media: pci: cx88: Change the type of 'missed' to u64
[sfrench/cifs-2.6.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220                                 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239         .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes  1U
288 #define ksm_nr_node_ids         1
289 #endif
290
291 #define KSM_RUN_STOP    0
292 #define KSM_RUN_MERGE   1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304                 sizeof(struct __struct), __alignof__(struct __struct),\
305                 (__flags), NULL)
306
307 static int __init ksm_slab_init(void)
308 {
309         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310         if (!rmap_item_cache)
311                 goto out;
312
313         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314         if (!stable_node_cache)
315                 goto out_free1;
316
317         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318         if (!mm_slot_cache)
319                 goto out_free2;
320
321         return 0;
322
323 out_free2:
324         kmem_cache_destroy(stable_node_cache);
325 out_free1:
326         kmem_cache_destroy(rmap_item_cache);
327 out:
328         return -ENOMEM;
329 }
330
331 static void __init ksm_slab_free(void)
332 {
333         kmem_cache_destroy(mm_slot_cache);
334         kmem_cache_destroy(stable_node_cache);
335         kmem_cache_destroy(rmap_item_cache);
336         mm_slot_cache = NULL;
337 }
338
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346         return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350                                              struct stable_node *chain)
351 {
352         VM_BUG_ON(is_stable_node_dup(dup));
353         dup->head = STABLE_NODE_DUP_HEAD;
354         VM_BUG_ON(!is_stable_node_chain(chain));
355         hlist_add_head(&dup->hlist_dup, &chain->hlist);
356         ksm_stable_node_dups++;
357 }
358
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361         VM_BUG_ON(!is_stable_node_dup(dup));
362         hlist_del(&dup->hlist_dup);
363         ksm_stable_node_dups--;
364 }
365
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368         VM_BUG_ON(is_stable_node_chain(dup));
369         if (is_stable_node_dup(dup))
370                 __stable_node_dup_del(dup);
371         else
372                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374         dup->head = NULL;
375 #endif
376 }
377
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380         struct rmap_item *rmap_item;
381
382         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383                                                 __GFP_NORETRY | __GFP_NOWARN);
384         if (rmap_item)
385                 ksm_rmap_items++;
386         return rmap_item;
387 }
388
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391         ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415         if (!mm_slot_cache)     /* initialization failed */
416                 return NULL;
417         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422         kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427         struct mm_slot *slot;
428
429         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430                 if (slot->mm == mm)
431                         return slot;
432
433         return NULL;
434 }
435
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437                                     struct mm_slot *mm_slot)
438 {
439         mm_slot->mm = mm;
440         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453         return atomic_read(&mm->mm_users) == 0;
454 }
455
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460  *              put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473         struct page *page;
474         vm_fault_t ret = 0;
475
476         do {
477                 cond_resched();
478                 page = follow_page(vma, addr,
479                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480                 if (IS_ERR_OR_NULL(page))
481                         break;
482                 if (PageKsm(page))
483                         ret = handle_mm_fault(vma, addr,
484                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485                 else
486                         ret = VM_FAULT_WRITE;
487                 put_page(page);
488         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489         /*
490          * We must loop because handle_mm_fault() may back out if there's
491          * any difficulty e.g. if pte accessed bit gets updated concurrently.
492          *
493          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494          * COW has been broken, even if the vma does not permit VM_WRITE;
495          * but note that a concurrent fault might break PageKsm for us.
496          *
497          * VM_FAULT_SIGBUS could occur if we race with truncation of the
498          * backing file, which also invalidates anonymous pages: that's
499          * okay, that truncation will have unmapped the PageKsm for us.
500          *
501          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503          * current task has TIF_MEMDIE set, and will be OOM killed on return
504          * to user; and ksmd, having no mm, would never be chosen for that.
505          *
506          * But if the mm is in a limited mem_cgroup, then the fault may fail
507          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508          * even ksmd can fail in this way - though it's usually breaking ksm
509          * just to undo a merge it made a moment before, so unlikely to oom.
510          *
511          * That's a pity: we might therefore have more kernel pages allocated
512          * than we're counting as nodes in the stable tree; but ksm_do_scan
513          * will retry to break_cow on each pass, so should recover the page
514          * in due course.  The important thing is to not let VM_MERGEABLE
515          * be cleared while any such pages might remain in the area.
516          */
517         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521                 unsigned long addr)
522 {
523         struct vm_area_struct *vma;
524         if (ksm_test_exit(mm))
525                 return NULL;
526         vma = find_vma(mm, addr);
527         if (!vma || vma->vm_start > addr)
528                 return NULL;
529         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530                 return NULL;
531         return vma;
532 }
533
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536         struct mm_struct *mm = rmap_item->mm;
537         unsigned long addr = rmap_item->address;
538         struct vm_area_struct *vma;
539
540         /*
541          * It is not an accident that whenever we want to break COW
542          * to undo, we also need to drop a reference to the anon_vma.
543          */
544         put_anon_vma(rmap_item->anon_vma);
545
546         down_read(&mm->mmap_sem);
547         vma = find_mergeable_vma(mm, addr);
548         if (vma)
549                 break_ksm(vma, addr);
550         up_read(&mm->mmap_sem);
551 }
552
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555         struct mm_struct *mm = rmap_item->mm;
556         unsigned long addr = rmap_item->address;
557         struct vm_area_struct *vma;
558         struct page *page;
559
560         down_read(&mm->mmap_sem);
561         vma = find_mergeable_vma(mm, addr);
562         if (!vma)
563                 goto out;
564
565         page = follow_page(vma, addr, FOLL_GET);
566         if (IS_ERR_OR_NULL(page))
567                 goto out;
568         if (PageAnon(page)) {
569                 flush_anon_page(vma, page, addr);
570                 flush_dcache_page(page);
571         } else {
572                 put_page(page);
573 out:
574                 page = NULL;
575         }
576         up_read(&mm->mmap_sem);
577         return page;
578 }
579
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592                                                    struct rb_root *root)
593 {
594         struct stable_node *chain = alloc_stable_node();
595         VM_BUG_ON(is_stable_node_chain(dup));
596         if (likely(chain)) {
597                 INIT_HLIST_HEAD(&chain->hlist);
598                 chain->chain_prune_time = jiffies;
599                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601                 chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603                 ksm_stable_node_chains++;
604
605                 /*
606                  * Put the stable node chain in the first dimension of
607                  * the stable tree and at the same time remove the old
608                  * stable node.
609                  */
610                 rb_replace_node(&dup->node, &chain->node, root);
611
612                 /*
613                  * Move the old stable node to the second dimension
614                  * queued in the hlist_dup. The invariant is that all
615                  * dup stable_nodes in the chain->hlist point to pages
616                  * that are wrprotected and have the exact same
617                  * content.
618                  */
619                 stable_node_chain_add_dup(dup, chain);
620         }
621         return chain;
622 }
623
624 static inline void free_stable_node_chain(struct stable_node *chain,
625                                           struct rb_root *root)
626 {
627         rb_erase(&chain->node, root);
628         free_stable_node(chain);
629         ksm_stable_node_chains--;
630 }
631
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634         struct rmap_item *rmap_item;
635
636         /* check it's not STABLE_NODE_CHAIN or negative */
637         BUG_ON(stable_node->rmap_hlist_len < 0);
638
639         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640                 if (rmap_item->hlist.next)
641                         ksm_pages_sharing--;
642                 else
643                         ksm_pages_shared--;
644                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645                 stable_node->rmap_hlist_len--;
646                 put_anon_vma(rmap_item->anon_vma);
647                 rmap_item->address &= PAGE_MASK;
648                 cond_resched();
649         }
650
651         /*
652          * We need the second aligned pointer of the migrate_nodes
653          * list_head to stay clear from the rb_parent_color union
654          * (aligned and different than any node) and also different
655          * from &migrate_nodes. This will verify that future list.h changes
656          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657          */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662
663         if (stable_node->head == &migrate_nodes)
664                 list_del(&stable_node->list);
665         else
666                 stable_node_dup_del(stable_node);
667         free_stable_node(stable_node);
668 }
669
670 enum get_ksm_page_flags {
671         GET_KSM_PAGE_NOLOCK,
672         GET_KSM_PAGE_LOCK,
673         GET_KSM_PAGE_TRYLOCK
674 };
675
676 /*
677  * get_ksm_page: checks if the page indicated by the stable node
678  * is still its ksm page, despite having held no reference to it.
679  * In which case we can trust the content of the page, and it
680  * returns the gotten page; but if the page has now been zapped,
681  * remove the stale node from the stable tree and return NULL.
682  * But beware, the stable node's page might be being migrated.
683  *
684  * You would expect the stable_node to hold a reference to the ksm page.
685  * But if it increments the page's count, swapping out has to wait for
686  * ksmd to come around again before it can free the page, which may take
687  * seconds or even minutes: much too unresponsive.  So instead we use a
688  * "keyhole reference": access to the ksm page from the stable node peeps
689  * out through its keyhole to see if that page still holds the right key,
690  * pointing back to this stable node.  This relies on freeing a PageAnon
691  * page to reset its page->mapping to NULL, and relies on no other use of
692  * a page to put something that might look like our key in page->mapping.
693  * is on its way to being freed; but it is an anomaly to bear in mind.
694  */
695 static struct page *get_ksm_page(struct stable_node *stable_node,
696                                  enum get_ksm_page_flags flags)
697 {
698         struct page *page;
699         void *expected_mapping;
700         unsigned long kpfn;
701
702         expected_mapping = (void *)((unsigned long)stable_node |
703                                         PAGE_MAPPING_KSM);
704 again:
705         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706         page = pfn_to_page(kpfn);
707         if (READ_ONCE(page->mapping) != expected_mapping)
708                 goto stale;
709
710         /*
711          * We cannot do anything with the page while its refcount is 0.
712          * Usually 0 means free, or tail of a higher-order page: in which
713          * case this node is no longer referenced, and should be freed;
714          * however, it might mean that the page is under page_ref_freeze().
715          * The __remove_mapping() case is easy, again the node is now stale;
716          * the same is in reuse_ksm_page() case; but if page is swapcache
717          * in migrate_page_move_mapping(), it might still be our page,
718          * in which case it's essential to keep the node.
719          */
720         while (!get_page_unless_zero(page)) {
721                 /*
722                  * Another check for page->mapping != expected_mapping would
723                  * work here too.  We have chosen the !PageSwapCache test to
724                  * optimize the common case, when the page is or is about to
725                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
726                  * in the ref_freeze section of __remove_mapping(); but Anon
727                  * page->mapping reset to NULL later, in free_pages_prepare().
728                  */
729                 if (!PageSwapCache(page))
730                         goto stale;
731                 cpu_relax();
732         }
733
734         if (READ_ONCE(page->mapping) != expected_mapping) {
735                 put_page(page);
736                 goto stale;
737         }
738
739         if (flags == GET_KSM_PAGE_TRYLOCK) {
740                 if (!trylock_page(page)) {
741                         put_page(page);
742                         return ERR_PTR(-EBUSY);
743                 }
744         } else if (flags == GET_KSM_PAGE_LOCK)
745                 lock_page(page);
746
747         if (flags != GET_KSM_PAGE_NOLOCK) {
748                 if (READ_ONCE(page->mapping) != expected_mapping) {
749                         unlock_page(page);
750                         put_page(page);
751                         goto stale;
752                 }
753         }
754         return page;
755
756 stale:
757         /*
758          * We come here from above when page->mapping or !PageSwapCache
759          * suggests that the node is stale; but it might be under migration.
760          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761          * before checking whether node->kpfn has been changed.
762          */
763         smp_rmb();
764         if (READ_ONCE(stable_node->kpfn) != kpfn)
765                 goto again;
766         remove_node_from_stable_tree(stable_node);
767         return NULL;
768 }
769
770 /*
771  * Removing rmap_item from stable or unstable tree.
772  * This function will clean the information from the stable/unstable tree.
773  */
774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
775 {
776         if (rmap_item->address & STABLE_FLAG) {
777                 struct stable_node *stable_node;
778                 struct page *page;
779
780                 stable_node = rmap_item->head;
781                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782                 if (!page)
783                         goto out;
784
785                 hlist_del(&rmap_item->hlist);
786                 unlock_page(page);
787                 put_page(page);
788
789                 if (!hlist_empty(&stable_node->hlist))
790                         ksm_pages_sharing--;
791                 else
792                         ksm_pages_shared--;
793                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794                 stable_node->rmap_hlist_len--;
795
796                 put_anon_vma(rmap_item->anon_vma);
797                 rmap_item->address &= PAGE_MASK;
798
799         } else if (rmap_item->address & UNSTABLE_FLAG) {
800                 unsigned char age;
801                 /*
802                  * Usually ksmd can and must skip the rb_erase, because
803                  * root_unstable_tree was already reset to RB_ROOT.
804                  * But be careful when an mm is exiting: do the rb_erase
805                  * if this rmap_item was inserted by this scan, rather
806                  * than left over from before.
807                  */
808                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
809                 BUG_ON(age > 1);
810                 if (!age)
811                         rb_erase(&rmap_item->node,
812                                  root_unstable_tree + NUMA(rmap_item->nid));
813                 ksm_pages_unshared--;
814                 rmap_item->address &= PAGE_MASK;
815         }
816 out:
817         cond_resched();         /* we're called from many long loops */
818 }
819
820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
821                                        struct rmap_item **rmap_list)
822 {
823         while (*rmap_list) {
824                 struct rmap_item *rmap_item = *rmap_list;
825                 *rmap_list = rmap_item->rmap_list;
826                 remove_rmap_item_from_tree(rmap_item);
827                 free_rmap_item(rmap_item);
828         }
829 }
830
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845                              unsigned long start, unsigned long end)
846 {
847         unsigned long addr;
848         int err = 0;
849
850         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851                 if (ksm_test_exit(vma->vm_mm))
852                         break;
853                 if (signal_pending(current))
854                         err = -ERESTARTSYS;
855                 else
856                         err = break_ksm(vma, addr);
857         }
858         return err;
859 }
860
861 static inline struct stable_node *page_stable_node(struct page *page)
862 {
863         return PageKsm(page) ? page_rmapping(page) : NULL;
864 }
865
866 static inline void set_page_stable_node(struct page *page,
867                                         struct stable_node *stable_node)
868 {
869         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870 }
871
872 #ifdef CONFIG_SYSFS
873 /*
874  * Only called through the sysfs control interface:
875  */
876 static int remove_stable_node(struct stable_node *stable_node)
877 {
878         struct page *page;
879         int err;
880
881         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882         if (!page) {
883                 /*
884                  * get_ksm_page did remove_node_from_stable_tree itself.
885                  */
886                 return 0;
887         }
888
889         if (WARN_ON_ONCE(page_mapped(page))) {
890                 /*
891                  * This should not happen: but if it does, just refuse to let
892                  * merge_across_nodes be switched - there is no need to panic.
893                  */
894                 err = -EBUSY;
895         } else {
896                 /*
897                  * The stable node did not yet appear stale to get_ksm_page(),
898                  * since that allows for an unmapped ksm page to be recognized
899                  * right up until it is freed; but the node is safe to remove.
900                  * This page might be in a pagevec waiting to be freed,
901                  * or it might be PageSwapCache (perhaps under writeback),
902                  * or it might have been removed from swapcache a moment ago.
903                  */
904                 set_page_stable_node(page, NULL);
905                 remove_node_from_stable_tree(stable_node);
906                 err = 0;
907         }
908
909         unlock_page(page);
910         put_page(page);
911         return err;
912 }
913
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915                                     struct rb_root *root)
916 {
917         struct stable_node *dup;
918         struct hlist_node *hlist_safe;
919
920         if (!is_stable_node_chain(stable_node)) {
921                 VM_BUG_ON(is_stable_node_dup(stable_node));
922                 if (remove_stable_node(stable_node))
923                         return true;
924                 else
925                         return false;
926         }
927
928         hlist_for_each_entry_safe(dup, hlist_safe,
929                                   &stable_node->hlist, hlist_dup) {
930                 VM_BUG_ON(!is_stable_node_dup(dup));
931                 if (remove_stable_node(dup))
932                         return true;
933         }
934         BUG_ON(!hlist_empty(&stable_node->hlist));
935         free_stable_node_chain(stable_node, root);
936         return false;
937 }
938
939 static int remove_all_stable_nodes(void)
940 {
941         struct stable_node *stable_node, *next;
942         int nid;
943         int err = 0;
944
945         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946                 while (root_stable_tree[nid].rb_node) {
947                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
948                                                 struct stable_node, node);
949                         if (remove_stable_node_chain(stable_node,
950                                                      root_stable_tree + nid)) {
951                                 err = -EBUSY;
952                                 break;  /* proceed to next nid */
953                         }
954                         cond_resched();
955                 }
956         }
957         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958                 if (remove_stable_node(stable_node))
959                         err = -EBUSY;
960                 cond_resched();
961         }
962         return err;
963 }
964
965 static int unmerge_and_remove_all_rmap_items(void)
966 {
967         struct mm_slot *mm_slot;
968         struct mm_struct *mm;
969         struct vm_area_struct *vma;
970         int err = 0;
971
972         spin_lock(&ksm_mmlist_lock);
973         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974                                                 struct mm_slot, mm_list);
975         spin_unlock(&ksm_mmlist_lock);
976
977         for (mm_slot = ksm_scan.mm_slot;
978                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979                 mm = mm_slot->mm;
980                 down_read(&mm->mmap_sem);
981                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
982                         if (ksm_test_exit(mm))
983                                 break;
984                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985                                 continue;
986                         err = unmerge_ksm_pages(vma,
987                                                 vma->vm_start, vma->vm_end);
988                         if (err)
989                                 goto error;
990                 }
991
992                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
993                 up_read(&mm->mmap_sem);
994
995                 spin_lock(&ksm_mmlist_lock);
996                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997                                                 struct mm_slot, mm_list);
998                 if (ksm_test_exit(mm)) {
999                         hash_del(&mm_slot->link);
1000                         list_del(&mm_slot->mm_list);
1001                         spin_unlock(&ksm_mmlist_lock);
1002
1003                         free_mm_slot(mm_slot);
1004                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005                         mmdrop(mm);
1006                 } else
1007                         spin_unlock(&ksm_mmlist_lock);
1008         }
1009
1010         /* Clean up stable nodes, but don't worry if some are still busy */
1011         remove_all_stable_nodes();
1012         ksm_scan.seqnr = 0;
1013         return 0;
1014
1015 error:
1016         up_read(&mm->mmap_sem);
1017         spin_lock(&ksm_mmlist_lock);
1018         ksm_scan.mm_slot = &ksm_mm_head;
1019         spin_unlock(&ksm_mmlist_lock);
1020         return err;
1021 }
1022 #endif /* CONFIG_SYSFS */
1023
1024 static u32 calc_checksum(struct page *page)
1025 {
1026         u32 checksum;
1027         void *addr = kmap_atomic(page);
1028         checksum = xxhash(addr, PAGE_SIZE, 0);
1029         kunmap_atomic(addr);
1030         return checksum;
1031 }
1032
1033 static int memcmp_pages(struct page *page1, struct page *page2)
1034 {
1035         char *addr1, *addr2;
1036         int ret;
1037
1038         addr1 = kmap_atomic(page1);
1039         addr2 = kmap_atomic(page2);
1040         ret = memcmp(addr1, addr2, PAGE_SIZE);
1041         kunmap_atomic(addr2);
1042         kunmap_atomic(addr1);
1043         return ret;
1044 }
1045
1046 static inline int pages_identical(struct page *page1, struct page *page2)
1047 {
1048         return !memcmp_pages(page1, page2);
1049 }
1050
1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1052                               pte_t *orig_pte)
1053 {
1054         struct mm_struct *mm = vma->vm_mm;
1055         struct page_vma_mapped_walk pvmw = {
1056                 .page = page,
1057                 .vma = vma,
1058         };
1059         int swapped;
1060         int err = -EFAULT;
1061         struct mmu_notifier_range range;
1062
1063         pvmw.address = page_address_in_vma(page, vma);
1064         if (pvmw.address == -EFAULT)
1065                 goto out;
1066
1067         BUG_ON(PageTransCompound(page));
1068
1069         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1070                                 pvmw.address,
1071                                 pvmw.address + PAGE_SIZE);
1072         mmu_notifier_invalidate_range_start(&range);
1073
1074         if (!page_vma_mapped_walk(&pvmw))
1075                 goto out_mn;
1076         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1077                 goto out_unlock;
1078
1079         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1080             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1081                                                 mm_tlb_flush_pending(mm)) {
1082                 pte_t entry;
1083
1084                 swapped = PageSwapCache(page);
1085                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1086                 /*
1087                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1088                  * take any lock, therefore the check that we are going to make
1089                  * with the pagecount against the mapcount is racey and
1090                  * O_DIRECT can happen right after the check.
1091                  * So we clear the pte and flush the tlb before the check
1092                  * this assure us that no O_DIRECT can happen after the check
1093                  * or in the middle of the check.
1094                  *
1095                  * No need to notify as we are downgrading page table to read
1096                  * only not changing it to point to a new page.
1097                  *
1098                  * See Documentation/vm/mmu_notifier.rst
1099                  */
1100                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1101                 /*
1102                  * Check that no O_DIRECT or similar I/O is in progress on the
1103                  * page
1104                  */
1105                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1106                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1107                         goto out_unlock;
1108                 }
1109                 if (pte_dirty(entry))
1110                         set_page_dirty(page);
1111
1112                 if (pte_protnone(entry))
1113                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1114                 else
1115                         entry = pte_mkclean(pte_wrprotect(entry));
1116                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1117         }
1118         *orig_pte = *pvmw.pte;
1119         err = 0;
1120
1121 out_unlock:
1122         page_vma_mapped_walk_done(&pvmw);
1123 out_mn:
1124         mmu_notifier_invalidate_range_end(&range);
1125 out:
1126         return err;
1127 }
1128
1129 /**
1130  * replace_page - replace page in vma by new ksm page
1131  * @vma:      vma that holds the pte pointing to page
1132  * @page:     the page we are replacing by kpage
1133  * @kpage:    the ksm page we replace page by
1134  * @orig_pte: the original value of the pte
1135  *
1136  * Returns 0 on success, -EFAULT on failure.
1137  */
1138 static int replace_page(struct vm_area_struct *vma, struct page *page,
1139                         struct page *kpage, pte_t orig_pte)
1140 {
1141         struct mm_struct *mm = vma->vm_mm;
1142         pmd_t *pmd;
1143         pte_t *ptep;
1144         pte_t newpte;
1145         spinlock_t *ptl;
1146         unsigned long addr;
1147         int err = -EFAULT;
1148         struct mmu_notifier_range range;
1149
1150         addr = page_address_in_vma(page, vma);
1151         if (addr == -EFAULT)
1152                 goto out;
1153
1154         pmd = mm_find_pmd(mm, addr);
1155         if (!pmd)
1156                 goto out;
1157
1158         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1159                                 addr + PAGE_SIZE);
1160         mmu_notifier_invalidate_range_start(&range);
1161
1162         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1163         if (!pte_same(*ptep, orig_pte)) {
1164                 pte_unmap_unlock(ptep, ptl);
1165                 goto out_mn;
1166         }
1167
1168         /*
1169          * No need to check ksm_use_zero_pages here: we can only have a
1170          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1171          */
1172         if (!is_zero_pfn(page_to_pfn(kpage))) {
1173                 get_page(kpage);
1174                 page_add_anon_rmap(kpage, vma, addr, false);
1175                 newpte = mk_pte(kpage, vma->vm_page_prot);
1176         } else {
1177                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1178                                                vma->vm_page_prot));
1179                 /*
1180                  * We're replacing an anonymous page with a zero page, which is
1181                  * not anonymous. We need to do proper accounting otherwise we
1182                  * will get wrong values in /proc, and a BUG message in dmesg
1183                  * when tearing down the mm.
1184                  */
1185                 dec_mm_counter(mm, MM_ANONPAGES);
1186         }
1187
1188         flush_cache_page(vma, addr, pte_pfn(*ptep));
1189         /*
1190          * No need to notify as we are replacing a read only page with another
1191          * read only page with the same content.
1192          *
1193          * See Documentation/vm/mmu_notifier.rst
1194          */
1195         ptep_clear_flush(vma, addr, ptep);
1196         set_pte_at_notify(mm, addr, ptep, newpte);
1197
1198         page_remove_rmap(page, false);
1199         if (!page_mapped(page))
1200                 try_to_free_swap(page);
1201         put_page(page);
1202
1203         pte_unmap_unlock(ptep, ptl);
1204         err = 0;
1205 out_mn:
1206         mmu_notifier_invalidate_range_end(&range);
1207 out:
1208         return err;
1209 }
1210
1211 /*
1212  * try_to_merge_one_page - take two pages and merge them into one
1213  * @vma: the vma that holds the pte pointing to page
1214  * @page: the PageAnon page that we want to replace with kpage
1215  * @kpage: the PageKsm page that we want to map instead of page,
1216  *         or NULL the first time when we want to use page as kpage.
1217  *
1218  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1219  */
1220 static int try_to_merge_one_page(struct vm_area_struct *vma,
1221                                  struct page *page, struct page *kpage)
1222 {
1223         pte_t orig_pte = __pte(0);
1224         int err = -EFAULT;
1225
1226         if (page == kpage)                      /* ksm page forked */
1227                 return 0;
1228
1229         if (!PageAnon(page))
1230                 goto out;
1231
1232         /*
1233          * We need the page lock to read a stable PageSwapCache in
1234          * write_protect_page().  We use trylock_page() instead of
1235          * lock_page() because we don't want to wait here - we
1236          * prefer to continue scanning and merging different pages,
1237          * then come back to this page when it is unlocked.
1238          */
1239         if (!trylock_page(page))
1240                 goto out;
1241
1242         if (PageTransCompound(page)) {
1243                 if (split_huge_page(page))
1244                         goto out_unlock;
1245         }
1246
1247         /*
1248          * If this anonymous page is mapped only here, its pte may need
1249          * to be write-protected.  If it's mapped elsewhere, all of its
1250          * ptes are necessarily already write-protected.  But in either
1251          * case, we need to lock and check page_count is not raised.
1252          */
1253         if (write_protect_page(vma, page, &orig_pte) == 0) {
1254                 if (!kpage) {
1255                         /*
1256                          * While we hold page lock, upgrade page from
1257                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1258                          * stable_tree_insert() will update stable_node.
1259                          */
1260                         set_page_stable_node(page, NULL);
1261                         mark_page_accessed(page);
1262                         /*
1263                          * Page reclaim just frees a clean page with no dirty
1264                          * ptes: make sure that the ksm page would be swapped.
1265                          */
1266                         if (!PageDirty(page))
1267                                 SetPageDirty(page);
1268                         err = 0;
1269                 } else if (pages_identical(page, kpage))
1270                         err = replace_page(vma, page, kpage, orig_pte);
1271         }
1272
1273         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1274                 munlock_vma_page(page);
1275                 if (!PageMlocked(kpage)) {
1276                         unlock_page(page);
1277                         lock_page(kpage);
1278                         mlock_vma_page(kpage);
1279                         page = kpage;           /* for final unlock */
1280                 }
1281         }
1282
1283 out_unlock:
1284         unlock_page(page);
1285 out:
1286         return err;
1287 }
1288
1289 /*
1290  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1291  * but no new kernel page is allocated: kpage must already be a ksm page.
1292  *
1293  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1294  */
1295 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1296                                       struct page *page, struct page *kpage)
1297 {
1298         struct mm_struct *mm = rmap_item->mm;
1299         struct vm_area_struct *vma;
1300         int err = -EFAULT;
1301
1302         down_read(&mm->mmap_sem);
1303         vma = find_mergeable_vma(mm, rmap_item->address);
1304         if (!vma)
1305                 goto out;
1306
1307         err = try_to_merge_one_page(vma, page, kpage);
1308         if (err)
1309                 goto out;
1310
1311         /* Unstable nid is in union with stable anon_vma: remove first */
1312         remove_rmap_item_from_tree(rmap_item);
1313
1314         /* Must get reference to anon_vma while still holding mmap_sem */
1315         rmap_item->anon_vma = vma->anon_vma;
1316         get_anon_vma(vma->anon_vma);
1317 out:
1318         up_read(&mm->mmap_sem);
1319         return err;
1320 }
1321
1322 /*
1323  * try_to_merge_two_pages - take two identical pages and prepare them
1324  * to be merged into one page.
1325  *
1326  * This function returns the kpage if we successfully merged two identical
1327  * pages into one ksm page, NULL otherwise.
1328  *
1329  * Note that this function upgrades page to ksm page: if one of the pages
1330  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1331  */
1332 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1333                                            struct page *page,
1334                                            struct rmap_item *tree_rmap_item,
1335                                            struct page *tree_page)
1336 {
1337         int err;
1338
1339         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1340         if (!err) {
1341                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1342                                                         tree_page, page);
1343                 /*
1344                  * If that fails, we have a ksm page with only one pte
1345                  * pointing to it: so break it.
1346                  */
1347                 if (err)
1348                         break_cow(rmap_item);
1349         }
1350         return err ? NULL : page;
1351 }
1352
1353 static __always_inline
1354 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1355 {
1356         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1357         /*
1358          * Check that at least one mapping still exists, otherwise
1359          * there's no much point to merge and share with this
1360          * stable_node, as the underlying tree_page of the other
1361          * sharer is going to be freed soon.
1362          */
1363         return stable_node->rmap_hlist_len &&
1364                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1365 }
1366
1367 static __always_inline
1368 bool is_page_sharing_candidate(struct stable_node *stable_node)
1369 {
1370         return __is_page_sharing_candidate(stable_node, 0);
1371 }
1372
1373 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1374                                     struct stable_node **_stable_node,
1375                                     struct rb_root *root,
1376                                     bool prune_stale_stable_nodes)
1377 {
1378         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1379         struct hlist_node *hlist_safe;
1380         struct page *_tree_page, *tree_page = NULL;
1381         int nr = 0;
1382         int found_rmap_hlist_len;
1383
1384         if (!prune_stale_stable_nodes ||
1385             time_before(jiffies, stable_node->chain_prune_time +
1386                         msecs_to_jiffies(
1387                                 ksm_stable_node_chains_prune_millisecs)))
1388                 prune_stale_stable_nodes = false;
1389         else
1390                 stable_node->chain_prune_time = jiffies;
1391
1392         hlist_for_each_entry_safe(dup, hlist_safe,
1393                                   &stable_node->hlist, hlist_dup) {
1394                 cond_resched();
1395                 /*
1396                  * We must walk all stable_node_dup to prune the stale
1397                  * stable nodes during lookup.
1398                  *
1399                  * get_ksm_page can drop the nodes from the
1400                  * stable_node->hlist if they point to freed pages
1401                  * (that's why we do a _safe walk). The "dup"
1402                  * stable_node parameter itself will be freed from
1403                  * under us if it returns NULL.
1404                  */
1405                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1406                 if (!_tree_page)
1407                         continue;
1408                 nr += 1;
1409                 if (is_page_sharing_candidate(dup)) {
1410                         if (!found ||
1411                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1412                                 if (found)
1413                                         put_page(tree_page);
1414                                 found = dup;
1415                                 found_rmap_hlist_len = found->rmap_hlist_len;
1416                                 tree_page = _tree_page;
1417
1418                                 /* skip put_page for found dup */
1419                                 if (!prune_stale_stable_nodes)
1420                                         break;
1421                                 continue;
1422                         }
1423                 }
1424                 put_page(_tree_page);
1425         }
1426
1427         if (found) {
1428                 /*
1429                  * nr is counting all dups in the chain only if
1430                  * prune_stale_stable_nodes is true, otherwise we may
1431                  * break the loop at nr == 1 even if there are
1432                  * multiple entries.
1433                  */
1434                 if (prune_stale_stable_nodes && nr == 1) {
1435                         /*
1436                          * If there's not just one entry it would
1437                          * corrupt memory, better BUG_ON. In KSM
1438                          * context with no lock held it's not even
1439                          * fatal.
1440                          */
1441                         BUG_ON(stable_node->hlist.first->next);
1442
1443                         /*
1444                          * There's just one entry and it is below the
1445                          * deduplication limit so drop the chain.
1446                          */
1447                         rb_replace_node(&stable_node->node, &found->node,
1448                                         root);
1449                         free_stable_node(stable_node);
1450                         ksm_stable_node_chains--;
1451                         ksm_stable_node_dups--;
1452                         /*
1453                          * NOTE: the caller depends on the stable_node
1454                          * to be equal to stable_node_dup if the chain
1455                          * was collapsed.
1456                          */
1457                         *_stable_node = found;
1458                         /*
1459                          * Just for robustneess as stable_node is
1460                          * otherwise left as a stable pointer, the
1461                          * compiler shall optimize it away at build
1462                          * time.
1463                          */
1464                         stable_node = NULL;
1465                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1466                            __is_page_sharing_candidate(found, 1)) {
1467                         /*
1468                          * If the found stable_node dup can accept one
1469                          * more future merge (in addition to the one
1470                          * that is underway) and is not at the head of
1471                          * the chain, put it there so next search will
1472                          * be quicker in the !prune_stale_stable_nodes
1473                          * case.
1474                          *
1475                          * NOTE: it would be inaccurate to use nr > 1
1476                          * instead of checking the hlist.first pointer
1477                          * directly, because in the
1478                          * prune_stale_stable_nodes case "nr" isn't
1479                          * the position of the found dup in the chain,
1480                          * but the total number of dups in the chain.
1481                          */
1482                         hlist_del(&found->hlist_dup);
1483                         hlist_add_head(&found->hlist_dup,
1484                                        &stable_node->hlist);
1485                 }
1486         }
1487
1488         *_stable_node_dup = found;
1489         return tree_page;
1490 }
1491
1492 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1493                                                struct rb_root *root)
1494 {
1495         if (!is_stable_node_chain(stable_node))
1496                 return stable_node;
1497         if (hlist_empty(&stable_node->hlist)) {
1498                 free_stable_node_chain(stable_node, root);
1499                 return NULL;
1500         }
1501         return hlist_entry(stable_node->hlist.first,
1502                            typeof(*stable_node), hlist_dup);
1503 }
1504
1505 /*
1506  * Like for get_ksm_page, this function can free the *_stable_node and
1507  * *_stable_node_dup if the returned tree_page is NULL.
1508  *
1509  * It can also free and overwrite *_stable_node with the found
1510  * stable_node_dup if the chain is collapsed (in which case
1511  * *_stable_node will be equal to *_stable_node_dup like if the chain
1512  * never existed). It's up to the caller to verify tree_page is not
1513  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1514  *
1515  * *_stable_node_dup is really a second output parameter of this
1516  * function and will be overwritten in all cases, the caller doesn't
1517  * need to initialize it.
1518  */
1519 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1520                                         struct stable_node **_stable_node,
1521                                         struct rb_root *root,
1522                                         bool prune_stale_stable_nodes)
1523 {
1524         struct stable_node *stable_node = *_stable_node;
1525         if (!is_stable_node_chain(stable_node)) {
1526                 if (is_page_sharing_candidate(stable_node)) {
1527                         *_stable_node_dup = stable_node;
1528                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1529                 }
1530                 /*
1531                  * _stable_node_dup set to NULL means the stable_node
1532                  * reached the ksm_max_page_sharing limit.
1533                  */
1534                 *_stable_node_dup = NULL;
1535                 return NULL;
1536         }
1537         return stable_node_dup(_stable_node_dup, _stable_node, root,
1538                                prune_stale_stable_nodes);
1539 }
1540
1541 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1542                                                 struct stable_node **s_n,
1543                                                 struct rb_root *root)
1544 {
1545         return __stable_node_chain(s_n_d, s_n, root, true);
1546 }
1547
1548 static __always_inline struct page *chain(struct stable_node **s_n_d,
1549                                           struct stable_node *s_n,
1550                                           struct rb_root *root)
1551 {
1552         struct stable_node *old_stable_node = s_n;
1553         struct page *tree_page;
1554
1555         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1556         /* not pruning dups so s_n cannot have changed */
1557         VM_BUG_ON(s_n != old_stable_node);
1558         return tree_page;
1559 }
1560
1561 /*
1562  * stable_tree_search - search for page inside the stable tree
1563  *
1564  * This function checks if there is a page inside the stable tree
1565  * with identical content to the page that we are scanning right now.
1566  *
1567  * This function returns the stable tree node of identical content if found,
1568  * NULL otherwise.
1569  */
1570 static struct page *stable_tree_search(struct page *page)
1571 {
1572         int nid;
1573         struct rb_root *root;
1574         struct rb_node **new;
1575         struct rb_node *parent;
1576         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1577         struct stable_node *page_node;
1578
1579         page_node = page_stable_node(page);
1580         if (page_node && page_node->head != &migrate_nodes) {
1581                 /* ksm page forked */
1582                 get_page(page);
1583                 return page;
1584         }
1585
1586         nid = get_kpfn_nid(page_to_pfn(page));
1587         root = root_stable_tree + nid;
1588 again:
1589         new = &root->rb_node;
1590         parent = NULL;
1591
1592         while (*new) {
1593                 struct page *tree_page;
1594                 int ret;
1595
1596                 cond_resched();
1597                 stable_node = rb_entry(*new, struct stable_node, node);
1598                 stable_node_any = NULL;
1599                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1600                 /*
1601                  * NOTE: stable_node may have been freed by
1602                  * chain_prune() if the returned stable_node_dup is
1603                  * not NULL. stable_node_dup may have been inserted in
1604                  * the rbtree instead as a regular stable_node (in
1605                  * order to collapse the stable_node chain if a single
1606                  * stable_node dup was found in it). In such case the
1607                  * stable_node is overwritten by the calleee to point
1608                  * to the stable_node_dup that was collapsed in the
1609                  * stable rbtree and stable_node will be equal to
1610                  * stable_node_dup like if the chain never existed.
1611                  */
1612                 if (!stable_node_dup) {
1613                         /*
1614                          * Either all stable_node dups were full in
1615                          * this stable_node chain, or this chain was
1616                          * empty and should be rb_erased.
1617                          */
1618                         stable_node_any = stable_node_dup_any(stable_node,
1619                                                               root);
1620                         if (!stable_node_any) {
1621                                 /* rb_erase just run */
1622                                 goto again;
1623                         }
1624                         /*
1625                          * Take any of the stable_node dups page of
1626                          * this stable_node chain to let the tree walk
1627                          * continue. All KSM pages belonging to the
1628                          * stable_node dups in a stable_node chain
1629                          * have the same content and they're
1630                          * wrprotected at all times. Any will work
1631                          * fine to continue the walk.
1632                          */
1633                         tree_page = get_ksm_page(stable_node_any,
1634                                                  GET_KSM_PAGE_NOLOCK);
1635                 }
1636                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1637                 if (!tree_page) {
1638                         /*
1639                          * If we walked over a stale stable_node,
1640                          * get_ksm_page() will call rb_erase() and it
1641                          * may rebalance the tree from under us. So
1642                          * restart the search from scratch. Returning
1643                          * NULL would be safe too, but we'd generate
1644                          * false negative insertions just because some
1645                          * stable_node was stale.
1646                          */
1647                         goto again;
1648                 }
1649
1650                 ret = memcmp_pages(page, tree_page);
1651                 put_page(tree_page);
1652
1653                 parent = *new;
1654                 if (ret < 0)
1655                         new = &parent->rb_left;
1656                 else if (ret > 0)
1657                         new = &parent->rb_right;
1658                 else {
1659                         if (page_node) {
1660                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1661                                 /*
1662                                  * Test if the migrated page should be merged
1663                                  * into a stable node dup. If the mapcount is
1664                                  * 1 we can migrate it with another KSM page
1665                                  * without adding it to the chain.
1666                                  */
1667                                 if (page_mapcount(page) > 1)
1668                                         goto chain_append;
1669                         }
1670
1671                         if (!stable_node_dup) {
1672                                 /*
1673                                  * If the stable_node is a chain and
1674                                  * we got a payload match in memcmp
1675                                  * but we cannot merge the scanned
1676                                  * page in any of the existing
1677                                  * stable_node dups because they're
1678                                  * all full, we need to wait the
1679                                  * scanned page to find itself a match
1680                                  * in the unstable tree to create a
1681                                  * brand new KSM page to add later to
1682                                  * the dups of this stable_node.
1683                                  */
1684                                 return NULL;
1685                         }
1686
1687                         /*
1688                          * Lock and unlock the stable_node's page (which
1689                          * might already have been migrated) so that page
1690                          * migration is sure to notice its raised count.
1691                          * It would be more elegant to return stable_node
1692                          * than kpage, but that involves more changes.
1693                          */
1694                         tree_page = get_ksm_page(stable_node_dup,
1695                                                  GET_KSM_PAGE_TRYLOCK);
1696
1697                         if (PTR_ERR(tree_page) == -EBUSY)
1698                                 return ERR_PTR(-EBUSY);
1699
1700                         if (unlikely(!tree_page))
1701                                 /*
1702                                  * The tree may have been rebalanced,
1703                                  * so re-evaluate parent and new.
1704                                  */
1705                                 goto again;
1706                         unlock_page(tree_page);
1707
1708                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1709                             NUMA(stable_node_dup->nid)) {
1710                                 put_page(tree_page);
1711                                 goto replace;
1712                         }
1713                         return tree_page;
1714                 }
1715         }
1716
1717         if (!page_node)
1718                 return NULL;
1719
1720         list_del(&page_node->list);
1721         DO_NUMA(page_node->nid = nid);
1722         rb_link_node(&page_node->node, parent, new);
1723         rb_insert_color(&page_node->node, root);
1724 out:
1725         if (is_page_sharing_candidate(page_node)) {
1726                 get_page(page);
1727                 return page;
1728         } else
1729                 return NULL;
1730
1731 replace:
1732         /*
1733          * If stable_node was a chain and chain_prune collapsed it,
1734          * stable_node has been updated to be the new regular
1735          * stable_node. A collapse of the chain is indistinguishable
1736          * from the case there was no chain in the stable
1737          * rbtree. Otherwise stable_node is the chain and
1738          * stable_node_dup is the dup to replace.
1739          */
1740         if (stable_node_dup == stable_node) {
1741                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743                 /* there is no chain */
1744                 if (page_node) {
1745                         VM_BUG_ON(page_node->head != &migrate_nodes);
1746                         list_del(&page_node->list);
1747                         DO_NUMA(page_node->nid = nid);
1748                         rb_replace_node(&stable_node_dup->node,
1749                                         &page_node->node,
1750                                         root);
1751                         if (is_page_sharing_candidate(page_node))
1752                                 get_page(page);
1753                         else
1754                                 page = NULL;
1755                 } else {
1756                         rb_erase(&stable_node_dup->node, root);
1757                         page = NULL;
1758                 }
1759         } else {
1760                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1761                 __stable_node_dup_del(stable_node_dup);
1762                 if (page_node) {
1763                         VM_BUG_ON(page_node->head != &migrate_nodes);
1764                         list_del(&page_node->list);
1765                         DO_NUMA(page_node->nid = nid);
1766                         stable_node_chain_add_dup(page_node, stable_node);
1767                         if (is_page_sharing_candidate(page_node))
1768                                 get_page(page);
1769                         else
1770                                 page = NULL;
1771                 } else {
1772                         page = NULL;
1773                 }
1774         }
1775         stable_node_dup->head = &migrate_nodes;
1776         list_add(&stable_node_dup->list, stable_node_dup->head);
1777         return page;
1778
1779 chain_append:
1780         /* stable_node_dup could be null if it reached the limit */
1781         if (!stable_node_dup)
1782                 stable_node_dup = stable_node_any;
1783         /*
1784          * If stable_node was a chain and chain_prune collapsed it,
1785          * stable_node has been updated to be the new regular
1786          * stable_node. A collapse of the chain is indistinguishable
1787          * from the case there was no chain in the stable
1788          * rbtree. Otherwise stable_node is the chain and
1789          * stable_node_dup is the dup to replace.
1790          */
1791         if (stable_node_dup == stable_node) {
1792                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1793                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1794                 /* chain is missing so create it */
1795                 stable_node = alloc_stable_node_chain(stable_node_dup,
1796                                                       root);
1797                 if (!stable_node)
1798                         return NULL;
1799         }
1800         /*
1801          * Add this stable_node dup that was
1802          * migrated to the stable_node chain
1803          * of the current nid for this page
1804          * content.
1805          */
1806         VM_BUG_ON(!is_stable_node_chain(stable_node));
1807         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1808         VM_BUG_ON(page_node->head != &migrate_nodes);
1809         list_del(&page_node->list);
1810         DO_NUMA(page_node->nid = nid);
1811         stable_node_chain_add_dup(page_node, stable_node);
1812         goto out;
1813 }
1814
1815 /*
1816  * stable_tree_insert - insert stable tree node pointing to new ksm page
1817  * into the stable tree.
1818  *
1819  * This function returns the stable tree node just allocated on success,
1820  * NULL otherwise.
1821  */
1822 static struct stable_node *stable_tree_insert(struct page *kpage)
1823 {
1824         int nid;
1825         unsigned long kpfn;
1826         struct rb_root *root;
1827         struct rb_node **new;
1828         struct rb_node *parent;
1829         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1830         bool need_chain = false;
1831
1832         kpfn = page_to_pfn(kpage);
1833         nid = get_kpfn_nid(kpfn);
1834         root = root_stable_tree + nid;
1835 again:
1836         parent = NULL;
1837         new = &root->rb_node;
1838
1839         while (*new) {
1840                 struct page *tree_page;
1841                 int ret;
1842
1843                 cond_resched();
1844                 stable_node = rb_entry(*new, struct stable_node, node);
1845                 stable_node_any = NULL;
1846                 tree_page = chain(&stable_node_dup, stable_node, root);
1847                 if (!stable_node_dup) {
1848                         /*
1849                          * Either all stable_node dups were full in
1850                          * this stable_node chain, or this chain was
1851                          * empty and should be rb_erased.
1852                          */
1853                         stable_node_any = stable_node_dup_any(stable_node,
1854                                                               root);
1855                         if (!stable_node_any) {
1856                                 /* rb_erase just run */
1857                                 goto again;
1858                         }
1859                         /*
1860                          * Take any of the stable_node dups page of
1861                          * this stable_node chain to let the tree walk
1862                          * continue. All KSM pages belonging to the
1863                          * stable_node dups in a stable_node chain
1864                          * have the same content and they're
1865                          * wrprotected at all times. Any will work
1866                          * fine to continue the walk.
1867                          */
1868                         tree_page = get_ksm_page(stable_node_any,
1869                                                  GET_KSM_PAGE_NOLOCK);
1870                 }
1871                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1872                 if (!tree_page) {
1873                         /*
1874                          * If we walked over a stale stable_node,
1875                          * get_ksm_page() will call rb_erase() and it
1876                          * may rebalance the tree from under us. So
1877                          * restart the search from scratch. Returning
1878                          * NULL would be safe too, but we'd generate
1879                          * false negative insertions just because some
1880                          * stable_node was stale.
1881                          */
1882                         goto again;
1883                 }
1884
1885                 ret = memcmp_pages(kpage, tree_page);
1886                 put_page(tree_page);
1887
1888                 parent = *new;
1889                 if (ret < 0)
1890                         new = &parent->rb_left;
1891                 else if (ret > 0)
1892                         new = &parent->rb_right;
1893                 else {
1894                         need_chain = true;
1895                         break;
1896                 }
1897         }
1898
1899         stable_node_dup = alloc_stable_node();
1900         if (!stable_node_dup)
1901                 return NULL;
1902
1903         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1904         stable_node_dup->kpfn = kpfn;
1905         set_page_stable_node(kpage, stable_node_dup);
1906         stable_node_dup->rmap_hlist_len = 0;
1907         DO_NUMA(stable_node_dup->nid = nid);
1908         if (!need_chain) {
1909                 rb_link_node(&stable_node_dup->node, parent, new);
1910                 rb_insert_color(&stable_node_dup->node, root);
1911         } else {
1912                 if (!is_stable_node_chain(stable_node)) {
1913                         struct stable_node *orig = stable_node;
1914                         /* chain is missing so create it */
1915                         stable_node = alloc_stable_node_chain(orig, root);
1916                         if (!stable_node) {
1917                                 free_stable_node(stable_node_dup);
1918                                 return NULL;
1919                         }
1920                 }
1921                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1922         }
1923
1924         return stable_node_dup;
1925 }
1926
1927 /*
1928  * unstable_tree_search_insert - search for identical page,
1929  * else insert rmap_item into the unstable tree.
1930  *
1931  * This function searches for a page in the unstable tree identical to the
1932  * page currently being scanned; and if no identical page is found in the
1933  * tree, we insert rmap_item as a new object into the unstable tree.
1934  *
1935  * This function returns pointer to rmap_item found to be identical
1936  * to the currently scanned page, NULL otherwise.
1937  *
1938  * This function does both searching and inserting, because they share
1939  * the same walking algorithm in an rbtree.
1940  */
1941 static
1942 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1943                                               struct page *page,
1944                                               struct page **tree_pagep)
1945 {
1946         struct rb_node **new;
1947         struct rb_root *root;
1948         struct rb_node *parent = NULL;
1949         int nid;
1950
1951         nid = get_kpfn_nid(page_to_pfn(page));
1952         root = root_unstable_tree + nid;
1953         new = &root->rb_node;
1954
1955         while (*new) {
1956                 struct rmap_item *tree_rmap_item;
1957                 struct page *tree_page;
1958                 int ret;
1959
1960                 cond_resched();
1961                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1962                 tree_page = get_mergeable_page(tree_rmap_item);
1963                 if (!tree_page)
1964                         return NULL;
1965
1966                 /*
1967                  * Don't substitute a ksm page for a forked page.
1968                  */
1969                 if (page == tree_page) {
1970                         put_page(tree_page);
1971                         return NULL;
1972                 }
1973
1974                 ret = memcmp_pages(page, tree_page);
1975
1976                 parent = *new;
1977                 if (ret < 0) {
1978                         put_page(tree_page);
1979                         new = &parent->rb_left;
1980                 } else if (ret > 0) {
1981                         put_page(tree_page);
1982                         new = &parent->rb_right;
1983                 } else if (!ksm_merge_across_nodes &&
1984                            page_to_nid(tree_page) != nid) {
1985                         /*
1986                          * If tree_page has been migrated to another NUMA node,
1987                          * it will be flushed out and put in the right unstable
1988                          * tree next time: only merge with it when across_nodes.
1989                          */
1990                         put_page(tree_page);
1991                         return NULL;
1992                 } else {
1993                         *tree_pagep = tree_page;
1994                         return tree_rmap_item;
1995                 }
1996         }
1997
1998         rmap_item->address |= UNSTABLE_FLAG;
1999         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2000         DO_NUMA(rmap_item->nid = nid);
2001         rb_link_node(&rmap_item->node, parent, new);
2002         rb_insert_color(&rmap_item->node, root);
2003
2004         ksm_pages_unshared++;
2005         return NULL;
2006 }
2007
2008 /*
2009  * stable_tree_append - add another rmap_item to the linked list of
2010  * rmap_items hanging off a given node of the stable tree, all sharing
2011  * the same ksm page.
2012  */
2013 static void stable_tree_append(struct rmap_item *rmap_item,
2014                                struct stable_node *stable_node,
2015                                bool max_page_sharing_bypass)
2016 {
2017         /*
2018          * rmap won't find this mapping if we don't insert the
2019          * rmap_item in the right stable_node
2020          * duplicate. page_migration could break later if rmap breaks,
2021          * so we can as well crash here. We really need to check for
2022          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2023          * for other negative values as an undeflow if detected here
2024          * for the first time (and not when decreasing rmap_hlist_len)
2025          * would be sign of memory corruption in the stable_node.
2026          */
2027         BUG_ON(stable_node->rmap_hlist_len < 0);
2028
2029         stable_node->rmap_hlist_len++;
2030         if (!max_page_sharing_bypass)
2031                 /* possibly non fatal but unexpected overflow, only warn */
2032                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2033                              ksm_max_page_sharing);
2034
2035         rmap_item->head = stable_node;
2036         rmap_item->address |= STABLE_FLAG;
2037         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2038
2039         if (rmap_item->hlist.next)
2040                 ksm_pages_sharing++;
2041         else
2042                 ksm_pages_shared++;
2043 }
2044
2045 /*
2046  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2047  * if not, compare checksum to previous and if it's the same, see if page can
2048  * be inserted into the unstable tree, or merged with a page already there and
2049  * both transferred to the stable tree.
2050  *
2051  * @page: the page that we are searching identical page to.
2052  * @rmap_item: the reverse mapping into the virtual address of this page
2053  */
2054 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2055 {
2056         struct mm_struct *mm = rmap_item->mm;
2057         struct rmap_item *tree_rmap_item;
2058         struct page *tree_page = NULL;
2059         struct stable_node *stable_node;
2060         struct page *kpage;
2061         unsigned int checksum;
2062         int err;
2063         bool max_page_sharing_bypass = false;
2064
2065         stable_node = page_stable_node(page);
2066         if (stable_node) {
2067                 if (stable_node->head != &migrate_nodes &&
2068                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2069                     NUMA(stable_node->nid)) {
2070                         stable_node_dup_del(stable_node);
2071                         stable_node->head = &migrate_nodes;
2072                         list_add(&stable_node->list, stable_node->head);
2073                 }
2074                 if (stable_node->head != &migrate_nodes &&
2075                     rmap_item->head == stable_node)
2076                         return;
2077                 /*
2078                  * If it's a KSM fork, allow it to go over the sharing limit
2079                  * without warnings.
2080                  */
2081                 if (!is_page_sharing_candidate(stable_node))
2082                         max_page_sharing_bypass = true;
2083         }
2084
2085         /* We first start with searching the page inside the stable tree */
2086         kpage = stable_tree_search(page);
2087         if (kpage == page && rmap_item->head == stable_node) {
2088                 put_page(kpage);
2089                 return;
2090         }
2091
2092         remove_rmap_item_from_tree(rmap_item);
2093
2094         if (kpage) {
2095                 if (PTR_ERR(kpage) == -EBUSY)
2096                         return;
2097
2098                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2099                 if (!err) {
2100                         /*
2101                          * The page was successfully merged:
2102                          * add its rmap_item to the stable tree.
2103                          */
2104                         lock_page(kpage);
2105                         stable_tree_append(rmap_item, page_stable_node(kpage),
2106                                            max_page_sharing_bypass);
2107                         unlock_page(kpage);
2108                 }
2109                 put_page(kpage);
2110                 return;
2111         }
2112
2113         /*
2114          * If the hash value of the page has changed from the last time
2115          * we calculated it, this page is changing frequently: therefore we
2116          * don't want to insert it in the unstable tree, and we don't want
2117          * to waste our time searching for something identical to it there.
2118          */
2119         checksum = calc_checksum(page);
2120         if (rmap_item->oldchecksum != checksum) {
2121                 rmap_item->oldchecksum = checksum;
2122                 return;
2123         }
2124
2125         /*
2126          * Same checksum as an empty page. We attempt to merge it with the
2127          * appropriate zero page if the user enabled this via sysfs.
2128          */
2129         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2130                 struct vm_area_struct *vma;
2131
2132                 down_read(&mm->mmap_sem);
2133                 vma = find_mergeable_vma(mm, rmap_item->address);
2134                 err = try_to_merge_one_page(vma, page,
2135                                             ZERO_PAGE(rmap_item->address));
2136                 up_read(&mm->mmap_sem);
2137                 /*
2138                  * In case of failure, the page was not really empty, so we
2139                  * need to continue. Otherwise we're done.
2140                  */
2141                 if (!err)
2142                         return;
2143         }
2144         tree_rmap_item =
2145                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2146         if (tree_rmap_item) {
2147                 bool split;
2148
2149                 kpage = try_to_merge_two_pages(rmap_item, page,
2150                                                 tree_rmap_item, tree_page);
2151                 /*
2152                  * If both pages we tried to merge belong to the same compound
2153                  * page, then we actually ended up increasing the reference
2154                  * count of the same compound page twice, and split_huge_page
2155                  * failed.
2156                  * Here we set a flag if that happened, and we use it later to
2157                  * try split_huge_page again. Since we call put_page right
2158                  * afterwards, the reference count will be correct and
2159                  * split_huge_page should succeed.
2160                  */
2161                 split = PageTransCompound(page)
2162                         && compound_head(page) == compound_head(tree_page);
2163                 put_page(tree_page);
2164                 if (kpage) {
2165                         /*
2166                          * The pages were successfully merged: insert new
2167                          * node in the stable tree and add both rmap_items.
2168                          */
2169                         lock_page(kpage);
2170                         stable_node = stable_tree_insert(kpage);
2171                         if (stable_node) {
2172                                 stable_tree_append(tree_rmap_item, stable_node,
2173                                                    false);
2174                                 stable_tree_append(rmap_item, stable_node,
2175                                                    false);
2176                         }
2177                         unlock_page(kpage);
2178
2179                         /*
2180                          * If we fail to insert the page into the stable tree,
2181                          * we will have 2 virtual addresses that are pointing
2182                          * to a ksm page left outside the stable tree,
2183                          * in which case we need to break_cow on both.
2184                          */
2185                         if (!stable_node) {
2186                                 break_cow(tree_rmap_item);
2187                                 break_cow(rmap_item);
2188                         }
2189                 } else if (split) {
2190                         /*
2191                          * We are here if we tried to merge two pages and
2192                          * failed because they both belonged to the same
2193                          * compound page. We will split the page now, but no
2194                          * merging will take place.
2195                          * We do not want to add the cost of a full lock; if
2196                          * the page is locked, it is better to skip it and
2197                          * perhaps try again later.
2198                          */
2199                         if (!trylock_page(page))
2200                                 return;
2201                         split_huge_page(page);
2202                         unlock_page(page);
2203                 }
2204         }
2205 }
2206
2207 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2208                                             struct rmap_item **rmap_list,
2209                                             unsigned long addr)
2210 {
2211         struct rmap_item *rmap_item;
2212
2213         while (*rmap_list) {
2214                 rmap_item = *rmap_list;
2215                 if ((rmap_item->address & PAGE_MASK) == addr)
2216                         return rmap_item;
2217                 if (rmap_item->address > addr)
2218                         break;
2219                 *rmap_list = rmap_item->rmap_list;
2220                 remove_rmap_item_from_tree(rmap_item);
2221                 free_rmap_item(rmap_item);
2222         }
2223
2224         rmap_item = alloc_rmap_item();
2225         if (rmap_item) {
2226                 /* It has already been zeroed */
2227                 rmap_item->mm = mm_slot->mm;
2228                 rmap_item->address = addr;
2229                 rmap_item->rmap_list = *rmap_list;
2230                 *rmap_list = rmap_item;
2231         }
2232         return rmap_item;
2233 }
2234
2235 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2236 {
2237         struct mm_struct *mm;
2238         struct mm_slot *slot;
2239         struct vm_area_struct *vma;
2240         struct rmap_item *rmap_item;
2241         int nid;
2242
2243         if (list_empty(&ksm_mm_head.mm_list))
2244                 return NULL;
2245
2246         slot = ksm_scan.mm_slot;
2247         if (slot == &ksm_mm_head) {
2248                 /*
2249                  * A number of pages can hang around indefinitely on per-cpu
2250                  * pagevecs, raised page count preventing write_protect_page
2251                  * from merging them.  Though it doesn't really matter much,
2252                  * it is puzzling to see some stuck in pages_volatile until
2253                  * other activity jostles them out, and they also prevented
2254                  * LTP's KSM test from succeeding deterministically; so drain
2255                  * them here (here rather than on entry to ksm_do_scan(),
2256                  * so we don't IPI too often when pages_to_scan is set low).
2257                  */
2258                 lru_add_drain_all();
2259
2260                 /*
2261                  * Whereas stale stable_nodes on the stable_tree itself
2262                  * get pruned in the regular course of stable_tree_search(),
2263                  * those moved out to the migrate_nodes list can accumulate:
2264                  * so prune them once before each full scan.
2265                  */
2266                 if (!ksm_merge_across_nodes) {
2267                         struct stable_node *stable_node, *next;
2268                         struct page *page;
2269
2270                         list_for_each_entry_safe(stable_node, next,
2271                                                  &migrate_nodes, list) {
2272                                 page = get_ksm_page(stable_node,
2273                                                     GET_KSM_PAGE_NOLOCK);
2274                                 if (page)
2275                                         put_page(page);
2276                                 cond_resched();
2277                         }
2278                 }
2279
2280                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2281                         root_unstable_tree[nid] = RB_ROOT;
2282
2283                 spin_lock(&ksm_mmlist_lock);
2284                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2285                 ksm_scan.mm_slot = slot;
2286                 spin_unlock(&ksm_mmlist_lock);
2287                 /*
2288                  * Although we tested list_empty() above, a racing __ksm_exit
2289                  * of the last mm on the list may have removed it since then.
2290                  */
2291                 if (slot == &ksm_mm_head)
2292                         return NULL;
2293 next_mm:
2294                 ksm_scan.address = 0;
2295                 ksm_scan.rmap_list = &slot->rmap_list;
2296         }
2297
2298         mm = slot->mm;
2299         down_read(&mm->mmap_sem);
2300         if (ksm_test_exit(mm))
2301                 vma = NULL;
2302         else
2303                 vma = find_vma(mm, ksm_scan.address);
2304
2305         for (; vma; vma = vma->vm_next) {
2306                 if (!(vma->vm_flags & VM_MERGEABLE))
2307                         continue;
2308                 if (ksm_scan.address < vma->vm_start)
2309                         ksm_scan.address = vma->vm_start;
2310                 if (!vma->anon_vma)
2311                         ksm_scan.address = vma->vm_end;
2312
2313                 while (ksm_scan.address < vma->vm_end) {
2314                         if (ksm_test_exit(mm))
2315                                 break;
2316                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2317                         if (IS_ERR_OR_NULL(*page)) {
2318                                 ksm_scan.address += PAGE_SIZE;
2319                                 cond_resched();
2320                                 continue;
2321                         }
2322                         if (PageAnon(*page)) {
2323                                 flush_anon_page(vma, *page, ksm_scan.address);
2324                                 flush_dcache_page(*page);
2325                                 rmap_item = get_next_rmap_item(slot,
2326                                         ksm_scan.rmap_list, ksm_scan.address);
2327                                 if (rmap_item) {
2328                                         ksm_scan.rmap_list =
2329                                                         &rmap_item->rmap_list;
2330                                         ksm_scan.address += PAGE_SIZE;
2331                                 } else
2332                                         put_page(*page);
2333                                 up_read(&mm->mmap_sem);
2334                                 return rmap_item;
2335                         }
2336                         put_page(*page);
2337                         ksm_scan.address += PAGE_SIZE;
2338                         cond_resched();
2339                 }
2340         }
2341
2342         if (ksm_test_exit(mm)) {
2343                 ksm_scan.address = 0;
2344                 ksm_scan.rmap_list = &slot->rmap_list;
2345         }
2346         /*
2347          * Nuke all the rmap_items that are above this current rmap:
2348          * because there were no VM_MERGEABLE vmas with such addresses.
2349          */
2350         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2351
2352         spin_lock(&ksm_mmlist_lock);
2353         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2354                                                 struct mm_slot, mm_list);
2355         if (ksm_scan.address == 0) {
2356                 /*
2357                  * We've completed a full scan of all vmas, holding mmap_sem
2358                  * throughout, and found no VM_MERGEABLE: so do the same as
2359                  * __ksm_exit does to remove this mm from all our lists now.
2360                  * This applies either when cleaning up after __ksm_exit
2361                  * (but beware: we can reach here even before __ksm_exit),
2362                  * or when all VM_MERGEABLE areas have been unmapped (and
2363                  * mmap_sem then protects against race with MADV_MERGEABLE).
2364                  */
2365                 hash_del(&slot->link);
2366                 list_del(&slot->mm_list);
2367                 spin_unlock(&ksm_mmlist_lock);
2368
2369                 free_mm_slot(slot);
2370                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2371                 up_read(&mm->mmap_sem);
2372                 mmdrop(mm);
2373         } else {
2374                 up_read(&mm->mmap_sem);
2375                 /*
2376                  * up_read(&mm->mmap_sem) first because after
2377                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2378                  * already have been freed under us by __ksm_exit()
2379                  * because the "mm_slot" is still hashed and
2380                  * ksm_scan.mm_slot doesn't point to it anymore.
2381                  */
2382                 spin_unlock(&ksm_mmlist_lock);
2383         }
2384
2385         /* Repeat until we've completed scanning the whole list */
2386         slot = ksm_scan.mm_slot;
2387         if (slot != &ksm_mm_head)
2388                 goto next_mm;
2389
2390         ksm_scan.seqnr++;
2391         return NULL;
2392 }
2393
2394 /**
2395  * ksm_do_scan  - the ksm scanner main worker function.
2396  * @scan_npages:  number of pages we want to scan before we return.
2397  */
2398 static void ksm_do_scan(unsigned int scan_npages)
2399 {
2400         struct rmap_item *rmap_item;
2401         struct page *uninitialized_var(page);
2402
2403         while (scan_npages-- && likely(!freezing(current))) {
2404                 cond_resched();
2405                 rmap_item = scan_get_next_rmap_item(&page);
2406                 if (!rmap_item)
2407                         return;
2408                 cmp_and_merge_page(page, rmap_item);
2409                 put_page(page);
2410         }
2411 }
2412
2413 static int ksmd_should_run(void)
2414 {
2415         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2416 }
2417
2418 static int ksm_scan_thread(void *nothing)
2419 {
2420         unsigned int sleep_ms;
2421
2422         set_freezable();
2423         set_user_nice(current, 5);
2424
2425         while (!kthread_should_stop()) {
2426                 mutex_lock(&ksm_thread_mutex);
2427                 wait_while_offlining();
2428                 if (ksmd_should_run())
2429                         ksm_do_scan(ksm_thread_pages_to_scan);
2430                 mutex_unlock(&ksm_thread_mutex);
2431
2432                 try_to_freeze();
2433
2434                 if (ksmd_should_run()) {
2435                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2436                         wait_event_interruptible_timeout(ksm_iter_wait,
2437                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2438                                 msecs_to_jiffies(sleep_ms));
2439                 } else {
2440                         wait_event_freezable(ksm_thread_wait,
2441                                 ksmd_should_run() || kthread_should_stop());
2442                 }
2443         }
2444         return 0;
2445 }
2446
2447 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2448                 unsigned long end, int advice, unsigned long *vm_flags)
2449 {
2450         struct mm_struct *mm = vma->vm_mm;
2451         int err;
2452
2453         switch (advice) {
2454         case MADV_MERGEABLE:
2455                 /*
2456                  * Be somewhat over-protective for now!
2457                  */
2458                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2459                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2460                                  VM_HUGETLB | VM_MIXEDMAP))
2461                         return 0;               /* just ignore the advice */
2462
2463                 if (vma_is_dax(vma))
2464                         return 0;
2465
2466 #ifdef VM_SAO
2467                 if (*vm_flags & VM_SAO)
2468                         return 0;
2469 #endif
2470 #ifdef VM_SPARC_ADI
2471                 if (*vm_flags & VM_SPARC_ADI)
2472                         return 0;
2473 #endif
2474
2475                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2476                         err = __ksm_enter(mm);
2477                         if (err)
2478                                 return err;
2479                 }
2480
2481                 *vm_flags |= VM_MERGEABLE;
2482                 break;
2483
2484         case MADV_UNMERGEABLE:
2485                 if (!(*vm_flags & VM_MERGEABLE))
2486                         return 0;               /* just ignore the advice */
2487
2488                 if (vma->anon_vma) {
2489                         err = unmerge_ksm_pages(vma, start, end);
2490                         if (err)
2491                                 return err;
2492                 }
2493
2494                 *vm_flags &= ~VM_MERGEABLE;
2495                 break;
2496         }
2497
2498         return 0;
2499 }
2500
2501 int __ksm_enter(struct mm_struct *mm)
2502 {
2503         struct mm_slot *mm_slot;
2504         int needs_wakeup;
2505
2506         mm_slot = alloc_mm_slot();
2507         if (!mm_slot)
2508                 return -ENOMEM;
2509
2510         /* Check ksm_run too?  Would need tighter locking */
2511         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2512
2513         spin_lock(&ksm_mmlist_lock);
2514         insert_to_mm_slots_hash(mm, mm_slot);
2515         /*
2516          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2517          * insert just behind the scanning cursor, to let the area settle
2518          * down a little; when fork is followed by immediate exec, we don't
2519          * want ksmd to waste time setting up and tearing down an rmap_list.
2520          *
2521          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2522          * scanning cursor, otherwise KSM pages in newly forked mms will be
2523          * missed: then we might as well insert at the end of the list.
2524          */
2525         if (ksm_run & KSM_RUN_UNMERGE)
2526                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2527         else
2528                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2529         spin_unlock(&ksm_mmlist_lock);
2530
2531         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2532         mmgrab(mm);
2533
2534         if (needs_wakeup)
2535                 wake_up_interruptible(&ksm_thread_wait);
2536
2537         return 0;
2538 }
2539
2540 void __ksm_exit(struct mm_struct *mm)
2541 {
2542         struct mm_slot *mm_slot;
2543         int easy_to_free = 0;
2544
2545         /*
2546          * This process is exiting: if it's straightforward (as is the
2547          * case when ksmd was never running), free mm_slot immediately.
2548          * But if it's at the cursor or has rmap_items linked to it, use
2549          * mmap_sem to synchronize with any break_cows before pagetables
2550          * are freed, and leave the mm_slot on the list for ksmd to free.
2551          * Beware: ksm may already have noticed it exiting and freed the slot.
2552          */
2553
2554         spin_lock(&ksm_mmlist_lock);
2555         mm_slot = get_mm_slot(mm);
2556         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2557                 if (!mm_slot->rmap_list) {
2558                         hash_del(&mm_slot->link);
2559                         list_del(&mm_slot->mm_list);
2560                         easy_to_free = 1;
2561                 } else {
2562                         list_move(&mm_slot->mm_list,
2563                                   &ksm_scan.mm_slot->mm_list);
2564                 }
2565         }
2566         spin_unlock(&ksm_mmlist_lock);
2567
2568         if (easy_to_free) {
2569                 free_mm_slot(mm_slot);
2570                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2571                 mmdrop(mm);
2572         } else if (mm_slot) {
2573                 down_write(&mm->mmap_sem);
2574                 up_write(&mm->mmap_sem);
2575         }
2576 }
2577
2578 struct page *ksm_might_need_to_copy(struct page *page,
2579                         struct vm_area_struct *vma, unsigned long address)
2580 {
2581         struct anon_vma *anon_vma = page_anon_vma(page);
2582         struct page *new_page;
2583
2584         if (PageKsm(page)) {
2585                 if (page_stable_node(page) &&
2586                     !(ksm_run & KSM_RUN_UNMERGE))
2587                         return page;    /* no need to copy it */
2588         } else if (!anon_vma) {
2589                 return page;            /* no need to copy it */
2590         } else if (anon_vma->root == vma->anon_vma->root &&
2591                  page->index == linear_page_index(vma, address)) {
2592                 return page;            /* still no need to copy it */
2593         }
2594         if (!PageUptodate(page))
2595                 return page;            /* let do_swap_page report the error */
2596
2597         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2598         if (new_page) {
2599                 copy_user_highpage(new_page, page, address, vma);
2600
2601                 SetPageDirty(new_page);
2602                 __SetPageUptodate(new_page);
2603                 __SetPageLocked(new_page);
2604         }
2605
2606         return new_page;
2607 }
2608
2609 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2610 {
2611         struct stable_node *stable_node;
2612         struct rmap_item *rmap_item;
2613         int search_new_forks = 0;
2614
2615         VM_BUG_ON_PAGE(!PageKsm(page), page);
2616
2617         /*
2618          * Rely on the page lock to protect against concurrent modifications
2619          * to that page's node of the stable tree.
2620          */
2621         VM_BUG_ON_PAGE(!PageLocked(page), page);
2622
2623         stable_node = page_stable_node(page);
2624         if (!stable_node)
2625                 return;
2626 again:
2627         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2628                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2629                 struct anon_vma_chain *vmac;
2630                 struct vm_area_struct *vma;
2631
2632                 cond_resched();
2633                 anon_vma_lock_read(anon_vma);
2634                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2635                                                0, ULONG_MAX) {
2636                         unsigned long addr;
2637
2638                         cond_resched();
2639                         vma = vmac->vma;
2640
2641                         /* Ignore the stable/unstable/sqnr flags */
2642                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2643
2644                         if (addr < vma->vm_start || addr >= vma->vm_end)
2645                                 continue;
2646                         /*
2647                          * Initially we examine only the vma which covers this
2648                          * rmap_item; but later, if there is still work to do,
2649                          * we examine covering vmas in other mms: in case they
2650                          * were forked from the original since ksmd passed.
2651                          */
2652                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2653                                 continue;
2654
2655                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2656                                 continue;
2657
2658                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2659                                 anon_vma_unlock_read(anon_vma);
2660                                 return;
2661                         }
2662                         if (rwc->done && rwc->done(page)) {
2663                                 anon_vma_unlock_read(anon_vma);
2664                                 return;
2665                         }
2666                 }
2667                 anon_vma_unlock_read(anon_vma);
2668         }
2669         if (!search_new_forks++)
2670                 goto again;
2671 }
2672
2673 bool reuse_ksm_page(struct page *page,
2674                     struct vm_area_struct *vma,
2675                     unsigned long address)
2676 {
2677 #ifdef CONFIG_DEBUG_VM
2678         if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2679                         WARN_ON(!page_mapped(page)) ||
2680                         WARN_ON(!PageLocked(page))) {
2681                 dump_page(page, "reuse_ksm_page");
2682                 return false;
2683         }
2684 #endif
2685
2686         if (PageSwapCache(page) || !page_stable_node(page))
2687                 return false;
2688         /* Prohibit parallel get_ksm_page() */
2689         if (!page_ref_freeze(page, 1))
2690                 return false;
2691
2692         page_move_anon_rmap(page, vma);
2693         page->index = linear_page_index(vma, address);
2694         page_ref_unfreeze(page, 1);
2695
2696         return true;
2697 }
2698 #ifdef CONFIG_MIGRATION
2699 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2700 {
2701         struct stable_node *stable_node;
2702
2703         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2704         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2705         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2706
2707         stable_node = page_stable_node(newpage);
2708         if (stable_node) {
2709                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2710                 stable_node->kpfn = page_to_pfn(newpage);
2711                 /*
2712                  * newpage->mapping was set in advance; now we need smp_wmb()
2713                  * to make sure that the new stable_node->kpfn is visible
2714                  * to get_ksm_page() before it can see that oldpage->mapping
2715                  * has gone stale (or that PageSwapCache has been cleared).
2716                  */
2717                 smp_wmb();
2718                 set_page_stable_node(oldpage, NULL);
2719         }
2720 }
2721 #endif /* CONFIG_MIGRATION */
2722
2723 #ifdef CONFIG_MEMORY_HOTREMOVE
2724 static void wait_while_offlining(void)
2725 {
2726         while (ksm_run & KSM_RUN_OFFLINE) {
2727                 mutex_unlock(&ksm_thread_mutex);
2728                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2729                             TASK_UNINTERRUPTIBLE);
2730                 mutex_lock(&ksm_thread_mutex);
2731         }
2732 }
2733
2734 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2735                                          unsigned long start_pfn,
2736                                          unsigned long end_pfn)
2737 {
2738         if (stable_node->kpfn >= start_pfn &&
2739             stable_node->kpfn < end_pfn) {
2740                 /*
2741                  * Don't get_ksm_page, page has already gone:
2742                  * which is why we keep kpfn instead of page*
2743                  */
2744                 remove_node_from_stable_tree(stable_node);
2745                 return true;
2746         }
2747         return false;
2748 }
2749
2750 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2751                                            unsigned long start_pfn,
2752                                            unsigned long end_pfn,
2753                                            struct rb_root *root)
2754 {
2755         struct stable_node *dup;
2756         struct hlist_node *hlist_safe;
2757
2758         if (!is_stable_node_chain(stable_node)) {
2759                 VM_BUG_ON(is_stable_node_dup(stable_node));
2760                 return stable_node_dup_remove_range(stable_node, start_pfn,
2761                                                     end_pfn);
2762         }
2763
2764         hlist_for_each_entry_safe(dup, hlist_safe,
2765                                   &stable_node->hlist, hlist_dup) {
2766                 VM_BUG_ON(!is_stable_node_dup(dup));
2767                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2768         }
2769         if (hlist_empty(&stable_node->hlist)) {
2770                 free_stable_node_chain(stable_node, root);
2771                 return true; /* notify caller that tree was rebalanced */
2772         } else
2773                 return false;
2774 }
2775
2776 static void ksm_check_stable_tree(unsigned long start_pfn,
2777                                   unsigned long end_pfn)
2778 {
2779         struct stable_node *stable_node, *next;
2780         struct rb_node *node;
2781         int nid;
2782
2783         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2784                 node = rb_first(root_stable_tree + nid);
2785                 while (node) {
2786                         stable_node = rb_entry(node, struct stable_node, node);
2787                         if (stable_node_chain_remove_range(stable_node,
2788                                                            start_pfn, end_pfn,
2789                                                            root_stable_tree +
2790                                                            nid))
2791                                 node = rb_first(root_stable_tree + nid);
2792                         else
2793                                 node = rb_next(node);
2794                         cond_resched();
2795                 }
2796         }
2797         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2798                 if (stable_node->kpfn >= start_pfn &&
2799                     stable_node->kpfn < end_pfn)
2800                         remove_node_from_stable_tree(stable_node);
2801                 cond_resched();
2802         }
2803 }
2804
2805 static int ksm_memory_callback(struct notifier_block *self,
2806                                unsigned long action, void *arg)
2807 {
2808         struct memory_notify *mn = arg;
2809
2810         switch (action) {
2811         case MEM_GOING_OFFLINE:
2812                 /*
2813                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2814                  * and remove_all_stable_nodes() while memory is going offline:
2815                  * it is unsafe for them to touch the stable tree at this time.
2816                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2817                  * which do not need the ksm_thread_mutex are all safe.
2818                  */
2819                 mutex_lock(&ksm_thread_mutex);
2820                 ksm_run |= KSM_RUN_OFFLINE;
2821                 mutex_unlock(&ksm_thread_mutex);
2822                 break;
2823
2824         case MEM_OFFLINE:
2825                 /*
2826                  * Most of the work is done by page migration; but there might
2827                  * be a few stable_nodes left over, still pointing to struct
2828                  * pages which have been offlined: prune those from the tree,
2829                  * otherwise get_ksm_page() might later try to access a
2830                  * non-existent struct page.
2831                  */
2832                 ksm_check_stable_tree(mn->start_pfn,
2833                                       mn->start_pfn + mn->nr_pages);
2834                 /* fallthrough */
2835
2836         case MEM_CANCEL_OFFLINE:
2837                 mutex_lock(&ksm_thread_mutex);
2838                 ksm_run &= ~KSM_RUN_OFFLINE;
2839                 mutex_unlock(&ksm_thread_mutex);
2840
2841                 smp_mb();       /* wake_up_bit advises this */
2842                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2843                 break;
2844         }
2845         return NOTIFY_OK;
2846 }
2847 #else
2848 static void wait_while_offlining(void)
2849 {
2850 }
2851 #endif /* CONFIG_MEMORY_HOTREMOVE */
2852
2853 #ifdef CONFIG_SYSFS
2854 /*
2855  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2856  */
2857
2858 #define KSM_ATTR_RO(_name) \
2859         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2860 #define KSM_ATTR(_name) \
2861         static struct kobj_attribute _name##_attr = \
2862                 __ATTR(_name, 0644, _name##_show, _name##_store)
2863
2864 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2865                                     struct kobj_attribute *attr, char *buf)
2866 {
2867         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2868 }
2869
2870 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2871                                      struct kobj_attribute *attr,
2872                                      const char *buf, size_t count)
2873 {
2874         unsigned long msecs;
2875         int err;
2876
2877         err = kstrtoul(buf, 10, &msecs);
2878         if (err || msecs > UINT_MAX)
2879                 return -EINVAL;
2880
2881         ksm_thread_sleep_millisecs = msecs;
2882         wake_up_interruptible(&ksm_iter_wait);
2883
2884         return count;
2885 }
2886 KSM_ATTR(sleep_millisecs);
2887
2888 static ssize_t pages_to_scan_show(struct kobject *kobj,
2889                                   struct kobj_attribute *attr, char *buf)
2890 {
2891         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2892 }
2893
2894 static ssize_t pages_to_scan_store(struct kobject *kobj,
2895                                    struct kobj_attribute *attr,
2896                                    const char *buf, size_t count)
2897 {
2898         int err;
2899         unsigned long nr_pages;
2900
2901         err = kstrtoul(buf, 10, &nr_pages);
2902         if (err || nr_pages > UINT_MAX)
2903                 return -EINVAL;
2904
2905         ksm_thread_pages_to_scan = nr_pages;
2906
2907         return count;
2908 }
2909 KSM_ATTR(pages_to_scan);
2910
2911 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2912                         char *buf)
2913 {
2914         return sprintf(buf, "%lu\n", ksm_run);
2915 }
2916
2917 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2918                          const char *buf, size_t count)
2919 {
2920         int err;
2921         unsigned long flags;
2922
2923         err = kstrtoul(buf, 10, &flags);
2924         if (err || flags > UINT_MAX)
2925                 return -EINVAL;
2926         if (flags > KSM_RUN_UNMERGE)
2927                 return -EINVAL;
2928
2929         /*
2930          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2931          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2932          * breaking COW to free the pages_shared (but leaves mm_slots
2933          * on the list for when ksmd may be set running again).
2934          */
2935
2936         mutex_lock(&ksm_thread_mutex);
2937         wait_while_offlining();
2938         if (ksm_run != flags) {
2939                 ksm_run = flags;
2940                 if (flags & KSM_RUN_UNMERGE) {
2941                         set_current_oom_origin();
2942                         err = unmerge_and_remove_all_rmap_items();
2943                         clear_current_oom_origin();
2944                         if (err) {
2945                                 ksm_run = KSM_RUN_STOP;
2946                                 count = err;
2947                         }
2948                 }
2949         }
2950         mutex_unlock(&ksm_thread_mutex);
2951
2952         if (flags & KSM_RUN_MERGE)
2953                 wake_up_interruptible(&ksm_thread_wait);
2954
2955         return count;
2956 }
2957 KSM_ATTR(run);
2958
2959 #ifdef CONFIG_NUMA
2960 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2961                                 struct kobj_attribute *attr, char *buf)
2962 {
2963         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2964 }
2965
2966 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2967                                    struct kobj_attribute *attr,
2968                                    const char *buf, size_t count)
2969 {
2970         int err;
2971         unsigned long knob;
2972
2973         err = kstrtoul(buf, 10, &knob);
2974         if (err)
2975                 return err;
2976         if (knob > 1)
2977                 return -EINVAL;
2978
2979         mutex_lock(&ksm_thread_mutex);
2980         wait_while_offlining();
2981         if (ksm_merge_across_nodes != knob) {
2982                 if (ksm_pages_shared || remove_all_stable_nodes())
2983                         err = -EBUSY;
2984                 else if (root_stable_tree == one_stable_tree) {
2985                         struct rb_root *buf;
2986                         /*
2987                          * This is the first time that we switch away from the
2988                          * default of merging across nodes: must now allocate
2989                          * a buffer to hold as many roots as may be needed.
2990                          * Allocate stable and unstable together:
2991                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2992                          */
2993                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2994                                       GFP_KERNEL);
2995                         /* Let us assume that RB_ROOT is NULL is zero */
2996                         if (!buf)
2997                                 err = -ENOMEM;
2998                         else {
2999                                 root_stable_tree = buf;
3000                                 root_unstable_tree = buf + nr_node_ids;
3001                                 /* Stable tree is empty but not the unstable */
3002                                 root_unstable_tree[0] = one_unstable_tree[0];
3003                         }
3004                 }
3005                 if (!err) {
3006                         ksm_merge_across_nodes = knob;
3007                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3008                 }
3009         }
3010         mutex_unlock(&ksm_thread_mutex);
3011
3012         return err ? err : count;
3013 }
3014 KSM_ATTR(merge_across_nodes);
3015 #endif
3016
3017 static ssize_t use_zero_pages_show(struct kobject *kobj,
3018                                 struct kobj_attribute *attr, char *buf)
3019 {
3020         return sprintf(buf, "%u\n", ksm_use_zero_pages);
3021 }
3022 static ssize_t use_zero_pages_store(struct kobject *kobj,
3023                                    struct kobj_attribute *attr,
3024                                    const char *buf, size_t count)
3025 {
3026         int err;
3027         bool value;
3028
3029         err = kstrtobool(buf, &value);
3030         if (err)
3031                 return -EINVAL;
3032
3033         ksm_use_zero_pages = value;
3034
3035         return count;
3036 }
3037 KSM_ATTR(use_zero_pages);
3038
3039 static ssize_t max_page_sharing_show(struct kobject *kobj,
3040                                      struct kobj_attribute *attr, char *buf)
3041 {
3042         return sprintf(buf, "%u\n", ksm_max_page_sharing);
3043 }
3044
3045 static ssize_t max_page_sharing_store(struct kobject *kobj,
3046                                       struct kobj_attribute *attr,
3047                                       const char *buf, size_t count)
3048 {
3049         int err;
3050         int knob;
3051
3052         err = kstrtoint(buf, 10, &knob);
3053         if (err)
3054                 return err;
3055         /*
3056          * When a KSM page is created it is shared by 2 mappings. This
3057          * being a signed comparison, it implicitly verifies it's not
3058          * negative.
3059          */
3060         if (knob < 2)
3061                 return -EINVAL;
3062
3063         if (READ_ONCE(ksm_max_page_sharing) == knob)
3064                 return count;
3065
3066         mutex_lock(&ksm_thread_mutex);
3067         wait_while_offlining();
3068         if (ksm_max_page_sharing != knob) {
3069                 if (ksm_pages_shared || remove_all_stable_nodes())
3070                         err = -EBUSY;
3071                 else
3072                         ksm_max_page_sharing = knob;
3073         }
3074         mutex_unlock(&ksm_thread_mutex);
3075
3076         return err ? err : count;
3077 }
3078 KSM_ATTR(max_page_sharing);
3079
3080 static ssize_t pages_shared_show(struct kobject *kobj,
3081                                  struct kobj_attribute *attr, char *buf)
3082 {
3083         return sprintf(buf, "%lu\n", ksm_pages_shared);
3084 }
3085 KSM_ATTR_RO(pages_shared);
3086
3087 static ssize_t pages_sharing_show(struct kobject *kobj,
3088                                   struct kobj_attribute *attr, char *buf)
3089 {
3090         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3091 }
3092 KSM_ATTR_RO(pages_sharing);
3093
3094 static ssize_t pages_unshared_show(struct kobject *kobj,
3095                                    struct kobj_attribute *attr, char *buf)
3096 {
3097         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3098 }
3099 KSM_ATTR_RO(pages_unshared);
3100
3101 static ssize_t pages_volatile_show(struct kobject *kobj,
3102                                    struct kobj_attribute *attr, char *buf)
3103 {
3104         long ksm_pages_volatile;
3105
3106         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3107                                 - ksm_pages_sharing - ksm_pages_unshared;
3108         /*
3109          * It was not worth any locking to calculate that statistic,
3110          * but it might therefore sometimes be negative: conceal that.
3111          */
3112         if (ksm_pages_volatile < 0)
3113                 ksm_pages_volatile = 0;
3114         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3115 }
3116 KSM_ATTR_RO(pages_volatile);
3117
3118 static ssize_t stable_node_dups_show(struct kobject *kobj,
3119                                      struct kobj_attribute *attr, char *buf)
3120 {
3121         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3122 }
3123 KSM_ATTR_RO(stable_node_dups);
3124
3125 static ssize_t stable_node_chains_show(struct kobject *kobj,
3126                                        struct kobj_attribute *attr, char *buf)
3127 {
3128         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3129 }
3130 KSM_ATTR_RO(stable_node_chains);
3131
3132 static ssize_t
3133 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3134                                         struct kobj_attribute *attr,
3135                                         char *buf)
3136 {
3137         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3138 }
3139
3140 static ssize_t
3141 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3142                                          struct kobj_attribute *attr,
3143                                          const char *buf, size_t count)
3144 {
3145         unsigned long msecs;
3146         int err;
3147
3148         err = kstrtoul(buf, 10, &msecs);
3149         if (err || msecs > UINT_MAX)
3150                 return -EINVAL;
3151
3152         ksm_stable_node_chains_prune_millisecs = msecs;
3153
3154         return count;
3155 }
3156 KSM_ATTR(stable_node_chains_prune_millisecs);
3157
3158 static ssize_t full_scans_show(struct kobject *kobj,
3159                                struct kobj_attribute *attr, char *buf)
3160 {
3161         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3162 }
3163 KSM_ATTR_RO(full_scans);
3164
3165 static struct attribute *ksm_attrs[] = {
3166         &sleep_millisecs_attr.attr,
3167         &pages_to_scan_attr.attr,
3168         &run_attr.attr,
3169         &pages_shared_attr.attr,
3170         &pages_sharing_attr.attr,
3171         &pages_unshared_attr.attr,
3172         &pages_volatile_attr.attr,
3173         &full_scans_attr.attr,
3174 #ifdef CONFIG_NUMA
3175         &merge_across_nodes_attr.attr,
3176 #endif
3177         &max_page_sharing_attr.attr,
3178         &stable_node_chains_attr.attr,
3179         &stable_node_dups_attr.attr,
3180         &stable_node_chains_prune_millisecs_attr.attr,
3181         &use_zero_pages_attr.attr,
3182         NULL,
3183 };
3184
3185 static const struct attribute_group ksm_attr_group = {
3186         .attrs = ksm_attrs,
3187         .name = "ksm",
3188 };
3189 #endif /* CONFIG_SYSFS */
3190
3191 static int __init ksm_init(void)
3192 {
3193         struct task_struct *ksm_thread;
3194         int err;
3195
3196         /* The correct value depends on page size and endianness */
3197         zero_checksum = calc_checksum(ZERO_PAGE(0));
3198         /* Default to false for backwards compatibility */
3199         ksm_use_zero_pages = false;
3200
3201         err = ksm_slab_init();
3202         if (err)
3203                 goto out;
3204
3205         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3206         if (IS_ERR(ksm_thread)) {
3207                 pr_err("ksm: creating kthread failed\n");
3208                 err = PTR_ERR(ksm_thread);
3209                 goto out_free;
3210         }
3211
3212 #ifdef CONFIG_SYSFS
3213         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3214         if (err) {
3215                 pr_err("ksm: register sysfs failed\n");
3216                 kthread_stop(ksm_thread);
3217                 goto out_free;
3218         }
3219 #else
3220         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3221
3222 #endif /* CONFIG_SYSFS */
3223
3224 #ifdef CONFIG_MEMORY_HOTREMOVE
3225         /* There is no significance to this priority 100 */
3226         hotplug_memory_notifier(ksm_memory_callback, 100);
3227 #endif
3228         return 0;
3229
3230 out_free:
3231         ksm_slab_free();
3232 out:
3233         return err;
3234 }
3235 subsys_initcall(ksm_init);