Merge tag 'kvmarm-fixes-for-5.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220                                 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239         .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes  1U
288 #define ksm_nr_node_ids         1
289 #endif
290
291 #define KSM_RUN_STOP    0
292 #define KSM_RUN_MERGE   1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304                 sizeof(struct __struct), __alignof__(struct __struct),\
305                 (__flags), NULL)
306
307 static int __init ksm_slab_init(void)
308 {
309         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310         if (!rmap_item_cache)
311                 goto out;
312
313         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314         if (!stable_node_cache)
315                 goto out_free1;
316
317         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318         if (!mm_slot_cache)
319                 goto out_free2;
320
321         return 0;
322
323 out_free2:
324         kmem_cache_destroy(stable_node_cache);
325 out_free1:
326         kmem_cache_destroy(rmap_item_cache);
327 out:
328         return -ENOMEM;
329 }
330
331 static void __init ksm_slab_free(void)
332 {
333         kmem_cache_destroy(mm_slot_cache);
334         kmem_cache_destroy(stable_node_cache);
335         kmem_cache_destroy(rmap_item_cache);
336         mm_slot_cache = NULL;
337 }
338
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346         return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350                                              struct stable_node *chain)
351 {
352         VM_BUG_ON(is_stable_node_dup(dup));
353         dup->head = STABLE_NODE_DUP_HEAD;
354         VM_BUG_ON(!is_stable_node_chain(chain));
355         hlist_add_head(&dup->hlist_dup, &chain->hlist);
356         ksm_stable_node_dups++;
357 }
358
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361         VM_BUG_ON(!is_stable_node_dup(dup));
362         hlist_del(&dup->hlist_dup);
363         ksm_stable_node_dups--;
364 }
365
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368         VM_BUG_ON(is_stable_node_chain(dup));
369         if (is_stable_node_dup(dup))
370                 __stable_node_dup_del(dup);
371         else
372                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374         dup->head = NULL;
375 #endif
376 }
377
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380         struct rmap_item *rmap_item;
381
382         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383                                                 __GFP_NORETRY | __GFP_NOWARN);
384         if (rmap_item)
385                 ksm_rmap_items++;
386         return rmap_item;
387 }
388
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391         ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415         if (!mm_slot_cache)     /* initialization failed */
416                 return NULL;
417         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422         kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427         struct mm_slot *slot;
428
429         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430                 if (slot->mm == mm)
431                         return slot;
432
433         return NULL;
434 }
435
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437                                     struct mm_slot *mm_slot)
438 {
439         mm_slot->mm = mm;
440         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453         return atomic_read(&mm->mm_users) == 0;
454 }
455
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460  *              put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473         struct page *page;
474         vm_fault_t ret = 0;
475
476         do {
477                 cond_resched();
478                 page = follow_page(vma, addr,
479                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480                 if (IS_ERR_OR_NULL(page))
481                         break;
482                 if (PageKsm(page))
483                         ret = handle_mm_fault(vma, addr,
484                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485                 else
486                         ret = VM_FAULT_WRITE;
487                 put_page(page);
488         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489         /*
490          * We must loop because handle_mm_fault() may back out if there's
491          * any difficulty e.g. if pte accessed bit gets updated concurrently.
492          *
493          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494          * COW has been broken, even if the vma does not permit VM_WRITE;
495          * but note that a concurrent fault might break PageKsm for us.
496          *
497          * VM_FAULT_SIGBUS could occur if we race with truncation of the
498          * backing file, which also invalidates anonymous pages: that's
499          * okay, that truncation will have unmapped the PageKsm for us.
500          *
501          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503          * current task has TIF_MEMDIE set, and will be OOM killed on return
504          * to user; and ksmd, having no mm, would never be chosen for that.
505          *
506          * But if the mm is in a limited mem_cgroup, then the fault may fail
507          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508          * even ksmd can fail in this way - though it's usually breaking ksm
509          * just to undo a merge it made a moment before, so unlikely to oom.
510          *
511          * That's a pity: we might therefore have more kernel pages allocated
512          * than we're counting as nodes in the stable tree; but ksm_do_scan
513          * will retry to break_cow on each pass, so should recover the page
514          * in due course.  The important thing is to not let VM_MERGEABLE
515          * be cleared while any such pages might remain in the area.
516          */
517         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521                 unsigned long addr)
522 {
523         struct vm_area_struct *vma;
524         if (ksm_test_exit(mm))
525                 return NULL;
526         vma = find_vma(mm, addr);
527         if (!vma || vma->vm_start > addr)
528                 return NULL;
529         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530                 return NULL;
531         return vma;
532 }
533
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536         struct mm_struct *mm = rmap_item->mm;
537         unsigned long addr = rmap_item->address;
538         struct vm_area_struct *vma;
539
540         /*
541          * It is not an accident that whenever we want to break COW
542          * to undo, we also need to drop a reference to the anon_vma.
543          */
544         put_anon_vma(rmap_item->anon_vma);
545
546         down_read(&mm->mmap_sem);
547         vma = find_mergeable_vma(mm, addr);
548         if (vma)
549                 break_ksm(vma, addr);
550         up_read(&mm->mmap_sem);
551 }
552
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555         struct mm_struct *mm = rmap_item->mm;
556         unsigned long addr = rmap_item->address;
557         struct vm_area_struct *vma;
558         struct page *page;
559
560         down_read(&mm->mmap_sem);
561         vma = find_mergeable_vma(mm, addr);
562         if (!vma)
563                 goto out;
564
565         page = follow_page(vma, addr, FOLL_GET);
566         if (IS_ERR_OR_NULL(page))
567                 goto out;
568         if (PageAnon(page)) {
569                 flush_anon_page(vma, page, addr);
570                 flush_dcache_page(page);
571         } else {
572                 put_page(page);
573 out:
574                 page = NULL;
575         }
576         up_read(&mm->mmap_sem);
577         return page;
578 }
579
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592                                                    struct rb_root *root)
593 {
594         struct stable_node *chain = alloc_stable_node();
595         VM_BUG_ON(is_stable_node_chain(dup));
596         if (likely(chain)) {
597                 INIT_HLIST_HEAD(&chain->hlist);
598                 chain->chain_prune_time = jiffies;
599                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601                 chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603                 ksm_stable_node_chains++;
604
605                 /*
606                  * Put the stable node chain in the first dimension of
607                  * the stable tree and at the same time remove the old
608                  * stable node.
609                  */
610                 rb_replace_node(&dup->node, &chain->node, root);
611
612                 /*
613                  * Move the old stable node to the second dimension
614                  * queued in the hlist_dup. The invariant is that all
615                  * dup stable_nodes in the chain->hlist point to pages
616                  * that are wrprotected and have the exact same
617                  * content.
618                  */
619                 stable_node_chain_add_dup(dup, chain);
620         }
621         return chain;
622 }
623
624 static inline void free_stable_node_chain(struct stable_node *chain,
625                                           struct rb_root *root)
626 {
627         rb_erase(&chain->node, root);
628         free_stable_node(chain);
629         ksm_stable_node_chains--;
630 }
631
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634         struct rmap_item *rmap_item;
635
636         /* check it's not STABLE_NODE_CHAIN or negative */
637         BUG_ON(stable_node->rmap_hlist_len < 0);
638
639         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640                 if (rmap_item->hlist.next)
641                         ksm_pages_sharing--;
642                 else
643                         ksm_pages_shared--;
644                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645                 stable_node->rmap_hlist_len--;
646                 put_anon_vma(rmap_item->anon_vma);
647                 rmap_item->address &= PAGE_MASK;
648                 cond_resched();
649         }
650
651         /*
652          * We need the second aligned pointer of the migrate_nodes
653          * list_head to stay clear from the rb_parent_color union
654          * (aligned and different than any node) and also different
655          * from &migrate_nodes. This will verify that future list.h changes
656          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657          */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662
663         if (stable_node->head == &migrate_nodes)
664                 list_del(&stable_node->list);
665         else
666                 stable_node_dup_del(stable_node);
667         free_stable_node(stable_node);
668 }
669
670 enum get_ksm_page_flags {
671         GET_KSM_PAGE_NOLOCK,
672         GET_KSM_PAGE_LOCK,
673         GET_KSM_PAGE_TRYLOCK
674 };
675
676 /*
677  * get_ksm_page: checks if the page indicated by the stable node
678  * is still its ksm page, despite having held no reference to it.
679  * In which case we can trust the content of the page, and it
680  * returns the gotten page; but if the page has now been zapped,
681  * remove the stale node from the stable tree and return NULL.
682  * But beware, the stable node's page might be being migrated.
683  *
684  * You would expect the stable_node to hold a reference to the ksm page.
685  * But if it increments the page's count, swapping out has to wait for
686  * ksmd to come around again before it can free the page, which may take
687  * seconds or even minutes: much too unresponsive.  So instead we use a
688  * "keyhole reference": access to the ksm page from the stable node peeps
689  * out through its keyhole to see if that page still holds the right key,
690  * pointing back to this stable node.  This relies on freeing a PageAnon
691  * page to reset its page->mapping to NULL, and relies on no other use of
692  * a page to put something that might look like our key in page->mapping.
693  * is on its way to being freed; but it is an anomaly to bear in mind.
694  */
695 static struct page *get_ksm_page(struct stable_node *stable_node,
696                                  enum get_ksm_page_flags flags)
697 {
698         struct page *page;
699         void *expected_mapping;
700         unsigned long kpfn;
701
702         expected_mapping = (void *)((unsigned long)stable_node |
703                                         PAGE_MAPPING_KSM);
704 again:
705         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706         page = pfn_to_page(kpfn);
707         if (READ_ONCE(page->mapping) != expected_mapping)
708                 goto stale;
709
710         /*
711          * We cannot do anything with the page while its refcount is 0.
712          * Usually 0 means free, or tail of a higher-order page: in which
713          * case this node is no longer referenced, and should be freed;
714          * however, it might mean that the page is under page_ref_freeze().
715          * The __remove_mapping() case is easy, again the node is now stale;
716          * the same is in reuse_ksm_page() case; but if page is swapcache
717          * in migrate_page_move_mapping(), it might still be our page,
718          * in which case it's essential to keep the node.
719          */
720         while (!get_page_unless_zero(page)) {
721                 /*
722                  * Another check for page->mapping != expected_mapping would
723                  * work here too.  We have chosen the !PageSwapCache test to
724                  * optimize the common case, when the page is or is about to
725                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
726                  * in the ref_freeze section of __remove_mapping(); but Anon
727                  * page->mapping reset to NULL later, in free_pages_prepare().
728                  */
729                 if (!PageSwapCache(page))
730                         goto stale;
731                 cpu_relax();
732         }
733
734         if (READ_ONCE(page->mapping) != expected_mapping) {
735                 put_page(page);
736                 goto stale;
737         }
738
739         if (flags == GET_KSM_PAGE_TRYLOCK) {
740                 if (!trylock_page(page)) {
741                         put_page(page);
742                         return ERR_PTR(-EBUSY);
743                 }
744         } else if (flags == GET_KSM_PAGE_LOCK)
745                 lock_page(page);
746
747         if (flags != GET_KSM_PAGE_NOLOCK) {
748                 if (READ_ONCE(page->mapping) != expected_mapping) {
749                         unlock_page(page);
750                         put_page(page);
751                         goto stale;
752                 }
753         }
754         return page;
755
756 stale:
757         /*
758          * We come here from above when page->mapping or !PageSwapCache
759          * suggests that the node is stale; but it might be under migration.
760          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761          * before checking whether node->kpfn has been changed.
762          */
763         smp_rmb();
764         if (READ_ONCE(stable_node->kpfn) != kpfn)
765                 goto again;
766         remove_node_from_stable_tree(stable_node);
767         return NULL;
768 }
769
770 /*
771  * Removing rmap_item from stable or unstable tree.
772  * This function will clean the information from the stable/unstable tree.
773  */
774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
775 {
776         if (rmap_item->address & STABLE_FLAG) {
777                 struct stable_node *stable_node;
778                 struct page *page;
779
780                 stable_node = rmap_item->head;
781                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782                 if (!page)
783                         goto out;
784
785                 hlist_del(&rmap_item->hlist);
786                 unlock_page(page);
787                 put_page(page);
788
789                 if (!hlist_empty(&stable_node->hlist))
790                         ksm_pages_sharing--;
791                 else
792                         ksm_pages_shared--;
793                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794                 stable_node->rmap_hlist_len--;
795
796                 put_anon_vma(rmap_item->anon_vma);
797                 rmap_item->address &= PAGE_MASK;
798
799         } else if (rmap_item->address & UNSTABLE_FLAG) {
800                 unsigned char age;
801                 /*
802                  * Usually ksmd can and must skip the rb_erase, because
803                  * root_unstable_tree was already reset to RB_ROOT.
804                  * But be careful when an mm is exiting: do the rb_erase
805                  * if this rmap_item was inserted by this scan, rather
806                  * than left over from before.
807                  */
808                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
809                 BUG_ON(age > 1);
810                 if (!age)
811                         rb_erase(&rmap_item->node,
812                                  root_unstable_tree + NUMA(rmap_item->nid));
813                 ksm_pages_unshared--;
814                 rmap_item->address &= PAGE_MASK;
815         }
816 out:
817         cond_resched();         /* we're called from many long loops */
818 }
819
820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
821                                        struct rmap_item **rmap_list)
822 {
823         while (*rmap_list) {
824                 struct rmap_item *rmap_item = *rmap_list;
825                 *rmap_list = rmap_item->rmap_list;
826                 remove_rmap_item_from_tree(rmap_item);
827                 free_rmap_item(rmap_item);
828         }
829 }
830
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845                              unsigned long start, unsigned long end)
846 {
847         unsigned long addr;
848         int err = 0;
849
850         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851                 if (ksm_test_exit(vma->vm_mm))
852                         break;
853                 if (signal_pending(current))
854                         err = -ERESTARTSYS;
855                 else
856                         err = break_ksm(vma, addr);
857         }
858         return err;
859 }
860
861 static inline struct stable_node *page_stable_node(struct page *page)
862 {
863         return PageKsm(page) ? page_rmapping(page) : NULL;
864 }
865
866 static inline void set_page_stable_node(struct page *page,
867                                         struct stable_node *stable_node)
868 {
869         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870 }
871
872 #ifdef CONFIG_SYSFS
873 /*
874  * Only called through the sysfs control interface:
875  */
876 static int remove_stable_node(struct stable_node *stable_node)
877 {
878         struct page *page;
879         int err;
880
881         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882         if (!page) {
883                 /*
884                  * get_ksm_page did remove_node_from_stable_tree itself.
885                  */
886                 return 0;
887         }
888
889         if (WARN_ON_ONCE(page_mapped(page))) {
890                 /*
891                  * This should not happen: but if it does, just refuse to let
892                  * merge_across_nodes be switched - there is no need to panic.
893                  */
894                 err = -EBUSY;
895         } else {
896                 /*
897                  * The stable node did not yet appear stale to get_ksm_page(),
898                  * since that allows for an unmapped ksm page to be recognized
899                  * right up until it is freed; but the node is safe to remove.
900                  * This page might be in a pagevec waiting to be freed,
901                  * or it might be PageSwapCache (perhaps under writeback),
902                  * or it might have been removed from swapcache a moment ago.
903                  */
904                 set_page_stable_node(page, NULL);
905                 remove_node_from_stable_tree(stable_node);
906                 err = 0;
907         }
908
909         unlock_page(page);
910         put_page(page);
911         return err;
912 }
913
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915                                     struct rb_root *root)
916 {
917         struct stable_node *dup;
918         struct hlist_node *hlist_safe;
919
920         if (!is_stable_node_chain(stable_node)) {
921                 VM_BUG_ON(is_stable_node_dup(stable_node));
922                 if (remove_stable_node(stable_node))
923                         return true;
924                 else
925                         return false;
926         }
927
928         hlist_for_each_entry_safe(dup, hlist_safe,
929                                   &stable_node->hlist, hlist_dup) {
930                 VM_BUG_ON(!is_stable_node_dup(dup));
931                 if (remove_stable_node(dup))
932                         return true;
933         }
934         BUG_ON(!hlist_empty(&stable_node->hlist));
935         free_stable_node_chain(stable_node, root);
936         return false;
937 }
938
939 static int remove_all_stable_nodes(void)
940 {
941         struct stable_node *stable_node, *next;
942         int nid;
943         int err = 0;
944
945         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946                 while (root_stable_tree[nid].rb_node) {
947                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
948                                                 struct stable_node, node);
949                         if (remove_stable_node_chain(stable_node,
950                                                      root_stable_tree + nid)) {
951                                 err = -EBUSY;
952                                 break;  /* proceed to next nid */
953                         }
954                         cond_resched();
955                 }
956         }
957         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958                 if (remove_stable_node(stable_node))
959                         err = -EBUSY;
960                 cond_resched();
961         }
962         return err;
963 }
964
965 static int unmerge_and_remove_all_rmap_items(void)
966 {
967         struct mm_slot *mm_slot;
968         struct mm_struct *mm;
969         struct vm_area_struct *vma;
970         int err = 0;
971
972         spin_lock(&ksm_mmlist_lock);
973         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974                                                 struct mm_slot, mm_list);
975         spin_unlock(&ksm_mmlist_lock);
976
977         for (mm_slot = ksm_scan.mm_slot;
978                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979                 mm = mm_slot->mm;
980                 down_read(&mm->mmap_sem);
981                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
982                         if (ksm_test_exit(mm))
983                                 break;
984                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985                                 continue;
986                         err = unmerge_ksm_pages(vma,
987                                                 vma->vm_start, vma->vm_end);
988                         if (err)
989                                 goto error;
990                 }
991
992                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
993                 up_read(&mm->mmap_sem);
994
995                 spin_lock(&ksm_mmlist_lock);
996                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997                                                 struct mm_slot, mm_list);
998                 if (ksm_test_exit(mm)) {
999                         hash_del(&mm_slot->link);
1000                         list_del(&mm_slot->mm_list);
1001                         spin_unlock(&ksm_mmlist_lock);
1002
1003                         free_mm_slot(mm_slot);
1004                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005                         mmdrop(mm);
1006                 } else
1007                         spin_unlock(&ksm_mmlist_lock);
1008         }
1009
1010         /* Clean up stable nodes, but don't worry if some are still busy */
1011         remove_all_stable_nodes();
1012         ksm_scan.seqnr = 0;
1013         return 0;
1014
1015 error:
1016         up_read(&mm->mmap_sem);
1017         spin_lock(&ksm_mmlist_lock);
1018         ksm_scan.mm_slot = &ksm_mm_head;
1019         spin_unlock(&ksm_mmlist_lock);
1020         return err;
1021 }
1022 #endif /* CONFIG_SYSFS */
1023
1024 static u32 calc_checksum(struct page *page)
1025 {
1026         u32 checksum;
1027         void *addr = kmap_atomic(page);
1028         checksum = xxhash(addr, PAGE_SIZE, 0);
1029         kunmap_atomic(addr);
1030         return checksum;
1031 }
1032
1033 static int memcmp_pages(struct page *page1, struct page *page2)
1034 {
1035         char *addr1, *addr2;
1036         int ret;
1037
1038         addr1 = kmap_atomic(page1);
1039         addr2 = kmap_atomic(page2);
1040         ret = memcmp(addr1, addr2, PAGE_SIZE);
1041         kunmap_atomic(addr2);
1042         kunmap_atomic(addr1);
1043         return ret;
1044 }
1045
1046 static inline int pages_identical(struct page *page1, struct page *page2)
1047 {
1048         return !memcmp_pages(page1, page2);
1049 }
1050
1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1052                               pte_t *orig_pte)
1053 {
1054         struct mm_struct *mm = vma->vm_mm;
1055         struct page_vma_mapped_walk pvmw = {
1056                 .page = page,
1057                 .vma = vma,
1058         };
1059         int swapped;
1060         int err = -EFAULT;
1061         struct mmu_notifier_range range;
1062
1063         pvmw.address = page_address_in_vma(page, vma);
1064         if (pvmw.address == -EFAULT)
1065                 goto out;
1066
1067         BUG_ON(PageTransCompound(page));
1068
1069         mmu_notifier_range_init(&range, mm, pvmw.address,
1070                                 pvmw.address + PAGE_SIZE);
1071         mmu_notifier_invalidate_range_start(&range);
1072
1073         if (!page_vma_mapped_walk(&pvmw))
1074                 goto out_mn;
1075         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1076                 goto out_unlock;
1077
1078         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1079             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1080                                                 mm_tlb_flush_pending(mm)) {
1081                 pte_t entry;
1082
1083                 swapped = PageSwapCache(page);
1084                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1085                 /*
1086                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1087                  * take any lock, therefore the check that we are going to make
1088                  * with the pagecount against the mapcount is racey and
1089                  * O_DIRECT can happen right after the check.
1090                  * So we clear the pte and flush the tlb before the check
1091                  * this assure us that no O_DIRECT can happen after the check
1092                  * or in the middle of the check.
1093                  *
1094                  * No need to notify as we are downgrading page table to read
1095                  * only not changing it to point to a new page.
1096                  *
1097                  * See Documentation/vm/mmu_notifier.rst
1098                  */
1099                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1100                 /*
1101                  * Check that no O_DIRECT or similar I/O is in progress on the
1102                  * page
1103                  */
1104                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1105                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1106                         goto out_unlock;
1107                 }
1108                 if (pte_dirty(entry))
1109                         set_page_dirty(page);
1110
1111                 if (pte_protnone(entry))
1112                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1113                 else
1114                         entry = pte_mkclean(pte_wrprotect(entry));
1115                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1116         }
1117         *orig_pte = *pvmw.pte;
1118         err = 0;
1119
1120 out_unlock:
1121         page_vma_mapped_walk_done(&pvmw);
1122 out_mn:
1123         mmu_notifier_invalidate_range_end(&range);
1124 out:
1125         return err;
1126 }
1127
1128 /**
1129  * replace_page - replace page in vma by new ksm page
1130  * @vma:      vma that holds the pte pointing to page
1131  * @page:     the page we are replacing by kpage
1132  * @kpage:    the ksm page we replace page by
1133  * @orig_pte: the original value of the pte
1134  *
1135  * Returns 0 on success, -EFAULT on failure.
1136  */
1137 static int replace_page(struct vm_area_struct *vma, struct page *page,
1138                         struct page *kpage, pte_t orig_pte)
1139 {
1140         struct mm_struct *mm = vma->vm_mm;
1141         pmd_t *pmd;
1142         pte_t *ptep;
1143         pte_t newpte;
1144         spinlock_t *ptl;
1145         unsigned long addr;
1146         int err = -EFAULT;
1147         struct mmu_notifier_range range;
1148
1149         addr = page_address_in_vma(page, vma);
1150         if (addr == -EFAULT)
1151                 goto out;
1152
1153         pmd = mm_find_pmd(mm, addr);
1154         if (!pmd)
1155                 goto out;
1156
1157         mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1158         mmu_notifier_invalidate_range_start(&range);
1159
1160         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1161         if (!pte_same(*ptep, orig_pte)) {
1162                 pte_unmap_unlock(ptep, ptl);
1163                 goto out_mn;
1164         }
1165
1166         /*
1167          * No need to check ksm_use_zero_pages here: we can only have a
1168          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1169          */
1170         if (!is_zero_pfn(page_to_pfn(kpage))) {
1171                 get_page(kpage);
1172                 page_add_anon_rmap(kpage, vma, addr, false);
1173                 newpte = mk_pte(kpage, vma->vm_page_prot);
1174         } else {
1175                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1176                                                vma->vm_page_prot));
1177                 /*
1178                  * We're replacing an anonymous page with a zero page, which is
1179                  * not anonymous. We need to do proper accounting otherwise we
1180                  * will get wrong values in /proc, and a BUG message in dmesg
1181                  * when tearing down the mm.
1182                  */
1183                 dec_mm_counter(mm, MM_ANONPAGES);
1184         }
1185
1186         flush_cache_page(vma, addr, pte_pfn(*ptep));
1187         /*
1188          * No need to notify as we are replacing a read only page with another
1189          * read only page with the same content.
1190          *
1191          * See Documentation/vm/mmu_notifier.rst
1192          */
1193         ptep_clear_flush(vma, addr, ptep);
1194         set_pte_at_notify(mm, addr, ptep, newpte);
1195
1196         page_remove_rmap(page, false);
1197         if (!page_mapped(page))
1198                 try_to_free_swap(page);
1199         put_page(page);
1200
1201         pte_unmap_unlock(ptep, ptl);
1202         err = 0;
1203 out_mn:
1204         mmu_notifier_invalidate_range_end(&range);
1205 out:
1206         return err;
1207 }
1208
1209 /*
1210  * try_to_merge_one_page - take two pages and merge them into one
1211  * @vma: the vma that holds the pte pointing to page
1212  * @page: the PageAnon page that we want to replace with kpage
1213  * @kpage: the PageKsm page that we want to map instead of page,
1214  *         or NULL the first time when we want to use page as kpage.
1215  *
1216  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1217  */
1218 static int try_to_merge_one_page(struct vm_area_struct *vma,
1219                                  struct page *page, struct page *kpage)
1220 {
1221         pte_t orig_pte = __pte(0);
1222         int err = -EFAULT;
1223
1224         if (page == kpage)                      /* ksm page forked */
1225                 return 0;
1226
1227         if (!PageAnon(page))
1228                 goto out;
1229
1230         /*
1231          * We need the page lock to read a stable PageSwapCache in
1232          * write_protect_page().  We use trylock_page() instead of
1233          * lock_page() because we don't want to wait here - we
1234          * prefer to continue scanning and merging different pages,
1235          * then come back to this page when it is unlocked.
1236          */
1237         if (!trylock_page(page))
1238                 goto out;
1239
1240         if (PageTransCompound(page)) {
1241                 if (split_huge_page(page))
1242                         goto out_unlock;
1243         }
1244
1245         /*
1246          * If this anonymous page is mapped only here, its pte may need
1247          * to be write-protected.  If it's mapped elsewhere, all of its
1248          * ptes are necessarily already write-protected.  But in either
1249          * case, we need to lock and check page_count is not raised.
1250          */
1251         if (write_protect_page(vma, page, &orig_pte) == 0) {
1252                 if (!kpage) {
1253                         /*
1254                          * While we hold page lock, upgrade page from
1255                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1256                          * stable_tree_insert() will update stable_node.
1257                          */
1258                         set_page_stable_node(page, NULL);
1259                         mark_page_accessed(page);
1260                         /*
1261                          * Page reclaim just frees a clean page with no dirty
1262                          * ptes: make sure that the ksm page would be swapped.
1263                          */
1264                         if (!PageDirty(page))
1265                                 SetPageDirty(page);
1266                         err = 0;
1267                 } else if (pages_identical(page, kpage))
1268                         err = replace_page(vma, page, kpage, orig_pte);
1269         }
1270
1271         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1272                 munlock_vma_page(page);
1273                 if (!PageMlocked(kpage)) {
1274                         unlock_page(page);
1275                         lock_page(kpage);
1276                         mlock_vma_page(kpage);
1277                         page = kpage;           /* for final unlock */
1278                 }
1279         }
1280
1281 out_unlock:
1282         unlock_page(page);
1283 out:
1284         return err;
1285 }
1286
1287 /*
1288  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1289  * but no new kernel page is allocated: kpage must already be a ksm page.
1290  *
1291  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1292  */
1293 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1294                                       struct page *page, struct page *kpage)
1295 {
1296         struct mm_struct *mm = rmap_item->mm;
1297         struct vm_area_struct *vma;
1298         int err = -EFAULT;
1299
1300         down_read(&mm->mmap_sem);
1301         vma = find_mergeable_vma(mm, rmap_item->address);
1302         if (!vma)
1303                 goto out;
1304
1305         err = try_to_merge_one_page(vma, page, kpage);
1306         if (err)
1307                 goto out;
1308
1309         /* Unstable nid is in union with stable anon_vma: remove first */
1310         remove_rmap_item_from_tree(rmap_item);
1311
1312         /* Must get reference to anon_vma while still holding mmap_sem */
1313         rmap_item->anon_vma = vma->anon_vma;
1314         get_anon_vma(vma->anon_vma);
1315 out:
1316         up_read(&mm->mmap_sem);
1317         return err;
1318 }
1319
1320 /*
1321  * try_to_merge_two_pages - take two identical pages and prepare them
1322  * to be merged into one page.
1323  *
1324  * This function returns the kpage if we successfully merged two identical
1325  * pages into one ksm page, NULL otherwise.
1326  *
1327  * Note that this function upgrades page to ksm page: if one of the pages
1328  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1329  */
1330 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1331                                            struct page *page,
1332                                            struct rmap_item *tree_rmap_item,
1333                                            struct page *tree_page)
1334 {
1335         int err;
1336
1337         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1338         if (!err) {
1339                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1340                                                         tree_page, page);
1341                 /*
1342                  * If that fails, we have a ksm page with only one pte
1343                  * pointing to it: so break it.
1344                  */
1345                 if (err)
1346                         break_cow(rmap_item);
1347         }
1348         return err ? NULL : page;
1349 }
1350
1351 static __always_inline
1352 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1353 {
1354         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1355         /*
1356          * Check that at least one mapping still exists, otherwise
1357          * there's no much point to merge and share with this
1358          * stable_node, as the underlying tree_page of the other
1359          * sharer is going to be freed soon.
1360          */
1361         return stable_node->rmap_hlist_len &&
1362                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1363 }
1364
1365 static __always_inline
1366 bool is_page_sharing_candidate(struct stable_node *stable_node)
1367 {
1368         return __is_page_sharing_candidate(stable_node, 0);
1369 }
1370
1371 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1372                                     struct stable_node **_stable_node,
1373                                     struct rb_root *root,
1374                                     bool prune_stale_stable_nodes)
1375 {
1376         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1377         struct hlist_node *hlist_safe;
1378         struct page *_tree_page, *tree_page = NULL;
1379         int nr = 0;
1380         int found_rmap_hlist_len;
1381
1382         if (!prune_stale_stable_nodes ||
1383             time_before(jiffies, stable_node->chain_prune_time +
1384                         msecs_to_jiffies(
1385                                 ksm_stable_node_chains_prune_millisecs)))
1386                 prune_stale_stable_nodes = false;
1387         else
1388                 stable_node->chain_prune_time = jiffies;
1389
1390         hlist_for_each_entry_safe(dup, hlist_safe,
1391                                   &stable_node->hlist, hlist_dup) {
1392                 cond_resched();
1393                 /*
1394                  * We must walk all stable_node_dup to prune the stale
1395                  * stable nodes during lookup.
1396                  *
1397                  * get_ksm_page can drop the nodes from the
1398                  * stable_node->hlist if they point to freed pages
1399                  * (that's why we do a _safe walk). The "dup"
1400                  * stable_node parameter itself will be freed from
1401                  * under us if it returns NULL.
1402                  */
1403                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1404                 if (!_tree_page)
1405                         continue;
1406                 nr += 1;
1407                 if (is_page_sharing_candidate(dup)) {
1408                         if (!found ||
1409                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1410                                 if (found)
1411                                         put_page(tree_page);
1412                                 found = dup;
1413                                 found_rmap_hlist_len = found->rmap_hlist_len;
1414                                 tree_page = _tree_page;
1415
1416                                 /* skip put_page for found dup */
1417                                 if (!prune_stale_stable_nodes)
1418                                         break;
1419                                 continue;
1420                         }
1421                 }
1422                 put_page(_tree_page);
1423         }
1424
1425         if (found) {
1426                 /*
1427                  * nr is counting all dups in the chain only if
1428                  * prune_stale_stable_nodes is true, otherwise we may
1429                  * break the loop at nr == 1 even if there are
1430                  * multiple entries.
1431                  */
1432                 if (prune_stale_stable_nodes && nr == 1) {
1433                         /*
1434                          * If there's not just one entry it would
1435                          * corrupt memory, better BUG_ON. In KSM
1436                          * context with no lock held it's not even
1437                          * fatal.
1438                          */
1439                         BUG_ON(stable_node->hlist.first->next);
1440
1441                         /*
1442                          * There's just one entry and it is below the
1443                          * deduplication limit so drop the chain.
1444                          */
1445                         rb_replace_node(&stable_node->node, &found->node,
1446                                         root);
1447                         free_stable_node(stable_node);
1448                         ksm_stable_node_chains--;
1449                         ksm_stable_node_dups--;
1450                         /*
1451                          * NOTE: the caller depends on the stable_node
1452                          * to be equal to stable_node_dup if the chain
1453                          * was collapsed.
1454                          */
1455                         *_stable_node = found;
1456                         /*
1457                          * Just for robustneess as stable_node is
1458                          * otherwise left as a stable pointer, the
1459                          * compiler shall optimize it away at build
1460                          * time.
1461                          */
1462                         stable_node = NULL;
1463                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1464                            __is_page_sharing_candidate(found, 1)) {
1465                         /*
1466                          * If the found stable_node dup can accept one
1467                          * more future merge (in addition to the one
1468                          * that is underway) and is not at the head of
1469                          * the chain, put it there so next search will
1470                          * be quicker in the !prune_stale_stable_nodes
1471                          * case.
1472                          *
1473                          * NOTE: it would be inaccurate to use nr > 1
1474                          * instead of checking the hlist.first pointer
1475                          * directly, because in the
1476                          * prune_stale_stable_nodes case "nr" isn't
1477                          * the position of the found dup in the chain,
1478                          * but the total number of dups in the chain.
1479                          */
1480                         hlist_del(&found->hlist_dup);
1481                         hlist_add_head(&found->hlist_dup,
1482                                        &stable_node->hlist);
1483                 }
1484         }
1485
1486         *_stable_node_dup = found;
1487         return tree_page;
1488 }
1489
1490 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1491                                                struct rb_root *root)
1492 {
1493         if (!is_stable_node_chain(stable_node))
1494                 return stable_node;
1495         if (hlist_empty(&stable_node->hlist)) {
1496                 free_stable_node_chain(stable_node, root);
1497                 return NULL;
1498         }
1499         return hlist_entry(stable_node->hlist.first,
1500                            typeof(*stable_node), hlist_dup);
1501 }
1502
1503 /*
1504  * Like for get_ksm_page, this function can free the *_stable_node and
1505  * *_stable_node_dup if the returned tree_page is NULL.
1506  *
1507  * It can also free and overwrite *_stable_node with the found
1508  * stable_node_dup if the chain is collapsed (in which case
1509  * *_stable_node will be equal to *_stable_node_dup like if the chain
1510  * never existed). It's up to the caller to verify tree_page is not
1511  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1512  *
1513  * *_stable_node_dup is really a second output parameter of this
1514  * function and will be overwritten in all cases, the caller doesn't
1515  * need to initialize it.
1516  */
1517 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1518                                         struct stable_node **_stable_node,
1519                                         struct rb_root *root,
1520                                         bool prune_stale_stable_nodes)
1521 {
1522         struct stable_node *stable_node = *_stable_node;
1523         if (!is_stable_node_chain(stable_node)) {
1524                 if (is_page_sharing_candidate(stable_node)) {
1525                         *_stable_node_dup = stable_node;
1526                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1527                 }
1528                 /*
1529                  * _stable_node_dup set to NULL means the stable_node
1530                  * reached the ksm_max_page_sharing limit.
1531                  */
1532                 *_stable_node_dup = NULL;
1533                 return NULL;
1534         }
1535         return stable_node_dup(_stable_node_dup, _stable_node, root,
1536                                prune_stale_stable_nodes);
1537 }
1538
1539 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1540                                                 struct stable_node **s_n,
1541                                                 struct rb_root *root)
1542 {
1543         return __stable_node_chain(s_n_d, s_n, root, true);
1544 }
1545
1546 static __always_inline struct page *chain(struct stable_node **s_n_d,
1547                                           struct stable_node *s_n,
1548                                           struct rb_root *root)
1549 {
1550         struct stable_node *old_stable_node = s_n;
1551         struct page *tree_page;
1552
1553         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1554         /* not pruning dups so s_n cannot have changed */
1555         VM_BUG_ON(s_n != old_stable_node);
1556         return tree_page;
1557 }
1558
1559 /*
1560  * stable_tree_search - search for page inside the stable tree
1561  *
1562  * This function checks if there is a page inside the stable tree
1563  * with identical content to the page that we are scanning right now.
1564  *
1565  * This function returns the stable tree node of identical content if found,
1566  * NULL otherwise.
1567  */
1568 static struct page *stable_tree_search(struct page *page)
1569 {
1570         int nid;
1571         struct rb_root *root;
1572         struct rb_node **new;
1573         struct rb_node *parent;
1574         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1575         struct stable_node *page_node;
1576
1577         page_node = page_stable_node(page);
1578         if (page_node && page_node->head != &migrate_nodes) {
1579                 /* ksm page forked */
1580                 get_page(page);
1581                 return page;
1582         }
1583
1584         nid = get_kpfn_nid(page_to_pfn(page));
1585         root = root_stable_tree + nid;
1586 again:
1587         new = &root->rb_node;
1588         parent = NULL;
1589
1590         while (*new) {
1591                 struct page *tree_page;
1592                 int ret;
1593
1594                 cond_resched();
1595                 stable_node = rb_entry(*new, struct stable_node, node);
1596                 stable_node_any = NULL;
1597                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1598                 /*
1599                  * NOTE: stable_node may have been freed by
1600                  * chain_prune() if the returned stable_node_dup is
1601                  * not NULL. stable_node_dup may have been inserted in
1602                  * the rbtree instead as a regular stable_node (in
1603                  * order to collapse the stable_node chain if a single
1604                  * stable_node dup was found in it). In such case the
1605                  * stable_node is overwritten by the calleee to point
1606                  * to the stable_node_dup that was collapsed in the
1607                  * stable rbtree and stable_node will be equal to
1608                  * stable_node_dup like if the chain never existed.
1609                  */
1610                 if (!stable_node_dup) {
1611                         /*
1612                          * Either all stable_node dups were full in
1613                          * this stable_node chain, or this chain was
1614                          * empty and should be rb_erased.
1615                          */
1616                         stable_node_any = stable_node_dup_any(stable_node,
1617                                                               root);
1618                         if (!stable_node_any) {
1619                                 /* rb_erase just run */
1620                                 goto again;
1621                         }
1622                         /*
1623                          * Take any of the stable_node dups page of
1624                          * this stable_node chain to let the tree walk
1625                          * continue. All KSM pages belonging to the
1626                          * stable_node dups in a stable_node chain
1627                          * have the same content and they're
1628                          * wrprotected at all times. Any will work
1629                          * fine to continue the walk.
1630                          */
1631                         tree_page = get_ksm_page(stable_node_any,
1632                                                  GET_KSM_PAGE_NOLOCK);
1633                 }
1634                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1635                 if (!tree_page) {
1636                         /*
1637                          * If we walked over a stale stable_node,
1638                          * get_ksm_page() will call rb_erase() and it
1639                          * may rebalance the tree from under us. So
1640                          * restart the search from scratch. Returning
1641                          * NULL would be safe too, but we'd generate
1642                          * false negative insertions just because some
1643                          * stable_node was stale.
1644                          */
1645                         goto again;
1646                 }
1647
1648                 ret = memcmp_pages(page, tree_page);
1649                 put_page(tree_page);
1650
1651                 parent = *new;
1652                 if (ret < 0)
1653                         new = &parent->rb_left;
1654                 else if (ret > 0)
1655                         new = &parent->rb_right;
1656                 else {
1657                         if (page_node) {
1658                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1659                                 /*
1660                                  * Test if the migrated page should be merged
1661                                  * into a stable node dup. If the mapcount is
1662                                  * 1 we can migrate it with another KSM page
1663                                  * without adding it to the chain.
1664                                  */
1665                                 if (page_mapcount(page) > 1)
1666                                         goto chain_append;
1667                         }
1668
1669                         if (!stable_node_dup) {
1670                                 /*
1671                                  * If the stable_node is a chain and
1672                                  * we got a payload match in memcmp
1673                                  * but we cannot merge the scanned
1674                                  * page in any of the existing
1675                                  * stable_node dups because they're
1676                                  * all full, we need to wait the
1677                                  * scanned page to find itself a match
1678                                  * in the unstable tree to create a
1679                                  * brand new KSM page to add later to
1680                                  * the dups of this stable_node.
1681                                  */
1682                                 return NULL;
1683                         }
1684
1685                         /*
1686                          * Lock and unlock the stable_node's page (which
1687                          * might already have been migrated) so that page
1688                          * migration is sure to notice its raised count.
1689                          * It would be more elegant to return stable_node
1690                          * than kpage, but that involves more changes.
1691                          */
1692                         tree_page = get_ksm_page(stable_node_dup,
1693                                                  GET_KSM_PAGE_TRYLOCK);
1694
1695                         if (PTR_ERR(tree_page) == -EBUSY)
1696                                 return ERR_PTR(-EBUSY);
1697
1698                         if (unlikely(!tree_page))
1699                                 /*
1700                                  * The tree may have been rebalanced,
1701                                  * so re-evaluate parent and new.
1702                                  */
1703                                 goto again;
1704                         unlock_page(tree_page);
1705
1706                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1707                             NUMA(stable_node_dup->nid)) {
1708                                 put_page(tree_page);
1709                                 goto replace;
1710                         }
1711                         return tree_page;
1712                 }
1713         }
1714
1715         if (!page_node)
1716                 return NULL;
1717
1718         list_del(&page_node->list);
1719         DO_NUMA(page_node->nid = nid);
1720         rb_link_node(&page_node->node, parent, new);
1721         rb_insert_color(&page_node->node, root);
1722 out:
1723         if (is_page_sharing_candidate(page_node)) {
1724                 get_page(page);
1725                 return page;
1726         } else
1727                 return NULL;
1728
1729 replace:
1730         /*
1731          * If stable_node was a chain and chain_prune collapsed it,
1732          * stable_node has been updated to be the new regular
1733          * stable_node. A collapse of the chain is indistinguishable
1734          * from the case there was no chain in the stable
1735          * rbtree. Otherwise stable_node is the chain and
1736          * stable_node_dup is the dup to replace.
1737          */
1738         if (stable_node_dup == stable_node) {
1739                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1740                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1741                 /* there is no chain */
1742                 if (page_node) {
1743                         VM_BUG_ON(page_node->head != &migrate_nodes);
1744                         list_del(&page_node->list);
1745                         DO_NUMA(page_node->nid = nid);
1746                         rb_replace_node(&stable_node_dup->node,
1747                                         &page_node->node,
1748                                         root);
1749                         if (is_page_sharing_candidate(page_node))
1750                                 get_page(page);
1751                         else
1752                                 page = NULL;
1753                 } else {
1754                         rb_erase(&stable_node_dup->node, root);
1755                         page = NULL;
1756                 }
1757         } else {
1758                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1759                 __stable_node_dup_del(stable_node_dup);
1760                 if (page_node) {
1761                         VM_BUG_ON(page_node->head != &migrate_nodes);
1762                         list_del(&page_node->list);
1763                         DO_NUMA(page_node->nid = nid);
1764                         stable_node_chain_add_dup(page_node, stable_node);
1765                         if (is_page_sharing_candidate(page_node))
1766                                 get_page(page);
1767                         else
1768                                 page = NULL;
1769                 } else {
1770                         page = NULL;
1771                 }
1772         }
1773         stable_node_dup->head = &migrate_nodes;
1774         list_add(&stable_node_dup->list, stable_node_dup->head);
1775         return page;
1776
1777 chain_append:
1778         /* stable_node_dup could be null if it reached the limit */
1779         if (!stable_node_dup)
1780                 stable_node_dup = stable_node_any;
1781         /*
1782          * If stable_node was a chain and chain_prune collapsed it,
1783          * stable_node has been updated to be the new regular
1784          * stable_node. A collapse of the chain is indistinguishable
1785          * from the case there was no chain in the stable
1786          * rbtree. Otherwise stable_node is the chain and
1787          * stable_node_dup is the dup to replace.
1788          */
1789         if (stable_node_dup == stable_node) {
1790                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1791                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1792                 /* chain is missing so create it */
1793                 stable_node = alloc_stable_node_chain(stable_node_dup,
1794                                                       root);
1795                 if (!stable_node)
1796                         return NULL;
1797         }
1798         /*
1799          * Add this stable_node dup that was
1800          * migrated to the stable_node chain
1801          * of the current nid for this page
1802          * content.
1803          */
1804         VM_BUG_ON(!is_stable_node_chain(stable_node));
1805         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1806         VM_BUG_ON(page_node->head != &migrate_nodes);
1807         list_del(&page_node->list);
1808         DO_NUMA(page_node->nid = nid);
1809         stable_node_chain_add_dup(page_node, stable_node);
1810         goto out;
1811 }
1812
1813 /*
1814  * stable_tree_insert - insert stable tree node pointing to new ksm page
1815  * into the stable tree.
1816  *
1817  * This function returns the stable tree node just allocated on success,
1818  * NULL otherwise.
1819  */
1820 static struct stable_node *stable_tree_insert(struct page *kpage)
1821 {
1822         int nid;
1823         unsigned long kpfn;
1824         struct rb_root *root;
1825         struct rb_node **new;
1826         struct rb_node *parent;
1827         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1828         bool need_chain = false;
1829
1830         kpfn = page_to_pfn(kpage);
1831         nid = get_kpfn_nid(kpfn);
1832         root = root_stable_tree + nid;
1833 again:
1834         parent = NULL;
1835         new = &root->rb_node;
1836
1837         while (*new) {
1838                 struct page *tree_page;
1839                 int ret;
1840
1841                 cond_resched();
1842                 stable_node = rb_entry(*new, struct stable_node, node);
1843                 stable_node_any = NULL;
1844                 tree_page = chain(&stable_node_dup, stable_node, root);
1845                 if (!stable_node_dup) {
1846                         /*
1847                          * Either all stable_node dups were full in
1848                          * this stable_node chain, or this chain was
1849                          * empty and should be rb_erased.
1850                          */
1851                         stable_node_any = stable_node_dup_any(stable_node,
1852                                                               root);
1853                         if (!stable_node_any) {
1854                                 /* rb_erase just run */
1855                                 goto again;
1856                         }
1857                         /*
1858                          * Take any of the stable_node dups page of
1859                          * this stable_node chain to let the tree walk
1860                          * continue. All KSM pages belonging to the
1861                          * stable_node dups in a stable_node chain
1862                          * have the same content and they're
1863                          * wrprotected at all times. Any will work
1864                          * fine to continue the walk.
1865                          */
1866                         tree_page = get_ksm_page(stable_node_any,
1867                                                  GET_KSM_PAGE_NOLOCK);
1868                 }
1869                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1870                 if (!tree_page) {
1871                         /*
1872                          * If we walked over a stale stable_node,
1873                          * get_ksm_page() will call rb_erase() and it
1874                          * may rebalance the tree from under us. So
1875                          * restart the search from scratch. Returning
1876                          * NULL would be safe too, but we'd generate
1877                          * false negative insertions just because some
1878                          * stable_node was stale.
1879                          */
1880                         goto again;
1881                 }
1882
1883                 ret = memcmp_pages(kpage, tree_page);
1884                 put_page(tree_page);
1885
1886                 parent = *new;
1887                 if (ret < 0)
1888                         new = &parent->rb_left;
1889                 else if (ret > 0)
1890                         new = &parent->rb_right;
1891                 else {
1892                         need_chain = true;
1893                         break;
1894                 }
1895         }
1896
1897         stable_node_dup = alloc_stable_node();
1898         if (!stable_node_dup)
1899                 return NULL;
1900
1901         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1902         stable_node_dup->kpfn = kpfn;
1903         set_page_stable_node(kpage, stable_node_dup);
1904         stable_node_dup->rmap_hlist_len = 0;
1905         DO_NUMA(stable_node_dup->nid = nid);
1906         if (!need_chain) {
1907                 rb_link_node(&stable_node_dup->node, parent, new);
1908                 rb_insert_color(&stable_node_dup->node, root);
1909         } else {
1910                 if (!is_stable_node_chain(stable_node)) {
1911                         struct stable_node *orig = stable_node;
1912                         /* chain is missing so create it */
1913                         stable_node = alloc_stable_node_chain(orig, root);
1914                         if (!stable_node) {
1915                                 free_stable_node(stable_node_dup);
1916                                 return NULL;
1917                         }
1918                 }
1919                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1920         }
1921
1922         return stable_node_dup;
1923 }
1924
1925 /*
1926  * unstable_tree_search_insert - search for identical page,
1927  * else insert rmap_item into the unstable tree.
1928  *
1929  * This function searches for a page in the unstable tree identical to the
1930  * page currently being scanned; and if no identical page is found in the
1931  * tree, we insert rmap_item as a new object into the unstable tree.
1932  *
1933  * This function returns pointer to rmap_item found to be identical
1934  * to the currently scanned page, NULL otherwise.
1935  *
1936  * This function does both searching and inserting, because they share
1937  * the same walking algorithm in an rbtree.
1938  */
1939 static
1940 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1941                                               struct page *page,
1942                                               struct page **tree_pagep)
1943 {
1944         struct rb_node **new;
1945         struct rb_root *root;
1946         struct rb_node *parent = NULL;
1947         int nid;
1948
1949         nid = get_kpfn_nid(page_to_pfn(page));
1950         root = root_unstable_tree + nid;
1951         new = &root->rb_node;
1952
1953         while (*new) {
1954                 struct rmap_item *tree_rmap_item;
1955                 struct page *tree_page;
1956                 int ret;
1957
1958                 cond_resched();
1959                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1960                 tree_page = get_mergeable_page(tree_rmap_item);
1961                 if (!tree_page)
1962                         return NULL;
1963
1964                 /*
1965                  * Don't substitute a ksm page for a forked page.
1966                  */
1967                 if (page == tree_page) {
1968                         put_page(tree_page);
1969                         return NULL;
1970                 }
1971
1972                 ret = memcmp_pages(page, tree_page);
1973
1974                 parent = *new;
1975                 if (ret < 0) {
1976                         put_page(tree_page);
1977                         new = &parent->rb_left;
1978                 } else if (ret > 0) {
1979                         put_page(tree_page);
1980                         new = &parent->rb_right;
1981                 } else if (!ksm_merge_across_nodes &&
1982                            page_to_nid(tree_page) != nid) {
1983                         /*
1984                          * If tree_page has been migrated to another NUMA node,
1985                          * it will be flushed out and put in the right unstable
1986                          * tree next time: only merge with it when across_nodes.
1987                          */
1988                         put_page(tree_page);
1989                         return NULL;
1990                 } else {
1991                         *tree_pagep = tree_page;
1992                         return tree_rmap_item;
1993                 }
1994         }
1995
1996         rmap_item->address |= UNSTABLE_FLAG;
1997         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1998         DO_NUMA(rmap_item->nid = nid);
1999         rb_link_node(&rmap_item->node, parent, new);
2000         rb_insert_color(&rmap_item->node, root);
2001
2002         ksm_pages_unshared++;
2003         return NULL;
2004 }
2005
2006 /*
2007  * stable_tree_append - add another rmap_item to the linked list of
2008  * rmap_items hanging off a given node of the stable tree, all sharing
2009  * the same ksm page.
2010  */
2011 static void stable_tree_append(struct rmap_item *rmap_item,
2012                                struct stable_node *stable_node,
2013                                bool max_page_sharing_bypass)
2014 {
2015         /*
2016          * rmap won't find this mapping if we don't insert the
2017          * rmap_item in the right stable_node
2018          * duplicate. page_migration could break later if rmap breaks,
2019          * so we can as well crash here. We really need to check for
2020          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2021          * for other negative values as an undeflow if detected here
2022          * for the first time (and not when decreasing rmap_hlist_len)
2023          * would be sign of memory corruption in the stable_node.
2024          */
2025         BUG_ON(stable_node->rmap_hlist_len < 0);
2026
2027         stable_node->rmap_hlist_len++;
2028         if (!max_page_sharing_bypass)
2029                 /* possibly non fatal but unexpected overflow, only warn */
2030                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2031                              ksm_max_page_sharing);
2032
2033         rmap_item->head = stable_node;
2034         rmap_item->address |= STABLE_FLAG;
2035         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2036
2037         if (rmap_item->hlist.next)
2038                 ksm_pages_sharing++;
2039         else
2040                 ksm_pages_shared++;
2041 }
2042
2043 /*
2044  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2045  * if not, compare checksum to previous and if it's the same, see if page can
2046  * be inserted into the unstable tree, or merged with a page already there and
2047  * both transferred to the stable tree.
2048  *
2049  * @page: the page that we are searching identical page to.
2050  * @rmap_item: the reverse mapping into the virtual address of this page
2051  */
2052 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2053 {
2054         struct mm_struct *mm = rmap_item->mm;
2055         struct rmap_item *tree_rmap_item;
2056         struct page *tree_page = NULL;
2057         struct stable_node *stable_node;
2058         struct page *kpage;
2059         unsigned int checksum;
2060         int err;
2061         bool max_page_sharing_bypass = false;
2062
2063         stable_node = page_stable_node(page);
2064         if (stable_node) {
2065                 if (stable_node->head != &migrate_nodes &&
2066                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2067                     NUMA(stable_node->nid)) {
2068                         stable_node_dup_del(stable_node);
2069                         stable_node->head = &migrate_nodes;
2070                         list_add(&stable_node->list, stable_node->head);
2071                 }
2072                 if (stable_node->head != &migrate_nodes &&
2073                     rmap_item->head == stable_node)
2074                         return;
2075                 /*
2076                  * If it's a KSM fork, allow it to go over the sharing limit
2077                  * without warnings.
2078                  */
2079                 if (!is_page_sharing_candidate(stable_node))
2080                         max_page_sharing_bypass = true;
2081         }
2082
2083         /* We first start with searching the page inside the stable tree */
2084         kpage = stable_tree_search(page);
2085         if (kpage == page && rmap_item->head == stable_node) {
2086                 put_page(kpage);
2087                 return;
2088         }
2089
2090         remove_rmap_item_from_tree(rmap_item);
2091
2092         if (kpage) {
2093                 if (PTR_ERR(kpage) == -EBUSY)
2094                         return;
2095
2096                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2097                 if (!err) {
2098                         /*
2099                          * The page was successfully merged:
2100                          * add its rmap_item to the stable tree.
2101                          */
2102                         lock_page(kpage);
2103                         stable_tree_append(rmap_item, page_stable_node(kpage),
2104                                            max_page_sharing_bypass);
2105                         unlock_page(kpage);
2106                 }
2107                 put_page(kpage);
2108                 return;
2109         }
2110
2111         /*
2112          * If the hash value of the page has changed from the last time
2113          * we calculated it, this page is changing frequently: therefore we
2114          * don't want to insert it in the unstable tree, and we don't want
2115          * to waste our time searching for something identical to it there.
2116          */
2117         checksum = calc_checksum(page);
2118         if (rmap_item->oldchecksum != checksum) {
2119                 rmap_item->oldchecksum = checksum;
2120                 return;
2121         }
2122
2123         /*
2124          * Same checksum as an empty page. We attempt to merge it with the
2125          * appropriate zero page if the user enabled this via sysfs.
2126          */
2127         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2128                 struct vm_area_struct *vma;
2129
2130                 down_read(&mm->mmap_sem);
2131                 vma = find_mergeable_vma(mm, rmap_item->address);
2132                 err = try_to_merge_one_page(vma, page,
2133                                             ZERO_PAGE(rmap_item->address));
2134                 up_read(&mm->mmap_sem);
2135                 /*
2136                  * In case of failure, the page was not really empty, so we
2137                  * need to continue. Otherwise we're done.
2138                  */
2139                 if (!err)
2140                         return;
2141         }
2142         tree_rmap_item =
2143                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2144         if (tree_rmap_item) {
2145                 bool split;
2146
2147                 kpage = try_to_merge_two_pages(rmap_item, page,
2148                                                 tree_rmap_item, tree_page);
2149                 /*
2150                  * If both pages we tried to merge belong to the same compound
2151                  * page, then we actually ended up increasing the reference
2152                  * count of the same compound page twice, and split_huge_page
2153                  * failed.
2154                  * Here we set a flag if that happened, and we use it later to
2155                  * try split_huge_page again. Since we call put_page right
2156                  * afterwards, the reference count will be correct and
2157                  * split_huge_page should succeed.
2158                  */
2159                 split = PageTransCompound(page)
2160                         && compound_head(page) == compound_head(tree_page);
2161                 put_page(tree_page);
2162                 if (kpage) {
2163                         /*
2164                          * The pages were successfully merged: insert new
2165                          * node in the stable tree and add both rmap_items.
2166                          */
2167                         lock_page(kpage);
2168                         stable_node = stable_tree_insert(kpage);
2169                         if (stable_node) {
2170                                 stable_tree_append(tree_rmap_item, stable_node,
2171                                                    false);
2172                                 stable_tree_append(rmap_item, stable_node,
2173                                                    false);
2174                         }
2175                         unlock_page(kpage);
2176
2177                         /*
2178                          * If we fail to insert the page into the stable tree,
2179                          * we will have 2 virtual addresses that are pointing
2180                          * to a ksm page left outside the stable tree,
2181                          * in which case we need to break_cow on both.
2182                          */
2183                         if (!stable_node) {
2184                                 break_cow(tree_rmap_item);
2185                                 break_cow(rmap_item);
2186                         }
2187                 } else if (split) {
2188                         /*
2189                          * We are here if we tried to merge two pages and
2190                          * failed because they both belonged to the same
2191                          * compound page. We will split the page now, but no
2192                          * merging will take place.
2193                          * We do not want to add the cost of a full lock; if
2194                          * the page is locked, it is better to skip it and
2195                          * perhaps try again later.
2196                          */
2197                         if (!trylock_page(page))
2198                                 return;
2199                         split_huge_page(page);
2200                         unlock_page(page);
2201                 }
2202         }
2203 }
2204
2205 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2206                                             struct rmap_item **rmap_list,
2207                                             unsigned long addr)
2208 {
2209         struct rmap_item *rmap_item;
2210
2211         while (*rmap_list) {
2212                 rmap_item = *rmap_list;
2213                 if ((rmap_item->address & PAGE_MASK) == addr)
2214                         return rmap_item;
2215                 if (rmap_item->address > addr)
2216                         break;
2217                 *rmap_list = rmap_item->rmap_list;
2218                 remove_rmap_item_from_tree(rmap_item);
2219                 free_rmap_item(rmap_item);
2220         }
2221
2222         rmap_item = alloc_rmap_item();
2223         if (rmap_item) {
2224                 /* It has already been zeroed */
2225                 rmap_item->mm = mm_slot->mm;
2226                 rmap_item->address = addr;
2227                 rmap_item->rmap_list = *rmap_list;
2228                 *rmap_list = rmap_item;
2229         }
2230         return rmap_item;
2231 }
2232
2233 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2234 {
2235         struct mm_struct *mm;
2236         struct mm_slot *slot;
2237         struct vm_area_struct *vma;
2238         struct rmap_item *rmap_item;
2239         int nid;
2240
2241         if (list_empty(&ksm_mm_head.mm_list))
2242                 return NULL;
2243
2244         slot = ksm_scan.mm_slot;
2245         if (slot == &ksm_mm_head) {
2246                 /*
2247                  * A number of pages can hang around indefinitely on per-cpu
2248                  * pagevecs, raised page count preventing write_protect_page
2249                  * from merging them.  Though it doesn't really matter much,
2250                  * it is puzzling to see some stuck in pages_volatile until
2251                  * other activity jostles them out, and they also prevented
2252                  * LTP's KSM test from succeeding deterministically; so drain
2253                  * them here (here rather than on entry to ksm_do_scan(),
2254                  * so we don't IPI too often when pages_to_scan is set low).
2255                  */
2256                 lru_add_drain_all();
2257
2258                 /*
2259                  * Whereas stale stable_nodes on the stable_tree itself
2260                  * get pruned in the regular course of stable_tree_search(),
2261                  * those moved out to the migrate_nodes list can accumulate:
2262                  * so prune them once before each full scan.
2263                  */
2264                 if (!ksm_merge_across_nodes) {
2265                         struct stable_node *stable_node, *next;
2266                         struct page *page;
2267
2268                         list_for_each_entry_safe(stable_node, next,
2269                                                  &migrate_nodes, list) {
2270                                 page = get_ksm_page(stable_node,
2271                                                     GET_KSM_PAGE_NOLOCK);
2272                                 if (page)
2273                                         put_page(page);
2274                                 cond_resched();
2275                         }
2276                 }
2277
2278                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2279                         root_unstable_tree[nid] = RB_ROOT;
2280
2281                 spin_lock(&ksm_mmlist_lock);
2282                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2283                 ksm_scan.mm_slot = slot;
2284                 spin_unlock(&ksm_mmlist_lock);
2285                 /*
2286                  * Although we tested list_empty() above, a racing __ksm_exit
2287                  * of the last mm on the list may have removed it since then.
2288                  */
2289                 if (slot == &ksm_mm_head)
2290                         return NULL;
2291 next_mm:
2292                 ksm_scan.address = 0;
2293                 ksm_scan.rmap_list = &slot->rmap_list;
2294         }
2295
2296         mm = slot->mm;
2297         down_read(&mm->mmap_sem);
2298         if (ksm_test_exit(mm))
2299                 vma = NULL;
2300         else
2301                 vma = find_vma(mm, ksm_scan.address);
2302
2303         for (; vma; vma = vma->vm_next) {
2304                 if (!(vma->vm_flags & VM_MERGEABLE))
2305                         continue;
2306                 if (ksm_scan.address < vma->vm_start)
2307                         ksm_scan.address = vma->vm_start;
2308                 if (!vma->anon_vma)
2309                         ksm_scan.address = vma->vm_end;
2310
2311                 while (ksm_scan.address < vma->vm_end) {
2312                         if (ksm_test_exit(mm))
2313                                 break;
2314                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2315                         if (IS_ERR_OR_NULL(*page)) {
2316                                 ksm_scan.address += PAGE_SIZE;
2317                                 cond_resched();
2318                                 continue;
2319                         }
2320                         if (PageAnon(*page)) {
2321                                 flush_anon_page(vma, *page, ksm_scan.address);
2322                                 flush_dcache_page(*page);
2323                                 rmap_item = get_next_rmap_item(slot,
2324                                         ksm_scan.rmap_list, ksm_scan.address);
2325                                 if (rmap_item) {
2326                                         ksm_scan.rmap_list =
2327                                                         &rmap_item->rmap_list;
2328                                         ksm_scan.address += PAGE_SIZE;
2329                                 } else
2330                                         put_page(*page);
2331                                 up_read(&mm->mmap_sem);
2332                                 return rmap_item;
2333                         }
2334                         put_page(*page);
2335                         ksm_scan.address += PAGE_SIZE;
2336                         cond_resched();
2337                 }
2338         }
2339
2340         if (ksm_test_exit(mm)) {
2341                 ksm_scan.address = 0;
2342                 ksm_scan.rmap_list = &slot->rmap_list;
2343         }
2344         /*
2345          * Nuke all the rmap_items that are above this current rmap:
2346          * because there were no VM_MERGEABLE vmas with such addresses.
2347          */
2348         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2349
2350         spin_lock(&ksm_mmlist_lock);
2351         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2352                                                 struct mm_slot, mm_list);
2353         if (ksm_scan.address == 0) {
2354                 /*
2355                  * We've completed a full scan of all vmas, holding mmap_sem
2356                  * throughout, and found no VM_MERGEABLE: so do the same as
2357                  * __ksm_exit does to remove this mm from all our lists now.
2358                  * This applies either when cleaning up after __ksm_exit
2359                  * (but beware: we can reach here even before __ksm_exit),
2360                  * or when all VM_MERGEABLE areas have been unmapped (and
2361                  * mmap_sem then protects against race with MADV_MERGEABLE).
2362                  */
2363                 hash_del(&slot->link);
2364                 list_del(&slot->mm_list);
2365                 spin_unlock(&ksm_mmlist_lock);
2366
2367                 free_mm_slot(slot);
2368                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2369                 up_read(&mm->mmap_sem);
2370                 mmdrop(mm);
2371         } else {
2372                 up_read(&mm->mmap_sem);
2373                 /*
2374                  * up_read(&mm->mmap_sem) first because after
2375                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2376                  * already have been freed under us by __ksm_exit()
2377                  * because the "mm_slot" is still hashed and
2378                  * ksm_scan.mm_slot doesn't point to it anymore.
2379                  */
2380                 spin_unlock(&ksm_mmlist_lock);
2381         }
2382
2383         /* Repeat until we've completed scanning the whole list */
2384         slot = ksm_scan.mm_slot;
2385         if (slot != &ksm_mm_head)
2386                 goto next_mm;
2387
2388         ksm_scan.seqnr++;
2389         return NULL;
2390 }
2391
2392 /**
2393  * ksm_do_scan  - the ksm scanner main worker function.
2394  * @scan_npages:  number of pages we want to scan before we return.
2395  */
2396 static void ksm_do_scan(unsigned int scan_npages)
2397 {
2398         struct rmap_item *rmap_item;
2399         struct page *uninitialized_var(page);
2400
2401         while (scan_npages-- && likely(!freezing(current))) {
2402                 cond_resched();
2403                 rmap_item = scan_get_next_rmap_item(&page);
2404                 if (!rmap_item)
2405                         return;
2406                 cmp_and_merge_page(page, rmap_item);
2407                 put_page(page);
2408         }
2409 }
2410
2411 static int ksmd_should_run(void)
2412 {
2413         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2414 }
2415
2416 static int ksm_scan_thread(void *nothing)
2417 {
2418         unsigned int sleep_ms;
2419
2420         set_freezable();
2421         set_user_nice(current, 5);
2422
2423         while (!kthread_should_stop()) {
2424                 mutex_lock(&ksm_thread_mutex);
2425                 wait_while_offlining();
2426                 if (ksmd_should_run())
2427                         ksm_do_scan(ksm_thread_pages_to_scan);
2428                 mutex_unlock(&ksm_thread_mutex);
2429
2430                 try_to_freeze();
2431
2432                 if (ksmd_should_run()) {
2433                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2434                         wait_event_interruptible_timeout(ksm_iter_wait,
2435                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2436                                 msecs_to_jiffies(sleep_ms));
2437                 } else {
2438                         wait_event_freezable(ksm_thread_wait,
2439                                 ksmd_should_run() || kthread_should_stop());
2440                 }
2441         }
2442         return 0;
2443 }
2444
2445 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2446                 unsigned long end, int advice, unsigned long *vm_flags)
2447 {
2448         struct mm_struct *mm = vma->vm_mm;
2449         int err;
2450
2451         switch (advice) {
2452         case MADV_MERGEABLE:
2453                 /*
2454                  * Be somewhat over-protective for now!
2455                  */
2456                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2457                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2458                                  VM_HUGETLB | VM_MIXEDMAP))
2459                         return 0;               /* just ignore the advice */
2460
2461                 if (vma_is_dax(vma))
2462                         return 0;
2463
2464 #ifdef VM_SAO
2465                 if (*vm_flags & VM_SAO)
2466                         return 0;
2467 #endif
2468 #ifdef VM_SPARC_ADI
2469                 if (*vm_flags & VM_SPARC_ADI)
2470                         return 0;
2471 #endif
2472
2473                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2474                         err = __ksm_enter(mm);
2475                         if (err)
2476                                 return err;
2477                 }
2478
2479                 *vm_flags |= VM_MERGEABLE;
2480                 break;
2481
2482         case MADV_UNMERGEABLE:
2483                 if (!(*vm_flags & VM_MERGEABLE))
2484                         return 0;               /* just ignore the advice */
2485
2486                 if (vma->anon_vma) {
2487                         err = unmerge_ksm_pages(vma, start, end);
2488                         if (err)
2489                                 return err;
2490                 }
2491
2492                 *vm_flags &= ~VM_MERGEABLE;
2493                 break;
2494         }
2495
2496         return 0;
2497 }
2498
2499 int __ksm_enter(struct mm_struct *mm)
2500 {
2501         struct mm_slot *mm_slot;
2502         int needs_wakeup;
2503
2504         mm_slot = alloc_mm_slot();
2505         if (!mm_slot)
2506                 return -ENOMEM;
2507
2508         /* Check ksm_run too?  Would need tighter locking */
2509         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2510
2511         spin_lock(&ksm_mmlist_lock);
2512         insert_to_mm_slots_hash(mm, mm_slot);
2513         /*
2514          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2515          * insert just behind the scanning cursor, to let the area settle
2516          * down a little; when fork is followed by immediate exec, we don't
2517          * want ksmd to waste time setting up and tearing down an rmap_list.
2518          *
2519          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2520          * scanning cursor, otherwise KSM pages in newly forked mms will be
2521          * missed: then we might as well insert at the end of the list.
2522          */
2523         if (ksm_run & KSM_RUN_UNMERGE)
2524                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2525         else
2526                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2527         spin_unlock(&ksm_mmlist_lock);
2528
2529         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2530         mmgrab(mm);
2531
2532         if (needs_wakeup)
2533                 wake_up_interruptible(&ksm_thread_wait);
2534
2535         return 0;
2536 }
2537
2538 void __ksm_exit(struct mm_struct *mm)
2539 {
2540         struct mm_slot *mm_slot;
2541         int easy_to_free = 0;
2542
2543         /*
2544          * This process is exiting: if it's straightforward (as is the
2545          * case when ksmd was never running), free mm_slot immediately.
2546          * But if it's at the cursor or has rmap_items linked to it, use
2547          * mmap_sem to synchronize with any break_cows before pagetables
2548          * are freed, and leave the mm_slot on the list for ksmd to free.
2549          * Beware: ksm may already have noticed it exiting and freed the slot.
2550          */
2551
2552         spin_lock(&ksm_mmlist_lock);
2553         mm_slot = get_mm_slot(mm);
2554         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2555                 if (!mm_slot->rmap_list) {
2556                         hash_del(&mm_slot->link);
2557                         list_del(&mm_slot->mm_list);
2558                         easy_to_free = 1;
2559                 } else {
2560                         list_move(&mm_slot->mm_list,
2561                                   &ksm_scan.mm_slot->mm_list);
2562                 }
2563         }
2564         spin_unlock(&ksm_mmlist_lock);
2565
2566         if (easy_to_free) {
2567                 free_mm_slot(mm_slot);
2568                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2569                 mmdrop(mm);
2570         } else if (mm_slot) {
2571                 down_write(&mm->mmap_sem);
2572                 up_write(&mm->mmap_sem);
2573         }
2574 }
2575
2576 struct page *ksm_might_need_to_copy(struct page *page,
2577                         struct vm_area_struct *vma, unsigned long address)
2578 {
2579         struct anon_vma *anon_vma = page_anon_vma(page);
2580         struct page *new_page;
2581
2582         if (PageKsm(page)) {
2583                 if (page_stable_node(page) &&
2584                     !(ksm_run & KSM_RUN_UNMERGE))
2585                         return page;    /* no need to copy it */
2586         } else if (!anon_vma) {
2587                 return page;            /* no need to copy it */
2588         } else if (anon_vma->root == vma->anon_vma->root &&
2589                  page->index == linear_page_index(vma, address)) {
2590                 return page;            /* still no need to copy it */
2591         }
2592         if (!PageUptodate(page))
2593                 return page;            /* let do_swap_page report the error */
2594
2595         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2596         if (new_page) {
2597                 copy_user_highpage(new_page, page, address, vma);
2598
2599                 SetPageDirty(new_page);
2600                 __SetPageUptodate(new_page);
2601                 __SetPageLocked(new_page);
2602         }
2603
2604         return new_page;
2605 }
2606
2607 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2608 {
2609         struct stable_node *stable_node;
2610         struct rmap_item *rmap_item;
2611         int search_new_forks = 0;
2612
2613         VM_BUG_ON_PAGE(!PageKsm(page), page);
2614
2615         /*
2616          * Rely on the page lock to protect against concurrent modifications
2617          * to that page's node of the stable tree.
2618          */
2619         VM_BUG_ON_PAGE(!PageLocked(page), page);
2620
2621         stable_node = page_stable_node(page);
2622         if (!stable_node)
2623                 return;
2624 again:
2625         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2626                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2627                 struct anon_vma_chain *vmac;
2628                 struct vm_area_struct *vma;
2629
2630                 cond_resched();
2631                 anon_vma_lock_read(anon_vma);
2632                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2633                                                0, ULONG_MAX) {
2634                         unsigned long addr;
2635
2636                         cond_resched();
2637                         vma = vmac->vma;
2638
2639                         /* Ignore the stable/unstable/sqnr flags */
2640                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2641
2642                         if (addr < vma->vm_start || addr >= vma->vm_end)
2643                                 continue;
2644                         /*
2645                          * Initially we examine only the vma which covers this
2646                          * rmap_item; but later, if there is still work to do,
2647                          * we examine covering vmas in other mms: in case they
2648                          * were forked from the original since ksmd passed.
2649                          */
2650                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2651                                 continue;
2652
2653                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2654                                 continue;
2655
2656                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2657                                 anon_vma_unlock_read(anon_vma);
2658                                 return;
2659                         }
2660                         if (rwc->done && rwc->done(page)) {
2661                                 anon_vma_unlock_read(anon_vma);
2662                                 return;
2663                         }
2664                 }
2665                 anon_vma_unlock_read(anon_vma);
2666         }
2667         if (!search_new_forks++)
2668                 goto again;
2669 }
2670
2671 bool reuse_ksm_page(struct page *page,
2672                     struct vm_area_struct *vma,
2673                     unsigned long address)
2674 {
2675 #ifdef CONFIG_DEBUG_VM
2676         if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2677                         WARN_ON(!page_mapped(page)) ||
2678                         WARN_ON(!PageLocked(page))) {
2679                 dump_page(page, "reuse_ksm_page");
2680                 return false;
2681         }
2682 #endif
2683
2684         if (PageSwapCache(page) || !page_stable_node(page))
2685                 return false;
2686         /* Prohibit parallel get_ksm_page() */
2687         if (!page_ref_freeze(page, 1))
2688                 return false;
2689
2690         page_move_anon_rmap(page, vma);
2691         page->index = linear_page_index(vma, address);
2692         page_ref_unfreeze(page, 1);
2693
2694         return true;
2695 }
2696 #ifdef CONFIG_MIGRATION
2697 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2698 {
2699         struct stable_node *stable_node;
2700
2701         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2702         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2703         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2704
2705         stable_node = page_stable_node(newpage);
2706         if (stable_node) {
2707                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2708                 stable_node->kpfn = page_to_pfn(newpage);
2709                 /*
2710                  * newpage->mapping was set in advance; now we need smp_wmb()
2711                  * to make sure that the new stable_node->kpfn is visible
2712                  * to get_ksm_page() before it can see that oldpage->mapping
2713                  * has gone stale (or that PageSwapCache has been cleared).
2714                  */
2715                 smp_wmb();
2716                 set_page_stable_node(oldpage, NULL);
2717         }
2718 }
2719 #endif /* CONFIG_MIGRATION */
2720
2721 #ifdef CONFIG_MEMORY_HOTREMOVE
2722 static void wait_while_offlining(void)
2723 {
2724         while (ksm_run & KSM_RUN_OFFLINE) {
2725                 mutex_unlock(&ksm_thread_mutex);
2726                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2727                             TASK_UNINTERRUPTIBLE);
2728                 mutex_lock(&ksm_thread_mutex);
2729         }
2730 }
2731
2732 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2733                                          unsigned long start_pfn,
2734                                          unsigned long end_pfn)
2735 {
2736         if (stable_node->kpfn >= start_pfn &&
2737             stable_node->kpfn < end_pfn) {
2738                 /*
2739                  * Don't get_ksm_page, page has already gone:
2740                  * which is why we keep kpfn instead of page*
2741                  */
2742                 remove_node_from_stable_tree(stable_node);
2743                 return true;
2744         }
2745         return false;
2746 }
2747
2748 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2749                                            unsigned long start_pfn,
2750                                            unsigned long end_pfn,
2751                                            struct rb_root *root)
2752 {
2753         struct stable_node *dup;
2754         struct hlist_node *hlist_safe;
2755
2756         if (!is_stable_node_chain(stable_node)) {
2757                 VM_BUG_ON(is_stable_node_dup(stable_node));
2758                 return stable_node_dup_remove_range(stable_node, start_pfn,
2759                                                     end_pfn);
2760         }
2761
2762         hlist_for_each_entry_safe(dup, hlist_safe,
2763                                   &stable_node->hlist, hlist_dup) {
2764                 VM_BUG_ON(!is_stable_node_dup(dup));
2765                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2766         }
2767         if (hlist_empty(&stable_node->hlist)) {
2768                 free_stable_node_chain(stable_node, root);
2769                 return true; /* notify caller that tree was rebalanced */
2770         } else
2771                 return false;
2772 }
2773
2774 static void ksm_check_stable_tree(unsigned long start_pfn,
2775                                   unsigned long end_pfn)
2776 {
2777         struct stable_node *stable_node, *next;
2778         struct rb_node *node;
2779         int nid;
2780
2781         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2782                 node = rb_first(root_stable_tree + nid);
2783                 while (node) {
2784                         stable_node = rb_entry(node, struct stable_node, node);
2785                         if (stable_node_chain_remove_range(stable_node,
2786                                                            start_pfn, end_pfn,
2787                                                            root_stable_tree +
2788                                                            nid))
2789                                 node = rb_first(root_stable_tree + nid);
2790                         else
2791                                 node = rb_next(node);
2792                         cond_resched();
2793                 }
2794         }
2795         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2796                 if (stable_node->kpfn >= start_pfn &&
2797                     stable_node->kpfn < end_pfn)
2798                         remove_node_from_stable_tree(stable_node);
2799                 cond_resched();
2800         }
2801 }
2802
2803 static int ksm_memory_callback(struct notifier_block *self,
2804                                unsigned long action, void *arg)
2805 {
2806         struct memory_notify *mn = arg;
2807
2808         switch (action) {
2809         case MEM_GOING_OFFLINE:
2810                 /*
2811                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2812                  * and remove_all_stable_nodes() while memory is going offline:
2813                  * it is unsafe for them to touch the stable tree at this time.
2814                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2815                  * which do not need the ksm_thread_mutex are all safe.
2816                  */
2817                 mutex_lock(&ksm_thread_mutex);
2818                 ksm_run |= KSM_RUN_OFFLINE;
2819                 mutex_unlock(&ksm_thread_mutex);
2820                 break;
2821
2822         case MEM_OFFLINE:
2823                 /*
2824                  * Most of the work is done by page migration; but there might
2825                  * be a few stable_nodes left over, still pointing to struct
2826                  * pages which have been offlined: prune those from the tree,
2827                  * otherwise get_ksm_page() might later try to access a
2828                  * non-existent struct page.
2829                  */
2830                 ksm_check_stable_tree(mn->start_pfn,
2831                                       mn->start_pfn + mn->nr_pages);
2832                 /* fallthrough */
2833
2834         case MEM_CANCEL_OFFLINE:
2835                 mutex_lock(&ksm_thread_mutex);
2836                 ksm_run &= ~KSM_RUN_OFFLINE;
2837                 mutex_unlock(&ksm_thread_mutex);
2838
2839                 smp_mb();       /* wake_up_bit advises this */
2840                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2841                 break;
2842         }
2843         return NOTIFY_OK;
2844 }
2845 #else
2846 static void wait_while_offlining(void)
2847 {
2848 }
2849 #endif /* CONFIG_MEMORY_HOTREMOVE */
2850
2851 #ifdef CONFIG_SYSFS
2852 /*
2853  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2854  */
2855
2856 #define KSM_ATTR_RO(_name) \
2857         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2858 #define KSM_ATTR(_name) \
2859         static struct kobj_attribute _name##_attr = \
2860                 __ATTR(_name, 0644, _name##_show, _name##_store)
2861
2862 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2863                                     struct kobj_attribute *attr, char *buf)
2864 {
2865         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2866 }
2867
2868 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2869                                      struct kobj_attribute *attr,
2870                                      const char *buf, size_t count)
2871 {
2872         unsigned long msecs;
2873         int err;
2874
2875         err = kstrtoul(buf, 10, &msecs);
2876         if (err || msecs > UINT_MAX)
2877                 return -EINVAL;
2878
2879         ksm_thread_sleep_millisecs = msecs;
2880         wake_up_interruptible(&ksm_iter_wait);
2881
2882         return count;
2883 }
2884 KSM_ATTR(sleep_millisecs);
2885
2886 static ssize_t pages_to_scan_show(struct kobject *kobj,
2887                                   struct kobj_attribute *attr, char *buf)
2888 {
2889         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2890 }
2891
2892 static ssize_t pages_to_scan_store(struct kobject *kobj,
2893                                    struct kobj_attribute *attr,
2894                                    const char *buf, size_t count)
2895 {
2896         int err;
2897         unsigned long nr_pages;
2898
2899         err = kstrtoul(buf, 10, &nr_pages);
2900         if (err || nr_pages > UINT_MAX)
2901                 return -EINVAL;
2902
2903         ksm_thread_pages_to_scan = nr_pages;
2904
2905         return count;
2906 }
2907 KSM_ATTR(pages_to_scan);
2908
2909 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2910                         char *buf)
2911 {
2912         return sprintf(buf, "%lu\n", ksm_run);
2913 }
2914
2915 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2916                          const char *buf, size_t count)
2917 {
2918         int err;
2919         unsigned long flags;
2920
2921         err = kstrtoul(buf, 10, &flags);
2922         if (err || flags > UINT_MAX)
2923                 return -EINVAL;
2924         if (flags > KSM_RUN_UNMERGE)
2925                 return -EINVAL;
2926
2927         /*
2928          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2929          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2930          * breaking COW to free the pages_shared (but leaves mm_slots
2931          * on the list for when ksmd may be set running again).
2932          */
2933
2934         mutex_lock(&ksm_thread_mutex);
2935         wait_while_offlining();
2936         if (ksm_run != flags) {
2937                 ksm_run = flags;
2938                 if (flags & KSM_RUN_UNMERGE) {
2939                         set_current_oom_origin();
2940                         err = unmerge_and_remove_all_rmap_items();
2941                         clear_current_oom_origin();
2942                         if (err) {
2943                                 ksm_run = KSM_RUN_STOP;
2944                                 count = err;
2945                         }
2946                 }
2947         }
2948         mutex_unlock(&ksm_thread_mutex);
2949
2950         if (flags & KSM_RUN_MERGE)
2951                 wake_up_interruptible(&ksm_thread_wait);
2952
2953         return count;
2954 }
2955 KSM_ATTR(run);
2956
2957 #ifdef CONFIG_NUMA
2958 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2959                                 struct kobj_attribute *attr, char *buf)
2960 {
2961         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2962 }
2963
2964 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2965                                    struct kobj_attribute *attr,
2966                                    const char *buf, size_t count)
2967 {
2968         int err;
2969         unsigned long knob;
2970
2971         err = kstrtoul(buf, 10, &knob);
2972         if (err)
2973                 return err;
2974         if (knob > 1)
2975                 return -EINVAL;
2976
2977         mutex_lock(&ksm_thread_mutex);
2978         wait_while_offlining();
2979         if (ksm_merge_across_nodes != knob) {
2980                 if (ksm_pages_shared || remove_all_stable_nodes())
2981                         err = -EBUSY;
2982                 else if (root_stable_tree == one_stable_tree) {
2983                         struct rb_root *buf;
2984                         /*
2985                          * This is the first time that we switch away from the
2986                          * default of merging across nodes: must now allocate
2987                          * a buffer to hold as many roots as may be needed.
2988                          * Allocate stable and unstable together:
2989                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2990                          */
2991                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2992                                       GFP_KERNEL);
2993                         /* Let us assume that RB_ROOT is NULL is zero */
2994                         if (!buf)
2995                                 err = -ENOMEM;
2996                         else {
2997                                 root_stable_tree = buf;
2998                                 root_unstable_tree = buf + nr_node_ids;
2999                                 /* Stable tree is empty but not the unstable */
3000                                 root_unstable_tree[0] = one_unstable_tree[0];
3001                         }
3002                 }
3003                 if (!err) {
3004                         ksm_merge_across_nodes = knob;
3005                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3006                 }
3007         }
3008         mutex_unlock(&ksm_thread_mutex);
3009
3010         return err ? err : count;
3011 }
3012 KSM_ATTR(merge_across_nodes);
3013 #endif
3014
3015 static ssize_t use_zero_pages_show(struct kobject *kobj,
3016                                 struct kobj_attribute *attr, char *buf)
3017 {
3018         return sprintf(buf, "%u\n", ksm_use_zero_pages);
3019 }
3020 static ssize_t use_zero_pages_store(struct kobject *kobj,
3021                                    struct kobj_attribute *attr,
3022                                    const char *buf, size_t count)
3023 {
3024         int err;
3025         bool value;
3026
3027         err = kstrtobool(buf, &value);
3028         if (err)
3029                 return -EINVAL;
3030
3031         ksm_use_zero_pages = value;
3032
3033         return count;
3034 }
3035 KSM_ATTR(use_zero_pages);
3036
3037 static ssize_t max_page_sharing_show(struct kobject *kobj,
3038                                      struct kobj_attribute *attr, char *buf)
3039 {
3040         return sprintf(buf, "%u\n", ksm_max_page_sharing);
3041 }
3042
3043 static ssize_t max_page_sharing_store(struct kobject *kobj,
3044                                       struct kobj_attribute *attr,
3045                                       const char *buf, size_t count)
3046 {
3047         int err;
3048         int knob;
3049
3050         err = kstrtoint(buf, 10, &knob);
3051         if (err)
3052                 return err;
3053         /*
3054          * When a KSM page is created it is shared by 2 mappings. This
3055          * being a signed comparison, it implicitly verifies it's not
3056          * negative.
3057          */
3058         if (knob < 2)
3059                 return -EINVAL;
3060
3061         if (READ_ONCE(ksm_max_page_sharing) == knob)
3062                 return count;
3063
3064         mutex_lock(&ksm_thread_mutex);
3065         wait_while_offlining();
3066         if (ksm_max_page_sharing != knob) {
3067                 if (ksm_pages_shared || remove_all_stable_nodes())
3068                         err = -EBUSY;
3069                 else
3070                         ksm_max_page_sharing = knob;
3071         }
3072         mutex_unlock(&ksm_thread_mutex);
3073
3074         return err ? err : count;
3075 }
3076 KSM_ATTR(max_page_sharing);
3077
3078 static ssize_t pages_shared_show(struct kobject *kobj,
3079                                  struct kobj_attribute *attr, char *buf)
3080 {
3081         return sprintf(buf, "%lu\n", ksm_pages_shared);
3082 }
3083 KSM_ATTR_RO(pages_shared);
3084
3085 static ssize_t pages_sharing_show(struct kobject *kobj,
3086                                   struct kobj_attribute *attr, char *buf)
3087 {
3088         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3089 }
3090 KSM_ATTR_RO(pages_sharing);
3091
3092 static ssize_t pages_unshared_show(struct kobject *kobj,
3093                                    struct kobj_attribute *attr, char *buf)
3094 {
3095         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3096 }
3097 KSM_ATTR_RO(pages_unshared);
3098
3099 static ssize_t pages_volatile_show(struct kobject *kobj,
3100                                    struct kobj_attribute *attr, char *buf)
3101 {
3102         long ksm_pages_volatile;
3103
3104         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3105                                 - ksm_pages_sharing - ksm_pages_unshared;
3106         /*
3107          * It was not worth any locking to calculate that statistic,
3108          * but it might therefore sometimes be negative: conceal that.
3109          */
3110         if (ksm_pages_volatile < 0)
3111                 ksm_pages_volatile = 0;
3112         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3113 }
3114 KSM_ATTR_RO(pages_volatile);
3115
3116 static ssize_t stable_node_dups_show(struct kobject *kobj,
3117                                      struct kobj_attribute *attr, char *buf)
3118 {
3119         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3120 }
3121 KSM_ATTR_RO(stable_node_dups);
3122
3123 static ssize_t stable_node_chains_show(struct kobject *kobj,
3124                                        struct kobj_attribute *attr, char *buf)
3125 {
3126         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3127 }
3128 KSM_ATTR_RO(stable_node_chains);
3129
3130 static ssize_t
3131 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3132                                         struct kobj_attribute *attr,
3133                                         char *buf)
3134 {
3135         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3136 }
3137
3138 static ssize_t
3139 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3140                                          struct kobj_attribute *attr,
3141                                          const char *buf, size_t count)
3142 {
3143         unsigned long msecs;
3144         int err;
3145
3146         err = kstrtoul(buf, 10, &msecs);
3147         if (err || msecs > UINT_MAX)
3148                 return -EINVAL;
3149
3150         ksm_stable_node_chains_prune_millisecs = msecs;
3151
3152         return count;
3153 }
3154 KSM_ATTR(stable_node_chains_prune_millisecs);
3155
3156 static ssize_t full_scans_show(struct kobject *kobj,
3157                                struct kobj_attribute *attr, char *buf)
3158 {
3159         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3160 }
3161 KSM_ATTR_RO(full_scans);
3162
3163 static struct attribute *ksm_attrs[] = {
3164         &sleep_millisecs_attr.attr,
3165         &pages_to_scan_attr.attr,
3166         &run_attr.attr,
3167         &pages_shared_attr.attr,
3168         &pages_sharing_attr.attr,
3169         &pages_unshared_attr.attr,
3170         &pages_volatile_attr.attr,
3171         &full_scans_attr.attr,
3172 #ifdef CONFIG_NUMA
3173         &merge_across_nodes_attr.attr,
3174 #endif
3175         &max_page_sharing_attr.attr,
3176         &stable_node_chains_attr.attr,
3177         &stable_node_dups_attr.attr,
3178         &stable_node_chains_prune_millisecs_attr.attr,
3179         &use_zero_pages_attr.attr,
3180         NULL,
3181 };
3182
3183 static const struct attribute_group ksm_attr_group = {
3184         .attrs = ksm_attrs,
3185         .name = "ksm",
3186 };
3187 #endif /* CONFIG_SYSFS */
3188
3189 static int __init ksm_init(void)
3190 {
3191         struct task_struct *ksm_thread;
3192         int err;
3193
3194         /* The correct value depends on page size and endianness */
3195         zero_checksum = calc_checksum(ZERO_PAGE(0));
3196         /* Default to false for backwards compatibility */
3197         ksm_use_zero_pages = false;
3198
3199         err = ksm_slab_init();
3200         if (err)
3201                 goto out;
3202
3203         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3204         if (IS_ERR(ksm_thread)) {
3205                 pr_err("ksm: creating kthread failed\n");
3206                 err = PTR_ERR(ksm_thread);
3207                 goto out_free;
3208         }
3209
3210 #ifdef CONFIG_SYSFS
3211         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3212         if (err) {
3213                 pr_err("ksm: register sysfs failed\n");
3214                 kthread_stop(ksm_thread);
3215                 goto out_free;
3216         }
3217 #else
3218         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3219
3220 #endif /* CONFIG_SYSFS */
3221
3222 #ifdef CONFIG_MEMORY_HOTREMOVE
3223         /* There is no significance to this priority 100 */
3224         hotplug_memory_notifier(ksm_memory_callback, 100);
3225 #endif
3226         return 0;
3227
3228 out_free:
3229         ksm_slab_free();
3230 out:
3231         return err;
3232 }
3233 subsys_initcall(ksm_init);