mm/munlock: rmap call mlock_vma_page() munlock_vma_page()
[sfrench/cifs-2.6.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same struct stable_node structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232
233 static struct mm_slot ksm_mm_head = {
234         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237         .mm_slot = &ksm_mm_head,
238 };
239
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes  1U
286 #define ksm_nr_node_ids         1
287 #endif
288
289 #define KSM_RUN_STOP    0
290 #define KSM_RUN_MERGE   1
291 #define KSM_RUN_UNMERGE 2
292 #define KSM_RUN_OFFLINE 4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302                 sizeof(struct __struct), __alignof__(struct __struct),\
303                 (__flags), NULL)
304
305 static int __init ksm_slab_init(void)
306 {
307         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308         if (!rmap_item_cache)
309                 goto out;
310
311         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312         if (!stable_node_cache)
313                 goto out_free1;
314
315         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316         if (!mm_slot_cache)
317                 goto out_free2;
318
319         return 0;
320
321 out_free2:
322         kmem_cache_destroy(stable_node_cache);
323 out_free1:
324         kmem_cache_destroy(rmap_item_cache);
325 out:
326         return -ENOMEM;
327 }
328
329 static void __init ksm_slab_free(void)
330 {
331         kmem_cache_destroy(mm_slot_cache);
332         kmem_cache_destroy(stable_node_cache);
333         kmem_cache_destroy(rmap_item_cache);
334         mm_slot_cache = NULL;
335 }
336
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338 {
339         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 }
341
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343 {
344         return dup->head == STABLE_NODE_DUP_HEAD;
345 }
346
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348                                              struct stable_node *chain)
349 {
350         VM_BUG_ON(is_stable_node_dup(dup));
351         dup->head = STABLE_NODE_DUP_HEAD;
352         VM_BUG_ON(!is_stable_node_chain(chain));
353         hlist_add_head(&dup->hlist_dup, &chain->hlist);
354         ksm_stable_node_dups++;
355 }
356
357 static inline void __stable_node_dup_del(struct stable_node *dup)
358 {
359         VM_BUG_ON(!is_stable_node_dup(dup));
360         hlist_del(&dup->hlist_dup);
361         ksm_stable_node_dups--;
362 }
363
364 static inline void stable_node_dup_del(struct stable_node *dup)
365 {
366         VM_BUG_ON(is_stable_node_chain(dup));
367         if (is_stable_node_dup(dup))
368                 __stable_node_dup_del(dup);
369         else
370                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
372         dup->head = NULL;
373 #endif
374 }
375
376 static inline struct rmap_item *alloc_rmap_item(void)
377 {
378         struct rmap_item *rmap_item;
379
380         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381                                                 __GFP_NORETRY | __GFP_NOWARN);
382         if (rmap_item)
383                 ksm_rmap_items++;
384         return rmap_item;
385 }
386
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
388 {
389         ksm_rmap_items--;
390         rmap_item->mm = NULL;   /* debug safety */
391         kmem_cache_free(rmap_item_cache, rmap_item);
392 }
393
394 static inline struct stable_node *alloc_stable_node(void)
395 {
396         /*
397          * The allocation can take too long with GFP_KERNEL when memory is under
398          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
399          * grants access to memory reserves, helping to avoid this problem.
400          */
401         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402 }
403
404 static inline void free_stable_node(struct stable_node *stable_node)
405 {
406         VM_BUG_ON(stable_node->rmap_hlist_len &&
407                   !is_stable_node_chain(stable_node));
408         kmem_cache_free(stable_node_cache, stable_node);
409 }
410
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413         if (!mm_slot_cache)     /* initialization failed */
414                 return NULL;
415         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420         kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425         struct mm_slot *slot;
426
427         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428                 if (slot->mm == mm)
429                         return slot;
430
431         return NULL;
432 }
433
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435                                     struct mm_slot *mm_slot)
436 {
437         mm_slot->mm = mm;
438         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439 }
440
441 /*
442  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443  * page tables after it has passed through ksm_exit() - which, if necessary,
444  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
445  * a special flag: they can just back out as soon as mm_users goes to zero.
446  * ksm_test_exit() is used throughout to make this test for exit: in some
447  * places for correctness, in some places just to avoid unnecessary work.
448  */
449 static inline bool ksm_test_exit(struct mm_struct *mm)
450 {
451         return atomic_read(&mm->mm_users) == 0;
452 }
453
454 /*
455  * We use break_ksm to break COW on a ksm page: it's a stripped down
456  *
457  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458  *              put_page(page);
459  *
460  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471         struct page *page;
472         vm_fault_t ret = 0;
473
474         do {
475                 cond_resched();
476                 page = follow_page(vma, addr,
477                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478                 if (IS_ERR_OR_NULL(page))
479                         break;
480                 if (PageKsm(page))
481                         ret = handle_mm_fault(vma, addr,
482                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483                                               NULL);
484                 else
485                         ret = VM_FAULT_WRITE;
486                 put_page(page);
487         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488         /*
489          * We must loop because handle_mm_fault() may back out if there's
490          * any difficulty e.g. if pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493          * COW has been broken, even if the vma does not permit VM_WRITE;
494          * but note that a concurrent fault might break PageKsm for us.
495          *
496          * VM_FAULT_SIGBUS could occur if we race with truncation of the
497          * backing file, which also invalidates anonymous pages: that's
498          * okay, that truncation will have unmapped the PageKsm for us.
499          *
500          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502          * current task has TIF_MEMDIE set, and will be OOM killed on return
503          * to user; and ksmd, having no mm, would never be chosen for that.
504          *
505          * But if the mm is in a limited mem_cgroup, then the fault may fail
506          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507          * even ksmd can fail in this way - though it's usually breaking ksm
508          * just to undo a merge it made a moment before, so unlikely to oom.
509          *
510          * That's a pity: we might therefore have more kernel pages allocated
511          * than we're counting as nodes in the stable tree; but ksm_do_scan
512          * will retry to break_cow on each pass, so should recover the page
513          * in due course.  The important thing is to not let VM_MERGEABLE
514          * be cleared while any such pages might remain in the area.
515          */
516         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520                 unsigned long addr)
521 {
522         struct vm_area_struct *vma;
523         if (ksm_test_exit(mm))
524                 return NULL;
525         vma = vma_lookup(mm, addr);
526         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527                 return NULL;
528         return vma;
529 }
530
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533         struct mm_struct *mm = rmap_item->mm;
534         unsigned long addr = rmap_item->address;
535         struct vm_area_struct *vma;
536
537         /*
538          * It is not an accident that whenever we want to break COW
539          * to undo, we also need to drop a reference to the anon_vma.
540          */
541         put_anon_vma(rmap_item->anon_vma);
542
543         mmap_read_lock(mm);
544         vma = find_mergeable_vma(mm, addr);
545         if (vma)
546                 break_ksm(vma, addr);
547         mmap_read_unlock(mm);
548 }
549
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552         struct mm_struct *mm = rmap_item->mm;
553         unsigned long addr = rmap_item->address;
554         struct vm_area_struct *vma;
555         struct page *page;
556
557         mmap_read_lock(mm);
558         vma = find_mergeable_vma(mm, addr);
559         if (!vma)
560                 goto out;
561
562         page = follow_page(vma, addr, FOLL_GET);
563         if (IS_ERR_OR_NULL(page))
564                 goto out;
565         if (PageAnon(page)) {
566                 flush_anon_page(vma, page, addr);
567                 flush_dcache_page(page);
568         } else {
569                 put_page(page);
570 out:
571                 page = NULL;
572         }
573         mmap_read_unlock(mm);
574         return page;
575 }
576
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589                                                    struct rb_root *root)
590 {
591         struct stable_node *chain = alloc_stable_node();
592         VM_BUG_ON(is_stable_node_chain(dup));
593         if (likely(chain)) {
594                 INIT_HLIST_HEAD(&chain->hlist);
595                 chain->chain_prune_time = jiffies;
596                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598                 chain->nid = NUMA_NO_NODE; /* debug */
599 #endif
600                 ksm_stable_node_chains++;
601
602                 /*
603                  * Put the stable node chain in the first dimension of
604                  * the stable tree and at the same time remove the old
605                  * stable node.
606                  */
607                 rb_replace_node(&dup->node, &chain->node, root);
608
609                 /*
610                  * Move the old stable node to the second dimension
611                  * queued in the hlist_dup. The invariant is that all
612                  * dup stable_nodes in the chain->hlist point to pages
613                  * that are write protected and have the exact same
614                  * content.
615                  */
616                 stable_node_chain_add_dup(dup, chain);
617         }
618         return chain;
619 }
620
621 static inline void free_stable_node_chain(struct stable_node *chain,
622                                           struct rb_root *root)
623 {
624         rb_erase(&chain->node, root);
625         free_stable_node(chain);
626         ksm_stable_node_chains--;
627 }
628
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631         struct rmap_item *rmap_item;
632
633         /* check it's not STABLE_NODE_CHAIN or negative */
634         BUG_ON(stable_node->rmap_hlist_len < 0);
635
636         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637                 if (rmap_item->hlist.next)
638                         ksm_pages_sharing--;
639                 else
640                         ksm_pages_shared--;
641                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642                 stable_node->rmap_hlist_len--;
643                 put_anon_vma(rmap_item->anon_vma);
644                 rmap_item->address &= PAGE_MASK;
645                 cond_resched();
646         }
647
648         /*
649          * We need the second aligned pointer of the migrate_nodes
650          * list_head to stay clear from the rb_parent_color union
651          * (aligned and different than any node) and also different
652          * from &migrate_nodes. This will verify that future list.h changes
653          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
654          */
655         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
657
658         if (stable_node->head == &migrate_nodes)
659                 list_del(&stable_node->list);
660         else
661                 stable_node_dup_del(stable_node);
662         free_stable_node(stable_node);
663 }
664
665 enum get_ksm_page_flags {
666         GET_KSM_PAGE_NOLOCK,
667         GET_KSM_PAGE_LOCK,
668         GET_KSM_PAGE_TRYLOCK
669 };
670
671 /*
672  * get_ksm_page: checks if the page indicated by the stable node
673  * is still its ksm page, despite having held no reference to it.
674  * In which case we can trust the content of the page, and it
675  * returns the gotten page; but if the page has now been zapped,
676  * remove the stale node from the stable tree and return NULL.
677  * But beware, the stable node's page might be being migrated.
678  *
679  * You would expect the stable_node to hold a reference to the ksm page.
680  * But if it increments the page's count, swapping out has to wait for
681  * ksmd to come around again before it can free the page, which may take
682  * seconds or even minutes: much too unresponsive.  So instead we use a
683  * "keyhole reference": access to the ksm page from the stable node peeps
684  * out through its keyhole to see if that page still holds the right key,
685  * pointing back to this stable node.  This relies on freeing a PageAnon
686  * page to reset its page->mapping to NULL, and relies on no other use of
687  * a page to put something that might look like our key in page->mapping.
688  * is on its way to being freed; but it is an anomaly to bear in mind.
689  */
690 static struct page *get_ksm_page(struct stable_node *stable_node,
691                                  enum get_ksm_page_flags flags)
692 {
693         struct page *page;
694         void *expected_mapping;
695         unsigned long kpfn;
696
697         expected_mapping = (void *)((unsigned long)stable_node |
698                                         PAGE_MAPPING_KSM);
699 again:
700         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
701         page = pfn_to_page(kpfn);
702         if (READ_ONCE(page->mapping) != expected_mapping)
703                 goto stale;
704
705         /*
706          * We cannot do anything with the page while its refcount is 0.
707          * Usually 0 means free, or tail of a higher-order page: in which
708          * case this node is no longer referenced, and should be freed;
709          * however, it might mean that the page is under page_ref_freeze().
710          * The __remove_mapping() case is easy, again the node is now stale;
711          * the same is in reuse_ksm_page() case; but if page is swapcache
712          * in migrate_page_move_mapping(), it might still be our page,
713          * in which case it's essential to keep the node.
714          */
715         while (!get_page_unless_zero(page)) {
716                 /*
717                  * Another check for page->mapping != expected_mapping would
718                  * work here too.  We have chosen the !PageSwapCache test to
719                  * optimize the common case, when the page is or is about to
720                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
721                  * in the ref_freeze section of __remove_mapping(); but Anon
722                  * page->mapping reset to NULL later, in free_pages_prepare().
723                  */
724                 if (!PageSwapCache(page))
725                         goto stale;
726                 cpu_relax();
727         }
728
729         if (READ_ONCE(page->mapping) != expected_mapping) {
730                 put_page(page);
731                 goto stale;
732         }
733
734         if (flags == GET_KSM_PAGE_TRYLOCK) {
735                 if (!trylock_page(page)) {
736                         put_page(page);
737                         return ERR_PTR(-EBUSY);
738                 }
739         } else if (flags == GET_KSM_PAGE_LOCK)
740                 lock_page(page);
741
742         if (flags != GET_KSM_PAGE_NOLOCK) {
743                 if (READ_ONCE(page->mapping) != expected_mapping) {
744                         unlock_page(page);
745                         put_page(page);
746                         goto stale;
747                 }
748         }
749         return page;
750
751 stale:
752         /*
753          * We come here from above when page->mapping or !PageSwapCache
754          * suggests that the node is stale; but it might be under migration.
755          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
756          * before checking whether node->kpfn has been changed.
757          */
758         smp_rmb();
759         if (READ_ONCE(stable_node->kpfn) != kpfn)
760                 goto again;
761         remove_node_from_stable_tree(stable_node);
762         return NULL;
763 }
764
765 /*
766  * Removing rmap_item from stable or unstable tree.
767  * This function will clean the information from the stable/unstable tree.
768  */
769 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
770 {
771         if (rmap_item->address & STABLE_FLAG) {
772                 struct stable_node *stable_node;
773                 struct page *page;
774
775                 stable_node = rmap_item->head;
776                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
777                 if (!page)
778                         goto out;
779
780                 hlist_del(&rmap_item->hlist);
781                 unlock_page(page);
782                 put_page(page);
783
784                 if (!hlist_empty(&stable_node->hlist))
785                         ksm_pages_sharing--;
786                 else
787                         ksm_pages_shared--;
788                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
789                 stable_node->rmap_hlist_len--;
790
791                 put_anon_vma(rmap_item->anon_vma);
792                 rmap_item->head = NULL;
793                 rmap_item->address &= PAGE_MASK;
794
795         } else if (rmap_item->address & UNSTABLE_FLAG) {
796                 unsigned char age;
797                 /*
798                  * Usually ksmd can and must skip the rb_erase, because
799                  * root_unstable_tree was already reset to RB_ROOT.
800                  * But be careful when an mm is exiting: do the rb_erase
801                  * if this rmap_item was inserted by this scan, rather
802                  * than left over from before.
803                  */
804                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
805                 BUG_ON(age > 1);
806                 if (!age)
807                         rb_erase(&rmap_item->node,
808                                  root_unstable_tree + NUMA(rmap_item->nid));
809                 ksm_pages_unshared--;
810                 rmap_item->address &= PAGE_MASK;
811         }
812 out:
813         cond_resched();         /* we're called from many long loops */
814 }
815
816 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
817 {
818         while (*rmap_list) {
819                 struct rmap_item *rmap_item = *rmap_list;
820                 *rmap_list = rmap_item->rmap_list;
821                 remove_rmap_item_from_tree(rmap_item);
822                 free_rmap_item(rmap_item);
823         }
824 }
825
826 /*
827  * Though it's very tempting to unmerge rmap_items from stable tree rather
828  * than check every pte of a given vma, the locking doesn't quite work for
829  * that - an rmap_item is assigned to the stable tree after inserting ksm
830  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
831  * rmap_items from parent to child at fork time (so as not to waste time
832  * if exit comes before the next scan reaches it).
833  *
834  * Similarly, although we'd like to remove rmap_items (so updating counts
835  * and freeing memory) when unmerging an area, it's easier to leave that
836  * to the next pass of ksmd - consider, for example, how ksmd might be
837  * in cmp_and_merge_page on one of the rmap_items we would be removing.
838  */
839 static int unmerge_ksm_pages(struct vm_area_struct *vma,
840                              unsigned long start, unsigned long end)
841 {
842         unsigned long addr;
843         int err = 0;
844
845         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
846                 if (ksm_test_exit(vma->vm_mm))
847                         break;
848                 if (signal_pending(current))
849                         err = -ERESTARTSYS;
850                 else
851                         err = break_ksm(vma, addr);
852         }
853         return err;
854 }
855
856 static inline struct stable_node *folio_stable_node(struct folio *folio)
857 {
858         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
859 }
860
861 static inline struct stable_node *page_stable_node(struct page *page)
862 {
863         return folio_stable_node(page_folio(page));
864 }
865
866 static inline void set_page_stable_node(struct page *page,
867                                         struct stable_node *stable_node)
868 {
869         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870 }
871
872 #ifdef CONFIG_SYSFS
873 /*
874  * Only called through the sysfs control interface:
875  */
876 static int remove_stable_node(struct stable_node *stable_node)
877 {
878         struct page *page;
879         int err;
880
881         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882         if (!page) {
883                 /*
884                  * get_ksm_page did remove_node_from_stable_tree itself.
885                  */
886                 return 0;
887         }
888
889         /*
890          * Page could be still mapped if this races with __mmput() running in
891          * between ksm_exit() and exit_mmap(). Just refuse to let
892          * merge_across_nodes/max_page_sharing be switched.
893          */
894         err = -EBUSY;
895         if (!page_mapped(page)) {
896                 /*
897                  * The stable node did not yet appear stale to get_ksm_page(),
898                  * since that allows for an unmapped ksm page to be recognized
899                  * right up until it is freed; but the node is safe to remove.
900                  * This page might be in a pagevec waiting to be freed,
901                  * or it might be PageSwapCache (perhaps under writeback),
902                  * or it might have been removed from swapcache a moment ago.
903                  */
904                 set_page_stable_node(page, NULL);
905                 remove_node_from_stable_tree(stable_node);
906                 err = 0;
907         }
908
909         unlock_page(page);
910         put_page(page);
911         return err;
912 }
913
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915                                     struct rb_root *root)
916 {
917         struct stable_node *dup;
918         struct hlist_node *hlist_safe;
919
920         if (!is_stable_node_chain(stable_node)) {
921                 VM_BUG_ON(is_stable_node_dup(stable_node));
922                 if (remove_stable_node(stable_node))
923                         return true;
924                 else
925                         return false;
926         }
927
928         hlist_for_each_entry_safe(dup, hlist_safe,
929                                   &stable_node->hlist, hlist_dup) {
930                 VM_BUG_ON(!is_stable_node_dup(dup));
931                 if (remove_stable_node(dup))
932                         return true;
933         }
934         BUG_ON(!hlist_empty(&stable_node->hlist));
935         free_stable_node_chain(stable_node, root);
936         return false;
937 }
938
939 static int remove_all_stable_nodes(void)
940 {
941         struct stable_node *stable_node, *next;
942         int nid;
943         int err = 0;
944
945         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946                 while (root_stable_tree[nid].rb_node) {
947                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
948                                                 struct stable_node, node);
949                         if (remove_stable_node_chain(stable_node,
950                                                      root_stable_tree + nid)) {
951                                 err = -EBUSY;
952                                 break;  /* proceed to next nid */
953                         }
954                         cond_resched();
955                 }
956         }
957         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958                 if (remove_stable_node(stable_node))
959                         err = -EBUSY;
960                 cond_resched();
961         }
962         return err;
963 }
964
965 static int unmerge_and_remove_all_rmap_items(void)
966 {
967         struct mm_slot *mm_slot;
968         struct mm_struct *mm;
969         struct vm_area_struct *vma;
970         int err = 0;
971
972         spin_lock(&ksm_mmlist_lock);
973         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974                                                 struct mm_slot, mm_list);
975         spin_unlock(&ksm_mmlist_lock);
976
977         for (mm_slot = ksm_scan.mm_slot;
978                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979                 mm = mm_slot->mm;
980                 mmap_read_lock(mm);
981                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
982                         if (ksm_test_exit(mm))
983                                 break;
984                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985                                 continue;
986                         err = unmerge_ksm_pages(vma,
987                                                 vma->vm_start, vma->vm_end);
988                         if (err)
989                                 goto error;
990                 }
991
992                 remove_trailing_rmap_items(&mm_slot->rmap_list);
993                 mmap_read_unlock(mm);
994
995                 spin_lock(&ksm_mmlist_lock);
996                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997                                                 struct mm_slot, mm_list);
998                 if (ksm_test_exit(mm)) {
999                         hash_del(&mm_slot->link);
1000                         list_del(&mm_slot->mm_list);
1001                         spin_unlock(&ksm_mmlist_lock);
1002
1003                         free_mm_slot(mm_slot);
1004                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005                         mmdrop(mm);
1006                 } else
1007                         spin_unlock(&ksm_mmlist_lock);
1008         }
1009
1010         /* Clean up stable nodes, but don't worry if some are still busy */
1011         remove_all_stable_nodes();
1012         ksm_scan.seqnr = 0;
1013         return 0;
1014
1015 error:
1016         mmap_read_unlock(mm);
1017         spin_lock(&ksm_mmlist_lock);
1018         ksm_scan.mm_slot = &ksm_mm_head;
1019         spin_unlock(&ksm_mmlist_lock);
1020         return err;
1021 }
1022 #endif /* CONFIG_SYSFS */
1023
1024 static u32 calc_checksum(struct page *page)
1025 {
1026         u32 checksum;
1027         void *addr = kmap_atomic(page);
1028         checksum = xxhash(addr, PAGE_SIZE, 0);
1029         kunmap_atomic(addr);
1030         return checksum;
1031 }
1032
1033 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1034                               pte_t *orig_pte)
1035 {
1036         struct mm_struct *mm = vma->vm_mm;
1037         struct page_vma_mapped_walk pvmw = {
1038                 .page = page,
1039                 .vma = vma,
1040         };
1041         int swapped;
1042         int err = -EFAULT;
1043         struct mmu_notifier_range range;
1044
1045         pvmw.address = page_address_in_vma(page, vma);
1046         if (pvmw.address == -EFAULT)
1047                 goto out;
1048
1049         BUG_ON(PageTransCompound(page));
1050
1051         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1052                                 pvmw.address,
1053                                 pvmw.address + PAGE_SIZE);
1054         mmu_notifier_invalidate_range_start(&range);
1055
1056         if (!page_vma_mapped_walk(&pvmw))
1057                 goto out_mn;
1058         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1059                 goto out_unlock;
1060
1061         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1062             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1063                                                 mm_tlb_flush_pending(mm)) {
1064                 pte_t entry;
1065
1066                 swapped = PageSwapCache(page);
1067                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1068                 /*
1069                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1070                  * take any lock, therefore the check that we are going to make
1071                  * with the pagecount against the mapcount is racy and
1072                  * O_DIRECT can happen right after the check.
1073                  * So we clear the pte and flush the tlb before the check
1074                  * this assure us that no O_DIRECT can happen after the check
1075                  * or in the middle of the check.
1076                  *
1077                  * No need to notify as we are downgrading page table to read
1078                  * only not changing it to point to a new page.
1079                  *
1080                  * See Documentation/vm/mmu_notifier.rst
1081                  */
1082                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1083                 /*
1084                  * Check that no O_DIRECT or similar I/O is in progress on the
1085                  * page
1086                  */
1087                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1088                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1089                         goto out_unlock;
1090                 }
1091                 if (pte_dirty(entry))
1092                         set_page_dirty(page);
1093
1094                 if (pte_protnone(entry))
1095                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1096                 else
1097                         entry = pte_mkclean(pte_wrprotect(entry));
1098                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1099         }
1100         *orig_pte = *pvmw.pte;
1101         err = 0;
1102
1103 out_unlock:
1104         page_vma_mapped_walk_done(&pvmw);
1105 out_mn:
1106         mmu_notifier_invalidate_range_end(&range);
1107 out:
1108         return err;
1109 }
1110
1111 /**
1112  * replace_page - replace page in vma by new ksm page
1113  * @vma:      vma that holds the pte pointing to page
1114  * @page:     the page we are replacing by kpage
1115  * @kpage:    the ksm page we replace page by
1116  * @orig_pte: the original value of the pte
1117  *
1118  * Returns 0 on success, -EFAULT on failure.
1119  */
1120 static int replace_page(struct vm_area_struct *vma, struct page *page,
1121                         struct page *kpage, pte_t orig_pte)
1122 {
1123         struct mm_struct *mm = vma->vm_mm;
1124         pmd_t *pmd;
1125         pte_t *ptep;
1126         pte_t newpte;
1127         spinlock_t *ptl;
1128         unsigned long addr;
1129         int err = -EFAULT;
1130         struct mmu_notifier_range range;
1131
1132         addr = page_address_in_vma(page, vma);
1133         if (addr == -EFAULT)
1134                 goto out;
1135
1136         pmd = mm_find_pmd(mm, addr);
1137         if (!pmd)
1138                 goto out;
1139
1140         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1141                                 addr + PAGE_SIZE);
1142         mmu_notifier_invalidate_range_start(&range);
1143
1144         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1145         if (!pte_same(*ptep, orig_pte)) {
1146                 pte_unmap_unlock(ptep, ptl);
1147                 goto out_mn;
1148         }
1149
1150         /*
1151          * No need to check ksm_use_zero_pages here: we can only have a
1152          * zero_page here if ksm_use_zero_pages was enabled already.
1153          */
1154         if (!is_zero_pfn(page_to_pfn(kpage))) {
1155                 get_page(kpage);
1156                 page_add_anon_rmap(kpage, vma, addr, false);
1157                 newpte = mk_pte(kpage, vma->vm_page_prot);
1158         } else {
1159                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1160                                                vma->vm_page_prot));
1161                 /*
1162                  * We're replacing an anonymous page with a zero page, which is
1163                  * not anonymous. We need to do proper accounting otherwise we
1164                  * will get wrong values in /proc, and a BUG message in dmesg
1165                  * when tearing down the mm.
1166                  */
1167                 dec_mm_counter(mm, MM_ANONPAGES);
1168         }
1169
1170         flush_cache_page(vma, addr, pte_pfn(*ptep));
1171         /*
1172          * No need to notify as we are replacing a read only page with another
1173          * read only page with the same content.
1174          *
1175          * See Documentation/vm/mmu_notifier.rst
1176          */
1177         ptep_clear_flush(vma, addr, ptep);
1178         set_pte_at_notify(mm, addr, ptep, newpte);
1179
1180         page_remove_rmap(page, vma, false);
1181         if (!page_mapped(page))
1182                 try_to_free_swap(page);
1183         put_page(page);
1184
1185         pte_unmap_unlock(ptep, ptl);
1186         err = 0;
1187 out_mn:
1188         mmu_notifier_invalidate_range_end(&range);
1189 out:
1190         return err;
1191 }
1192
1193 /*
1194  * try_to_merge_one_page - take two pages and merge them into one
1195  * @vma: the vma that holds the pte pointing to page
1196  * @page: the PageAnon page that we want to replace with kpage
1197  * @kpage: the PageKsm page that we want to map instead of page,
1198  *         or NULL the first time when we want to use page as kpage.
1199  *
1200  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1201  */
1202 static int try_to_merge_one_page(struct vm_area_struct *vma,
1203                                  struct page *page, struct page *kpage)
1204 {
1205         pte_t orig_pte = __pte(0);
1206         int err = -EFAULT;
1207
1208         if (page == kpage)                      /* ksm page forked */
1209                 return 0;
1210
1211         if (!PageAnon(page))
1212                 goto out;
1213
1214         /*
1215          * We need the page lock to read a stable PageSwapCache in
1216          * write_protect_page().  We use trylock_page() instead of
1217          * lock_page() because we don't want to wait here - we
1218          * prefer to continue scanning and merging different pages,
1219          * then come back to this page when it is unlocked.
1220          */
1221         if (!trylock_page(page))
1222                 goto out;
1223
1224         if (PageTransCompound(page)) {
1225                 if (split_huge_page(page))
1226                         goto out_unlock;
1227         }
1228
1229         /*
1230          * If this anonymous page is mapped only here, its pte may need
1231          * to be write-protected.  If it's mapped elsewhere, all of its
1232          * ptes are necessarily already write-protected.  But in either
1233          * case, we need to lock and check page_count is not raised.
1234          */
1235         if (write_protect_page(vma, page, &orig_pte) == 0) {
1236                 if (!kpage) {
1237                         /*
1238                          * While we hold page lock, upgrade page from
1239                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1240                          * stable_tree_insert() will update stable_node.
1241                          */
1242                         set_page_stable_node(page, NULL);
1243                         mark_page_accessed(page);
1244                         /*
1245                          * Page reclaim just frees a clean page with no dirty
1246                          * ptes: make sure that the ksm page would be swapped.
1247                          */
1248                         if (!PageDirty(page))
1249                                 SetPageDirty(page);
1250                         err = 0;
1251                 } else if (pages_identical(page, kpage))
1252                         err = replace_page(vma, page, kpage, orig_pte);
1253         }
1254
1255 out_unlock:
1256         unlock_page(page);
1257 out:
1258         return err;
1259 }
1260
1261 /*
1262  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1263  * but no new kernel page is allocated: kpage must already be a ksm page.
1264  *
1265  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266  */
1267 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1268                                       struct page *page, struct page *kpage)
1269 {
1270         struct mm_struct *mm = rmap_item->mm;
1271         struct vm_area_struct *vma;
1272         int err = -EFAULT;
1273
1274         mmap_read_lock(mm);
1275         vma = find_mergeable_vma(mm, rmap_item->address);
1276         if (!vma)
1277                 goto out;
1278
1279         err = try_to_merge_one_page(vma, page, kpage);
1280         if (err)
1281                 goto out;
1282
1283         /* Unstable nid is in union with stable anon_vma: remove first */
1284         remove_rmap_item_from_tree(rmap_item);
1285
1286         /* Must get reference to anon_vma while still holding mmap_lock */
1287         rmap_item->anon_vma = vma->anon_vma;
1288         get_anon_vma(vma->anon_vma);
1289 out:
1290         mmap_read_unlock(mm);
1291         return err;
1292 }
1293
1294 /*
1295  * try_to_merge_two_pages - take two identical pages and prepare them
1296  * to be merged into one page.
1297  *
1298  * This function returns the kpage if we successfully merged two identical
1299  * pages into one ksm page, NULL otherwise.
1300  *
1301  * Note that this function upgrades page to ksm page: if one of the pages
1302  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1303  */
1304 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1305                                            struct page *page,
1306                                            struct rmap_item *tree_rmap_item,
1307                                            struct page *tree_page)
1308 {
1309         int err;
1310
1311         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1312         if (!err) {
1313                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1314                                                         tree_page, page);
1315                 /*
1316                  * If that fails, we have a ksm page with only one pte
1317                  * pointing to it: so break it.
1318                  */
1319                 if (err)
1320                         break_cow(rmap_item);
1321         }
1322         return err ? NULL : page;
1323 }
1324
1325 static __always_inline
1326 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1327 {
1328         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1329         /*
1330          * Check that at least one mapping still exists, otherwise
1331          * there's no much point to merge and share with this
1332          * stable_node, as the underlying tree_page of the other
1333          * sharer is going to be freed soon.
1334          */
1335         return stable_node->rmap_hlist_len &&
1336                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1337 }
1338
1339 static __always_inline
1340 bool is_page_sharing_candidate(struct stable_node *stable_node)
1341 {
1342         return __is_page_sharing_candidate(stable_node, 0);
1343 }
1344
1345 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1346                                     struct stable_node **_stable_node,
1347                                     struct rb_root *root,
1348                                     bool prune_stale_stable_nodes)
1349 {
1350         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1351         struct hlist_node *hlist_safe;
1352         struct page *_tree_page, *tree_page = NULL;
1353         int nr = 0;
1354         int found_rmap_hlist_len;
1355
1356         if (!prune_stale_stable_nodes ||
1357             time_before(jiffies, stable_node->chain_prune_time +
1358                         msecs_to_jiffies(
1359                                 ksm_stable_node_chains_prune_millisecs)))
1360                 prune_stale_stable_nodes = false;
1361         else
1362                 stable_node->chain_prune_time = jiffies;
1363
1364         hlist_for_each_entry_safe(dup, hlist_safe,
1365                                   &stable_node->hlist, hlist_dup) {
1366                 cond_resched();
1367                 /*
1368                  * We must walk all stable_node_dup to prune the stale
1369                  * stable nodes during lookup.
1370                  *
1371                  * get_ksm_page can drop the nodes from the
1372                  * stable_node->hlist if they point to freed pages
1373                  * (that's why we do a _safe walk). The "dup"
1374                  * stable_node parameter itself will be freed from
1375                  * under us if it returns NULL.
1376                  */
1377                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1378                 if (!_tree_page)
1379                         continue;
1380                 nr += 1;
1381                 if (is_page_sharing_candidate(dup)) {
1382                         if (!found ||
1383                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1384                                 if (found)
1385                                         put_page(tree_page);
1386                                 found = dup;
1387                                 found_rmap_hlist_len = found->rmap_hlist_len;
1388                                 tree_page = _tree_page;
1389
1390                                 /* skip put_page for found dup */
1391                                 if (!prune_stale_stable_nodes)
1392                                         break;
1393                                 continue;
1394                         }
1395                 }
1396                 put_page(_tree_page);
1397         }
1398
1399         if (found) {
1400                 /*
1401                  * nr is counting all dups in the chain only if
1402                  * prune_stale_stable_nodes is true, otherwise we may
1403                  * break the loop at nr == 1 even if there are
1404                  * multiple entries.
1405                  */
1406                 if (prune_stale_stable_nodes && nr == 1) {
1407                         /*
1408                          * If there's not just one entry it would
1409                          * corrupt memory, better BUG_ON. In KSM
1410                          * context with no lock held it's not even
1411                          * fatal.
1412                          */
1413                         BUG_ON(stable_node->hlist.first->next);
1414
1415                         /*
1416                          * There's just one entry and it is below the
1417                          * deduplication limit so drop the chain.
1418                          */
1419                         rb_replace_node(&stable_node->node, &found->node,
1420                                         root);
1421                         free_stable_node(stable_node);
1422                         ksm_stable_node_chains--;
1423                         ksm_stable_node_dups--;
1424                         /*
1425                          * NOTE: the caller depends on the stable_node
1426                          * to be equal to stable_node_dup if the chain
1427                          * was collapsed.
1428                          */
1429                         *_stable_node = found;
1430                         /*
1431                          * Just for robustness, as stable_node is
1432                          * otherwise left as a stable pointer, the
1433                          * compiler shall optimize it away at build
1434                          * time.
1435                          */
1436                         stable_node = NULL;
1437                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1438                            __is_page_sharing_candidate(found, 1)) {
1439                         /*
1440                          * If the found stable_node dup can accept one
1441                          * more future merge (in addition to the one
1442                          * that is underway) and is not at the head of
1443                          * the chain, put it there so next search will
1444                          * be quicker in the !prune_stale_stable_nodes
1445                          * case.
1446                          *
1447                          * NOTE: it would be inaccurate to use nr > 1
1448                          * instead of checking the hlist.first pointer
1449                          * directly, because in the
1450                          * prune_stale_stable_nodes case "nr" isn't
1451                          * the position of the found dup in the chain,
1452                          * but the total number of dups in the chain.
1453                          */
1454                         hlist_del(&found->hlist_dup);
1455                         hlist_add_head(&found->hlist_dup,
1456                                        &stable_node->hlist);
1457                 }
1458         }
1459
1460         *_stable_node_dup = found;
1461         return tree_page;
1462 }
1463
1464 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1465                                                struct rb_root *root)
1466 {
1467         if (!is_stable_node_chain(stable_node))
1468                 return stable_node;
1469         if (hlist_empty(&stable_node->hlist)) {
1470                 free_stable_node_chain(stable_node, root);
1471                 return NULL;
1472         }
1473         return hlist_entry(stable_node->hlist.first,
1474                            typeof(*stable_node), hlist_dup);
1475 }
1476
1477 /*
1478  * Like for get_ksm_page, this function can free the *_stable_node and
1479  * *_stable_node_dup if the returned tree_page is NULL.
1480  *
1481  * It can also free and overwrite *_stable_node with the found
1482  * stable_node_dup if the chain is collapsed (in which case
1483  * *_stable_node will be equal to *_stable_node_dup like if the chain
1484  * never existed). It's up to the caller to verify tree_page is not
1485  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1486  *
1487  * *_stable_node_dup is really a second output parameter of this
1488  * function and will be overwritten in all cases, the caller doesn't
1489  * need to initialize it.
1490  */
1491 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1492                                         struct stable_node **_stable_node,
1493                                         struct rb_root *root,
1494                                         bool prune_stale_stable_nodes)
1495 {
1496         struct stable_node *stable_node = *_stable_node;
1497         if (!is_stable_node_chain(stable_node)) {
1498                 if (is_page_sharing_candidate(stable_node)) {
1499                         *_stable_node_dup = stable_node;
1500                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1501                 }
1502                 /*
1503                  * _stable_node_dup set to NULL means the stable_node
1504                  * reached the ksm_max_page_sharing limit.
1505                  */
1506                 *_stable_node_dup = NULL;
1507                 return NULL;
1508         }
1509         return stable_node_dup(_stable_node_dup, _stable_node, root,
1510                                prune_stale_stable_nodes);
1511 }
1512
1513 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1514                                                 struct stable_node **s_n,
1515                                                 struct rb_root *root)
1516 {
1517         return __stable_node_chain(s_n_d, s_n, root, true);
1518 }
1519
1520 static __always_inline struct page *chain(struct stable_node **s_n_d,
1521                                           struct stable_node *s_n,
1522                                           struct rb_root *root)
1523 {
1524         struct stable_node *old_stable_node = s_n;
1525         struct page *tree_page;
1526
1527         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1528         /* not pruning dups so s_n cannot have changed */
1529         VM_BUG_ON(s_n != old_stable_node);
1530         return tree_page;
1531 }
1532
1533 /*
1534  * stable_tree_search - search for page inside the stable tree
1535  *
1536  * This function checks if there is a page inside the stable tree
1537  * with identical content to the page that we are scanning right now.
1538  *
1539  * This function returns the stable tree node of identical content if found,
1540  * NULL otherwise.
1541  */
1542 static struct page *stable_tree_search(struct page *page)
1543 {
1544         int nid;
1545         struct rb_root *root;
1546         struct rb_node **new;
1547         struct rb_node *parent;
1548         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1549         struct stable_node *page_node;
1550
1551         page_node = page_stable_node(page);
1552         if (page_node && page_node->head != &migrate_nodes) {
1553                 /* ksm page forked */
1554                 get_page(page);
1555                 return page;
1556         }
1557
1558         nid = get_kpfn_nid(page_to_pfn(page));
1559         root = root_stable_tree + nid;
1560 again:
1561         new = &root->rb_node;
1562         parent = NULL;
1563
1564         while (*new) {
1565                 struct page *tree_page;
1566                 int ret;
1567
1568                 cond_resched();
1569                 stable_node = rb_entry(*new, struct stable_node, node);
1570                 stable_node_any = NULL;
1571                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1572                 /*
1573                  * NOTE: stable_node may have been freed by
1574                  * chain_prune() if the returned stable_node_dup is
1575                  * not NULL. stable_node_dup may have been inserted in
1576                  * the rbtree instead as a regular stable_node (in
1577                  * order to collapse the stable_node chain if a single
1578                  * stable_node dup was found in it). In such case the
1579                  * stable_node is overwritten by the calleee to point
1580                  * to the stable_node_dup that was collapsed in the
1581                  * stable rbtree and stable_node will be equal to
1582                  * stable_node_dup like if the chain never existed.
1583                  */
1584                 if (!stable_node_dup) {
1585                         /*
1586                          * Either all stable_node dups were full in
1587                          * this stable_node chain, or this chain was
1588                          * empty and should be rb_erased.
1589                          */
1590                         stable_node_any = stable_node_dup_any(stable_node,
1591                                                               root);
1592                         if (!stable_node_any) {
1593                                 /* rb_erase just run */
1594                                 goto again;
1595                         }
1596                         /*
1597                          * Take any of the stable_node dups page of
1598                          * this stable_node chain to let the tree walk
1599                          * continue. All KSM pages belonging to the
1600                          * stable_node dups in a stable_node chain
1601                          * have the same content and they're
1602                          * write protected at all times. Any will work
1603                          * fine to continue the walk.
1604                          */
1605                         tree_page = get_ksm_page(stable_node_any,
1606                                                  GET_KSM_PAGE_NOLOCK);
1607                 }
1608                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1609                 if (!tree_page) {
1610                         /*
1611                          * If we walked over a stale stable_node,
1612                          * get_ksm_page() will call rb_erase() and it
1613                          * may rebalance the tree from under us. So
1614                          * restart the search from scratch. Returning
1615                          * NULL would be safe too, but we'd generate
1616                          * false negative insertions just because some
1617                          * stable_node was stale.
1618                          */
1619                         goto again;
1620                 }
1621
1622                 ret = memcmp_pages(page, tree_page);
1623                 put_page(tree_page);
1624
1625                 parent = *new;
1626                 if (ret < 0)
1627                         new = &parent->rb_left;
1628                 else if (ret > 0)
1629                         new = &parent->rb_right;
1630                 else {
1631                         if (page_node) {
1632                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1633                                 /*
1634                                  * Test if the migrated page should be merged
1635                                  * into a stable node dup. If the mapcount is
1636                                  * 1 we can migrate it with another KSM page
1637                                  * without adding it to the chain.
1638                                  */
1639                                 if (page_mapcount(page) > 1)
1640                                         goto chain_append;
1641                         }
1642
1643                         if (!stable_node_dup) {
1644                                 /*
1645                                  * If the stable_node is a chain and
1646                                  * we got a payload match in memcmp
1647                                  * but we cannot merge the scanned
1648                                  * page in any of the existing
1649                                  * stable_node dups because they're
1650                                  * all full, we need to wait the
1651                                  * scanned page to find itself a match
1652                                  * in the unstable tree to create a
1653                                  * brand new KSM page to add later to
1654                                  * the dups of this stable_node.
1655                                  */
1656                                 return NULL;
1657                         }
1658
1659                         /*
1660                          * Lock and unlock the stable_node's page (which
1661                          * might already have been migrated) so that page
1662                          * migration is sure to notice its raised count.
1663                          * It would be more elegant to return stable_node
1664                          * than kpage, but that involves more changes.
1665                          */
1666                         tree_page = get_ksm_page(stable_node_dup,
1667                                                  GET_KSM_PAGE_TRYLOCK);
1668
1669                         if (PTR_ERR(tree_page) == -EBUSY)
1670                                 return ERR_PTR(-EBUSY);
1671
1672                         if (unlikely(!tree_page))
1673                                 /*
1674                                  * The tree may have been rebalanced,
1675                                  * so re-evaluate parent and new.
1676                                  */
1677                                 goto again;
1678                         unlock_page(tree_page);
1679
1680                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1681                             NUMA(stable_node_dup->nid)) {
1682                                 put_page(tree_page);
1683                                 goto replace;
1684                         }
1685                         return tree_page;
1686                 }
1687         }
1688
1689         if (!page_node)
1690                 return NULL;
1691
1692         list_del(&page_node->list);
1693         DO_NUMA(page_node->nid = nid);
1694         rb_link_node(&page_node->node, parent, new);
1695         rb_insert_color(&page_node->node, root);
1696 out:
1697         if (is_page_sharing_candidate(page_node)) {
1698                 get_page(page);
1699                 return page;
1700         } else
1701                 return NULL;
1702
1703 replace:
1704         /*
1705          * If stable_node was a chain and chain_prune collapsed it,
1706          * stable_node has been updated to be the new regular
1707          * stable_node. A collapse of the chain is indistinguishable
1708          * from the case there was no chain in the stable
1709          * rbtree. Otherwise stable_node is the chain and
1710          * stable_node_dup is the dup to replace.
1711          */
1712         if (stable_node_dup == stable_node) {
1713                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1714                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1715                 /* there is no chain */
1716                 if (page_node) {
1717                         VM_BUG_ON(page_node->head != &migrate_nodes);
1718                         list_del(&page_node->list);
1719                         DO_NUMA(page_node->nid = nid);
1720                         rb_replace_node(&stable_node_dup->node,
1721                                         &page_node->node,
1722                                         root);
1723                         if (is_page_sharing_candidate(page_node))
1724                                 get_page(page);
1725                         else
1726                                 page = NULL;
1727                 } else {
1728                         rb_erase(&stable_node_dup->node, root);
1729                         page = NULL;
1730                 }
1731         } else {
1732                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1733                 __stable_node_dup_del(stable_node_dup);
1734                 if (page_node) {
1735                         VM_BUG_ON(page_node->head != &migrate_nodes);
1736                         list_del(&page_node->list);
1737                         DO_NUMA(page_node->nid = nid);
1738                         stable_node_chain_add_dup(page_node, stable_node);
1739                         if (is_page_sharing_candidate(page_node))
1740                                 get_page(page);
1741                         else
1742                                 page = NULL;
1743                 } else {
1744                         page = NULL;
1745                 }
1746         }
1747         stable_node_dup->head = &migrate_nodes;
1748         list_add(&stable_node_dup->list, stable_node_dup->head);
1749         return page;
1750
1751 chain_append:
1752         /* stable_node_dup could be null if it reached the limit */
1753         if (!stable_node_dup)
1754                 stable_node_dup = stable_node_any;
1755         /*
1756          * If stable_node was a chain and chain_prune collapsed it,
1757          * stable_node has been updated to be the new regular
1758          * stable_node. A collapse of the chain is indistinguishable
1759          * from the case there was no chain in the stable
1760          * rbtree. Otherwise stable_node is the chain and
1761          * stable_node_dup is the dup to replace.
1762          */
1763         if (stable_node_dup == stable_node) {
1764                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1765                 /* chain is missing so create it */
1766                 stable_node = alloc_stable_node_chain(stable_node_dup,
1767                                                       root);
1768                 if (!stable_node)
1769                         return NULL;
1770         }
1771         /*
1772          * Add this stable_node dup that was
1773          * migrated to the stable_node chain
1774          * of the current nid for this page
1775          * content.
1776          */
1777         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1778         VM_BUG_ON(page_node->head != &migrate_nodes);
1779         list_del(&page_node->list);
1780         DO_NUMA(page_node->nid = nid);
1781         stable_node_chain_add_dup(page_node, stable_node);
1782         goto out;
1783 }
1784
1785 /*
1786  * stable_tree_insert - insert stable tree node pointing to new ksm page
1787  * into the stable tree.
1788  *
1789  * This function returns the stable tree node just allocated on success,
1790  * NULL otherwise.
1791  */
1792 static struct stable_node *stable_tree_insert(struct page *kpage)
1793 {
1794         int nid;
1795         unsigned long kpfn;
1796         struct rb_root *root;
1797         struct rb_node **new;
1798         struct rb_node *parent;
1799         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1800         bool need_chain = false;
1801
1802         kpfn = page_to_pfn(kpage);
1803         nid = get_kpfn_nid(kpfn);
1804         root = root_stable_tree + nid;
1805 again:
1806         parent = NULL;
1807         new = &root->rb_node;
1808
1809         while (*new) {
1810                 struct page *tree_page;
1811                 int ret;
1812
1813                 cond_resched();
1814                 stable_node = rb_entry(*new, struct stable_node, node);
1815                 stable_node_any = NULL;
1816                 tree_page = chain(&stable_node_dup, stable_node, root);
1817                 if (!stable_node_dup) {
1818                         /*
1819                          * Either all stable_node dups were full in
1820                          * this stable_node chain, or this chain was
1821                          * empty and should be rb_erased.
1822                          */
1823                         stable_node_any = stable_node_dup_any(stable_node,
1824                                                               root);
1825                         if (!stable_node_any) {
1826                                 /* rb_erase just run */
1827                                 goto again;
1828                         }
1829                         /*
1830                          * Take any of the stable_node dups page of
1831                          * this stable_node chain to let the tree walk
1832                          * continue. All KSM pages belonging to the
1833                          * stable_node dups in a stable_node chain
1834                          * have the same content and they're
1835                          * write protected at all times. Any will work
1836                          * fine to continue the walk.
1837                          */
1838                         tree_page = get_ksm_page(stable_node_any,
1839                                                  GET_KSM_PAGE_NOLOCK);
1840                 }
1841                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1842                 if (!tree_page) {
1843                         /*
1844                          * If we walked over a stale stable_node,
1845                          * get_ksm_page() will call rb_erase() and it
1846                          * may rebalance the tree from under us. So
1847                          * restart the search from scratch. Returning
1848                          * NULL would be safe too, but we'd generate
1849                          * false negative insertions just because some
1850                          * stable_node was stale.
1851                          */
1852                         goto again;
1853                 }
1854
1855                 ret = memcmp_pages(kpage, tree_page);
1856                 put_page(tree_page);
1857
1858                 parent = *new;
1859                 if (ret < 0)
1860                         new = &parent->rb_left;
1861                 else if (ret > 0)
1862                         new = &parent->rb_right;
1863                 else {
1864                         need_chain = true;
1865                         break;
1866                 }
1867         }
1868
1869         stable_node_dup = alloc_stable_node();
1870         if (!stable_node_dup)
1871                 return NULL;
1872
1873         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1874         stable_node_dup->kpfn = kpfn;
1875         set_page_stable_node(kpage, stable_node_dup);
1876         stable_node_dup->rmap_hlist_len = 0;
1877         DO_NUMA(stable_node_dup->nid = nid);
1878         if (!need_chain) {
1879                 rb_link_node(&stable_node_dup->node, parent, new);
1880                 rb_insert_color(&stable_node_dup->node, root);
1881         } else {
1882                 if (!is_stable_node_chain(stable_node)) {
1883                         struct stable_node *orig = stable_node;
1884                         /* chain is missing so create it */
1885                         stable_node = alloc_stable_node_chain(orig, root);
1886                         if (!stable_node) {
1887                                 free_stable_node(stable_node_dup);
1888                                 return NULL;
1889                         }
1890                 }
1891                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1892         }
1893
1894         return stable_node_dup;
1895 }
1896
1897 /*
1898  * unstable_tree_search_insert - search for identical page,
1899  * else insert rmap_item into the unstable tree.
1900  *
1901  * This function searches for a page in the unstable tree identical to the
1902  * page currently being scanned; and if no identical page is found in the
1903  * tree, we insert rmap_item as a new object into the unstable tree.
1904  *
1905  * This function returns pointer to rmap_item found to be identical
1906  * to the currently scanned page, NULL otherwise.
1907  *
1908  * This function does both searching and inserting, because they share
1909  * the same walking algorithm in an rbtree.
1910  */
1911 static
1912 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1913                                               struct page *page,
1914                                               struct page **tree_pagep)
1915 {
1916         struct rb_node **new;
1917         struct rb_root *root;
1918         struct rb_node *parent = NULL;
1919         int nid;
1920
1921         nid = get_kpfn_nid(page_to_pfn(page));
1922         root = root_unstable_tree + nid;
1923         new = &root->rb_node;
1924
1925         while (*new) {
1926                 struct rmap_item *tree_rmap_item;
1927                 struct page *tree_page;
1928                 int ret;
1929
1930                 cond_resched();
1931                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1932                 tree_page = get_mergeable_page(tree_rmap_item);
1933                 if (!tree_page)
1934                         return NULL;
1935
1936                 /*
1937                  * Don't substitute a ksm page for a forked page.
1938                  */
1939                 if (page == tree_page) {
1940                         put_page(tree_page);
1941                         return NULL;
1942                 }
1943
1944                 ret = memcmp_pages(page, tree_page);
1945
1946                 parent = *new;
1947                 if (ret < 0) {
1948                         put_page(tree_page);
1949                         new = &parent->rb_left;
1950                 } else if (ret > 0) {
1951                         put_page(tree_page);
1952                         new = &parent->rb_right;
1953                 } else if (!ksm_merge_across_nodes &&
1954                            page_to_nid(tree_page) != nid) {
1955                         /*
1956                          * If tree_page has been migrated to another NUMA node,
1957                          * it will be flushed out and put in the right unstable
1958                          * tree next time: only merge with it when across_nodes.
1959                          */
1960                         put_page(tree_page);
1961                         return NULL;
1962                 } else {
1963                         *tree_pagep = tree_page;
1964                         return tree_rmap_item;
1965                 }
1966         }
1967
1968         rmap_item->address |= UNSTABLE_FLAG;
1969         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1970         DO_NUMA(rmap_item->nid = nid);
1971         rb_link_node(&rmap_item->node, parent, new);
1972         rb_insert_color(&rmap_item->node, root);
1973
1974         ksm_pages_unshared++;
1975         return NULL;
1976 }
1977
1978 /*
1979  * stable_tree_append - add another rmap_item to the linked list of
1980  * rmap_items hanging off a given node of the stable tree, all sharing
1981  * the same ksm page.
1982  */
1983 static void stable_tree_append(struct rmap_item *rmap_item,
1984                                struct stable_node *stable_node,
1985                                bool max_page_sharing_bypass)
1986 {
1987         /*
1988          * rmap won't find this mapping if we don't insert the
1989          * rmap_item in the right stable_node
1990          * duplicate. page_migration could break later if rmap breaks,
1991          * so we can as well crash here. We really need to check for
1992          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1993          * for other negative values as an underflow if detected here
1994          * for the first time (and not when decreasing rmap_hlist_len)
1995          * would be sign of memory corruption in the stable_node.
1996          */
1997         BUG_ON(stable_node->rmap_hlist_len < 0);
1998
1999         stable_node->rmap_hlist_len++;
2000         if (!max_page_sharing_bypass)
2001                 /* possibly non fatal but unexpected overflow, only warn */
2002                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2003                              ksm_max_page_sharing);
2004
2005         rmap_item->head = stable_node;
2006         rmap_item->address |= STABLE_FLAG;
2007         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2008
2009         if (rmap_item->hlist.next)
2010                 ksm_pages_sharing++;
2011         else
2012                 ksm_pages_shared++;
2013 }
2014
2015 /*
2016  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2017  * if not, compare checksum to previous and if it's the same, see if page can
2018  * be inserted into the unstable tree, or merged with a page already there and
2019  * both transferred to the stable tree.
2020  *
2021  * @page: the page that we are searching identical page to.
2022  * @rmap_item: the reverse mapping into the virtual address of this page
2023  */
2024 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2025 {
2026         struct mm_struct *mm = rmap_item->mm;
2027         struct rmap_item *tree_rmap_item;
2028         struct page *tree_page = NULL;
2029         struct stable_node *stable_node;
2030         struct page *kpage;
2031         unsigned int checksum;
2032         int err;
2033         bool max_page_sharing_bypass = false;
2034
2035         stable_node = page_stable_node(page);
2036         if (stable_node) {
2037                 if (stable_node->head != &migrate_nodes &&
2038                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2039                     NUMA(stable_node->nid)) {
2040                         stable_node_dup_del(stable_node);
2041                         stable_node->head = &migrate_nodes;
2042                         list_add(&stable_node->list, stable_node->head);
2043                 }
2044                 if (stable_node->head != &migrate_nodes &&
2045                     rmap_item->head == stable_node)
2046                         return;
2047                 /*
2048                  * If it's a KSM fork, allow it to go over the sharing limit
2049                  * without warnings.
2050                  */
2051                 if (!is_page_sharing_candidate(stable_node))
2052                         max_page_sharing_bypass = true;
2053         }
2054
2055         /* We first start with searching the page inside the stable tree */
2056         kpage = stable_tree_search(page);
2057         if (kpage == page && rmap_item->head == stable_node) {
2058                 put_page(kpage);
2059                 return;
2060         }
2061
2062         remove_rmap_item_from_tree(rmap_item);
2063
2064         if (kpage) {
2065                 if (PTR_ERR(kpage) == -EBUSY)
2066                         return;
2067
2068                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2069                 if (!err) {
2070                         /*
2071                          * The page was successfully merged:
2072                          * add its rmap_item to the stable tree.
2073                          */
2074                         lock_page(kpage);
2075                         stable_tree_append(rmap_item, page_stable_node(kpage),
2076                                            max_page_sharing_bypass);
2077                         unlock_page(kpage);
2078                 }
2079                 put_page(kpage);
2080                 return;
2081         }
2082
2083         /*
2084          * If the hash value of the page has changed from the last time
2085          * we calculated it, this page is changing frequently: therefore we
2086          * don't want to insert it in the unstable tree, and we don't want
2087          * to waste our time searching for something identical to it there.
2088          */
2089         checksum = calc_checksum(page);
2090         if (rmap_item->oldchecksum != checksum) {
2091                 rmap_item->oldchecksum = checksum;
2092                 return;
2093         }
2094
2095         /*
2096          * Same checksum as an empty page. We attempt to merge it with the
2097          * appropriate zero page if the user enabled this via sysfs.
2098          */
2099         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2100                 struct vm_area_struct *vma;
2101
2102                 mmap_read_lock(mm);
2103                 vma = find_mergeable_vma(mm, rmap_item->address);
2104                 if (vma) {
2105                         err = try_to_merge_one_page(vma, page,
2106                                         ZERO_PAGE(rmap_item->address));
2107                 } else {
2108                         /*
2109                          * If the vma is out of date, we do not need to
2110                          * continue.
2111                          */
2112                         err = 0;
2113                 }
2114                 mmap_read_unlock(mm);
2115                 /*
2116                  * In case of failure, the page was not really empty, so we
2117                  * need to continue. Otherwise we're done.
2118                  */
2119                 if (!err)
2120                         return;
2121         }
2122         tree_rmap_item =
2123                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2124         if (tree_rmap_item) {
2125                 bool split;
2126
2127                 kpage = try_to_merge_two_pages(rmap_item, page,
2128                                                 tree_rmap_item, tree_page);
2129                 /*
2130                  * If both pages we tried to merge belong to the same compound
2131                  * page, then we actually ended up increasing the reference
2132                  * count of the same compound page twice, and split_huge_page
2133                  * failed.
2134                  * Here we set a flag if that happened, and we use it later to
2135                  * try split_huge_page again. Since we call put_page right
2136                  * afterwards, the reference count will be correct and
2137                  * split_huge_page should succeed.
2138                  */
2139                 split = PageTransCompound(page)
2140                         && compound_head(page) == compound_head(tree_page);
2141                 put_page(tree_page);
2142                 if (kpage) {
2143                         /*
2144                          * The pages were successfully merged: insert new
2145                          * node in the stable tree and add both rmap_items.
2146                          */
2147                         lock_page(kpage);
2148                         stable_node = stable_tree_insert(kpage);
2149                         if (stable_node) {
2150                                 stable_tree_append(tree_rmap_item, stable_node,
2151                                                    false);
2152                                 stable_tree_append(rmap_item, stable_node,
2153                                                    false);
2154                         }
2155                         unlock_page(kpage);
2156
2157                         /*
2158                          * If we fail to insert the page into the stable tree,
2159                          * we will have 2 virtual addresses that are pointing
2160                          * to a ksm page left outside the stable tree,
2161                          * in which case we need to break_cow on both.
2162                          */
2163                         if (!stable_node) {
2164                                 break_cow(tree_rmap_item);
2165                                 break_cow(rmap_item);
2166                         }
2167                 } else if (split) {
2168                         /*
2169                          * We are here if we tried to merge two pages and
2170                          * failed because they both belonged to the same
2171                          * compound page. We will split the page now, but no
2172                          * merging will take place.
2173                          * We do not want to add the cost of a full lock; if
2174                          * the page is locked, it is better to skip it and
2175                          * perhaps try again later.
2176                          */
2177                         if (!trylock_page(page))
2178                                 return;
2179                         split_huge_page(page);
2180                         unlock_page(page);
2181                 }
2182         }
2183 }
2184
2185 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2186                                             struct rmap_item **rmap_list,
2187                                             unsigned long addr)
2188 {
2189         struct rmap_item *rmap_item;
2190
2191         while (*rmap_list) {
2192                 rmap_item = *rmap_list;
2193                 if ((rmap_item->address & PAGE_MASK) == addr)
2194                         return rmap_item;
2195                 if (rmap_item->address > addr)
2196                         break;
2197                 *rmap_list = rmap_item->rmap_list;
2198                 remove_rmap_item_from_tree(rmap_item);
2199                 free_rmap_item(rmap_item);
2200         }
2201
2202         rmap_item = alloc_rmap_item();
2203         if (rmap_item) {
2204                 /* It has already been zeroed */
2205                 rmap_item->mm = mm_slot->mm;
2206                 rmap_item->address = addr;
2207                 rmap_item->rmap_list = *rmap_list;
2208                 *rmap_list = rmap_item;
2209         }
2210         return rmap_item;
2211 }
2212
2213 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2214 {
2215         struct mm_struct *mm;
2216         struct mm_slot *slot;
2217         struct vm_area_struct *vma;
2218         struct rmap_item *rmap_item;
2219         int nid;
2220
2221         if (list_empty(&ksm_mm_head.mm_list))
2222                 return NULL;
2223
2224         slot = ksm_scan.mm_slot;
2225         if (slot == &ksm_mm_head) {
2226                 /*
2227                  * A number of pages can hang around indefinitely on per-cpu
2228                  * pagevecs, raised page count preventing write_protect_page
2229                  * from merging them.  Though it doesn't really matter much,
2230                  * it is puzzling to see some stuck in pages_volatile until
2231                  * other activity jostles them out, and they also prevented
2232                  * LTP's KSM test from succeeding deterministically; so drain
2233                  * them here (here rather than on entry to ksm_do_scan(),
2234                  * so we don't IPI too often when pages_to_scan is set low).
2235                  */
2236                 lru_add_drain_all();
2237
2238                 /*
2239                  * Whereas stale stable_nodes on the stable_tree itself
2240                  * get pruned in the regular course of stable_tree_search(),
2241                  * those moved out to the migrate_nodes list can accumulate:
2242                  * so prune them once before each full scan.
2243                  */
2244                 if (!ksm_merge_across_nodes) {
2245                         struct stable_node *stable_node, *next;
2246                         struct page *page;
2247
2248                         list_for_each_entry_safe(stable_node, next,
2249                                                  &migrate_nodes, list) {
2250                                 page = get_ksm_page(stable_node,
2251                                                     GET_KSM_PAGE_NOLOCK);
2252                                 if (page)
2253                                         put_page(page);
2254                                 cond_resched();
2255                         }
2256                 }
2257
2258                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2259                         root_unstable_tree[nid] = RB_ROOT;
2260
2261                 spin_lock(&ksm_mmlist_lock);
2262                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2263                 ksm_scan.mm_slot = slot;
2264                 spin_unlock(&ksm_mmlist_lock);
2265                 /*
2266                  * Although we tested list_empty() above, a racing __ksm_exit
2267                  * of the last mm on the list may have removed it since then.
2268                  */
2269                 if (slot == &ksm_mm_head)
2270                         return NULL;
2271 next_mm:
2272                 ksm_scan.address = 0;
2273                 ksm_scan.rmap_list = &slot->rmap_list;
2274         }
2275
2276         mm = slot->mm;
2277         mmap_read_lock(mm);
2278         if (ksm_test_exit(mm))
2279                 vma = NULL;
2280         else
2281                 vma = find_vma(mm, ksm_scan.address);
2282
2283         for (; vma; vma = vma->vm_next) {
2284                 if (!(vma->vm_flags & VM_MERGEABLE))
2285                         continue;
2286                 if (ksm_scan.address < vma->vm_start)
2287                         ksm_scan.address = vma->vm_start;
2288                 if (!vma->anon_vma)
2289                         ksm_scan.address = vma->vm_end;
2290
2291                 while (ksm_scan.address < vma->vm_end) {
2292                         if (ksm_test_exit(mm))
2293                                 break;
2294                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2295                         if (IS_ERR_OR_NULL(*page)) {
2296                                 ksm_scan.address += PAGE_SIZE;
2297                                 cond_resched();
2298                                 continue;
2299                         }
2300                         if (PageAnon(*page)) {
2301                                 flush_anon_page(vma, *page, ksm_scan.address);
2302                                 flush_dcache_page(*page);
2303                                 rmap_item = get_next_rmap_item(slot,
2304                                         ksm_scan.rmap_list, ksm_scan.address);
2305                                 if (rmap_item) {
2306                                         ksm_scan.rmap_list =
2307                                                         &rmap_item->rmap_list;
2308                                         ksm_scan.address += PAGE_SIZE;
2309                                 } else
2310                                         put_page(*page);
2311                                 mmap_read_unlock(mm);
2312                                 return rmap_item;
2313                         }
2314                         put_page(*page);
2315                         ksm_scan.address += PAGE_SIZE;
2316                         cond_resched();
2317                 }
2318         }
2319
2320         if (ksm_test_exit(mm)) {
2321                 ksm_scan.address = 0;
2322                 ksm_scan.rmap_list = &slot->rmap_list;
2323         }
2324         /*
2325          * Nuke all the rmap_items that are above this current rmap:
2326          * because there were no VM_MERGEABLE vmas with such addresses.
2327          */
2328         remove_trailing_rmap_items(ksm_scan.rmap_list);
2329
2330         spin_lock(&ksm_mmlist_lock);
2331         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2332                                                 struct mm_slot, mm_list);
2333         if (ksm_scan.address == 0) {
2334                 /*
2335                  * We've completed a full scan of all vmas, holding mmap_lock
2336                  * throughout, and found no VM_MERGEABLE: so do the same as
2337                  * __ksm_exit does to remove this mm from all our lists now.
2338                  * This applies either when cleaning up after __ksm_exit
2339                  * (but beware: we can reach here even before __ksm_exit),
2340                  * or when all VM_MERGEABLE areas have been unmapped (and
2341                  * mmap_lock then protects against race with MADV_MERGEABLE).
2342                  */
2343                 hash_del(&slot->link);
2344                 list_del(&slot->mm_list);
2345                 spin_unlock(&ksm_mmlist_lock);
2346
2347                 free_mm_slot(slot);
2348                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2349                 mmap_read_unlock(mm);
2350                 mmdrop(mm);
2351         } else {
2352                 mmap_read_unlock(mm);
2353                 /*
2354                  * mmap_read_unlock(mm) first because after
2355                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2356                  * already have been freed under us by __ksm_exit()
2357                  * because the "mm_slot" is still hashed and
2358                  * ksm_scan.mm_slot doesn't point to it anymore.
2359                  */
2360                 spin_unlock(&ksm_mmlist_lock);
2361         }
2362
2363         /* Repeat until we've completed scanning the whole list */
2364         slot = ksm_scan.mm_slot;
2365         if (slot != &ksm_mm_head)
2366                 goto next_mm;
2367
2368         ksm_scan.seqnr++;
2369         return NULL;
2370 }
2371
2372 /**
2373  * ksm_do_scan  - the ksm scanner main worker function.
2374  * @scan_npages:  number of pages we want to scan before we return.
2375  */
2376 static void ksm_do_scan(unsigned int scan_npages)
2377 {
2378         struct rmap_item *rmap_item;
2379         struct page *page;
2380
2381         while (scan_npages-- && likely(!freezing(current))) {
2382                 cond_resched();
2383                 rmap_item = scan_get_next_rmap_item(&page);
2384                 if (!rmap_item)
2385                         return;
2386                 cmp_and_merge_page(page, rmap_item);
2387                 put_page(page);
2388         }
2389 }
2390
2391 static int ksmd_should_run(void)
2392 {
2393         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2394 }
2395
2396 static int ksm_scan_thread(void *nothing)
2397 {
2398         unsigned int sleep_ms;
2399
2400         set_freezable();
2401         set_user_nice(current, 5);
2402
2403         while (!kthread_should_stop()) {
2404                 mutex_lock(&ksm_thread_mutex);
2405                 wait_while_offlining();
2406                 if (ksmd_should_run())
2407                         ksm_do_scan(ksm_thread_pages_to_scan);
2408                 mutex_unlock(&ksm_thread_mutex);
2409
2410                 try_to_freeze();
2411
2412                 if (ksmd_should_run()) {
2413                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2414                         wait_event_interruptible_timeout(ksm_iter_wait,
2415                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2416                                 msecs_to_jiffies(sleep_ms));
2417                 } else {
2418                         wait_event_freezable(ksm_thread_wait,
2419                                 ksmd_should_run() || kthread_should_stop());
2420                 }
2421         }
2422         return 0;
2423 }
2424
2425 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2426                 unsigned long end, int advice, unsigned long *vm_flags)
2427 {
2428         struct mm_struct *mm = vma->vm_mm;
2429         int err;
2430
2431         switch (advice) {
2432         case MADV_MERGEABLE:
2433                 /*
2434                  * Be somewhat over-protective for now!
2435                  */
2436                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2437                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2438                                  VM_HUGETLB | VM_MIXEDMAP))
2439                         return 0;               /* just ignore the advice */
2440
2441                 if (vma_is_dax(vma))
2442                         return 0;
2443
2444 #ifdef VM_SAO
2445                 if (*vm_flags & VM_SAO)
2446                         return 0;
2447 #endif
2448 #ifdef VM_SPARC_ADI
2449                 if (*vm_flags & VM_SPARC_ADI)
2450                         return 0;
2451 #endif
2452
2453                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2454                         err = __ksm_enter(mm);
2455                         if (err)
2456                                 return err;
2457                 }
2458
2459                 *vm_flags |= VM_MERGEABLE;
2460                 break;
2461
2462         case MADV_UNMERGEABLE:
2463                 if (!(*vm_flags & VM_MERGEABLE))
2464                         return 0;               /* just ignore the advice */
2465
2466                 if (vma->anon_vma) {
2467                         err = unmerge_ksm_pages(vma, start, end);
2468                         if (err)
2469                                 return err;
2470                 }
2471
2472                 *vm_flags &= ~VM_MERGEABLE;
2473                 break;
2474         }
2475
2476         return 0;
2477 }
2478 EXPORT_SYMBOL_GPL(ksm_madvise);
2479
2480 int __ksm_enter(struct mm_struct *mm)
2481 {
2482         struct mm_slot *mm_slot;
2483         int needs_wakeup;
2484
2485         mm_slot = alloc_mm_slot();
2486         if (!mm_slot)
2487                 return -ENOMEM;
2488
2489         /* Check ksm_run too?  Would need tighter locking */
2490         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2491
2492         spin_lock(&ksm_mmlist_lock);
2493         insert_to_mm_slots_hash(mm, mm_slot);
2494         /*
2495          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2496          * insert just behind the scanning cursor, to let the area settle
2497          * down a little; when fork is followed by immediate exec, we don't
2498          * want ksmd to waste time setting up and tearing down an rmap_list.
2499          *
2500          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2501          * scanning cursor, otherwise KSM pages in newly forked mms will be
2502          * missed: then we might as well insert at the end of the list.
2503          */
2504         if (ksm_run & KSM_RUN_UNMERGE)
2505                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2506         else
2507                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2508         spin_unlock(&ksm_mmlist_lock);
2509
2510         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2511         mmgrab(mm);
2512
2513         if (needs_wakeup)
2514                 wake_up_interruptible(&ksm_thread_wait);
2515
2516         return 0;
2517 }
2518
2519 void __ksm_exit(struct mm_struct *mm)
2520 {
2521         struct mm_slot *mm_slot;
2522         int easy_to_free = 0;
2523
2524         /*
2525          * This process is exiting: if it's straightforward (as is the
2526          * case when ksmd was never running), free mm_slot immediately.
2527          * But if it's at the cursor or has rmap_items linked to it, use
2528          * mmap_lock to synchronize with any break_cows before pagetables
2529          * are freed, and leave the mm_slot on the list for ksmd to free.
2530          * Beware: ksm may already have noticed it exiting and freed the slot.
2531          */
2532
2533         spin_lock(&ksm_mmlist_lock);
2534         mm_slot = get_mm_slot(mm);
2535         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2536                 if (!mm_slot->rmap_list) {
2537                         hash_del(&mm_slot->link);
2538                         list_del(&mm_slot->mm_list);
2539                         easy_to_free = 1;
2540                 } else {
2541                         list_move(&mm_slot->mm_list,
2542                                   &ksm_scan.mm_slot->mm_list);
2543                 }
2544         }
2545         spin_unlock(&ksm_mmlist_lock);
2546
2547         if (easy_to_free) {
2548                 free_mm_slot(mm_slot);
2549                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2550                 mmdrop(mm);
2551         } else if (mm_slot) {
2552                 mmap_write_lock(mm);
2553                 mmap_write_unlock(mm);
2554         }
2555 }
2556
2557 struct page *ksm_might_need_to_copy(struct page *page,
2558                         struct vm_area_struct *vma, unsigned long address)
2559 {
2560         struct anon_vma *anon_vma = page_anon_vma(page);
2561         struct page *new_page;
2562
2563         if (PageKsm(page)) {
2564                 if (page_stable_node(page) &&
2565                     !(ksm_run & KSM_RUN_UNMERGE))
2566                         return page;    /* no need to copy it */
2567         } else if (!anon_vma) {
2568                 return page;            /* no need to copy it */
2569         } else if (page->index == linear_page_index(vma, address) &&
2570                         anon_vma->root == vma->anon_vma->root) {
2571                 return page;            /* still no need to copy it */
2572         }
2573         if (!PageUptodate(page))
2574                 return page;            /* let do_swap_page report the error */
2575
2576         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2577         if (new_page &&
2578             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2579                 put_page(new_page);
2580                 new_page = NULL;
2581         }
2582         if (new_page) {
2583                 copy_user_highpage(new_page, page, address, vma);
2584
2585                 SetPageDirty(new_page);
2586                 __SetPageUptodate(new_page);
2587                 __SetPageLocked(new_page);
2588         }
2589
2590         return new_page;
2591 }
2592
2593 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2594 {
2595         struct stable_node *stable_node;
2596         struct rmap_item *rmap_item;
2597         int search_new_forks = 0;
2598
2599         VM_BUG_ON_PAGE(!PageKsm(page), page);
2600
2601         /*
2602          * Rely on the page lock to protect against concurrent modifications
2603          * to that page's node of the stable tree.
2604          */
2605         VM_BUG_ON_PAGE(!PageLocked(page), page);
2606
2607         stable_node = page_stable_node(page);
2608         if (!stable_node)
2609                 return;
2610 again:
2611         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2612                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2613                 struct anon_vma_chain *vmac;
2614                 struct vm_area_struct *vma;
2615
2616                 cond_resched();
2617                 anon_vma_lock_read(anon_vma);
2618                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2619                                                0, ULONG_MAX) {
2620                         unsigned long addr;
2621
2622                         cond_resched();
2623                         vma = vmac->vma;
2624
2625                         /* Ignore the stable/unstable/sqnr flags */
2626                         addr = rmap_item->address & PAGE_MASK;
2627
2628                         if (addr < vma->vm_start || addr >= vma->vm_end)
2629                                 continue;
2630                         /*
2631                          * Initially we examine only the vma which covers this
2632                          * rmap_item; but later, if there is still work to do,
2633                          * we examine covering vmas in other mms: in case they
2634                          * were forked from the original since ksmd passed.
2635                          */
2636                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2637                                 continue;
2638
2639                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2640                                 continue;
2641
2642                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2643                                 anon_vma_unlock_read(anon_vma);
2644                                 return;
2645                         }
2646                         if (rwc->done && rwc->done(page)) {
2647                                 anon_vma_unlock_read(anon_vma);
2648                                 return;
2649                         }
2650                 }
2651                 anon_vma_unlock_read(anon_vma);
2652         }
2653         if (!search_new_forks++)
2654                 goto again;
2655 }
2656
2657 #ifdef CONFIG_MIGRATION
2658 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2659 {
2660         struct stable_node *stable_node;
2661
2662         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2663         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2664         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2665
2666         stable_node = folio_stable_node(folio);
2667         if (stable_node) {
2668                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2669                 stable_node->kpfn = folio_pfn(newfolio);
2670                 /*
2671                  * newfolio->mapping was set in advance; now we need smp_wmb()
2672                  * to make sure that the new stable_node->kpfn is visible
2673                  * to get_ksm_page() before it can see that folio->mapping
2674                  * has gone stale (or that folio_test_swapcache has been cleared).
2675                  */
2676                 smp_wmb();
2677                 set_page_stable_node(&folio->page, NULL);
2678         }
2679 }
2680 #endif /* CONFIG_MIGRATION */
2681
2682 #ifdef CONFIG_MEMORY_HOTREMOVE
2683 static void wait_while_offlining(void)
2684 {
2685         while (ksm_run & KSM_RUN_OFFLINE) {
2686                 mutex_unlock(&ksm_thread_mutex);
2687                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2688                             TASK_UNINTERRUPTIBLE);
2689                 mutex_lock(&ksm_thread_mutex);
2690         }
2691 }
2692
2693 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2694                                          unsigned long start_pfn,
2695                                          unsigned long end_pfn)
2696 {
2697         if (stable_node->kpfn >= start_pfn &&
2698             stable_node->kpfn < end_pfn) {
2699                 /*
2700                  * Don't get_ksm_page, page has already gone:
2701                  * which is why we keep kpfn instead of page*
2702                  */
2703                 remove_node_from_stable_tree(stable_node);
2704                 return true;
2705         }
2706         return false;
2707 }
2708
2709 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2710                                            unsigned long start_pfn,
2711                                            unsigned long end_pfn,
2712                                            struct rb_root *root)
2713 {
2714         struct stable_node *dup;
2715         struct hlist_node *hlist_safe;
2716
2717         if (!is_stable_node_chain(stable_node)) {
2718                 VM_BUG_ON(is_stable_node_dup(stable_node));
2719                 return stable_node_dup_remove_range(stable_node, start_pfn,
2720                                                     end_pfn);
2721         }
2722
2723         hlist_for_each_entry_safe(dup, hlist_safe,
2724                                   &stable_node->hlist, hlist_dup) {
2725                 VM_BUG_ON(!is_stable_node_dup(dup));
2726                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2727         }
2728         if (hlist_empty(&stable_node->hlist)) {
2729                 free_stable_node_chain(stable_node, root);
2730                 return true; /* notify caller that tree was rebalanced */
2731         } else
2732                 return false;
2733 }
2734
2735 static void ksm_check_stable_tree(unsigned long start_pfn,
2736                                   unsigned long end_pfn)
2737 {
2738         struct stable_node *stable_node, *next;
2739         struct rb_node *node;
2740         int nid;
2741
2742         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2743                 node = rb_first(root_stable_tree + nid);
2744                 while (node) {
2745                         stable_node = rb_entry(node, struct stable_node, node);
2746                         if (stable_node_chain_remove_range(stable_node,
2747                                                            start_pfn, end_pfn,
2748                                                            root_stable_tree +
2749                                                            nid))
2750                                 node = rb_first(root_stable_tree + nid);
2751                         else
2752                                 node = rb_next(node);
2753                         cond_resched();
2754                 }
2755         }
2756         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2757                 if (stable_node->kpfn >= start_pfn &&
2758                     stable_node->kpfn < end_pfn)
2759                         remove_node_from_stable_tree(stable_node);
2760                 cond_resched();
2761         }
2762 }
2763
2764 static int ksm_memory_callback(struct notifier_block *self,
2765                                unsigned long action, void *arg)
2766 {
2767         struct memory_notify *mn = arg;
2768
2769         switch (action) {
2770         case MEM_GOING_OFFLINE:
2771                 /*
2772                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2773                  * and remove_all_stable_nodes() while memory is going offline:
2774                  * it is unsafe for them to touch the stable tree at this time.
2775                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2776                  * which do not need the ksm_thread_mutex are all safe.
2777                  */
2778                 mutex_lock(&ksm_thread_mutex);
2779                 ksm_run |= KSM_RUN_OFFLINE;
2780                 mutex_unlock(&ksm_thread_mutex);
2781                 break;
2782
2783         case MEM_OFFLINE:
2784                 /*
2785                  * Most of the work is done by page migration; but there might
2786                  * be a few stable_nodes left over, still pointing to struct
2787                  * pages which have been offlined: prune those from the tree,
2788                  * otherwise get_ksm_page() might later try to access a
2789                  * non-existent struct page.
2790                  */
2791                 ksm_check_stable_tree(mn->start_pfn,
2792                                       mn->start_pfn + mn->nr_pages);
2793                 fallthrough;
2794         case MEM_CANCEL_OFFLINE:
2795                 mutex_lock(&ksm_thread_mutex);
2796                 ksm_run &= ~KSM_RUN_OFFLINE;
2797                 mutex_unlock(&ksm_thread_mutex);
2798
2799                 smp_mb();       /* wake_up_bit advises this */
2800                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2801                 break;
2802         }
2803         return NOTIFY_OK;
2804 }
2805 #else
2806 static void wait_while_offlining(void)
2807 {
2808 }
2809 #endif /* CONFIG_MEMORY_HOTREMOVE */
2810
2811 #ifdef CONFIG_SYSFS
2812 /*
2813  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2814  */
2815
2816 #define KSM_ATTR_RO(_name) \
2817         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2818 #define KSM_ATTR(_name) \
2819         static struct kobj_attribute _name##_attr = \
2820                 __ATTR(_name, 0644, _name##_show, _name##_store)
2821
2822 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2823                                     struct kobj_attribute *attr, char *buf)
2824 {
2825         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2826 }
2827
2828 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2829                                      struct kobj_attribute *attr,
2830                                      const char *buf, size_t count)
2831 {
2832         unsigned int msecs;
2833         int err;
2834
2835         err = kstrtouint(buf, 10, &msecs);
2836         if (err)
2837                 return -EINVAL;
2838
2839         ksm_thread_sleep_millisecs = msecs;
2840         wake_up_interruptible(&ksm_iter_wait);
2841
2842         return count;
2843 }
2844 KSM_ATTR(sleep_millisecs);
2845
2846 static ssize_t pages_to_scan_show(struct kobject *kobj,
2847                                   struct kobj_attribute *attr, char *buf)
2848 {
2849         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2850 }
2851
2852 static ssize_t pages_to_scan_store(struct kobject *kobj,
2853                                    struct kobj_attribute *attr,
2854                                    const char *buf, size_t count)
2855 {
2856         unsigned int nr_pages;
2857         int err;
2858
2859         err = kstrtouint(buf, 10, &nr_pages);
2860         if (err)
2861                 return -EINVAL;
2862
2863         ksm_thread_pages_to_scan = nr_pages;
2864
2865         return count;
2866 }
2867 KSM_ATTR(pages_to_scan);
2868
2869 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2870                         char *buf)
2871 {
2872         return sysfs_emit(buf, "%lu\n", ksm_run);
2873 }
2874
2875 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2876                          const char *buf, size_t count)
2877 {
2878         unsigned int flags;
2879         int err;
2880
2881         err = kstrtouint(buf, 10, &flags);
2882         if (err)
2883                 return -EINVAL;
2884         if (flags > KSM_RUN_UNMERGE)
2885                 return -EINVAL;
2886
2887         /*
2888          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2889          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2890          * breaking COW to free the pages_shared (but leaves mm_slots
2891          * on the list for when ksmd may be set running again).
2892          */
2893
2894         mutex_lock(&ksm_thread_mutex);
2895         wait_while_offlining();
2896         if (ksm_run != flags) {
2897                 ksm_run = flags;
2898                 if (flags & KSM_RUN_UNMERGE) {
2899                         set_current_oom_origin();
2900                         err = unmerge_and_remove_all_rmap_items();
2901                         clear_current_oom_origin();
2902                         if (err) {
2903                                 ksm_run = KSM_RUN_STOP;
2904                                 count = err;
2905                         }
2906                 }
2907         }
2908         mutex_unlock(&ksm_thread_mutex);
2909
2910         if (flags & KSM_RUN_MERGE)
2911                 wake_up_interruptible(&ksm_thread_wait);
2912
2913         return count;
2914 }
2915 KSM_ATTR(run);
2916
2917 #ifdef CONFIG_NUMA
2918 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2919                                        struct kobj_attribute *attr, char *buf)
2920 {
2921         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2922 }
2923
2924 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2925                                    struct kobj_attribute *attr,
2926                                    const char *buf, size_t count)
2927 {
2928         int err;
2929         unsigned long knob;
2930
2931         err = kstrtoul(buf, 10, &knob);
2932         if (err)
2933                 return err;
2934         if (knob > 1)
2935                 return -EINVAL;
2936
2937         mutex_lock(&ksm_thread_mutex);
2938         wait_while_offlining();
2939         if (ksm_merge_across_nodes != knob) {
2940                 if (ksm_pages_shared || remove_all_stable_nodes())
2941                         err = -EBUSY;
2942                 else if (root_stable_tree == one_stable_tree) {
2943                         struct rb_root *buf;
2944                         /*
2945                          * This is the first time that we switch away from the
2946                          * default of merging across nodes: must now allocate
2947                          * a buffer to hold as many roots as may be needed.
2948                          * Allocate stable and unstable together:
2949                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2950                          */
2951                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2952                                       GFP_KERNEL);
2953                         /* Let us assume that RB_ROOT is NULL is zero */
2954                         if (!buf)
2955                                 err = -ENOMEM;
2956                         else {
2957                                 root_stable_tree = buf;
2958                                 root_unstable_tree = buf + nr_node_ids;
2959                                 /* Stable tree is empty but not the unstable */
2960                                 root_unstable_tree[0] = one_unstable_tree[0];
2961                         }
2962                 }
2963                 if (!err) {
2964                         ksm_merge_across_nodes = knob;
2965                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2966                 }
2967         }
2968         mutex_unlock(&ksm_thread_mutex);
2969
2970         return err ? err : count;
2971 }
2972 KSM_ATTR(merge_across_nodes);
2973 #endif
2974
2975 static ssize_t use_zero_pages_show(struct kobject *kobj,
2976                                    struct kobj_attribute *attr, char *buf)
2977 {
2978         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2979 }
2980 static ssize_t use_zero_pages_store(struct kobject *kobj,
2981                                    struct kobj_attribute *attr,
2982                                    const char *buf, size_t count)
2983 {
2984         int err;
2985         bool value;
2986
2987         err = kstrtobool(buf, &value);
2988         if (err)
2989                 return -EINVAL;
2990
2991         ksm_use_zero_pages = value;
2992
2993         return count;
2994 }
2995 KSM_ATTR(use_zero_pages);
2996
2997 static ssize_t max_page_sharing_show(struct kobject *kobj,
2998                                      struct kobj_attribute *attr, char *buf)
2999 {
3000         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3001 }
3002
3003 static ssize_t max_page_sharing_store(struct kobject *kobj,
3004                                       struct kobj_attribute *attr,
3005                                       const char *buf, size_t count)
3006 {
3007         int err;
3008         int knob;
3009
3010         err = kstrtoint(buf, 10, &knob);
3011         if (err)
3012                 return err;
3013         /*
3014          * When a KSM page is created it is shared by 2 mappings. This
3015          * being a signed comparison, it implicitly verifies it's not
3016          * negative.
3017          */
3018         if (knob < 2)
3019                 return -EINVAL;
3020
3021         if (READ_ONCE(ksm_max_page_sharing) == knob)
3022                 return count;
3023
3024         mutex_lock(&ksm_thread_mutex);
3025         wait_while_offlining();
3026         if (ksm_max_page_sharing != knob) {
3027                 if (ksm_pages_shared || remove_all_stable_nodes())
3028                         err = -EBUSY;
3029                 else
3030                         ksm_max_page_sharing = knob;
3031         }
3032         mutex_unlock(&ksm_thread_mutex);
3033
3034         return err ? err : count;
3035 }
3036 KSM_ATTR(max_page_sharing);
3037
3038 static ssize_t pages_shared_show(struct kobject *kobj,
3039                                  struct kobj_attribute *attr, char *buf)
3040 {
3041         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3042 }
3043 KSM_ATTR_RO(pages_shared);
3044
3045 static ssize_t pages_sharing_show(struct kobject *kobj,
3046                                   struct kobj_attribute *attr, char *buf)
3047 {
3048         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3049 }
3050 KSM_ATTR_RO(pages_sharing);
3051
3052 static ssize_t pages_unshared_show(struct kobject *kobj,
3053                                    struct kobj_attribute *attr, char *buf)
3054 {
3055         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3056 }
3057 KSM_ATTR_RO(pages_unshared);
3058
3059 static ssize_t pages_volatile_show(struct kobject *kobj,
3060                                    struct kobj_attribute *attr, char *buf)
3061 {
3062         long ksm_pages_volatile;
3063
3064         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3065                                 - ksm_pages_sharing - ksm_pages_unshared;
3066         /*
3067          * It was not worth any locking to calculate that statistic,
3068          * but it might therefore sometimes be negative: conceal that.
3069          */
3070         if (ksm_pages_volatile < 0)
3071                 ksm_pages_volatile = 0;
3072         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3073 }
3074 KSM_ATTR_RO(pages_volatile);
3075
3076 static ssize_t stable_node_dups_show(struct kobject *kobj,
3077                                      struct kobj_attribute *attr, char *buf)
3078 {
3079         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3080 }
3081 KSM_ATTR_RO(stable_node_dups);
3082
3083 static ssize_t stable_node_chains_show(struct kobject *kobj,
3084                                        struct kobj_attribute *attr, char *buf)
3085 {
3086         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3087 }
3088 KSM_ATTR_RO(stable_node_chains);
3089
3090 static ssize_t
3091 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3092                                         struct kobj_attribute *attr,
3093                                         char *buf)
3094 {
3095         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3096 }
3097
3098 static ssize_t
3099 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3100                                          struct kobj_attribute *attr,
3101                                          const char *buf, size_t count)
3102 {
3103         unsigned int msecs;
3104         int err;
3105
3106         err = kstrtouint(buf, 10, &msecs);
3107         if (err)
3108                 return -EINVAL;
3109
3110         ksm_stable_node_chains_prune_millisecs = msecs;
3111
3112         return count;
3113 }
3114 KSM_ATTR(stable_node_chains_prune_millisecs);
3115
3116 static ssize_t full_scans_show(struct kobject *kobj,
3117                                struct kobj_attribute *attr, char *buf)
3118 {
3119         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3120 }
3121 KSM_ATTR_RO(full_scans);
3122
3123 static struct attribute *ksm_attrs[] = {
3124         &sleep_millisecs_attr.attr,
3125         &pages_to_scan_attr.attr,
3126         &run_attr.attr,
3127         &pages_shared_attr.attr,
3128         &pages_sharing_attr.attr,
3129         &pages_unshared_attr.attr,
3130         &pages_volatile_attr.attr,
3131         &full_scans_attr.attr,
3132 #ifdef CONFIG_NUMA
3133         &merge_across_nodes_attr.attr,
3134 #endif
3135         &max_page_sharing_attr.attr,
3136         &stable_node_chains_attr.attr,
3137         &stable_node_dups_attr.attr,
3138         &stable_node_chains_prune_millisecs_attr.attr,
3139         &use_zero_pages_attr.attr,
3140         NULL,
3141 };
3142
3143 static const struct attribute_group ksm_attr_group = {
3144         .attrs = ksm_attrs,
3145         .name = "ksm",
3146 };
3147 #endif /* CONFIG_SYSFS */
3148
3149 static int __init ksm_init(void)
3150 {
3151         struct task_struct *ksm_thread;
3152         int err;
3153
3154         /* The correct value depends on page size and endianness */
3155         zero_checksum = calc_checksum(ZERO_PAGE(0));
3156         /* Default to false for backwards compatibility */
3157         ksm_use_zero_pages = false;
3158
3159         err = ksm_slab_init();
3160         if (err)
3161                 goto out;
3162
3163         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3164         if (IS_ERR(ksm_thread)) {
3165                 pr_err("ksm: creating kthread failed\n");
3166                 err = PTR_ERR(ksm_thread);
3167                 goto out_free;
3168         }
3169
3170 #ifdef CONFIG_SYSFS
3171         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3172         if (err) {
3173                 pr_err("ksm: register sysfs failed\n");
3174                 kthread_stop(ksm_thread);
3175                 goto out_free;
3176         }
3177 #else
3178         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3179
3180 #endif /* CONFIG_SYSFS */
3181
3182 #ifdef CONFIG_MEMORY_HOTREMOVE
3183         /* There is no significance to this priority 100 */
3184         hotplug_memory_notifier(ksm_memory_callback, 100);
3185 #endif
3186         return 0;
3187
3188 out_free:
3189         ksm_slab_free();
3190 out:
3191         return err;
3192 }
3193 subsys_initcall(ksm_init);