM_DONTDUMP
2113          *      Omit vma from core dump, even when VM_IO turned off.
2114          *
2115          * There's a horrible special case to handle copy-on-write
2116          * behaviour that some programs depend on. We mark the "original"
2117          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2118          * See vm_normal_page() for details.
2119          */
2120         if (is_cow_mapping(vma->vm_flags)) {
2121                 if (addr != vma->vm_start || end != vma->vm_end)
2122                         return -EINVAL;
2123                 vma->vm_pgoff = pfn;
2124         }
2125
2126         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2127         if (err)
2128                 return -EINVAL;
2129
2130         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2131
2132         BUG_ON(addr >= end);
2133         pfn -= addr >> PAGE_SHIFT;
2134         pgd = pgd_offset(mm, addr);
2135         flush_cache_range(vma, addr, end);
2136         do {
2137                 next = pgd_addr_end(addr, end);
2138                 err = remap_p4d_range(mm, pgd, addr, next,
2139                                 pfn + (addr >> PAGE_SHIFT), prot);
2140                 if (err)
2141                         break;
2142         } while (pgd++, addr = next, addr != end);
2143
2144         if (err)
2145                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2146
2147         return err;
2148 }
2149 EXPORT_SYMBOL(remap_pfn_range);
2150
2151 /**
2152  * vm_iomap_memory - remap memory to userspace
2153  * @vma: user vma to map to
2154  * @start: start of area
2155  * @len: size of area
2156  *
2157  * This is a simplified io_remap_pfn_range() for common driver use. The
2158  * driver just needs to give us the physical memory range to be mapped,
2159  * we'll figure out the rest from the vma information.
2160  *
2161  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2162  * whatever write-combining details or similar.
2163  */
2164 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2165 {
2166         unsigned long vm_len, pfn, pages;
2167
2168         /* Check that the physical memory area passed in looks valid */
2169         if (start + len < start)
2170                 return -EINVAL;
2171         /*
2172          * You *really* shouldn't map things that aren't page-aligned,
2173          * but we've historically allowed it because IO memory might
2174          * just have smaller alignment.
2175          */
2176         len += start & ~PAGE_MASK;
2177         pfn = start >> PAGE_SHIFT;
2178         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2179         if (pfn + pages < pfn)
2180                 return -EINVAL;
2181
2182         /* We start the mapping 'vm_pgoff' pages into the area */
2183         if (vma->vm_pgoff > pages)
2184                 return -EINVAL;
2185         pfn += vma->vm_pgoff;
2186         pages -= vma->vm_pgoff;
2187
2188         /* Can we fit all of the mapping? */
2189         vm_len = vma->vm_end - vma->vm_start;
2190         if (vm_len >> PAGE_SHIFT > pages)
2191                 return -EINVAL;
2192
2193         /* Ok, let it rip */
2194         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2195 }
2196 EXPORT_SYMBOL(vm_iomap_memory);
2197
2198 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2199                                      unsigned long addr, unsigned long end,
2200                                      pte_fn_t fn, void *data)
2201 {
2202         pte_t *pte;
2203         int err;
2204         pgtable_t token;
2205         spinlock_t *uninitialized_var(ptl);
2206
2207         pte = (mm == &init_mm) ?
2208                 pte_alloc_kernel(pmd, addr) :
2209                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2210         if (!pte)
2211                 return -ENOMEM;
2212
2213         BUG_ON(pmd_huge(*pmd));
2214
2215         arch_enter_lazy_mmu_mode();
2216
2217         token = pmd_pgtable(*pmd);
2218
2219         do {
2220                 err = fn(pte++, token, addr, data);
2221                 if (err)
2222                         break;
2223         } while (addr += PAGE_SIZE, addr != end);
2224
2225         arch_leave_lazy_mmu_mode();
2226
2227         if (mm != &init_mm)
2228                 pte_unmap_unlock(pte-1, ptl);
2229         return err;
2230 }
2231
2232 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2233                                      unsigned long addr, unsigned long end,
2234                                      pte_fn_t fn, void *data)
2235 {
2236         pmd_t *pmd;
2237         unsigned long next;
2238         int err;
2239
2240         BUG_ON(pud_huge(*pud));
2241
2242         pmd = pmd_alloc(mm, pud, addr);
2243         if (!pmd)
2244                 return -ENOMEM;
2245         do {
2246                 next = pmd_addr_end(addr, end);
2247                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2248                 if (err)
2249                         break;
2250         } while (pmd++, addr = next, addr != end);
2251         return err;
2252 }
2253
2254 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2255                                      unsigned long addr, unsigned long end,
2256                                      pte_fn_t fn, void *data)
2257 {
2258         pud_t *pud;
2259         unsigned long next;
2260         int err;
2261
2262         pud = pud_alloc(mm, p4d, addr);
2263         if (!pud)
2264                 return -ENOMEM;
2265         do {
2266                 next = pud_addr_end(addr, end);
2267                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2268                 if (err)
2269                         break;
2270         } while (pud++, addr = next, addr != end);
2271         return err;
2272 }
2273
2274 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2275                                      unsigned long addr, unsigned long end,
2276                                      pte_fn_t fn, void *data)
2277 {
2278         p4d_t *p4d;
2279         unsigned long next;
2280         int err;
2281
2282         p4d = p4d_alloc(mm, pgd, addr);
2283         if (!p4d)
2284                 return -ENOMEM;
2285         do {
2286                 next = p4d_addr_end(addr, end);
2287                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2288                 if (err)
2289                         break;
2290         } while (p4d++, addr = next, addr != end);
2291         return err;
2292 }
2293
2294 /*
2295  * Scan a region of virtual memory, filling in page tables as necessary
2296  * and calling a provided function on each leaf page table.
2297  */
2298 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2299                         unsigned long size, pte_fn_t fn, void *data)
2300 {
2301         pgd_t *pgd;
2302         unsigned long next;
2303         unsigned long end = addr + size;
2304         int err;
2305
2306         if (WARN_ON(addr >= end))
2307                 return -EINVAL;
2308
2309         pgd = pgd_offset(mm, addr);
2310         do {
2311                 next = pgd_addr_end(addr, end);
2312                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2313                 if (err)
2314                         break;
2315         } while (pgd++, addr = next, addr != end);
2316
2317         return err;
2318 }
2319 EXPORT_SYMBOL_GPL(apply_to_page_range);
2320
2321 /*
2322  * handle_pte_fault chooses page fault handler according to an entry which was
2323  * read non-atomically.  Before making any commitment, on those architectures
2324  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2325  * parts, do_swap_page must check under lock before unmapping the pte and
2326  * proceeding (but do_wp_page is only called after already making such a check;
2327  * and do_anonymous_page can safely check later on).
2328  */
2329 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2330                                 pte_t *page_table, pte_t orig_pte)
2331 {
2332         int same = 1;
2333 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2334         if (sizeof(pte_t) > sizeof(unsigned long)) {
2335                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2336                 spin_lock(ptl);
2337                 same = pte_same(*page_table, orig_pte);
2338                 spin_unlock(ptl);
2339         }
2340 #endif
2341         pte_unmap(page_table);
2342         return same;
2343 }
2344
2345 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2346 {
2347         debug_dma_assert_idle(src);
2348
2349         /*
2350          * If the source page was a PFN mapping, we don't have
2351          * a "struct page" for it. We do a best-effort copy by
2352          * just copying from the original user address. If that
2353          * fails, we just zero-fill it. Live with it.
2354          */
2355         if (unlikely(!src)) {
2356                 void *kaddr = kmap_atomic(dst);
2357                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2358
2359                 /*
2360                  * This really shouldn't fail, because the page is there
2361                  * in the page tables. But it might just be unreadable,
2362                  * in which case we just give up and fill the result with
2363                  * zeroes.
2364                  */
2365                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2366                         clear_page(kaddr);
2367                 kunmap_atomic(kaddr);
2368                 flush_dcache_page(dst);
2369         } else
2370                 copy_user_highpage(dst, src, va, vma);
2371 }
2372
2373 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2374 {
2375         struct file *vm_file = vma->vm_file;
2376
2377         if (vm_file)
2378                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2379
2380         /*
2381          * Special mappings (e.g. VDSO) do not have any file so fake
2382          * a default GFP_KERNEL for them.
2383          */
2384         return GFP_KERNEL;
2385 }
2386
2387 /*
2388  * Notify the address space that the page is about to become writable so that
2389  * it can prohibit this or wait for the page to get into an appropriate state.
2390  *
2391  * We do this without the lock held, so that it can sleep if it needs to.
2392  */
2393 static int do_page_mkwrite(struct vm_fault *vmf)
2394 {
2395         int ret;
2396         struct page *page = vmf->page;
2397         unsigned int old_flags = vmf->flags;
2398
2399         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2400
2401         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2402         /* Restore original flags so that caller is not surprised */
2403         vmf->flags = old_flags;
2404         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2405                 return ret;
2406         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2407                 lock_page(page);
2408                 if (!page->mapping) {
2409                         unlock_page(page);
2410                         return 0; /* retry */
2411                 }
2412                 ret |= VM_FAULT_LOCKED;
2413         } else
2414                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2415         return ret;
2416 }
2417
2418 /*
2419  * Handle dirtying of a page in shared file mapping on a write fault.
2420  *
2421  * The function expects the page to be locked and unlocks it.
2422  */
2423 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2424                                     struct page *page)
2425 {
2426         struct address_space *mapping;
2427         bool dirtied;
2428         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2429
2430         dirtied = set_page_dirty(page);
2431         VM_BUG_ON_PAGE(PageAnon(page), page);
2432         /*
2433          * Take a local copy of the address_space - page.mapping may be zeroed
2434          * by truncate after unlock_page().   The address_space itself remains
2435          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2436          * release semantics to prevent the compiler from undoing this copying.
2437          */
2438         mapping = page_rmapping(page);
2439         unlock_page(page);
2440
2441         if ((dirtied || page_mkwrite) && mapping) {
2442                 /*
2443                  * Some device drivers do not set page.mapping
2444                  * but still dirty their pages
2445                  */
2446                 balance_dirty_pages_ratelimited(mapping);
2447         }
2448
2449         if (!page_mkwrite)
2450                 file_update_time(vma->vm_file);
2451 }
2452
2453 /*
2454  * Handle write page faults for pages that can be reused in the current vma
2455  *
2456  * This can happen either due to the mapping being with the VM_SHARED flag,
2457  * or due to us being the last reference standing to the page. In either
2458  * case, all we need to do here is to mark the page as writable and update
2459  * any related book-keeping.
2460  */
2461 static inline void wp_page_reuse(struct vm_fault *vmf)
2462         __releases(vmf->ptl)
2463 {
2464         struct vm_area_struct *vma = vmf->vma;
2465         struct page *page = vmf->page;
2466         pte_t entry;
2467         /*
2468          * Clear the pages cpupid information as the existing
2469          * information potentially belongs to a now completely
2470          * unrelated process.
2471          */
2472         if (page)
2473                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2474
2475         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2476         entry = pte_mkyoung(vmf->orig_pte);
2477         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2478         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2479                 update_mmu_cache(vma, vmf->address, vmf->pte);
2480         pte_unmap_unlock(vmf->pte, vmf->ptl);
2481 }
2482
2483 /*
2484  * Handle the case of a page which we actually need to copy to a new page.
2485  *
2486  * Called with mmap_sem locked and the old page referenced, but
2487  * without the ptl held.
2488  *
2489  * High level logic flow:
2490  *
2491  * - Allocate a page, copy the content of the old page to the new one.
2492  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2493  * - Take the PTL. If the pte changed, bail out and release the allocated page
2494  * - If the pte is still the way we remember it, update the page table and all
2495  *   relevant references. This includes dropping the reference the page-table
2496  *   held to the old page, as well as updating the rmap.
2497  * - In any case, unlock the PTL and drop the reference we took to the old page.
2498  */
2499 static int wp_page_copy(struct vm_fault *vmf)
2500 {
2501         struct vm_area_struct *vma = vmf->vma;
2502         struct mm_struct *mm = vma->vm_mm;
2503         struct page *old_page = vmf->page;
2504         struct page *new_page = NULL;
2505         pte_t entry;
2506         int page_copied = 0;
2507         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2508         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2509         struct mem_cgroup *memcg;
2510
2511         if (unlikely(anon_vma_prepare(vma)))
2512                 goto oom;
2513
2514         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2515                 new_page = alloc_zeroed_user_highpage_movable(vma,
2516                                                               vmf->address);
2517                 if (!new_page)
2518                         goto oom;
2519         } else {
2520                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2521                                 vmf->address);
2522                 if (!new_page)
2523                         goto oom;
2524                 cow_user_page(new_page, old_page, vmf->address, vma);
2525         }
2526
2527         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2528                 goto oom_free_new;
2529
2530         __SetPageUptodate(new_page);
2531
2532         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2533
2534         /*
2535          * Re-check the pte - we dropped the lock
2536          */
2537         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2538         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2539                 if (old_page) {
2540                         if (!PageAnon(old_page)) {
2541                                 dec_mm_counter_fast(mm,
2542                                                 mm_counter_file(old_page));
2543                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2544                         }
2545                 } else {
2546                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2547                 }
2548                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2549                 entry = mk_pte(new_page, vma->vm_page_prot);
2550                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2551                 /*
2552                  * Clear the pte entry and flush it first, before updating the
2553                  * pte with the new entry. This will avoid a race condition
2554                  * seen in the presence of one thread doing SMC and another
2555                  * thread doing COW.
2556                  */
2557                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2558                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2559                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2560                 lru_cache_add_active_or_unevictable(new_page, vma);
2561                 /*
2562                  * We call the notify macro here because, when using secondary
2563                  * mmu page tables (such as kvm shadow page tables), we want the
2564                  * new page to be mapped directly into the secondary page table.
2565                  */
2566                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2567                 update_mmu_cache(vma, vmf->address, vmf->pte);
2568                 if (old_page) {
2569                         /*
2570                          * Only after switching the pte to the new page may
2571                          * we remove the mapcount here. Otherwise another
2572                          * process may come and find the rmap count decremented
2573                          * before the pte is switched to the new page, and
2574                          * "reuse" the old page writing into it while our pte
2575                          * here still points into it and can be read by other
2576                          * threads.
2577                          *
2578                          * The critical issue is to order this
2579                          * page_remove_rmap with the ptp_clear_flush above.
2580                          * Those stores are ordered by (if nothing else,)
2581                          * the barrier present in the atomic_add_negative
2582                          * in page_remove_rmap.
2583                          *
2584                          * Then the TLB flush in ptep_clear_flush ensures that
2585                          * no process can access the old page before the
2586                          * decremented mapcount is visible. And the old page
2587                          * cannot be reused until after the decremented
2588                          * mapcount is visible. So transitively, TLBs to
2589                          * old page will be flushed before it can be reused.
2590                          */
2591                         page_remove_rmap(old_page, false);
2592                 }
2593
2594                 /* Free the old page.. */
2595                 new_page = old_page;
2596                 page_copied = 1;
2597         } else {
2598                 mem_cgroup_cancel_charge(new_page, memcg, false);
2599         }
2600
2601         if (new_page)
2602                 put_page(new_page);
2603
2604         pte_unmap_unlock(vmf->pte, vmf->ptl);
2605         /*
2606          * No need to double call mmu_notifier->invalidate_range() callback as
2607          * the above ptep_clear_flush_notify() did already call it.
2608          */
2609         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2610         if (old_page) {
2611                 /*
2612                  * Don't let another task, with possibly unlocked vma,
2613                  * keep the mlocked page.
2614                  */
2615                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2616                         lock_page(old_page);    /* LRU manipulation */
2617                         if (PageMlocked(old_page))
2618                                 munlock_vma_page(old_page);
2619                         unlock_page(old_page);
2620                 }
2621                 put_page(old_page);
2622         }
2623         return page_copied ? VM_FAULT_WRITE : 0;
2624 oom_free_new:
2625         put_page(new_page);
2626 oom:
2627         if (old_page)
2628                 put_page(old_page);
2629         return VM_FAULT_OOM;
2630 }
2631
2632 /**
2633  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2634  *                        writeable once the page is prepared
2635  *
2636  * @vmf: structure describing the fault
2637  *
2638  * This function handles all that is needed to finish a write page fault in a
2639  * shared mapping due to PTE being read-only once the mapped page is prepared.
2640  * It handles locking of PTE and modifying it. The function returns
2641  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2642  * lock.
2643  *
2644  * The function expects the page to be locked or other protection against
2645  * concurrent faults / writeback (such as DAX radix tree locks).
2646  */
2647 int finish_mkwrite_fault(struct vm_fault *vmf)
2648 {
2649         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2650         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2651                                        &vmf->ptl);
2652         /*
2653          * We might have raced with another page fault while we released the
2654          * pte_offset_map_lock.
2655          */
2656         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2657                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2658                 return VM_FAULT_NOPAGE;
2659         }
2660         wp_page_reuse(vmf);
2661         return 0;
2662 }
2663
2664 /*
2665  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2666  * mapping
2667  */
2668 static int wp_pfn_shared(struct vm_fault *vmf)
2669 {
2670         struct vm_area_struct *vma = vmf->vma;
2671
2672         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2673                 int ret;
2674
2675                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2676                 vmf->flags |= FAULT_FLAG_MKWRITE;
2677                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2678                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2679                         return ret;
2680                 return finish_mkwrite_fault(vmf);
2681         }
2682         wp_page_reuse(vmf);
2683         return VM_FAULT_WRITE;
2684 }
2685
2686 static int wp_page_shared(struct vm_fault *vmf)
2687         __releases(vmf->ptl)
2688 {
2689         struct vm_area_struct *vma = vmf->vma;
2690
2691         get_page(vmf->page);
2692
2693         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2694                 int tmp;
2695
2696                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2697                 tmp = do_page_mkwrite(vmf);
2698                 if (unlikely(!tmp || (tmp &
2699                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2700                         put_page(vmf->page);
2701                         return tmp;
2702                 }
2703                 tmp = finish_mkwrite_fault(vmf);
2704                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2705                         unlock_page(vmf->page);
2706                         put_page(vmf->page);
2707                         return tmp;
2708                 }
2709         } else {
2710                 wp_page_reuse(vmf);
2711                 lock_page(vmf->page);
2712         }
2713         fault_dirty_shared_page(vma, vmf->page);
2714         put_page(vmf->page);
2715
2716         return VM_FAULT_WRITE;
2717 }
2718
2719 /*
2720  * This routine handles present pages, when users try to write
2721  * to a shared page. It is done by copying the page to a new address
2722  * and decrementing the shared-page counter for the old page.
2723  *
2724  * Note that this routine assumes that the protection checks have been
2725  * done by the caller (the low-level page fault routine in most cases).
2726  * Thus we can safely just mark it writable once we've done any necessary
2727  * COW.
2728  *
2729  * We also mark the page dirty at this point even though the page will
2730  * change only once the write actually happens. This avoids a few races,
2731  * and potentially makes it more efficient.
2732  *
2733  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2734  * but allow concurrent faults), with pte both mapped and locked.
2735  * We return with mmap_sem still held, but pte unmapped and unlocked.
2736  */
2737 static int do_wp_page(struct vm_fault *vmf)
2738         __releases(vmf->ptl)
2739 {
2740         struct vm_area_struct *vma = vmf->vma;
2741
2742         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2743         if (!vmf->page) {
2744                 /*
2745                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2746                  * VM_PFNMAP VMA.
2747                  *
2748                  * We should not cow pages in a shared writeable mapping.
2749                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2750                  */
2751                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2752                                      (VM_WRITE|VM_SHARED))
2753                         return wp_pfn_shared(vmf);
2754
2755                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2756                 return wp_page_copy(vmf);
2757         }
2758
2759         /*
2760          * Take out anonymous pages first, anonymous shared vmas are
2761          * not dirty accountable.
2762          */
2763         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2764                 int total_map_swapcount;
2765                 if (!trylock_page(vmf->page)) {
2766                         get_page(vmf->page);
2767                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2768                         lock_page(vmf->page);
2769                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2770                                         vmf->address, &vmf->ptl);
2771                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2772                                 unlock_page(vmf->page);
2773                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2774                                 put_page(vmf->page);
2775                                 return 0;
2776                         }
2777                         put_page(vmf->page);
2778                 }
2779                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2780                         if (total_map_swapcount == 1) {
2781                                 /*
2782                                  * The page is all ours. Move it to
2783                                  * our anon_vma so the rmap code will
2784                                  * not search our parent or siblings.
2785                                  * Protected against the rmap code by
2786                                  * the page lock.
2787                                  */
2788                                 page_move_anon_rmap(vmf->page, vma);
2789                         }
2790                         unlock_page(vmf->page);
2791                         wp_page_reuse(vmf);
2792                         return VM_FAULT_WRITE;
2793                 }
2794                 unlock_page(vmf->page);
2795         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2796                                         (VM_WRITE|VM_SHARED))) {
2797                 return wp_page_shared(vmf);
2798         }
2799
2800         /*
2801          * Ok, we need to copy. Oh, well..
2802          */
2803         get_page(vmf->page);
2804
2805         pte_unmap_unlock(vmf->pte, vmf->ptl);
2806         return wp_page_copy(vmf);
2807 }
2808
2809 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2810                 unsigned long start_addr, unsigned long end_addr,
2811                 struct zap_details *details)
2812 {
2813         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2814 }
2815
2816 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2817                                             struct zap_details *details)
2818 {
2819         struct vm_area_struct *vma;
2820         pgoff_t vba, vea, zba, zea;
2821
2822         vma_interval_tree_foreach(vma, root,
2823                         details->first_index, details->last_index) {
2824
2825                 vba = vma->vm_pgoff;
2826                 vea = vba + vma_pages(vma) - 1;
2827                 zba = details->first_index;
2828                 if (zba < vba)
2829                         zba = vba;
2830                 zea = details->last_index;
2831                 if (zea > vea)
2832                         zea = vea;
2833
2834                 unmap_mapping_range_vma(vma,
2835                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2836                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2837                                 details);
2838         }
2839 }
2840
2841 /**
2842  * unmap_mapping_pages() - Unmap pages from processes.
2843  * @mapping: The address space containing pages to be unmapped.
2844  * @start: Index of first page to be unmapped.
2845  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2846  * @even_cows: Whether to unmap even private COWed pages.
2847  *
2848  * Unmap the pages in this address space from any userspace process which
2849  * has them mmaped.  Generally, you want to remove COWed pages as well when
2850  * a file is being truncated, but not when invalidating pages from the page
2851  * cache.
2852  */
2853 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2854                 pgoff_t nr, bool even_cows)
2855 {
2856         struct zap_details details = { };
2857
2858         details.check_mapping = even_cows ? NULL : mapping;
2859         details.first_index = start;
2860         details.last_index = start + nr - 1;
2861         if (details.last_index < details.first_index)
2862                 details.last_index = ULONG_MAX;
2863
2864         i_mmap_lock_write(mapping);
2865         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2866                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2867         i_mmap_unlock_write(mapping);
2868 }
2869
2870 /**
2871  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2872  * address_space corresponding to the specified byte range in the underlying
2873  * file.
2874  *
2875  * @mapping: the address space containing mmaps to be unmapped.
2876  * @holebegin: byte in first page to unmap, relative to the start of
2877  * the underlying file.  This will be rounded down to a PAGE_SIZE
2878  * boundary.  Note that this is different from truncate_pagecache(), which
2879  * must keep the partial page.  In contrast, we must get rid of
2880  * partial pages.
2881  * @holelen: size of prospective hole in bytes.  This will be rounded
2882  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2883  * end of the file.
2884  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2885  * but 0 when invalidating pagecache, don't throw away private data.
2886  */
2887 void unmap_mapping_range(struct address_space *mapping,
2888                 loff_t const holebegin, loff_t const holelen, int even_cows)
2889 {
2890         pgoff_t hba = holebegin >> PAGE_SHIFT;
2891         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2892
2893         /* Check for overflow. */
2894         if (sizeof(holelen) > sizeof(hlen)) {
2895                 long long holeend =
2896                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2897                 if (holeend & ~(long long)ULONG_MAX)
2898                         hlen = ULONG_MAX - hba + 1;
2899         }
2900
2901         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2902 }
2903 EXPORT_SYMBOL(unmap_mapping_range);
2904
2905 /*
2906  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2907  * but allow concurrent faults), and pte mapped but not yet locked.
2908  * We return with pte unmapped and unlocked.
2909  *
2910  * We return with the mmap_sem locked or unlocked in the same cases
2911  * as does filemap_fault().
2912  */
2913 int do_swap_page(struct vm_fault *vmf)
2914 {
2915         struct vm_area_struct *vma = vmf->vma;
2916         struct page *page = NULL, *swapcache;
2917         struct mem_cgroup *memcg;
2918         swp_entry_t entry;
2919         pte_t pte;
2920         int locked;
2921         int exclusive = 0;
2922         int ret = 0;
2923
2924         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2925                 goto out;
2926
2927         entry = pte_to_swp_entry(vmf->orig_pte);
2928         if (unlikely(non_swap_entry(entry))) {
2929                 if (is_migration_entry(entry)) {
2930                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2931                                              vmf->address);
2932                 } else if (is_device_private_entry(entry)) {
2933                         /*
2934                          * For un-addressable device memory we call the pgmap
2935                          * fault handler callback. The callback must migrate
2936                          * the page back to some CPU accessible page.
2937                          */
2938                         ret = device_private_entry_fault(vma, vmf->address, entry,
2939                                                  vmf->flags, vmf->pmd);
2940                 } else if (is_hwpoison_entry(entry)) {
2941                         ret = VM_FAULT_HWPOISON;
2942                 } else {
2943                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2944                         ret = VM_FAULT_SIGBUS;
2945                 }
2946                 goto out;
2947         }
2948
2949
2950         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2951         page = lookup_swap_cache(entry, vma, vmf->address);
2952         swapcache = page;
2953
2954         if (!page) {
2955                 struct swap_info_struct *si = swp_swap_info(entry);
2956
2957                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2958                                 __swap_count(si, entry) == 1) {
2959                         /* skip swapcache */
2960                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2961                                                         vmf->address);
2962                         if (page) {
2963                                 __SetPageLocked(page);
2964                                 __SetPageSwapBacked(page);
2965                                 set_page_private(page, entry.val);
2966                                 lru_cache_add_anon(page);
2967                                 swap_readpage(page, true);
2968                         }
2969                 } else {
2970                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2971                                                 vmf);
2972                         swapcache = page;
2973                 }
2974
2975                 if (!page) {
2976                         /*
2977                          * Back out if somebody else faulted in this pte
2978                          * while we released the pte lock.
2979                          */
2980                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2981                                         vmf->address, &vmf->ptl);
2982                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2983                                 ret = VM_FAULT_OOM;
2984                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2985                         goto unlock;
2986                 }
2987
2988                 /* Had to read the page from swap area: Major fault */
2989                 ret = VM_FAULT_MAJOR;
2990                 count_vm_event(PGMAJFAULT);
2991                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2992         } else if (PageHWPoison(page)) {
2993                 /*
2994                  * hwpoisoned dirty swapcache pages are kept for killing
2995                  * owner processes (which may be unknown at hwpoison time)
2996                  */
2997                 ret = VM_FAULT_HWPOISON;
2998                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2999                 goto out_release;
3000         }
3001
3002         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3003
3004         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3005         if (!locked) {
3006                 ret |= VM_FAULT_RETRY;
3007                 goto out_release;
3008         }
3009
3010         /*
3011          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3012          * release the swapcache from under us.  The page pin, and pte_same
3013          * test below, are not enough to exclude that.  Even if it is still
3014          * swapcache, we need to check that the page's swap has not changed.
3015          */
3016         if (unlikely((!PageSwapCache(page) ||
3017                         page_private(page) != entry.val)) && swapcache)
3018                 goto out_page;
3019
3020         page = ksm_might_need_to_copy(page, vma, vmf->address);
3021         if (unlikely(!page)) {
3022                 ret = VM_FAULT_OOM;
3023                 page = swapcache;
3024                 goto out_page;
3025         }
3026
3027         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3028                                         &memcg, false)) {
3029                 ret = VM_FAULT_OOM;
3030                 goto out_page;
3031         }
3032
3033         /*
3034          * Back out if somebody else already faulted in this pte.
3035          */
3036         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3037                         &vmf->ptl);
3038         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3039                 goto out_nomap;
3040
3041         if (unlikely(!PageUptodate(page))) {
3042                 ret = VM_FAULT_SIGBUS;
3043                 goto out_nomap;
3044         }
3045
3046         /*
3047          * The page isn't present yet, go ahead with the fault.
3048          *
3049          * Be careful about the sequence of operations here.
3050          * To get its accounting right, reuse_swap_page() must be called
3051          * while the page is counted on swap but not yet in mapcount i.e.
3052          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3053          * must be called after the swap_free(), or it will never succeed.
3054          */
3055
3056         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3057         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3058         pte = mk_pte(page, vma->vm_page_prot);
3059         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3060                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3061                 vmf->flags &= ~FAULT_FLAG_WRITE;
3062                 ret |= VM_FAULT_WRITE;
3063                 exclusive = RMAP_EXCLUSIVE;
3064         }
3065         flush_icache_page(vma, page);
3066         if (pte_swp_soft_dirty(vmf->orig_pte))
3067                 pte = pte_mksoft_dirty(pte);
3068         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3069         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3070         vmf->orig_pte = pte;
3071
3072         /* ksm created a completely new copy */
3073         if (unlikely(page != swapcache && swapcache)) {
3074                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3075                 mem_cgroup_commit_charge(page, memcg, false, false);
3076                 lru_cache_add_active_or_unevictable(page, vma);
3077         } else {
3078                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3079                 mem_cgroup_commit_charge(page, memcg, true, false);
3080                 activate_page(page);
3081         }
3082
3083         swap_free(entry);
3084         if (mem_cgroup_swap_full(page) ||
3085             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3086                 try_to_free_swap(page);
3087         unlock_page(page);
3088         if (page != swapcache && swapcache) {
3089                 /*
3090                  * Hold the lock to avoid the swap entry to be reused
3091                  * until we take the PT lock for the pte_same() check
3092                  * (to avoid false positives from pte_same). For
3093                  * further safety release the lock after the swap_free
3094                  * so that the swap count won't change under a
3095                  * parallel locked swapcache.
3096                  */
3097                 unlock_page(swapcache);
3098                 put_page(swapcache);
3099         }
3100
3101         if (vmf->flags & FAULT_FLAG_WRITE) {
3102                 ret |= do_wp_page(vmf);
3103                 if (ret & VM_FAULT_ERROR)
3104                         ret &= VM_FAULT_ERROR;
3105                 goto out;
3106         }
3107
3108         /* No need to invalidate - it was non-present before */
3109         update_mmu_cache(vma, vmf->address, vmf->pte);
3110 unlock:
3111         pte_unmap_unlock(vmf->pte, vmf->ptl);
3112 out:
3113         return ret;
3114 out_nomap:
3115         mem_cgroup_cancel_charge(page, memcg, false);
3116         pte_unmap_unlock(vmf->pte, vmf->ptl);
3117 out_page:
3118         unlock_page(page);
3119 out_release:
3120         put_page(page);
3121         if (page != swapcache && swapcache) {
3122                 unlock_page(swapcache);
3123                 put_page(swapcache);
3124         }
3125         return ret;
3126 }
3127
3128 /*
3129  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3130  * but allow concurrent faults), and pte mapped but not yet locked.
3131  * We return with mmap_sem still held, but pte unmapped and unlocked.
3132  */
3133 static int do_anonymous_page(struct vm_fault *vmf)
3134 {
3135         struct vm_area_struct *vma = vmf->vma;
3136         struct mem_cgroup *memcg;
3137         struct page *page;
3138         int ret = 0;
3139         pte_t entry;
3140
3141         /* File mapping without ->vm_ops ? */
3142         if (vma->vm_flags & VM_SHARED)
3143                 return VM_FAULT_SIGBUS;
3144
3145         /*
3146          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3147          * pte_offset_map() on pmds where a huge pmd might be created
3148          * from a different thread.
3149          *
3150          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3151          * parallel threads are excluded by other means.
3152          *
3153          * Here we only have down_read(mmap_sem).
3154          */
3155         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3156                 return VM_FAULT_OOM;
3157
3158         /* See the comment in pte_alloc_one_map() */
3159         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3160                 return 0;
3161
3162         /* Use the zero-page for reads */
3163         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3164                         !mm_forbids_zeropage(vma->vm_mm)) {
3165                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3166                                                 vma->vm_page_prot));
3167                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3168                                 vmf->address, &vmf->ptl);
3169                 if (!pte_none(*vmf->pte))
3170                         goto unlock;
3171                 ret = check_stable_address_space(vma->vm_mm);
3172                 if (ret)
3173                         goto unlock;
3174                 /* Deliver the page fault to userland, check inside PT lock */
3175                 if (userfaultfd_missing(vma)) {
3176                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3177                         return handle_userfault(vmf, VM_UFFD_MISSING);
3178                 }
3179                 goto setpte;
3180         }
3181
3182         /* Allocate our own private page. */
3183         if (unlikely(anon_vma_prepare(vma)))
3184                 goto oom;
3185         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3186         if (!page)
3187                 goto oom;
3188
3189         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3190                                         false))
3191                 goto oom_free_page;
3192
3193         /*
3194          * The memory barrier inside __SetPageUptodate makes sure that
3195          * preceeding stores to the page contents become visible before
3196          * the set_pte_at() write.
3197          */
3198         __SetPageUptodate(page);
3199
3200         entry = mk_pte(page, vma->vm_page_prot);
3201         if (vma->vm_flags & VM_WRITE)
3202                 entry = pte_mkwrite(pte_mkdirty(entry));
3203
3204         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3205                         &vmf->ptl);
3206         if (!pte_none(*vmf->pte))
3207                 goto release;
3208
3209         ret = check_stable_address_space(vma->vm_mm);
3210         if (ret)
3211                 goto release;
3212
3213         /* Deliver the page fault to userland, check inside PT lock */
3214         if (userfaultfd_missing(vma)) {
3215                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3216                 mem_cgroup_cancel_charge(page, memcg, false);
3217                 put_page(page);
3218                 return handle_userfault(vmf, VM_UFFD_MISSING);
3219         }
3220
3221         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3222         page_add_new_anon_rmap(page, vma, vmf->address, false);
3223         mem_cgroup_commit_charge(page, memcg, false, false);
3224         lru_cache_add_active_or_unevictable(page, vma);
3225 setpte:
3226         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3227
3228         /* No need to invalidate - it was non-present before */
3229         update_mmu_cache(vma, vmf->address, vmf->pte);
3230 unlock:
3231         pte_unmap_unlock(vmf->pte, vmf->ptl);
3232         return ret;
3233 release:
3234         mem_cgroup_cancel_charge(page, memcg, false);
3235         put_page(page);
3236         goto unlock;
3237 oom_free_page:
3238         put_page(page);
3239 oom:
3240         return VM_FAULT_OOM;
3241 }
3242
3243 /*
3244  * The mmap_sem must have been held on entry, and may have been
3245  * released depending on flags and vma->vm_ops->fault() return value.
3246  * See filemap_fault() and __lock_page_retry().
3247  */
3248 static int __do_fault(struct vm_fault *vmf)
3249 {
3250         struct vm_area_struct *vma = vmf->vma;
3251         int ret;
3252
3253         ret = vma->vm_ops->fault(vmf);
3254         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3255                             VM_FAULT_DONE_COW)))
3256                 return ret;
3257
3258         if (unlikely(PageHWPoison(vmf->page))) {
3259                 if (ret & VM_FAULT_LOCKED)
3260                         unlock_page(vmf->page);
3261                 put_page(vmf->page);
3262                 vmf->page = NULL;
3263                 return VM_FAULT_HWPOISON;
3264         }
3265
3266         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3267                 lock_page(vmf->page);
3268         else
3269                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3270
3271         return ret;
3272 }
3273
3274 /*
3275  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3276  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3277  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3278  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3279  */
3280 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3281 {
3282         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3283 }
3284
3285 static int pte_alloc_one_map(struct vm_fault *vmf)
3286 {
3287         struct vm_area_struct *vma = vmf->vma;
3288
3289         if (!pmd_none(*vmf->pmd))
3290                 goto map_pte;
3291         if (vmf->prealloc_pte) {
3292                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3293                 if (unlikely(!pmd_none(*vmf->pmd))) {
3294                         spin_unlock(vmf->ptl);
3295                         goto map_pte;
3296                 }
3297
3298                 mm_inc_nr_ptes(vma->vm_mm);
3299                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3300                 spin_unlock(vmf->ptl);
3301                 vmf->prealloc_pte = NULL;
3302         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3303                 return VM_FAULT_OOM;
3304         }
3305 map_pte:
3306         /*
3307          * If a huge pmd materialized under us just retry later.  Use
3308          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3309          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3310          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3311          * running immediately after a huge pmd fault in a different thread of
3312          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3313          * All we have to ensure is that it is a regular pmd that we can walk
3314          * with pte_offset_map() and we can do that through an atomic read in
3315          * C, which is what pmd_trans_unstable() provides.
3316          */
3317         if (pmd_devmap_trans_unstable(vmf->pmd))
3318                 return VM_FAULT_NOPAGE;
3319
3320         /*
3321          * At this point we know that our vmf->pmd points to a page of ptes
3322          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3323          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3324          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3325          * be valid and we will re-check to make sure the vmf->pte isn't
3326          * pte_none() under vmf->ptl protection when we return to
3327          * alloc_set_pte().
3328          */
3329         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3330                         &vmf->ptl);
3331         return 0;
3332 }
3333
3334 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3335
3336 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3337 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3338                 unsigned long haddr)
3339 {
3340         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3341                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3342                 return false;
3343         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3344                 return false;
3345         return true;
3346 }
3347
3348 static void deposit_prealloc_pte(struct vm_fault *vmf)
3349 {
3350         struct vm_area_struct *vma = vmf->vma;
3351
3352         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3353         /*
3354          * We are going to consume the prealloc table,
3355          * count that as nr_ptes.
3356          */
3357         mm_inc_nr_ptes(vma->vm_mm);
3358         vmf->prealloc_pte = NULL;
3359 }
3360
3361 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3362 {
3363         struct vm_area_struct *vma = vmf->vma;
3364         bool write = vmf->flags & FAULT_FLAG_WRITE;
3365         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3366         pmd_t entry;
3367         int i, ret;
3368
3369         if (!transhuge_vma_suitable(vma, haddr))
3370                 return VM_FAULT_FALLBACK;
3371
3372         ret = VM_FAULT_FALLBACK;
3373         page = compound_head(page);
3374
3375         /*
3376          * Archs like ppc64 need additonal space to store information
3377          * related to pte entry. Use the preallocated table for that.
3378          */
3379         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3380                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3381                 if (!vmf->prealloc_pte)
3382                         return VM_FAULT_OOM;
3383                 smp_wmb(); /* See comment in __pte_alloc() */
3384         }
3385
3386         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3387         if (unlikely(!pmd_none(*vmf->pmd)))
3388                 goto out;
3389
3390         for (i = 0; i < HPAGE_PMD_NR; i++)
3391                 flush_icache_page(vma, page + i);
3392
3393         entry = mk_huge_pmd(page, vma->vm_page_prot);
3394         if (write)
3395                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3396
3397         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3398         page_add_file_rmap(page, true);
3399         /*
3400          * deposit and withdraw with pmd lock held
3401          */
3402         if (arch_needs_pgtable_deposit())
3403                 deposit_prealloc_pte(vmf);
3404
3405         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3406
3407         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3408
3409         /* fault is handled */
3410         ret = 0;
3411         count_vm_event(THP_FILE_MAPPED);
3412 out:
3413         spin_unlock(vmf->ptl);
3414         return ret;
3415 }
3416 #else
3417 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3418 {
3419         BUILD_BUG();
3420         return 0;
3421 }
3422 #endif
3423
3424 /**
3425  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3426  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3427  *
3428  * @vmf: fault environment
3429  * @memcg: memcg to charge page (only for private mappings)
3430  * @page: page to map
3431  *
3432  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3433  * return.
3434  *
3435  * Target users are page handler itself and implementations of
3436  * vm_ops->map_pages.
3437  */
3438 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3439                 struct page *page)
3440 {
3441         struct vm_area_struct *vma = vmf->vma;
3442         bool write = vmf->flags & FAULT_FLAG_WRITE;
3443         pte_t entry;
3444         int ret;
3445
3446         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3447                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3448                 /* THP on COW? */
3449                 VM_BUG_ON_PAGE(memcg, page);
3450
3451                 ret = do_set_pmd(vmf, page);
3452                 if (ret != VM_FAULT_FALLBACK)
3453                         return ret;
3454         }
3455
3456         if (!vmf->pte) {
3457                 ret = pte_alloc_one_map(vmf);
3458                 if (ret)
3459                         return ret;
3460         }
3461
3462         /* Re-check under ptl */
3463         if (unlikely(!pte_none(*vmf->pte)))
3464                 return VM_FAULT_NOPAGE;
3465
3466         flush_icache_page(vma, page);
3467         entry = mk_pte(page, vma->vm_page_prot);
3468         if (write)
3469                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3470         /* copy-on-write page */
3471         if (write && !(vma->vm_flags & VM_SHARED)) {
3472                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3473                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3474                 mem_cgroup_commit_charge(page, memcg, false, false);
3475                 lru_cache_add_active_or_unevictable(page, vma);
3476         } else {
3477                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3478                 page_add_file_rmap(page, false);
3479         }
3480         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3481
3482         /* no need to invalidate: a not-present page won't be cached */
3483         update_mmu_cache(vma, vmf->address, vmf->pte);
3484
3485         return 0;
3486 }
3487
3488
3489 /**
3490  * finish_fault - finish page fault once we have prepared the page to fault
3491  *
3492  * @vmf: structure describing the fault
3493  *
3494  * This function handles all that is needed to finish a page fault once the
3495  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3496  * given page, adds reverse page mapping, handles memcg charges and LRU
3497  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3498  * error.
3499  *
3500  * The function expects the page to be locked and on success it consumes a
3501  * reference of a page being mapped (for the PTE which maps it).
3502  */
3503 int finish_fault(struct vm_fault *vmf)
3504 {
3505         struct page *page;
3506         int ret = 0;
3507
3508         /* Did we COW the page? */
3509         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3510             !(vmf->vma->vm_flags & VM_SHARED))
3511                 page = vmf->cow_page;
3512         else
3513                 page = vmf->page;
3514
3515         /*
3516          * check even for read faults because we might have lost our CoWed
3517          * page
3518          */
3519         if (!(vmf->vma->vm_flags & VM_SHARED))
3520                 ret = check_stable_address_space(vmf->vma->vm_mm);
3521         if (!ret)
3522                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3523         if (vmf->pte)
3524                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3525         return ret;
3526 }
3527
3528 static unsigned long fault_around_bytes __read_mostly =
3529         rounddown_pow_of_two(65536);
3530
3531 #ifdef CONFIG_DEBUG_FS
3532 static int fault_around_bytes_get(void *data, u64 *val)
3533 {
3534         *val = fault_around_bytes;
3535         return 0;
3536 }
3537
3538 /*
3539  * fault_around_bytes must be rounded down to the nearest page order as it's
3540  * what do_fault_around() expects to see.
3541  */
3542 static int fault_around_bytes_set(void *data, u64 val)
3543 {
3544         if (val / PAGE_SIZE > PTRS_PER_PTE)
3545                 return -EINVAL;
3546         if (val > PAGE_SIZE)
3547                 fault_around_bytes = rounddown_pow_of_two(val);
3548         else
3549                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3550         return 0;
3551 }
3552 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3553                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3554
3555 static int __init fault_around_debugfs(void)
3556 {
3557         void *ret;
3558
3559         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3560                         &fault_around_bytes_fops);
3561         if (!ret)
3562                 pr_warn("Failed to create fault_around_bytes in debugfs");
3563         return 0;
3564 }
3565 late_initcall(fault_around_debugfs);
3566 #endif
3567
3568 /*
3569  * do_fault_around() tries to map few pages around the fault address. The hope
3570  * is that the pages will be needed soon and this will lower the number of
3571  * faults to handle.
3572  *
3573  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3574  * not ready to be mapped: not up-to-date, locked, etc.
3575  *
3576  * This function is called with the page table lock taken. In the split ptlock
3577  * case the page table lock only protects only those entries which belong to
3578  * the page table corresponding to the fault address.
3579  *
3580  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3581  * only once.
3582  *
3583  * fault_around_bytes defines how many bytes we'll try to map.
3584  * do_fault_around() expects it to be set to a power of two less than or equal
3585  * to PTRS_PER_PTE.
3586  *
3587  * The virtual address of the area that we map is naturally aligned to
3588  * fault_around_bytes rounded down to the machine page size
3589  * (and therefore to page order).  This way it's easier to guarantee
3590  * that we don't cross page table boundaries.
3591  */
3592 static int do_fault_around(struct vm_fault *vmf)
3593 {
3594         unsigned long address = vmf->address, nr_pages, mask;
3595         pgoff_t start_pgoff = vmf->pgoff;
3596         pgoff_t end_pgoff;
3597         int off, ret = 0;
3598
3599         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3600         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3601
3602         vmf->address = max(address & mask, vmf->vma->vm_start);
3603         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3604         start_pgoff -= off;
3605
3606         /*
3607          *  end_pgoff is either the end of the page table, the end of
3608          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3609          */
3610         end_pgoff = start_pgoff -
3611                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3612                 PTRS_PER_PTE - 1;
3613         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3614                         start_pgoff + nr_pages - 1);
3615
3616         if (pmd_none(*vmf->pmd)) {
3617                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3618                                                   vmf->address);
3619                 if (!vmf->prealloc_pte)
3620                         goto out;
3621                 smp_wmb(); /* See comment in __pte_alloc() */
3622         }
3623
3624         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3625
3626         /* Huge page is mapped? Page fault is solved */
3627         if (pmd_trans_huge(*vmf->pmd)) {
3628                 ret = VM_FAULT_NOPAGE;
3629                 goto out;
3630         }
3631
3632         /* ->map_pages() haven't done anything useful. Cold page cache? */
3633         if (!vmf->pte)
3634                 goto out;
3635
3636         /* check if the page fault is solved */
3637         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3638         if (!pte_none(*vmf->pte))
3639                 ret = VM_FAULT_NOPAGE;
3640         pte_unmap_unlock(vmf->pte, vmf->ptl);
3641 out:
3642         vmf->address = address;
3643         vmf->pte = NULL;
3644         return ret;
3645 }
3646
3647 static int do_read_fault(struct vm_fault *vmf)
3648 {
3649         struct vm_area_struct *vma = vmf->vma;
3650         int ret = 0;
3651
3652         /*
3653          * Let's call ->map_pages() first and use ->fault() as fallback
3654          * if page by the offset is not ready to be mapped (cold cache or
3655          * something).
3656          */
3657         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3658                 ret = do_fault_around(vmf);
3659                 if (ret)
3660                         return ret;
3661         }
3662
3663         ret = __do_fault(vmf);
3664         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3665                 return ret;
3666
3667         ret |= finish_fault(vmf);
3668         unlock_page(vmf->page);
3669         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3670                 put_page(vmf->page);
3671         return ret;
3672 }
3673
3674 static int do_cow_fault(struct vm_fault *vmf)
3675 {
3676         struct vm_area_struct *vma = vmf->vma;
3677         int ret;
3678
3679         if (unlikely(anon_vma_prepare(vma)))
3680                 return VM_FAULT_OOM;
3681
3682         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3683         if (!vmf->cow_page)
3684                 return VM_FAULT_OOM;
3685
3686         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3687                                 &vmf->memcg, false)) {
3688                 put_page(vmf->cow_page);
3689                 return VM_FAULT_OOM;
3690         }
3691
3692         ret = __do_fault(vmf);
3693         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694                 goto uncharge_out;
3695         if (ret & VM_FAULT_DONE_COW)
3696                 return ret;
3697
3698         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3699         __SetPageUptodate(vmf->cow_page);
3700
3701         ret |= finish_fault(vmf);
3702         unlock_page(vmf->page);
3703         put_page(vmf->page);
3704         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3705                 goto uncharge_out;
3706         return ret;
3707 uncharge_out:
3708         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3709         put_page(vmf->cow_page);
3710         return ret;
3711 }
3712
3713 static int do_shared_fault(struct vm_fault *vmf)
3714 {
3715         struct vm_area_struct *vma = vmf->vma;
3716         int ret, tmp;
3717
3718         ret = __do_fault(vmf);
3719         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3720                 return ret;
3721
3722         /*
3723          * Check if the backing address space wants to know that the page is
3724          * about to become writable
3725          */
3726         if (vma->vm_ops->page_mkwrite) {
3727                 unlock_page(vmf->page);
3728                 tmp = do_page_mkwrite(vmf);
3729                 if (unlikely(!tmp ||
3730                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3731                         put_page(vmf->page);
3732                         return tmp;
3733                 }
3734         }
3735
3736         ret |= finish_fault(vmf);
3737         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3738                                         VM_FAULT_RETRY))) {
3739                 unlock_page(vmf->page);
3740                 put_page(vmf->page);
3741                 return ret;
3742         }
3743
3744         fault_dirty_shared_page(vma, vmf->page);
3745         return ret;
3746 }
3747
3748 /*
3749  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3750  * but allow concurrent faults).
3751  * The mmap_sem may have been released depending on flags and our
3752  * return value.  See filemap_fault() and __lock_page_or_retry().
3753  */
3754 static int do_fault(struct vm_fault *vmf)
3755 {
3756         struct vm_area_struct *vma = vmf->vma;
3757         int ret;
3758
3759         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3760         if (!vma->vm_ops->fault)
3761                 ret = VM_FAULT_SIGBUS;
3762         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3763                 ret = do_read_fault(vmf);
3764         else if (!(vma->vm_flags & VM_SHARED))
3765                 ret = do_cow_fault(vmf);
3766         else
3767                 ret = do_shared_fault(vmf);
3768
3769         /* preallocated pagetable is unused: free it */
3770         if (vmf->prealloc_pte) {
3771                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3772                 vmf->prealloc_pte = NULL;
3773         }
3774         return ret;
3775 }
3776
3777 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3778                                 unsigned long addr, int page_nid,
3779                                 int *flags)
3780 {
3781         get_page(page);
3782
3783         count_vm_numa_event(NUMA_HINT_FAULTS);
3784         if (page_nid == numa_node_id()) {
3785                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3786                 *flags |= TNF_FAULT_LOCAL;
3787         }
3788
3789         return mpol_misplaced(page, vma, addr);
3790 }
3791
3792 static int do_numa_page(struct vm_fault *vmf)
3793 {
3794         struct vm_area_struct *vma = vmf->vma;
3795         struct page *page = NULL;
3796         int page_nid = -1;
3797         int last_cpupid;
3798         int target_nid;
3799         bool migrated = false;
3800         pte_t pte;
3801         bool was_writable = pte_savedwrite(vmf->orig_pte);
3802         int flags = 0;
3803
3804         /*
3805          * The "pte" at this point cannot be used safely without
3806          * validation through pte_unmap_same(). It's of NUMA type but
3807          * the pfn may be screwed if the read is non atomic.
3808          */
3809         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3810         spin_lock(vmf->ptl);
3811         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3812                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3813                 goto out;
3814         }
3815
3816         /*
3817          * Make it present again, Depending on how arch implementes non
3818          * accessible ptes, some can allow access by kernel mode.
3819          */
3820         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3821         pte = pte_modify(pte, vma->vm_page_prot);
3822         pte = pte_mkyoung(pte);
3823         if (was_writable)
3824                 pte = pte_mkwrite(pte);
3825         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3826         update_mmu_cache(vma, vmf->address, vmf->pte);
3827
3828         page = vm_normal_page(vma, vmf->address, pte);
3829         if (!page) {
3830                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3831                 return 0;
3832         }
3833
3834         /* TODO: handle PTE-mapped THP */
3835         if (PageCompound(page)) {
3836                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3837                 return 0;
3838         }
3839
3840         /*
3841          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3842          * much anyway since they can be in shared cache state. This misses
3843          * the case where a mapping is writable but the process never writes
3844          * to it but pte_write gets cleared during protection updates and
3845          * pte_dirty has unpredictable behaviour between PTE scan updates,
3846          * background writeback, dirty balancing and application behaviour.
3847          */
3848         if (!pte_write(pte))
3849                 flags |= TNF_NO_GROUP;
3850
3851         /*
3852          * Flag if the page is shared between multiple address spaces. This
3853          * is later used when determining whether to group tasks together
3854          */
3855         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3856                 flags |= TNF_SHARED;
3857
3858         last_cpupid = page_cpupid_last(page);
3859         page_nid = page_to_nid(page);
3860         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3861                         &flags);
3862         pte_unmap_unlock(vmf->pte, vmf->ptl);
3863         if (target_nid == -1) {
3864                 put_page(page);
3865                 goto out;
3866         }
3867
3868         /* Migrate to the requested node */
3869         migrated = migrate_misplaced_page(page, vma, target_nid);
3870         if (migrated) {
3871                 page_nid = target_nid;
3872                 flags |= TNF_MIGRATED;
3873         } else
3874                 flags |= TNF_MIGRATE_FAIL;
3875
3876 out:
3877         if (page_nid != -1)
3878                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3879         return 0;
3880 }
3881
3882 static inline int create_huge_pmd(struct vm_fault *vmf)
3883 {
3884         if (vma_is_anonymous(vmf->vma))
3885                 return do_huge_pmd_anonymous_page(vmf);
3886         if (vmf->vma->vm_ops->huge_fault)
3887                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3888         return VM_FAULT_FALLBACK;
3889 }
3890
3891 /* `inline' is required to avoid gcc 4.1.2 build error */
3892 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3893 {
3894         if (vma_is_anonymous(vmf->vma))
3895                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3896         if (vmf->vma->vm_ops->huge_fault)
3897                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3898
3899         /* COW handled on pte level: split pmd */
3900         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3901         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3902
3903         return VM_FAULT_FALLBACK;
3904 }
3905
3906 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3907 {
3908         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3909 }
3910
3911 static int create_huge_pud(struct vm_fault *vmf)
3912 {
3913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3914         /* No support for anonymous transparent PUD pages yet */
3915         if (vma_is_anonymous(vmf->vma))
3916                 return VM_FAULT_FALLBACK;
3917         if (vmf->vma->vm_ops->huge_fault)
3918                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3919 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3920         return VM_FAULT_FALLBACK;
3921 }
3922
3923 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3924 {
3925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3926         /* No support for anonymous transparent PUD pages yet */
3927         if (vma_is_anonymous(vmf->vma))
3928                 return VM_FAULT_FALLBACK;
3929         if (vmf->vma->vm_ops->huge_fault)
3930                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3931 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3932         return VM_FAULT_FALLBACK;
3933 }
3934
3935 /*
3936  * These routines also need to handle stuff like marking pages dirty
3937  * and/or accessed for architectures that don't do it in hardware (most
3938  * RISC architectures).  The early dirtying is also good on the i386.
3939  *
3940  * There is also a hook called "update_mmu_cache()" that architectures
3941  * with external mmu caches can use to update those (ie the Sparc or
3942  * PowerPC hashed page tables that act as extended TLBs).
3943  *
3944  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3945  * concurrent faults).
3946  *
3947  * The mmap_sem may have been released depending on flags and our return value.
3948  * See filemap_fault() and __lock_page_or_retry().
3949  */
3950 static int handle_pte_fault(struct vm_fault *vmf)
3951 {
3952         pte_t entry;
3953
3954         if (unlikely(pmd_none(*vmf->pmd))) {
3955                 /*
3956                  * Leave __pte_alloc() until later: because vm_ops->fault may
3957                  * want to allocate huge page, and if we expose page table
3958                  * for an instant, it will be difficult to retract from
3959                  * concurrent faults and from rmap lookups.
3960                  */
3961                 vmf->pte = NULL;
3962         } else {
3963                 /* See comment in pte_alloc_one_map() */
3964                 if (pmd_devmap_trans_unstable(vmf->pmd))
3965                         return 0;
3966                 /*
3967                  * A regular pmd is established and it can't morph into a huge
3968                  * pmd from under us anymore at this point because we hold the
3969                  * mmap_sem read mode and khugepaged takes it in write mode.
3970                  * So now it's safe to run pte_offset_map().
3971                  */
3972                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3973                 vmf->orig_pte = *vmf->pte;
3974
3975                 /*
3976                  * some architectures can have larger ptes than wordsize,
3977                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3978                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3979                  * accesses.  The code below just needs a consistent view
3980                  * for the ifs and we later double check anyway with the
3981                  * ptl lock held. So here a barrier will do.
3982                  */
3983                 barrier();
3984                 if (pte_none(vmf->orig_pte)) {
3985                         pte_unmap(vmf->pte);
3986                         vmf->pte = NULL;
3987                 }
3988         }
3989
3990         if (!vmf->pte) {
3991                 if (vma_is_anonymous(vmf->vma))
3992                         return do_anonymous_page(vmf);
3993                 else
3994                         return do_fault(vmf);
3995         }
3996
3997         if (!pte_present(vmf->orig_pte))
3998                 return do_swap_page(vmf);
3999
4000         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4001                 return do_numa_page(vmf);
4002
4003         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4004         spin_lock(vmf->ptl);
4005         entry = vmf->orig_pte;
4006         if (unlikely(!pte_same(*vmf->pte, entry)))
4007                 goto unlock;
4008         if (vmf->flags & FAULT_FLAG_WRITE) {
4009                 if (!pte_write(entry))
4010                         return do_wp_page(vmf);
4011                 entry = pte_mkdirty(entry);
4012         }
4013         entry = pte_mkyoung(entry);
4014         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4015                                 vmf->flags & FAULT_FLAG_WRITE)) {
4016                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4017         } else {
4018                 /*
4019                  * This is needed only for protection faults but the arch code
4020                  * is not yet telling us if this is a protection fault or not.
4021                  * This still avoids useless tlb flushes for .text page faults
4022                  * with threads.
4023                  */
4024                 if (vmf->flags & FAULT_FLAG_WRITE)
4025                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4026         }
4027 unlock:
4028         pte_unmap_unlock(vmf->pte, vmf->ptl);
4029         return 0;
4030 }
4031
4032 /*
4033  * By the time we get here, we already hold the mm semaphore
4034  *
4035  * The mmap_sem may have been released depending on flags and our
4036  * return value.  See filemap_fault() and __lock_page_or_retry().
4037  */
4038 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4039                 unsigned int flags)
4040 {
4041         struct vm_fault vmf = {
4042                 .vma = vma,
4043                 .address = address & PAGE_MASK,
4044                 .flags = flags,
4045                 .pgoff = linear_page_index(vma, address),
4046                 .gfp_mask = __get_fault_gfp_mask(vma),
4047         };
4048         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4049         struct mm_struct *mm = vma->vm_mm;
4050         pgd_t *pgd;
4051         p4d_t *p4d;
4052         int ret;
4053
4054         pgd = pgd_offset(mm, address);
4055         p4d = p4d_alloc(mm, pgd, address);
4056         if (!p4d)
4057                 return VM_FAULT_OOM;
4058
4059         vmf.pud = pud_alloc(mm, p4d, address);
4060         if (!vmf.pud)
4061                 return VM_FAULT_OOM;
4062         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4063                 ret = create_huge_pud(&vmf);
4064                 if (!(ret & VM_FAULT_FALLBACK))
4065                         return ret;
4066         } else {
4067                 pud_t orig_pud = *vmf.pud;
4068
4069                 barrier();
4070                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4071
4072                         /* NUMA case for anonymous PUDs would go here */
4073
4074                         if (dirty && !pud_write(orig_pud)) {
4075                                 ret = wp_huge_pud(&vmf, orig_pud);
4076                                 if (!(ret & VM_FAULT_FALLBACK))
4077                                         return ret;
4078                         } else {
4079                                 huge_pud_set_accessed(&vmf, orig_pud);
4080                                 return 0;
4081                         }
4082                 }
4083         }
4084
4085         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4086         if (!vmf.pmd)
4087                 return VM_FAULT_OOM;
4088         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4089                 ret = create_huge_pmd(&vmf);
4090                 if (!(ret & VM_FAULT_FALLBACK))
4091                         return ret;
4092         } else {
4093                 pmd_t orig_pmd = *vmf.pmd;
4094
4095                 barrier();
4096                 if (unlikely(is_swap_pmd(orig_pmd))) {
4097                         VM_BUG_ON(thp_migration_supported() &&
4098                                           !is_pmd_migration_entry(orig_pmd));
4099                         if (is_pmd_migration_entry(orig_pmd))
4100                                 pmd_migration_entry_wait(mm, vmf.pmd);
4101                         return 0;
4102                 }
4103                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4104                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4105                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4106
4107                         if (dirty && !pmd_write(orig_pmd)) {
4108                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4109                                 if (!(ret & VM_FAULT_FALLBACK))
4110                                         return ret;
4111                         } else {
4112                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4113                                 return 0;
4114                         }
4115                 }
4116         }
4117
4118         return handle_pte_fault(&vmf);
4119 }
4120
4121 /*
4122  * By the time we get here, we already hold the mm semaphore
4123  *
4124  * The mmap_sem may have been released depending on flags and our
4125  * return value.  See filemap_fault() and __lock_page_or_retry().
4126  */
4127 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4128                 unsigned int flags)
4129 {
4130         int ret;
4131
4132         __set_current_state(TASK_RUNNING);
4133
4134         count_vm_event(PGFAULT);
4135         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4136
4137         /* do counter updates before entering really critical section. */
4138         check_sync_rss_stat(current);
4139
4140         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4141                                             flags & FAULT_FLAG_INSTRUCTION,
4142                                             flags & FAULT_FLAG_REMOTE))
4143                 return VM_FAULT_SIGSEGV;
4144
4145         /*
4146          * Enable the memcg OOM handling for faults triggered in user
4147          * space.  Kernel faults are handled more gracefully.
4148          */
4149         if (flags & FAULT_FLAG_USER)
4150                 mem_cgroup_oom_enable();
4151
4152         if (unlikely(is_vm_hugetlb_page(vma)))
4153                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4154         else
4155                 ret = __handle_mm_fault(vma, address, flags);
4156
4157         if (flags & FAULT_FLAG_USER) {
4158                 mem_cgroup_oom_disable();
4159                 /*
4160                  * The task may have entered a memcg OOM situation but
4161                  * if the allocation error was handled gracefully (no
4162                  * VM_FAULT_OOM), there is no need to kill anything.
4163                  * Just clean up the OOM state peacefully.
4164                  */
4165                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4166                         mem_cgroup_oom_synchronize(false);
4167         }
4168
4169         return ret;
4170 }
4171 EXPORT_SYMBOL_GPL(handle_mm_fault);
4172
4173 #ifndef __PAGETABLE_P4D_FOLDED
4174 /*
4175  * Allocate p4d page table.
4176  * We've already handled the fast-path in-line.
4177  */
4178 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4179 {
4180         p4d_t *new = p4d_alloc_one(mm, address);
4181         if (!new)
4182                 return -ENOMEM;
4183
4184         smp_wmb(); /* See comment in __pte_alloc */
4185
4186         spin_lock(&mm->page_table_lock);
4187         if (pgd_present(*pgd))          /* Another has populated it */
4188                 p4d_free(mm, new);
4189         else
4190                 pgd_populate(mm, pgd, new);
4191         spin_unlock(&mm->page_table_lock);
4192         return 0;
4193 }
4194 #endif /* __PAGETABLE_P4D_FOLDED */
4195
4196 #ifndef __PAGETABLE_PUD_FOLDED
4197 /*
4198  * Allocate page upper directory.
4199  * We've already handled the fast-path in-line.
4200  */
4201 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4202 {
4203         pud_t *new = pud_alloc_one(mm, address);
4204         if (!new)
4205                 return -ENOMEM;
4206
4207         smp_wmb(); /* See comment in __pte_alloc */
4208
4209         spin_lock(&mm->page_table_lock);
4210 #ifndef __ARCH_HAS_5LEVEL_HACK
4211         if (!p4d_present(*p4d)) {
4212                 mm_inc_nr_puds(mm);
4213                 p4d_populate(mm, p4d, new);
4214         } else  /* Another has populated it */
4215                 pud_free(mm, new);
4216 #else
4217         if (!pgd_present(*p4d)) {
4218                 mm_inc_nr_puds(mm);
4219                 pgd_populate(mm, p4d, new);
4220         } else  /* Another has populated it */
4221                 pud_free(mm, new);
4222 #endif /* __ARCH_HAS_5LEVEL_HACK */
4223         spin_unlock(&mm->page_table_lock);
4224         return 0;
4225 }
4226 #endif /* __PAGETABLE_PUD_FOLDED */
4227
4228 #ifndef __PAGETABLE_PMD_FOLDED
4229 /*
4230  * Allocate page middle directory.
4231  * We've already handled the fast-path in-line.
4232  */
4233 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4234 {
4235         spinlock_t *ptl;
4236         pmd_t *new = pmd_alloc_one(mm, address);
4237         if (!new)
4238                 return -ENOMEM;
4239
4240         smp_wmb(); /* See comment in __pte_alloc */
4241
4242         ptl = pud_lock(mm, pud);
4243 #ifndef __ARCH_HAS_4LEVEL_HACK
4244         if (!pud_present(*pud)) {
4245                 mm_inc_nr_pmds(mm);
4246                 pud_populate(mm, pud, new);
4247         } else  /* Another has populated it */
4248                 pmd_free(mm, new);
4249 #else
4250         if (!pgd_present(*pud)) {
4251                 mm_inc_nr_pmds(mm);
4252                 pgd_populate(mm, pud, new);
4253         } else /* Another has populated it */
4254                 pmd_free(mm, new);
4255 #endif /* __ARCH_HAS_4LEVEL_HACK */
4256         spin_unlock(ptl);
4257         return 0;
4258 }
4259 #endif /* __PAGETABLE_PMD_FOLDED */
4260
4261 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4262                             unsigned long *start, unsigned long *end,
4263                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4264 {
4265         pgd_t *pgd;
4266         p4d_t *p4d;
4267         pud_t *pud;
4268         pmd_t *pmd;
4269         pte_t *ptep;
4270
4271         pgd = pgd_offset(mm, address);
4272         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4273                 goto out;
4274
4275         p4d = p4d_offset(pgd, address);
4276         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4277                 goto out;
4278
4279         pud = pud_offset(p4d, address);
4280         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4281                 goto out;
4282
4283         pmd = pmd_offset(pud, address);
4284         VM_BUG_ON(pmd_trans_huge(*pmd));
4285
4286         if (pmd_huge(*pmd)) {
4287                 if (!pmdpp)
4288                         goto out;
4289
4290                 if (start && end) {
4291                         *start = address & PMD_MASK;
4292                         *end = *start + PMD_SIZE;
4293                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4294                 }
4295                 *ptlp = pmd_lock(mm, pmd);
4296                 if (pmd_huge(*pmd)) {
4297                         *pmdpp = pmd;
4298                         return 0;
4299                 }
4300                 spin_unlock(*ptlp);
4301                 if (start && end)
4302                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4303         }
4304
4305         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4306                 goto out;
4307
4308         if (start && end) {
4309                 *start = address & PAGE_MASK;
4310                 *end = *start + PAGE_SIZE;
4311                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4312         }
4313         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4314         if (!pte_present(*ptep))
4315                 goto unlock;
4316         *ptepp = ptep;
4317         return 0;
4318 unlock:
4319         pte_unmap_unlock(ptep, *ptlp);
4320         if (start && end)
4321                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4322 out:
4323         return -EINVAL;
4324 }
4325
4326 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4327                              pte_t **ptepp, spinlock_t **ptlp)
4328 {
4329         int res;
4330
4331         /* (void) is needed to make gcc happy */
4332         (void) __cond_lock(*ptlp,
4333                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4334                                                     ptepp, NULL, ptlp)));
4335         return res;
4336 }
4337
4338 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4339                              unsigned long *start, unsigned long *end,
4340                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4341 {
4342         int res;
4343
4344         /* (void) is needed to make gcc happy */
4345         (void) __cond_lock(*ptlp,
4346                            !(res = __follow_pte_pmd(mm, address, start, end,
4347                                                     ptepp, pmdpp, ptlp)));
4348         return res;
4349 }
4350 EXPORT_SYMBOL(follow_pte_pmd);
4351
4352 /**
4353  * follow_pfn - look up PFN at a user virtual address
4354  * @vma: memory mapping
4355  * @address: user virtual address
4356  * @pfn: location to store found PFN
4357  *
4358  * Only IO mappings and raw PFN mappings are allowed.
4359  *
4360  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4361  */
4362 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4363         unsigned long *pfn)
4364 {
4365         int ret = -EINVAL;
4366         spinlock_t *ptl;
4367         pte_t *ptep;
4368
4369         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4370                 return ret;
4371
4372         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4373         if (ret)
4374                 return ret;
4375         *pfn = pte_pfn(*ptep);
4376         pte_unmap_unlock(ptep, ptl);
4377         return 0;
4378 }
4379 EXPORT_SYMBOL(follow_pfn);
4380
4381 #ifdef CONFIG_HAVE_IOREMAP_PROT
4382 int follow_phys(struct vm_area_struct *vma,
4383                 unsigned long address, unsigned int flags,
4384                 unsigned long *prot, resource_size_t *phys)
4385 {
4386         int ret = -EINVAL;
4387         pte_t *ptep, pte;
4388         spinlock_t *ptl;
4389
4390         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4391                 goto out;
4392
4393         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4394                 goto out;
4395         pte = *ptep;
4396
4397         if ((flags & FOLL_WRITE) && !pte_write(pte))
4398                 goto unlock;
4399
4400         *prot = pgprot_val(pte_pgprot(pte));
4401         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4402
4403         ret = 0;
4404 unlock:
4405         pte_unmap_unlock(ptep, ptl);
4406 out:
4407         return ret;
4408 }
4409
4410 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4411                         void *buf, int len, int write)
4412 {
4413         resource_size_t phys_addr;
4414         unsigned long prot = 0;
4415         void __iomem *maddr;
4416         int offset = addr & (PAGE_SIZE-1);
4417
4418         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4419                 return -EINVAL;
4420
4421         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4422         if (!maddr)
4423                 return -ENOMEM;
4424
4425         if (write)
4426                 memcpy_toio(maddr + offset, buf, len);
4427         else
4428                 memcpy_fromio(buf, maddr + offset, len);
4429         iounmap(maddr);
4430
4431         return len;
4432 }
4433 EXPORT_SYMBOL_GPL(generic_access_phys);
4434 #endif
4435
4436 /*
4437  * Access another process' address space as given in mm.  If non-NULL, use the
4438  * given task for page fault accounting.
4439  */
4440 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4441                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4442 {
4443         struct vm_area_struct *vma;
4444         void *old_buf = buf;
4445         int write = gup_flags & FOLL_WRITE;
4446
4447         down_read(&mm->mmap_sem);
4448         /* ignore errors, just check how much was successfully transferred */
4449         while (len) {
4450                 int bytes, ret, offset;
4451                 void *maddr;
4452                 struct page *page = NULL;
4453
4454                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4455                                 gup_flags, &page, &vma, NULL);
4456                 if (ret <= 0) {
4457 #ifndef CONFIG_HAVE_IOREMAP_PROT
4458                         break;
4459 #else
4460                         /*
4461                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4462                          * we can access using slightly different code.
4463                          */
4464                         vma = find_vma(mm, addr);
4465                         if (!vma || vma->vm_start > addr)
4466                                 break;
4467                         if (vma->vm_ops && vma->vm_ops->access)
4468                                 ret = vma->vm_ops->access(vma, addr, buf,
4469                                                           len, write);
4470                         if (ret <= 0)
4471                                 break;
4472                         bytes = ret;
4473 #endif
4474                 } else {
4475                         bytes = len;
4476                         offset = addr & (PAGE_SIZE-1);
4477                         if (bytes > PAGE_SIZE-offset)
4478                                 bytes = PAGE_SIZE-offset;
4479
4480                         maddr = kmap(page);
4481                         if (write) {
4482                                 copy_to_user_page(vma, page, addr,
4483                                                   maddr + offset, buf, bytes);
4484                                 set_page_dirty_lock(page);
4485                         } else {
4486                                 copy_from_user_page(vma, page, addr,
4487                                                     buf, maddr + offset, bytes);
4488                         }
4489                         kunmap(page);
4490                         put_page(page);
4491                 }
4492                 len -= bytes;
4493                 buf += bytes;
4494                 addr += bytes;
4495         }
4496         up_read(&mm->mmap_sem);
4497
4498         return buf - old_buf;
4499 }
4500
4501 /**
4502  * access_remote_vm - access another process' address space
4503  * @mm:         the mm_struct of the target address space
4504  * @addr:       start address to access
4505  * @buf:        source or destination buffer
4506  * @len:        number of bytes to transfer
4507  * @gup_flags:  flags modifying lookup behaviour
4508  *
4509  * The caller must hold a reference on @mm.
4510  */
4511 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4512                 void *buf, int len, unsigned int gup_flags)
4513 {
4514         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4515 }
4516
4517 /*
4518  * Access another process' address space.
4519  * Source/target buffer must be kernel space,
4520  * Do not walk the page table directly, use get_user_pages
4521  */
4522 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4523                 void *buf, int len, unsigned int gup_flags)
4524 {
4525         struct mm_struct *mm;
4526         int ret;
4527
4528         mm = get_task_mm(tsk);
4529         if (!mm)
4530                 return 0;
4531
4532         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4533
4534         mmput(mm);
4535
4536         return ret;
4537 }
4538 EXPORT_SYMBOL_GPL(access_process_vm);
4539
4540 /*
4541  * Print the name of a VMA.
4542  */
4543 void print_vma_addr(char *prefix, unsigned long ip)
4544 {
4545         struct mm_struct *mm = current->mm;
4546         struct vm_area_struct *vma;
4547
4548         /*
4549          * we might be running from an atomic context so we cannot sleep
4550          */
4551         if (!down_read_trylock(&mm->mmap_sem))
4552                 return;
4553
4554         vma = find_vma(mm, ip);
4555         if (vma && vma->vm_file) {
4556                 struct file *f = vma->vm_file;
4557                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4558                 if (buf) {
4559                         char *p;
4560
4561                         p = file_path(f, buf, PAGE_SIZE);
4562                         if (IS_ERR(p))
4563                                 p = "?";
4564                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4565                                         vma->vm_start,
4566                                         vma->vm_end - vma->vm_start);
4567                         free_page((unsigned long)buf);
4568                 }
4569         }
4570         up_read(&mm->mmap_sem);
4571 }
4572
4573 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4574 void __might_fault(const char *file, int line)
4575 {
4576         /*
4577          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4578          * holding the mmap_sem, this is safe because kernel memory doesn't
4579          * get paged out, therefore we'll never actually fault, and the
4580          * below annotations will generate false positives.
4581          */
4582         if (uaccess_kernel())
4583                 return;
4584         if (pagefault_disabled())
4585                 return;
4586         __might_sleep(file, line, 0);
4587 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4588         if (current->mm)
4589                 might_lock_read(&current->mm->mmap_sem);
4590 #endif
4591 }
4592 EXPORT_SYMBOL(__might_fault);
4593 #endif
4594
4595 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4596 static void clear_gigantic_page(struct page *page,
4597                                 unsigned long addr,
4598                                 unsigned int pages_per_huge_page)
4599 {
4600         int i;
4601         struct page *p = page;
4602
4603         might_sleep();
4604         for (i = 0; i < pages_per_huge_page;
4605              i++, p = mem_map_next(p, page, i)) {
4606                 cond_resched();
4607                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4608         }
4609 }
4610 void clear_huge_page(struct page *page,
4611                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4612 {
4613         int i, n, base, l;
4614         unsigned long addr = addr_hint &
4615                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4616
4617         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4618                 clear_gigantic_page(page, addr, pages_per_huge_page);
4619                 return;
4620         }
4621
4622         /* Clear sub-page to access last to keep its cache lines hot */
4623         might_sleep();
4624         n = (addr_hint - addr) / PAGE_SIZE;
4625         if (2 * n <= pages_per_huge_page) {
4626                 /* If sub-page to access in first half of huge page */
4627                 base = 0;
4628                 l = n;
4629                 /* Clear sub-pages at the end of huge page */
4630                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4631                         cond_resched();
4632                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4633                 }
4634         } else {
4635                 /* If sub-page to access in second half of huge page */
4636                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4637                 l = pages_per_huge_page - n;
4638                 /* Clear sub-pages at the begin of huge page */
4639                 for (i = 0; i < base; i++) {
4640                         cond_resched();
4641                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4642                 }
4643         }
4644         /*
4645          * Clear remaining sub-pages in left-right-left-right pattern
4646          * towards the sub-page to access
4647          */
4648         for (i = 0; i < l; i++) {
4649                 int left_idx = base + i;
4650                 int right_idx = base + 2 * l - 1 - i;
4651
4652                 cond_resched();
4653                 clear_user_highpage(page + left_idx,
4654                                     addr + left_idx * PAGE_SIZE);
4655                 cond_resched();
4656                 clear_user_highpage(page + right_idx,
4657                                     addr + right_idx * PAGE_SIZE);
4658         }
4659 }
4660
4661 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4662                                     unsigned long addr,
4663                                     struct vm_area_struct *vma,
4664                                     unsigned int pages_per_huge_page)
4665 {
4666         int i;
4667         struct page *dst_base = dst;
4668         struct page *src_base = src;
4669
4670         for (i = 0; i < pages_per_huge_page; ) {
4671                 cond_resched();
4672                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4673
4674                 i++;
4675                 dst = mem_map_next(dst, dst_base, i);
4676                 src = mem_map_next(src, src_base, i);
4677         }
4678 }
4679
4680 void copy_user_huge_page(struct page *dst, struct page *src,
4681                          unsigned long addr, struct vm_area_struct *vma,
4682                          unsigned int pages_per_huge_page)
4683 {
4684         int i;
4685
4686         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4687                 copy_user_gigantic_page(dst, src, addr, vma,
4688                                         pages_per_huge_page);
4689                 return;
4690         }
4691
4692         might_sleep();
4693         for (i = 0; i < pages_per_huge_page; i++) {
4694                 cond_resched();
4695                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4696         }
4697 }
4698
4699 long copy_huge_page_from_user(struct page *dst_page,
4700                                 const void __user *usr_src,
4701                                 unsigned int pages_per_huge_page,
4702                                 bool allow_pagefault)
4703 {
4704         void *src = (void *)usr_src;
4705         void *page_kaddr;
4706         unsigned long i, rc = 0;
4707         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4708
4709         for (i = 0; i < pages_per_huge_page; i++) {
4710                 if (allow_pagefault)
4711                         page_kaddr = kmap(dst_page + i);
4712                 else
4713                         page_kaddr = kmap_atomic(dst_page + i);
4714                 rc = copy_from_user(page_kaddr,
4715                                 (const void __user *)(src + i * PAGE_SIZE),
4716                                 PAGE_SIZE);
4717                 if (allow_pagefault)
4718                         kunmap(dst_page + i);
4719                 else
4720                         kunmap_atomic(page_kaddr);
4721
4722                 ret_val -= (PAGE_SIZE - rc);
4723                 if (rc)
4724                         break;
4725
4726                 cond_resched();
4727         }
4728         return ret_val;
4729 }
4730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4731
4732 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4733
4734 static struct kmem_cache *page_ptl_cachep;
4735
4736 void __init ptlock_cache_init(void)
4737 {
4738         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4739                         SLAB_PANIC, NULL);
4740 }
4741
4742 bool ptlock_alloc(struct page *page)
4743 {
4744         spinlock_t *ptl;
4745
4746         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4747         if (!ptl)
4748                 return false;
4749         page->ptl = ptl;
4750         return true;
4751 }
4752
4753 void ptlock_free(struct page *page)
4754 {
4755         kmem_cache_free(page_ptl_cachep, page->ptl);
4756 }
4757 #endif