mm/mmu_notifier: contextual information for event triggering invalidation
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77         bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79         spin_unlock(&spool->lock);
80
81         /* If no pages are used, and no other handles to the subpool
82          * remain, give up any reservations mased on minimum size and
83          * free the subpool */
84         if (free) {
85                 if (spool->min_hpages != -1)
86                         hugetlb_acct_memory(spool->hstate,
87                                                 -spool->min_hpages);
88                 kfree(spool);
89         }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93                                                 long min_hpages)
94 {
95         struct hugepage_subpool *spool;
96
97         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98         if (!spool)
99                 return NULL;
100
101         spin_lock_init(&spool->lock);
102         spool->count = 1;
103         spool->max_hpages = max_hpages;
104         spool->hstate = h;
105         spool->min_hpages = min_hpages;
106
107         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108                 kfree(spool);
109                 return NULL;
110         }
111         spool->rsv_hpages = min_hpages;
112
113         return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118         spin_lock(&spool->lock);
119         BUG_ON(!spool->count);
120         spool->count--;
121         unlock_or_release_subpool(spool);
122 }
123
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133                                       long delta)
134 {
135         long ret = delta;
136
137         if (!spool)
138                 return ret;
139
140         spin_lock(&spool->lock);
141
142         if (spool->max_hpages != -1) {          /* maximum size accounting */
143                 if ((spool->used_hpages + delta) <= spool->max_hpages)
144                         spool->used_hpages += delta;
145                 else {
146                         ret = -ENOMEM;
147                         goto unlock_ret;
148                 }
149         }
150
151         /* minimum size accounting */
152         if (spool->min_hpages != -1 && spool->rsv_hpages) {
153                 if (delta > spool->rsv_hpages) {
154                         /*
155                          * Asking for more reserves than those already taken on
156                          * behalf of subpool.  Return difference.
157                          */
158                         ret = delta - spool->rsv_hpages;
159                         spool->rsv_hpages = 0;
160                 } else {
161                         ret = 0;        /* reserves already accounted for */
162                         spool->rsv_hpages -= delta;
163                 }
164         }
165
166 unlock_ret:
167         spin_unlock(&spool->lock);
168         return ret;
169 }
170
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178                                        long delta)
179 {
180         long ret = delta;
181
182         if (!spool)
183                 return delta;
184
185         spin_lock(&spool->lock);
186
187         if (spool->max_hpages != -1)            /* maximum size accounting */
188                 spool->used_hpages -= delta;
189
190          /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192                 if (spool->rsv_hpages + delta <= spool->min_hpages)
193                         ret = 0;
194                 else
195                         ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197                 spool->rsv_hpages += delta;
198                 if (spool->rsv_hpages > spool->min_hpages)
199                         spool->rsv_hpages = spool->min_hpages;
200         }
201
202         /*
203          * If hugetlbfs_put_super couldn't free spool due to an outstanding
204          * quota reference, free it now.
205          */
206         unlock_or_release_subpool(spool);
207
208         return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213         return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218         return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241         struct list_head link;
242         long from;
243         long to;
244 };
245
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *nrg, *trg;
264         long add = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (f <= rg->to)
270                         break;
271
272         /*
273          * If no region exists which can be expanded to include the
274          * specified range, the list must have been modified by an
275          * interleving call to region_del().  Pull a region descriptor
276          * from the cache and use it for this range.
277          */
278         if (&rg->link == head || t < rg->from) {
279                 VM_BUG_ON(resv->region_cache_count <= 0);
280
281                 resv->region_cache_count--;
282                 nrg = list_first_entry(&resv->region_cache, struct file_region,
283                                         link);
284                 list_del(&nrg->link);
285
286                 nrg->from = f;
287                 nrg->to = t;
288                 list_add(&nrg->link, rg->link.prev);
289
290                 add += t - f;
291                 goto out_locked;
292         }
293
294         /* Round our left edge to the current segment if it encloses us. */
295         if (f > rg->from)
296                 f = rg->from;
297
298         /* Check for and consume any regions we now overlap with. */
299         nrg = rg;
300         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301                 if (&rg->link == head)
302                         break;
303                 if (rg->from > t)
304                         break;
305
306                 /* If this area reaches higher then extend our area to
307                  * include it completely.  If this is not the first area
308                  * which we intend to reuse, free it. */
309                 if (rg->to > t)
310                         t = rg->to;
311                 if (rg != nrg) {
312                         /* Decrement return value by the deleted range.
313                          * Another range will span this area so that by
314                          * end of routine add will be >= zero
315                          */
316                         add -= (rg->to - rg->from);
317                         list_del(&rg->link);
318                         kfree(rg);
319                 }
320         }
321
322         add += (nrg->from - f);         /* Added to beginning of region */
323         nrg->from = f;
324         add += t - nrg->to;             /* Added to end of region */
325         nrg->to = t;
326
327 out_locked:
328         resv->adds_in_progress--;
329         spin_unlock(&resv->lock);
330         VM_BUG_ON(add < 0);
331         return add;
332 }
333
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358         struct list_head *head = &resv->regions;
359         struct file_region *rg, *nrg = NULL;
360         long chg = 0;
361
362 retry:
363         spin_lock(&resv->lock);
364 retry_locked:
365         resv->adds_in_progress++;
366
367         /*
368          * Check for sufficient descriptors in the cache to accommodate
369          * the number of in progress add operations.
370          */
371         if (resv->adds_in_progress > resv->region_cache_count) {
372                 struct file_region *trg;
373
374                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375                 /* Must drop lock to allocate a new descriptor. */
376                 resv->adds_in_progress--;
377                 spin_unlock(&resv->lock);
378
379                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380                 if (!trg) {
381                         kfree(nrg);
382                         return -ENOMEM;
383                 }
384
385                 spin_lock(&resv->lock);
386                 list_add(&trg->link, &resv->region_cache);
387                 resv->region_cache_count++;
388                 goto retry_locked;
389         }
390
391         /* Locate the region we are before or in. */
392         list_for_each_entry(rg, head, link)
393                 if (f <= rg->to)
394                         break;
395
396         /* If we are below the current region then a new region is required.
397          * Subtle, allocate a new region at the position but make it zero
398          * size such that we can guarantee to record the reservation. */
399         if (&rg->link == head || t < rg->from) {
400                 if (!nrg) {
401                         resv->adds_in_progress--;
402                         spin_unlock(&resv->lock);
403                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404                         if (!nrg)
405                                 return -ENOMEM;
406
407                         nrg->from = f;
408                         nrg->to   = f;
409                         INIT_LIST_HEAD(&nrg->link);
410                         goto retry;
411                 }
412
413                 list_add(&nrg->link, rg->link.prev);
414                 chg = t - f;
415                 goto out_nrg;
416         }
417
418         /* Round our left edge to the current segment if it encloses us. */
419         if (f > rg->from)
420                 f = rg->from;
421         chg = t - f;
422
423         /* Check for and consume any regions we now overlap with. */
424         list_for_each_entry(rg, rg->link.prev, link) {
425                 if (&rg->link == head)
426                         break;
427                 if (rg->from > t)
428                         goto out;
429
430                 /* We overlap with this area, if it extends further than
431                  * us then we must extend ourselves.  Account for its
432                  * existing reservation. */
433                 if (rg->to > t) {
434                         chg += rg->to - t;
435                         t = rg->to;
436                 }
437                 chg -= rg->to - rg->from;
438         }
439
440 out:
441         spin_unlock(&resv->lock);
442         /*  We already know we raced and no longer need the new region */
443         kfree(nrg);
444         return chg;
445 out_nrg:
446         spin_unlock(&resv->lock);
447         return chg;
448 }
449
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463         spin_lock(&resv->lock);
464         VM_BUG_ON(!resv->region_cache_count);
465         resv->adds_in_progress--;
466         spin_unlock(&resv->lock);
467 }
468
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485         struct list_head *head = &resv->regions;
486         struct file_region *rg, *trg;
487         struct file_region *nrg = NULL;
488         long del = 0;
489
490 retry:
491         spin_lock(&resv->lock);
492         list_for_each_entry_safe(rg, trg, head, link) {
493                 /*
494                  * Skip regions before the range to be deleted.  file_region
495                  * ranges are normally of the form [from, to).  However, there
496                  * may be a "placeholder" entry in the map which is of the form
497                  * (from, to) with from == to.  Check for placeholder entries
498                  * at the beginning of the range to be deleted.
499                  */
500                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501                         continue;
502
503                 if (rg->from >= t)
504                         break;
505
506                 if (f > rg->from && t < rg->to) { /* Must split region */
507                         /*
508                          * Check for an entry in the cache before dropping
509                          * lock and attempting allocation.
510                          */
511                         if (!nrg &&
512                             resv->region_cache_count > resv->adds_in_progress) {
513                                 nrg = list_first_entry(&resv->region_cache,
514                                                         struct file_region,
515                                                         link);
516                                 list_del(&nrg->link);
517                                 resv->region_cache_count--;
518                         }
519
520                         if (!nrg) {
521                                 spin_unlock(&resv->lock);
522                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523                                 if (!nrg)
524                                         return -ENOMEM;
525                                 goto retry;
526                         }
527
528                         del += t - f;
529
530                         /* New entry for end of split region */
531                         nrg->from = t;
532                         nrg->to = rg->to;
533                         INIT_LIST_HEAD(&nrg->link);
534
535                         /* Original entry is trimmed */
536                         rg->to = f;
537
538                         list_add(&nrg->link, &rg->link);
539                         nrg = NULL;
540                         break;
541                 }
542
543                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544                         del += rg->to - rg->from;
545                         list_del(&rg->link);
546                         kfree(rg);
547                         continue;
548                 }
549
550                 if (f <= rg->from) {    /* Trim beginning of region */
551                         del += t - rg->from;
552                         rg->from = t;
553                 } else {                /* Trim end of region */
554                         del += rg->to - f;
555                         rg->to = f;
556                 }
557         }
558
559         spin_unlock(&resv->lock);
560         kfree(nrg);
561         return del;
562 }
563
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575         struct hugepage_subpool *spool = subpool_inode(inode);
576         long rsv_adjust;
577
578         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579         if (rsv_adjust) {
580                 struct hstate *h = hstate_inode(inode);
581
582                 hugetlb_acct_memory(h, 1);
583         }
584 }
585
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592         struct list_head *head = &resv->regions;
593         struct file_region *rg;
594         long chg = 0;
595
596         spin_lock(&resv->lock);
597         /* Locate each segment we overlap with, and count that overlap. */
598         list_for_each_entry(rg, head, link) {
599                 long seg_from;
600                 long seg_to;
601
602                 if (rg->to <= f)
603                         continue;
604                 if (rg->from >= t)
605                         break;
606
607                 seg_from = max(rg->from, f);
608                 seg_to = min(rg->to, t);
609
610                 chg += seg_to - seg_from;
611         }
612         spin_unlock(&resv->lock);
613
614         return chg;
615 }
616
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622                         struct vm_area_struct *vma, unsigned long address)
623 {
624         return ((address - vma->vm_start) >> huge_page_shift(h)) +
625                         (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629                                      unsigned long address)
630 {
631         return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641         if (vma->vm_ops && vma->vm_ops->pagesize)
642                 return vma->vm_ops->pagesize(vma);
643         return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832                 /*
833                  * Like the shared case above, a hole punch or truncate
834                  * could have been performed on the private mapping.
835                  * Examine the value of chg to determine if reserves
836                  * actually exist or were previously consumed.
837                  * Very Subtle - The value of chg comes from a previous
838                  * call to vma_needs_reserves().  The reserve map for
839                  * private mappings has different (opposite) semantics
840                  * than that of shared mappings.  vma_needs_reserves()
841                  * has already taken this difference in semantics into
842                  * account.  Therefore, the meaning of chg is the same
843                  * as in the shared case above.  Code could easily be
844                  * combined, but keeping it separate draws attention to
845                  * subtle differences.
846                  */
847                 if (chg)
848                         return false;
849                 else
850                         return true;
851         }
852
853         return false;
854 }
855
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858         int nid = page_to_nid(page);
859         list_move(&page->lru, &h->hugepage_freelists[nid]);
860         h->free_huge_pages++;
861         h->free_huge_pages_node[nid]++;
862 }
863
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866         struct page *page;
867
868         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869                 if (!PageHWPoison(page))
870                         break;
871         /*
872          * if 'non-isolated free hugepage' not found on the list,
873          * the allocation fails.
874          */
875         if (&h->hugepage_freelists[nid] == &page->lru)
876                 return NULL;
877         list_move(&page->lru, &h->hugepage_activelist);
878         set_page_refcounted(page);
879         h->free_huge_pages--;
880         h->free_huge_pages_node[nid]--;
881         return page;
882 }
883
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885                 nodemask_t *nmask)
886 {
887         unsigned int cpuset_mems_cookie;
888         struct zonelist *zonelist;
889         struct zone *zone;
890         struct zoneref *z;
891         int node = NUMA_NO_NODE;
892
893         zonelist = node_zonelist(nid, gfp_mask);
894
895 retry_cpuset:
896         cpuset_mems_cookie = read_mems_allowed_begin();
897         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898                 struct page *page;
899
900                 if (!cpuset_zone_allowed(zone, gfp_mask))
901                         continue;
902                 /*
903                  * no need to ask again on the same node. Pool is node rather than
904                  * zone aware
905                  */
906                 if (zone_to_nid(zone) == node)
907                         continue;
908                 node = zone_to_nid(zone);
909
910                 page = dequeue_huge_page_node_exact(h, node);
911                 if (page)
912                         return page;
913         }
914         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916
917         return NULL;
918 }
919
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923         if (hugepage_movable_supported(h))
924                 return GFP_HIGHUSER_MOVABLE;
925         else
926                 return GFP_HIGHUSER;
927 }
928
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930                                 struct vm_area_struct *vma,
931                                 unsigned long address, int avoid_reserve,
932                                 long chg)
933 {
934         struct page *page;
935         struct mempolicy *mpol;
936         gfp_t gfp_mask;
937         nodemask_t *nodemask;
938         int nid;
939
940         /*
941          * A child process with MAP_PRIVATE mappings created by their parent
942          * have no page reserves. This check ensures that reservations are
943          * not "stolen". The child may still get SIGKILLed
944          */
945         if (!vma_has_reserves(vma, chg) &&
946                         h->free_huge_pages - h->resv_huge_pages == 0)
947                 goto err;
948
949         /* If reserves cannot be used, ensure enough pages are in the pool */
950         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951                 goto err;
952
953         gfp_mask = htlb_alloc_mask(h);
954         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957                 SetPagePrivate(page);
958                 h->resv_huge_pages--;
959         }
960
961         mpol_cond_put(mpol);
962         return page;
963
964 err:
965         return NULL;
966 }
967
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977         nid = next_node_in(nid, *nodes_allowed);
978         VM_BUG_ON(nid >= MAX_NUMNODES);
979
980         return nid;
981 }
982
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985         if (!node_isset(nid, *nodes_allowed))
986                 nid = next_node_allowed(nid, nodes_allowed);
987         return nid;
988 }
989
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997                                         nodemask_t *nodes_allowed)
998 {
999         int nid;
1000
1001         VM_BUG_ON(!nodes_allowed);
1002
1003         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006         return nid;
1007 }
1008
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017         int nid;
1018
1019         VM_BUG_ON(!nodes_allowed);
1020
1021         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024         return nid;
1025 }
1026
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028         for (nr_nodes = nodes_weight(*mask);                            \
1029                 nr_nodes > 0 &&                                         \
1030                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                 nr_nodes--)
1032
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                 nr_nodes--)
1038
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041                                         unsigned int order)
1042 {
1043         int i;
1044         int nr_pages = 1 << order;
1045         struct page *p = page + 1;
1046
1047         atomic_set(compound_mapcount_ptr(page), 0);
1048         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                 clear_compound_head(p);
1050                 set_page_refcounted(p);
1051         }
1052
1053         set_compound_order(page, 0);
1054         __ClearPageHead(page);
1055 }
1056
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059         free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061
1062 #ifdef CONFIG_CONTIG_ALLOC
1063 static int __alloc_gigantic_page(unsigned long start_pfn,
1064                                 unsigned long nr_pages, gfp_t gfp_mask)
1065 {
1066         unsigned long end_pfn = start_pfn + nr_pages;
1067         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1068                                   gfp_mask);
1069 }
1070
1071 static bool pfn_range_valid_gigantic(struct zone *z,
1072                         unsigned long start_pfn, unsigned long nr_pages)
1073 {
1074         unsigned long i, end_pfn = start_pfn + nr_pages;
1075         struct page *page;
1076
1077         for (i = start_pfn; i < end_pfn; i++) {
1078                 if (!pfn_valid(i))
1079                         return false;
1080
1081                 page = pfn_to_page(i);
1082
1083                 if (page_zone(page) != z)
1084                         return false;
1085
1086                 if (PageReserved(page))
1087                         return false;
1088
1089                 if (page_count(page) > 0)
1090                         return false;
1091
1092                 if (PageHuge(page))
1093                         return false;
1094         }
1095
1096         return true;
1097 }
1098
1099 static bool zone_spans_last_pfn(const struct zone *zone,
1100                         unsigned long start_pfn, unsigned long nr_pages)
1101 {
1102         unsigned long last_pfn = start_pfn + nr_pages - 1;
1103         return zone_spans_pfn(zone, last_pfn);
1104 }
1105
1106 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1107                 int nid, nodemask_t *nodemask)
1108 {
1109         unsigned int order = huge_page_order(h);
1110         unsigned long nr_pages = 1 << order;
1111         unsigned long ret, pfn, flags;
1112         struct zonelist *zonelist;
1113         struct zone *zone;
1114         struct zoneref *z;
1115
1116         zonelist = node_zonelist(nid, gfp_mask);
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1118                 spin_lock_irqsave(&zone->lock, flags);
1119
1120                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1121                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1122                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1123                                 /*
1124                                  * We release the zone lock here because
1125                                  * alloc_contig_range() will also lock the zone
1126                                  * at some point. If there's an allocation
1127                                  * spinning on this lock, it may win the race
1128                                  * and cause alloc_contig_range() to fail...
1129                                  */
1130                                 spin_unlock_irqrestore(&zone->lock, flags);
1131                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1132                                 if (!ret)
1133                                         return pfn_to_page(pfn);
1134                                 spin_lock_irqsave(&zone->lock, flags);
1135                         }
1136                         pfn += nr_pages;
1137                 }
1138
1139                 spin_unlock_irqrestore(&zone->lock, flags);
1140         }
1141
1142         return NULL;
1143 }
1144
1145 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1146 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1147 #else /* !CONFIG_CONTIG_ALLOC */
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149                                         int nid, nodemask_t *nodemask)
1150 {
1151         return NULL;
1152 }
1153 #endif /* CONFIG_CONTIG_ALLOC */
1154
1155 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157                                         int nid, nodemask_t *nodemask)
1158 {
1159         return NULL;
1160 }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 #endif
1165
1166 static void update_and_free_page(struct hstate *h, struct page *page)
1167 {
1168         int i;
1169
1170         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1171                 return;
1172
1173         h->nr_huge_pages--;
1174         h->nr_huge_pages_node[page_to_nid(page)]--;
1175         for (i = 0; i < pages_per_huge_page(h); i++) {
1176                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177                                 1 << PG_referenced | 1 << PG_dirty |
1178                                 1 << PG_active | 1 << PG_private |
1179                                 1 << PG_writeback);
1180         }
1181         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1182         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1183         set_page_refcounted(page);
1184         if (hstate_is_gigantic(h)) {
1185                 destroy_compound_gigantic_page(page, huge_page_order(h));
1186                 free_gigantic_page(page, huge_page_order(h));
1187         } else {
1188                 __free_pages(page, huge_page_order(h));
1189         }
1190 }
1191
1192 struct hstate *size_to_hstate(unsigned long size)
1193 {
1194         struct hstate *h;
1195
1196         for_each_hstate(h) {
1197                 if (huge_page_size(h) == size)
1198                         return h;
1199         }
1200         return NULL;
1201 }
1202
1203 /*
1204  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205  * to hstate->hugepage_activelist.)
1206  *
1207  * This function can be called for tail pages, but never returns true for them.
1208  */
1209 bool page_huge_active(struct page *page)
1210 {
1211         VM_BUG_ON_PAGE(!PageHuge(page), page);
1212         return PageHead(page) && PagePrivate(&page[1]);
1213 }
1214
1215 /* never called for tail page */
1216 static void set_page_huge_active(struct page *page)
1217 {
1218         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219         SetPagePrivate(&page[1]);
1220 }
1221
1222 static void clear_page_huge_active(struct page *page)
1223 {
1224         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225         ClearPagePrivate(&page[1]);
1226 }
1227
1228 /*
1229  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1230  * code
1231  */
1232 static inline bool PageHugeTemporary(struct page *page)
1233 {
1234         if (!PageHuge(page))
1235                 return false;
1236
1237         return (unsigned long)page[2].mapping == -1U;
1238 }
1239
1240 static inline void SetPageHugeTemporary(struct page *page)
1241 {
1242         page[2].mapping = (void *)-1U;
1243 }
1244
1245 static inline void ClearPageHugeTemporary(struct page *page)
1246 {
1247         page[2].mapping = NULL;
1248 }
1249
1250 void free_huge_page(struct page *page)
1251 {
1252         /*
1253          * Can't pass hstate in here because it is called from the
1254          * compound page destructor.
1255          */
1256         struct hstate *h = page_hstate(page);
1257         int nid = page_to_nid(page);
1258         struct hugepage_subpool *spool =
1259                 (struct hugepage_subpool *)page_private(page);
1260         bool restore_reserve;
1261
1262         VM_BUG_ON_PAGE(page_count(page), page);
1263         VM_BUG_ON_PAGE(page_mapcount(page), page);
1264
1265         set_page_private(page, 0);
1266         page->mapping = NULL;
1267         restore_reserve = PagePrivate(page);
1268         ClearPagePrivate(page);
1269
1270         /*
1271          * If PagePrivate() was set on page, page allocation consumed a
1272          * reservation.  If the page was associated with a subpool, there
1273          * would have been a page reserved in the subpool before allocation
1274          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1275          * reservtion, do not call hugepage_subpool_put_pages() as this will
1276          * remove the reserved page from the subpool.
1277          */
1278         if (!restore_reserve) {
1279                 /*
1280                  * A return code of zero implies that the subpool will be
1281                  * under its minimum size if the reservation is not restored
1282                  * after page is free.  Therefore, force restore_reserve
1283                  * operation.
1284                  */
1285                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1286                         restore_reserve = true;
1287         }
1288
1289         spin_lock(&hugetlb_lock);
1290         clear_page_huge_active(page);
1291         hugetlb_cgroup_uncharge_page(hstate_index(h),
1292                                      pages_per_huge_page(h), page);
1293         if (restore_reserve)
1294                 h->resv_huge_pages++;
1295
1296         if (PageHugeTemporary(page)) {
1297                 list_del(&page->lru);
1298                 ClearPageHugeTemporary(page);
1299                 update_and_free_page(h, page);
1300         } else if (h->surplus_huge_pages_node[nid]) {
1301                 /* remove the page from active list */
1302                 list_del(&page->lru);
1303                 update_and_free_page(h, page);
1304                 h->surplus_huge_pages--;
1305                 h->surplus_huge_pages_node[nid]--;
1306         } else {
1307                 arch_clear_hugepage_flags(page);
1308                 enqueue_huge_page(h, page);
1309         }
1310         spin_unlock(&hugetlb_lock);
1311 }
1312
1313 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1314 {
1315         INIT_LIST_HEAD(&page->lru);
1316         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1317         spin_lock(&hugetlb_lock);
1318         set_hugetlb_cgroup(page, NULL);
1319         h->nr_huge_pages++;
1320         h->nr_huge_pages_node[nid]++;
1321         spin_unlock(&hugetlb_lock);
1322 }
1323
1324 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1325 {
1326         int i;
1327         int nr_pages = 1 << order;
1328         struct page *p = page + 1;
1329
1330         /* we rely on prep_new_huge_page to set the destructor */
1331         set_compound_order(page, order);
1332         __ClearPageReserved(page);
1333         __SetPageHead(page);
1334         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1335                 /*
1336                  * For gigantic hugepages allocated through bootmem at
1337                  * boot, it's safer to be consistent with the not-gigantic
1338                  * hugepages and clear the PG_reserved bit from all tail pages
1339                  * too.  Otherwse drivers using get_user_pages() to access tail
1340                  * pages may get the reference counting wrong if they see
1341                  * PG_reserved set on a tail page (despite the head page not
1342                  * having PG_reserved set).  Enforcing this consistency between
1343                  * head and tail pages allows drivers to optimize away a check
1344                  * on the head page when they need know if put_page() is needed
1345                  * after get_user_pages().
1346                  */
1347                 __ClearPageReserved(p);
1348                 set_page_count(p, 0);
1349                 set_compound_head(p, page);
1350         }
1351         atomic_set(compound_mapcount_ptr(page), -1);
1352 }
1353
1354 /*
1355  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1356  * transparent huge pages.  See the PageTransHuge() documentation for more
1357  * details.
1358  */
1359 int PageHuge(struct page *page)
1360 {
1361         if (!PageCompound(page))
1362                 return 0;
1363
1364         page = compound_head(page);
1365         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1366 }
1367 EXPORT_SYMBOL_GPL(PageHuge);
1368
1369 /*
1370  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1371  * normal or transparent huge pages.
1372  */
1373 int PageHeadHuge(struct page *page_head)
1374 {
1375         if (!PageHead(page_head))
1376                 return 0;
1377
1378         return get_compound_page_dtor(page_head) == free_huge_page;
1379 }
1380
1381 pgoff_t __basepage_index(struct page *page)
1382 {
1383         struct page *page_head = compound_head(page);
1384         pgoff_t index = page_index(page_head);
1385         unsigned long compound_idx;
1386
1387         if (!PageHuge(page_head))
1388                 return page_index(page);
1389
1390         if (compound_order(page_head) >= MAX_ORDER)
1391                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1392         else
1393                 compound_idx = page - page_head;
1394
1395         return (index << compound_order(page_head)) + compound_idx;
1396 }
1397
1398 static struct page *alloc_buddy_huge_page(struct hstate *h,
1399                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1400 {
1401         int order = huge_page_order(h);
1402         struct page *page;
1403
1404         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1405         if (nid == NUMA_NO_NODE)
1406                 nid = numa_mem_id();
1407         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1408         if (page)
1409                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1410         else
1411                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1412
1413         return page;
1414 }
1415
1416 /*
1417  * Common helper to allocate a fresh hugetlb page. All specific allocators
1418  * should use this function to get new hugetlb pages
1419  */
1420 static struct page *alloc_fresh_huge_page(struct hstate *h,
1421                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1422 {
1423         struct page *page;
1424
1425         if (hstate_is_gigantic(h))
1426                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1427         else
1428                 page = alloc_buddy_huge_page(h, gfp_mask,
1429                                 nid, nmask);
1430         if (!page)
1431                 return NULL;
1432
1433         if (hstate_is_gigantic(h))
1434                 prep_compound_gigantic_page(page, huge_page_order(h));
1435         prep_new_huge_page(h, page, page_to_nid(page));
1436
1437         return page;
1438 }
1439
1440 /*
1441  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1442  * manner.
1443  */
1444 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1445 {
1446         struct page *page;
1447         int nr_nodes, node;
1448         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1449
1450         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1451                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1452                 if (page)
1453                         break;
1454         }
1455
1456         if (!page)
1457                 return 0;
1458
1459         put_page(page); /* free it into the hugepage allocator */
1460
1461         return 1;
1462 }
1463
1464 /*
1465  * Free huge page from pool from next node to free.
1466  * Attempt to keep persistent huge pages more or less
1467  * balanced over allowed nodes.
1468  * Called with hugetlb_lock locked.
1469  */
1470 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1471                                                          bool acct_surplus)
1472 {
1473         int nr_nodes, node;
1474         int ret = 0;
1475
1476         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1477                 /*
1478                  * If we're returning unused surplus pages, only examine
1479                  * nodes with surplus pages.
1480                  */
1481                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1482                     !list_empty(&h->hugepage_freelists[node])) {
1483                         struct page *page =
1484                                 list_entry(h->hugepage_freelists[node].next,
1485                                           struct page, lru);
1486                         list_del(&page->lru);
1487                         h->free_huge_pages--;
1488                         h->free_huge_pages_node[node]--;
1489                         if (acct_surplus) {
1490                                 h->surplus_huge_pages--;
1491                                 h->surplus_huge_pages_node[node]--;
1492                         }
1493                         update_and_free_page(h, page);
1494                         ret = 1;
1495                         break;
1496                 }
1497         }
1498
1499         return ret;
1500 }
1501
1502 /*
1503  * Dissolve a given free hugepage into free buddy pages. This function does
1504  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1505  * dissolution fails because a give page is not a free hugepage, or because
1506  * free hugepages are fully reserved.
1507  */
1508 int dissolve_free_huge_page(struct page *page)
1509 {
1510         int rc = -EBUSY;
1511
1512         spin_lock(&hugetlb_lock);
1513         if (PageHuge(page) && !page_count(page)) {
1514                 struct page *head = compound_head(page);
1515                 struct hstate *h = page_hstate(head);
1516                 int nid = page_to_nid(head);
1517                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1518                         goto out;
1519                 /*
1520                  * Move PageHWPoison flag from head page to the raw error page,
1521                  * which makes any subpages rather than the error page reusable.
1522                  */
1523                 if (PageHWPoison(head) && page != head) {
1524                         SetPageHWPoison(page);
1525                         ClearPageHWPoison(head);
1526                 }
1527                 list_del(&head->lru);
1528                 h->free_huge_pages--;
1529                 h->free_huge_pages_node[nid]--;
1530                 h->max_huge_pages--;
1531                 update_and_free_page(h, head);
1532                 rc = 0;
1533         }
1534 out:
1535         spin_unlock(&hugetlb_lock);
1536         return rc;
1537 }
1538
1539 /*
1540  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1541  * make specified memory blocks removable from the system.
1542  * Note that this will dissolve a free gigantic hugepage completely, if any
1543  * part of it lies within the given range.
1544  * Also note that if dissolve_free_huge_page() returns with an error, all
1545  * free hugepages that were dissolved before that error are lost.
1546  */
1547 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1548 {
1549         unsigned long pfn;
1550         struct page *page;
1551         int rc = 0;
1552
1553         if (!hugepages_supported())
1554                 return rc;
1555
1556         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1557                 page = pfn_to_page(pfn);
1558                 if (PageHuge(page) && !page_count(page)) {
1559                         rc = dissolve_free_huge_page(page);
1560                         if (rc)
1561                                 break;
1562                 }
1563         }
1564
1565         return rc;
1566 }
1567
1568 /*
1569  * Allocates a fresh surplus page from the page allocator.
1570  */
1571 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1572                 int nid, nodemask_t *nmask)
1573 {
1574         struct page *page = NULL;
1575
1576         if (hstate_is_gigantic(h))
1577                 return NULL;
1578
1579         spin_lock(&hugetlb_lock);
1580         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1581                 goto out_unlock;
1582         spin_unlock(&hugetlb_lock);
1583
1584         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1585         if (!page)
1586                 return NULL;
1587
1588         spin_lock(&hugetlb_lock);
1589         /*
1590          * We could have raced with the pool size change.
1591          * Double check that and simply deallocate the new page
1592          * if we would end up overcommiting the surpluses. Abuse
1593          * temporary page to workaround the nasty free_huge_page
1594          * codeflow
1595          */
1596         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1597                 SetPageHugeTemporary(page);
1598                 spin_unlock(&hugetlb_lock);
1599                 put_page(page);
1600                 return NULL;
1601         } else {
1602                 h->surplus_huge_pages++;
1603                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1604         }
1605
1606 out_unlock:
1607         spin_unlock(&hugetlb_lock);
1608
1609         return page;
1610 }
1611
1612 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1613                                      int nid, nodemask_t *nmask)
1614 {
1615         struct page *page;
1616
1617         if (hstate_is_gigantic(h))
1618                 return NULL;
1619
1620         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1621         if (!page)
1622                 return NULL;
1623
1624         /*
1625          * We do not account these pages as surplus because they are only
1626          * temporary and will be released properly on the last reference
1627          */
1628         SetPageHugeTemporary(page);
1629
1630         return page;
1631 }
1632
1633 /*
1634  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1635  */
1636 static
1637 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1638                 struct vm_area_struct *vma, unsigned long addr)
1639 {
1640         struct page *page;
1641         struct mempolicy *mpol;
1642         gfp_t gfp_mask = htlb_alloc_mask(h);
1643         int nid;
1644         nodemask_t *nodemask;
1645
1646         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1647         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1648         mpol_cond_put(mpol);
1649
1650         return page;
1651 }
1652
1653 /* page migration callback function */
1654 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1655 {
1656         gfp_t gfp_mask = htlb_alloc_mask(h);
1657         struct page *page = NULL;
1658
1659         if (nid != NUMA_NO_NODE)
1660                 gfp_mask |= __GFP_THISNODE;
1661
1662         spin_lock(&hugetlb_lock);
1663         if (h->free_huge_pages - h->resv_huge_pages > 0)
1664                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1665         spin_unlock(&hugetlb_lock);
1666
1667         if (!page)
1668                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1669
1670         return page;
1671 }
1672
1673 /* page migration callback function */
1674 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1675                 nodemask_t *nmask)
1676 {
1677         gfp_t gfp_mask = htlb_alloc_mask(h);
1678
1679         spin_lock(&hugetlb_lock);
1680         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1681                 struct page *page;
1682
1683                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1684                 if (page) {
1685                         spin_unlock(&hugetlb_lock);
1686                         return page;
1687                 }
1688         }
1689         spin_unlock(&hugetlb_lock);
1690
1691         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1692 }
1693
1694 /* mempolicy aware migration callback */
1695 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1696                 unsigned long address)
1697 {
1698         struct mempolicy *mpol;
1699         nodemask_t *nodemask;
1700         struct page *page;
1701         gfp_t gfp_mask;
1702         int node;
1703
1704         gfp_mask = htlb_alloc_mask(h);
1705         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1706         page = alloc_huge_page_nodemask(h, node, nodemask);
1707         mpol_cond_put(mpol);
1708
1709         return page;
1710 }
1711
1712 /*
1713  * Increase the hugetlb pool such that it can accommodate a reservation
1714  * of size 'delta'.
1715  */
1716 static int gather_surplus_pages(struct hstate *h, int delta)
1717 {
1718         struct list_head surplus_list;
1719         struct page *page, *tmp;
1720         int ret, i;
1721         int needed, allocated;
1722         bool alloc_ok = true;
1723
1724         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1725         if (needed <= 0) {
1726                 h->resv_huge_pages += delta;
1727                 return 0;
1728         }
1729
1730         allocated = 0;
1731         INIT_LIST_HEAD(&surplus_list);
1732
1733         ret = -ENOMEM;
1734 retry:
1735         spin_unlock(&hugetlb_lock);
1736         for (i = 0; i < needed; i++) {
1737                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1738                                 NUMA_NO_NODE, NULL);
1739                 if (!page) {
1740                         alloc_ok = false;
1741                         break;
1742                 }
1743                 list_add(&page->lru, &surplus_list);
1744                 cond_resched();
1745         }
1746         allocated += i;
1747
1748         /*
1749          * After retaking hugetlb_lock, we need to recalculate 'needed'
1750          * because either resv_huge_pages or free_huge_pages may have changed.
1751          */
1752         spin_lock(&hugetlb_lock);
1753         needed = (h->resv_huge_pages + delta) -
1754                         (h->free_huge_pages + allocated);
1755         if (needed > 0) {
1756                 if (alloc_ok)
1757                         goto retry;
1758                 /*
1759                  * We were not able to allocate enough pages to
1760                  * satisfy the entire reservation so we free what
1761                  * we've allocated so far.
1762                  */
1763                 goto free;
1764         }
1765         /*
1766          * The surplus_list now contains _at_least_ the number of extra pages
1767          * needed to accommodate the reservation.  Add the appropriate number
1768          * of pages to the hugetlb pool and free the extras back to the buddy
1769          * allocator.  Commit the entire reservation here to prevent another
1770          * process from stealing the pages as they are added to the pool but
1771          * before they are reserved.
1772          */
1773         needed += allocated;
1774         h->resv_huge_pages += delta;
1775         ret = 0;
1776
1777         /* Free the needed pages to the hugetlb pool */
1778         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1779                 if ((--needed) < 0)
1780                         break;
1781                 /*
1782                  * This page is now managed by the hugetlb allocator and has
1783                  * no users -- drop the buddy allocator's reference.
1784                  */
1785                 put_page_testzero(page);
1786                 VM_BUG_ON_PAGE(page_count(page), page);
1787                 enqueue_huge_page(h, page);
1788         }
1789 free:
1790         spin_unlock(&hugetlb_lock);
1791
1792         /* Free unnecessary surplus pages to the buddy allocator */
1793         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1794                 put_page(page);
1795         spin_lock(&hugetlb_lock);
1796
1797         return ret;
1798 }
1799
1800 /*
1801  * This routine has two main purposes:
1802  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1803  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1804  *    to the associated reservation map.
1805  * 2) Free any unused surplus pages that may have been allocated to satisfy
1806  *    the reservation.  As many as unused_resv_pages may be freed.
1807  *
1808  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1809  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1810  * we must make sure nobody else can claim pages we are in the process of
1811  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1812  * number of huge pages we plan to free when dropping the lock.
1813  */
1814 static void return_unused_surplus_pages(struct hstate *h,
1815                                         unsigned long unused_resv_pages)
1816 {
1817         unsigned long nr_pages;
1818
1819         /* Cannot return gigantic pages currently */
1820         if (hstate_is_gigantic(h))
1821                 goto out;
1822
1823         /*
1824          * Part (or even all) of the reservation could have been backed
1825          * by pre-allocated pages. Only free surplus pages.
1826          */
1827         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1828
1829         /*
1830          * We want to release as many surplus pages as possible, spread
1831          * evenly across all nodes with memory. Iterate across these nodes
1832          * until we can no longer free unreserved surplus pages. This occurs
1833          * when the nodes with surplus pages have no free pages.
1834          * free_pool_huge_page() will balance the the freed pages across the
1835          * on-line nodes with memory and will handle the hstate accounting.
1836          *
1837          * Note that we decrement resv_huge_pages as we free the pages.  If
1838          * we drop the lock, resv_huge_pages will still be sufficiently large
1839          * to cover subsequent pages we may free.
1840          */
1841         while (nr_pages--) {
1842                 h->resv_huge_pages--;
1843                 unused_resv_pages--;
1844                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1845                         goto out;
1846                 cond_resched_lock(&hugetlb_lock);
1847         }
1848
1849 out:
1850         /* Fully uncommit the reservation */
1851         h->resv_huge_pages -= unused_resv_pages;
1852 }
1853
1854
1855 /*
1856  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1857  * are used by the huge page allocation routines to manage reservations.
1858  *
1859  * vma_needs_reservation is called to determine if the huge page at addr
1860  * within the vma has an associated reservation.  If a reservation is
1861  * needed, the value 1 is returned.  The caller is then responsible for
1862  * managing the global reservation and subpool usage counts.  After
1863  * the huge page has been allocated, vma_commit_reservation is called
1864  * to add the page to the reservation map.  If the page allocation fails,
1865  * the reservation must be ended instead of committed.  vma_end_reservation
1866  * is called in such cases.
1867  *
1868  * In the normal case, vma_commit_reservation returns the same value
1869  * as the preceding vma_needs_reservation call.  The only time this
1870  * is not the case is if a reserve map was changed between calls.  It
1871  * is the responsibility of the caller to notice the difference and
1872  * take appropriate action.
1873  *
1874  * vma_add_reservation is used in error paths where a reservation must
1875  * be restored when a newly allocated huge page must be freed.  It is
1876  * to be called after calling vma_needs_reservation to determine if a
1877  * reservation exists.
1878  */
1879 enum vma_resv_mode {
1880         VMA_NEEDS_RESV,
1881         VMA_COMMIT_RESV,
1882         VMA_END_RESV,
1883         VMA_ADD_RESV,
1884 };
1885 static long __vma_reservation_common(struct hstate *h,
1886                                 struct vm_area_struct *vma, unsigned long addr,
1887                                 enum vma_resv_mode mode)
1888 {
1889         struct resv_map *resv;
1890         pgoff_t idx;
1891         long ret;
1892
1893         resv = vma_resv_map(vma);
1894         if (!resv)
1895                 return 1;
1896
1897         idx = vma_hugecache_offset(h, vma, addr);
1898         switch (mode) {
1899         case VMA_NEEDS_RESV:
1900                 ret = region_chg(resv, idx, idx + 1);
1901                 break;
1902         case VMA_COMMIT_RESV:
1903                 ret = region_add(resv, idx, idx + 1);
1904                 break;
1905         case VMA_END_RESV:
1906                 region_abort(resv, idx, idx + 1);
1907                 ret = 0;
1908                 break;
1909         case VMA_ADD_RESV:
1910                 if (vma->vm_flags & VM_MAYSHARE)
1911                         ret = region_add(resv, idx, idx + 1);
1912                 else {
1913                         region_abort(resv, idx, idx + 1);
1914                         ret = region_del(resv, idx, idx + 1);
1915                 }
1916                 break;
1917         default:
1918                 BUG();
1919         }
1920
1921         if (vma->vm_flags & VM_MAYSHARE)
1922                 return ret;
1923         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1924                 /*
1925                  * In most cases, reserves always exist for private mappings.
1926                  * However, a file associated with mapping could have been
1927                  * hole punched or truncated after reserves were consumed.
1928                  * As subsequent fault on such a range will not use reserves.
1929                  * Subtle - The reserve map for private mappings has the
1930                  * opposite meaning than that of shared mappings.  If NO
1931                  * entry is in the reserve map, it means a reservation exists.
1932                  * If an entry exists in the reserve map, it means the
1933                  * reservation has already been consumed.  As a result, the
1934                  * return value of this routine is the opposite of the
1935                  * value returned from reserve map manipulation routines above.
1936                  */
1937                 if (ret)
1938                         return 0;
1939                 else
1940                         return 1;
1941         }
1942         else
1943                 return ret < 0 ? ret : 0;
1944 }
1945
1946 static long vma_needs_reservation(struct hstate *h,
1947                         struct vm_area_struct *vma, unsigned long addr)
1948 {
1949         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1950 }
1951
1952 static long vma_commit_reservation(struct hstate *h,
1953                         struct vm_area_struct *vma, unsigned long addr)
1954 {
1955         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1956 }
1957
1958 static void vma_end_reservation(struct hstate *h,
1959                         struct vm_area_struct *vma, unsigned long addr)
1960 {
1961         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1962 }
1963
1964 static long vma_add_reservation(struct hstate *h,
1965                         struct vm_area_struct *vma, unsigned long addr)
1966 {
1967         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1968 }
1969
1970 /*
1971  * This routine is called to restore a reservation on error paths.  In the
1972  * specific error paths, a huge page was allocated (via alloc_huge_page)
1973  * and is about to be freed.  If a reservation for the page existed,
1974  * alloc_huge_page would have consumed the reservation and set PagePrivate
1975  * in the newly allocated page.  When the page is freed via free_huge_page,
1976  * the global reservation count will be incremented if PagePrivate is set.
1977  * However, free_huge_page can not adjust the reserve map.  Adjust the
1978  * reserve map here to be consistent with global reserve count adjustments
1979  * to be made by free_huge_page.
1980  */
1981 static void restore_reserve_on_error(struct hstate *h,
1982                         struct vm_area_struct *vma, unsigned long address,
1983                         struct page *page)
1984 {
1985         if (unlikely(PagePrivate(page))) {
1986                 long rc = vma_needs_reservation(h, vma, address);
1987
1988                 if (unlikely(rc < 0)) {
1989                         /*
1990                          * Rare out of memory condition in reserve map
1991                          * manipulation.  Clear PagePrivate so that
1992                          * global reserve count will not be incremented
1993                          * by free_huge_page.  This will make it appear
1994                          * as though the reservation for this page was
1995                          * consumed.  This may prevent the task from
1996                          * faulting in the page at a later time.  This
1997                          * is better than inconsistent global huge page
1998                          * accounting of reserve counts.
1999                          */
2000                         ClearPagePrivate(page);
2001                 } else if (rc) {
2002                         rc = vma_add_reservation(h, vma, address);
2003                         if (unlikely(rc < 0))
2004                                 /*
2005                                  * See above comment about rare out of
2006                                  * memory condition.
2007                                  */
2008                                 ClearPagePrivate(page);
2009                 } else
2010                         vma_end_reservation(h, vma, address);
2011         }
2012 }
2013
2014 struct page *alloc_huge_page(struct vm_area_struct *vma,
2015                                     unsigned long addr, int avoid_reserve)
2016 {
2017         struct hugepage_subpool *spool = subpool_vma(vma);
2018         struct hstate *h = hstate_vma(vma);
2019         struct page *page;
2020         long map_chg, map_commit;
2021         long gbl_chg;
2022         int ret, idx;
2023         struct hugetlb_cgroup *h_cg;
2024
2025         idx = hstate_index(h);
2026         /*
2027          * Examine the region/reserve map to determine if the process
2028          * has a reservation for the page to be allocated.  A return
2029          * code of zero indicates a reservation exists (no change).
2030          */
2031         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2032         if (map_chg < 0)
2033                 return ERR_PTR(-ENOMEM);
2034
2035         /*
2036          * Processes that did not create the mapping will have no
2037          * reserves as indicated by the region/reserve map. Check
2038          * that the allocation will not exceed the subpool limit.
2039          * Allocations for MAP_NORESERVE mappings also need to be
2040          * checked against any subpool limit.
2041          */
2042         if (map_chg || avoid_reserve) {
2043                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2044                 if (gbl_chg < 0) {
2045                         vma_end_reservation(h, vma, addr);
2046                         return ERR_PTR(-ENOSPC);
2047                 }
2048
2049                 /*
2050                  * Even though there was no reservation in the region/reserve
2051                  * map, there could be reservations associated with the
2052                  * subpool that can be used.  This would be indicated if the
2053                  * return value of hugepage_subpool_get_pages() is zero.
2054                  * However, if avoid_reserve is specified we still avoid even
2055                  * the subpool reservations.
2056                  */
2057                 if (avoid_reserve)
2058                         gbl_chg = 1;
2059         }
2060
2061         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2062         if (ret)
2063                 goto out_subpool_put;
2064
2065         spin_lock(&hugetlb_lock);
2066         /*
2067          * glb_chg is passed to indicate whether or not a page must be taken
2068          * from the global free pool (global change).  gbl_chg == 0 indicates
2069          * a reservation exists for the allocation.
2070          */
2071         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2072         if (!page) {
2073                 spin_unlock(&hugetlb_lock);
2074                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2075                 if (!page)
2076                         goto out_uncharge_cgroup;
2077                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2078                         SetPagePrivate(page);
2079                         h->resv_huge_pages--;
2080                 }
2081                 spin_lock(&hugetlb_lock);
2082                 list_move(&page->lru, &h->hugepage_activelist);
2083                 /* Fall through */
2084         }
2085         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2086         spin_unlock(&hugetlb_lock);
2087
2088         set_page_private(page, (unsigned long)spool);
2089
2090         map_commit = vma_commit_reservation(h, vma, addr);
2091         if (unlikely(map_chg > map_commit)) {
2092                 /*
2093                  * The page was added to the reservation map between
2094                  * vma_needs_reservation and vma_commit_reservation.
2095                  * This indicates a race with hugetlb_reserve_pages.
2096                  * Adjust for the subpool count incremented above AND
2097                  * in hugetlb_reserve_pages for the same page.  Also,
2098                  * the reservation count added in hugetlb_reserve_pages
2099                  * no longer applies.
2100                  */
2101                 long rsv_adjust;
2102
2103                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2104                 hugetlb_acct_memory(h, -rsv_adjust);
2105         }
2106         return page;
2107
2108 out_uncharge_cgroup:
2109         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2110 out_subpool_put:
2111         if (map_chg || avoid_reserve)
2112                 hugepage_subpool_put_pages(spool, 1);
2113         vma_end_reservation(h, vma, addr);
2114         return ERR_PTR(-ENOSPC);
2115 }
2116
2117 int alloc_bootmem_huge_page(struct hstate *h)
2118         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2119 int __alloc_bootmem_huge_page(struct hstate *h)
2120 {
2121         struct huge_bootmem_page *m;
2122         int nr_nodes, node;
2123
2124         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2125                 void *addr;
2126
2127                 addr = memblock_alloc_try_nid_raw(
2128                                 huge_page_size(h), huge_page_size(h),
2129                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2130                 if (addr) {
2131                         /*
2132                          * Use the beginning of the huge page to store the
2133                          * huge_bootmem_page struct (until gather_bootmem
2134                          * puts them into the mem_map).
2135                          */
2136                         m = addr;
2137                         goto found;
2138                 }
2139         }
2140         return 0;
2141
2142 found:
2143         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2144         /* Put them into a private list first because mem_map is not up yet */
2145         INIT_LIST_HEAD(&m->list);
2146         list_add(&m->list, &huge_boot_pages);
2147         m->hstate = h;
2148         return 1;
2149 }
2150
2151 static void __init prep_compound_huge_page(struct page *page,
2152                 unsigned int order)
2153 {
2154         if (unlikely(order > (MAX_ORDER - 1)))
2155                 prep_compound_gigantic_page(page, order);
2156         else
2157                 prep_compound_page(page, order);
2158 }
2159
2160 /* Put bootmem huge pages into the standard lists after mem_map is up */
2161 static void __init gather_bootmem_prealloc(void)
2162 {
2163         struct huge_bootmem_page *m;
2164
2165         list_for_each_entry(m, &huge_boot_pages, list) {
2166                 struct page *page = virt_to_page(m);
2167                 struct hstate *h = m->hstate;
2168
2169                 WARN_ON(page_count(page) != 1);
2170                 prep_compound_huge_page(page, h->order);
2171                 WARN_ON(PageReserved(page));
2172                 prep_new_huge_page(h, page, page_to_nid(page));
2173                 put_page(page); /* free it into the hugepage allocator */
2174
2175                 /*
2176                  * If we had gigantic hugepages allocated at boot time, we need
2177                  * to restore the 'stolen' pages to totalram_pages in order to
2178                  * fix confusing memory reports from free(1) and another
2179                  * side-effects, like CommitLimit going negative.
2180                  */
2181                 if (hstate_is_gigantic(h))
2182                         adjust_managed_page_count(page, 1 << h->order);
2183                 cond_resched();
2184         }
2185 }
2186
2187 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2188 {
2189         unsigned long i;
2190
2191         for (i = 0; i < h->max_huge_pages; ++i) {
2192                 if (hstate_is_gigantic(h)) {
2193                         if (!alloc_bootmem_huge_page(h))
2194                                 break;
2195                 } else if (!alloc_pool_huge_page(h,
2196                                          &node_states[N_MEMORY]))
2197                         break;
2198                 cond_resched();
2199         }
2200         if (i < h->max_huge_pages) {
2201                 char buf[32];
2202
2203                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2204                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2205                         h->max_huge_pages, buf, i);
2206                 h->max_huge_pages = i;
2207         }
2208 }
2209
2210 static void __init hugetlb_init_hstates(void)
2211 {
2212         struct hstate *h;
2213
2214         for_each_hstate(h) {
2215                 if (minimum_order > huge_page_order(h))
2216                         minimum_order = huge_page_order(h);
2217
2218                 /* oversize hugepages were init'ed in early boot */
2219                 if (!hstate_is_gigantic(h))
2220                         hugetlb_hstate_alloc_pages(h);
2221         }
2222         VM_BUG_ON(minimum_order == UINT_MAX);
2223 }
2224
2225 static void __init report_hugepages(void)
2226 {
2227         struct hstate *h;
2228
2229         for_each_hstate(h) {
2230                 char buf[32];
2231
2232                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2233                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2234                         buf, h->free_huge_pages);
2235         }
2236 }
2237
2238 #ifdef CONFIG_HIGHMEM
2239 static void try_to_free_low(struct hstate *h, unsigned long count,
2240                                                 nodemask_t *nodes_allowed)
2241 {
2242         int i;
2243
2244         if (hstate_is_gigantic(h))
2245                 return;
2246
2247         for_each_node_mask(i, *nodes_allowed) {
2248                 struct page *page, *next;
2249                 struct list_head *freel = &h->hugepage_freelists[i];
2250                 list_for_each_entry_safe(page, next, freel, lru) {
2251                         if (count >= h->nr_huge_pages)
2252                                 return;
2253                         if (PageHighMem(page))
2254                                 continue;
2255                         list_del(&page->lru);
2256                         update_and_free_page(h, page);
2257                         h->free_huge_pages--;
2258                         h->free_huge_pages_node[page_to_nid(page)]--;
2259                 }
2260         }
2261 }
2262 #else
2263 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2264                                                 nodemask_t *nodes_allowed)
2265 {
2266 }
2267 #endif
2268
2269 /*
2270  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2271  * balanced by operating on them in a round-robin fashion.
2272  * Returns 1 if an adjustment was made.
2273  */
2274 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2275                                 int delta)
2276 {
2277         int nr_nodes, node;
2278
2279         VM_BUG_ON(delta != -1 && delta != 1);
2280
2281         if (delta < 0) {
2282                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2283                         if (h->surplus_huge_pages_node[node])
2284                                 goto found;
2285                 }
2286         } else {
2287                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2288                         if (h->surplus_huge_pages_node[node] <
2289                                         h->nr_huge_pages_node[node])
2290                                 goto found;
2291                 }
2292         }
2293         return 0;
2294
2295 found:
2296         h->surplus_huge_pages += delta;
2297         h->surplus_huge_pages_node[node] += delta;
2298         return 1;
2299 }
2300
2301 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2302 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2303                               nodemask_t *nodes_allowed)
2304 {
2305         unsigned long min_count, ret;
2306
2307         spin_lock(&hugetlb_lock);
2308
2309         /*
2310          * Check for a node specific request.
2311          * Changing node specific huge page count may require a corresponding
2312          * change to the global count.  In any case, the passed node mask
2313          * (nodes_allowed) will restrict alloc/free to the specified node.
2314          */
2315         if (nid != NUMA_NO_NODE) {
2316                 unsigned long old_count = count;
2317
2318                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2319                 /*
2320                  * User may have specified a large count value which caused the
2321                  * above calculation to overflow.  In this case, they wanted
2322                  * to allocate as many huge pages as possible.  Set count to
2323                  * largest possible value to align with their intention.
2324                  */
2325                 if (count < old_count)
2326                         count = ULONG_MAX;
2327         }
2328
2329         /*
2330          * Gigantic pages runtime allocation depend on the capability for large
2331          * page range allocation.
2332          * If the system does not provide this feature, return an error when
2333          * the user tries to allocate gigantic pages but let the user free the
2334          * boottime allocated gigantic pages.
2335          */
2336         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2337                 if (count > persistent_huge_pages(h)) {
2338                         spin_unlock(&hugetlb_lock);
2339                         return -EINVAL;
2340                 }
2341                 /* Fall through to decrease pool */
2342         }
2343
2344         /*
2345          * Increase the pool size
2346          * First take pages out of surplus state.  Then make up the
2347          * remaining difference by allocating fresh huge pages.
2348          *
2349          * We might race with alloc_surplus_huge_page() here and be unable
2350          * to convert a surplus huge page to a normal huge page. That is
2351          * not critical, though, it just means the overall size of the
2352          * pool might be one hugepage larger than it needs to be, but
2353          * within all the constraints specified by the sysctls.
2354          */
2355         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2356                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2357                         break;
2358         }
2359
2360         while (count > persistent_huge_pages(h)) {
2361                 /*
2362                  * If this allocation races such that we no longer need the
2363                  * page, free_huge_page will handle it by freeing the page
2364                  * and reducing the surplus.
2365                  */
2366                 spin_unlock(&hugetlb_lock);
2367
2368                 /* yield cpu to avoid soft lockup */
2369                 cond_resched();
2370
2371                 ret = alloc_pool_huge_page(h, nodes_allowed);
2372                 spin_lock(&hugetlb_lock);
2373                 if (!ret)
2374                         goto out;
2375
2376                 /* Bail for signals. Probably ctrl-c from user */
2377                 if (signal_pending(current))
2378                         goto out;
2379         }
2380
2381         /*
2382          * Decrease the pool size
2383          * First return free pages to the buddy allocator (being careful
2384          * to keep enough around to satisfy reservations).  Then place
2385          * pages into surplus state as needed so the pool will shrink
2386          * to the desired size as pages become free.
2387          *
2388          * By placing pages into the surplus state independent of the
2389          * overcommit value, we are allowing the surplus pool size to
2390          * exceed overcommit. There are few sane options here. Since
2391          * alloc_surplus_huge_page() is checking the global counter,
2392          * though, we'll note that we're not allowed to exceed surplus
2393          * and won't grow the pool anywhere else. Not until one of the
2394          * sysctls are changed, or the surplus pages go out of use.
2395          */
2396         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2397         min_count = max(count, min_count);
2398         try_to_free_low(h, min_count, nodes_allowed);
2399         while (min_count < persistent_huge_pages(h)) {
2400                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2401                         break;
2402                 cond_resched_lock(&hugetlb_lock);
2403         }
2404         while (count < persistent_huge_pages(h)) {
2405                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2406                         break;
2407         }
2408 out:
2409         h->max_huge_pages = persistent_huge_pages(h);
2410         spin_unlock(&hugetlb_lock);
2411
2412         return 0;
2413 }
2414
2415 #define HSTATE_ATTR_RO(_name) \
2416         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2417
2418 #define HSTATE_ATTR(_name) \
2419         static struct kobj_attribute _name##_attr = \
2420                 __ATTR(_name, 0644, _name##_show, _name##_store)
2421
2422 static struct kobject *hugepages_kobj;
2423 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2424
2425 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2426
2427 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2428 {
2429         int i;
2430
2431         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2432                 if (hstate_kobjs[i] == kobj) {
2433                         if (nidp)
2434                                 *nidp = NUMA_NO_NODE;
2435                         return &hstates[i];
2436                 }
2437
2438         return kobj_to_node_hstate(kobj, nidp);
2439 }
2440
2441 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2442                                         struct kobj_attribute *attr, char *buf)
2443 {
2444         struct hstate *h;
2445         unsigned long nr_huge_pages;
2446         int nid;
2447
2448         h = kobj_to_hstate(kobj, &nid);
2449         if (nid == NUMA_NO_NODE)
2450                 nr_huge_pages = h->nr_huge_pages;
2451         else
2452                 nr_huge_pages = h->nr_huge_pages_node[nid];
2453
2454         return sprintf(buf, "%lu\n", nr_huge_pages);
2455 }
2456
2457 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2458                                            struct hstate *h, int nid,
2459                                            unsigned long count, size_t len)
2460 {
2461         int err;
2462         nodemask_t nodes_allowed, *n_mask;
2463
2464         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2465                 return -EINVAL;
2466
2467         if (nid == NUMA_NO_NODE) {
2468                 /*
2469                  * global hstate attribute
2470                  */
2471                 if (!(obey_mempolicy &&
2472                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2473                         n_mask = &node_states[N_MEMORY];
2474                 else
2475                         n_mask = &nodes_allowed;
2476         } else {
2477                 /*
2478                  * Node specific request.  count adjustment happens in
2479                  * set_max_huge_pages() after acquiring hugetlb_lock.
2480                  */
2481                 init_nodemask_of_node(&nodes_allowed, nid);
2482                 n_mask = &nodes_allowed;
2483         }
2484
2485         err = set_max_huge_pages(h, count, nid, n_mask);
2486
2487         return err ? err : len;
2488 }
2489
2490 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2491                                          struct kobject *kobj, const char *buf,
2492                                          size_t len)
2493 {
2494         struct hstate *h;
2495         unsigned long count;
2496         int nid;
2497         int err;
2498
2499         err = kstrtoul(buf, 10, &count);
2500         if (err)
2501                 return err;
2502
2503         h = kobj_to_hstate(kobj, &nid);
2504         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2505 }
2506
2507 static ssize_t nr_hugepages_show(struct kobject *kobj,
2508                                        struct kobj_attribute *attr, char *buf)
2509 {
2510         return nr_hugepages_show_common(kobj, attr, buf);
2511 }
2512
2513 static ssize_t nr_hugepages_store(struct kobject *kobj,
2514                struct kobj_attribute *attr, const char *buf, size_t len)
2515 {
2516         return nr_hugepages_store_common(false, kobj, buf, len);
2517 }
2518 HSTATE_ATTR(nr_hugepages);
2519
2520 #ifdef CONFIG_NUMA
2521
2522 /*
2523  * hstate attribute for optionally mempolicy-based constraint on persistent
2524  * huge page alloc/free.
2525  */
2526 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2527                                        struct kobj_attribute *attr, char *buf)
2528 {
2529         return nr_hugepages_show_common(kobj, attr, buf);
2530 }
2531
2532 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2533                struct kobj_attribute *attr, const char *buf, size_t len)
2534 {
2535         return nr_hugepages_store_common(true, kobj, buf, len);
2536 }
2537 HSTATE_ATTR(nr_hugepages_mempolicy);
2538 #endif
2539
2540
2541 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2542                                         struct kobj_attribute *attr, char *buf)
2543 {
2544         struct hstate *h = kobj_to_hstate(kobj, NULL);
2545         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2546 }
2547
2548 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2549                 struct kobj_attribute *attr, const char *buf, size_t count)
2550 {
2551         int err;
2552         unsigned long input;
2553         struct hstate *h = kobj_to_hstate(kobj, NULL);
2554
2555         if (hstate_is_gigantic(h))
2556                 return -EINVAL;
2557
2558         err = kstrtoul(buf, 10, &input);
2559         if (err)
2560                 return err;
2561
2562         spin_lock(&hugetlb_lock);
2563         h->nr_overcommit_huge_pages = input;
2564         spin_unlock(&hugetlb_lock);
2565
2566         return count;
2567 }
2568 HSTATE_ATTR(nr_overcommit_hugepages);
2569
2570 static ssize_t free_hugepages_show(struct kobject *kobj,
2571                                         struct kobj_attribute *attr, char *buf)
2572 {
2573         struct hstate *h;
2574         unsigned long free_huge_pages;
2575         int nid;
2576
2577         h = kobj_to_hstate(kobj, &nid);
2578         if (nid == NUMA_NO_NODE)
2579                 free_huge_pages = h->free_huge_pages;
2580         else
2581                 free_huge_pages = h->free_huge_pages_node[nid];
2582
2583         return sprintf(buf, "%lu\n", free_huge_pages);
2584 }
2585 HSTATE_ATTR_RO(free_hugepages);
2586
2587 static ssize_t resv_hugepages_show(struct kobject *kobj,
2588                                         struct kobj_attribute *attr, char *buf)
2589 {
2590         struct hstate *h = kobj_to_hstate(kobj, NULL);
2591         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2592 }
2593 HSTATE_ATTR_RO(resv_hugepages);
2594
2595 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2596                                         struct kobj_attribute *attr, char *buf)
2597 {
2598         struct hstate *h;
2599         unsigned long surplus_huge_pages;
2600         int nid;
2601
2602         h = kobj_to_hstate(kobj, &nid);
2603         if (nid == NUMA_NO_NODE)
2604                 surplus_huge_pages = h->surplus_huge_pages;
2605         else
2606                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2607
2608         return sprintf(buf, "%lu\n", surplus_huge_pages);
2609 }
2610 HSTATE_ATTR_RO(surplus_hugepages);
2611
2612 static struct attribute *hstate_attrs[] = {
2613         &nr_hugepages_attr.attr,
2614         &nr_overcommit_hugepages_attr.attr,
2615         &free_hugepages_attr.attr,
2616         &resv_hugepages_attr.attr,
2617         &surplus_hugepages_attr.attr,
2618 #ifdef CONFIG_NUMA
2619         &nr_hugepages_mempolicy_attr.attr,
2620 #endif
2621         NULL,
2622 };
2623
2624 static const struct attribute_group hstate_attr_group = {
2625         .attrs = hstate_attrs,
2626 };
2627
2628 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2629                                     struct kobject **hstate_kobjs,
2630                                     const struct attribute_group *hstate_attr_group)
2631 {
2632         int retval;
2633         int hi = hstate_index(h);
2634
2635         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2636         if (!hstate_kobjs[hi])
2637                 return -ENOMEM;
2638
2639         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2640         if (retval)
2641                 kobject_put(hstate_kobjs[hi]);
2642
2643         return retval;
2644 }
2645
2646 static void __init hugetlb_sysfs_init(void)
2647 {
2648         struct hstate *h;
2649         int err;
2650
2651         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2652         if (!hugepages_kobj)
2653                 return;
2654
2655         for_each_hstate(h) {
2656                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2657                                          hstate_kobjs, &hstate_attr_group);
2658                 if (err)
2659                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2660         }
2661 }
2662
2663 #ifdef CONFIG_NUMA
2664
2665 /*
2666  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2667  * with node devices in node_devices[] using a parallel array.  The array
2668  * index of a node device or _hstate == node id.
2669  * This is here to avoid any static dependency of the node device driver, in
2670  * the base kernel, on the hugetlb module.
2671  */
2672 struct node_hstate {
2673         struct kobject          *hugepages_kobj;
2674         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2675 };
2676 static struct node_hstate node_hstates[MAX_NUMNODES];
2677
2678 /*
2679  * A subset of global hstate attributes for node devices
2680  */
2681 static struct attribute *per_node_hstate_attrs[] = {
2682         &nr_hugepages_attr.attr,
2683         &free_hugepages_attr.attr,
2684         &surplus_hugepages_attr.attr,
2685         NULL,
2686 };
2687
2688 static const struct attribute_group per_node_hstate_attr_group = {
2689         .attrs = per_node_hstate_attrs,
2690 };
2691
2692 /*
2693  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2694  * Returns node id via non-NULL nidp.
2695  */
2696 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2697 {
2698         int nid;
2699
2700         for (nid = 0; nid < nr_node_ids; nid++) {
2701                 struct node_hstate *nhs = &node_hstates[nid];
2702                 int i;
2703                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2704                         if (nhs->hstate_kobjs[i] == kobj) {
2705                                 if (nidp)
2706                                         *nidp = nid;
2707                                 return &hstates[i];
2708                         }
2709         }
2710
2711         BUG();
2712         return NULL;
2713 }
2714
2715 /*
2716  * Unregister hstate attributes from a single node device.
2717  * No-op if no hstate attributes attached.
2718  */
2719 static void hugetlb_unregister_node(struct node *node)
2720 {
2721         struct hstate *h;
2722         struct node_hstate *nhs = &node_hstates[node->dev.id];
2723
2724         if (!nhs->hugepages_kobj)
2725                 return;         /* no hstate attributes */
2726
2727         for_each_hstate(h) {
2728                 int idx = hstate_index(h);
2729                 if (nhs->hstate_kobjs[idx]) {
2730                         kobject_put(nhs->hstate_kobjs[idx]);
2731                         nhs->hstate_kobjs[idx] = NULL;
2732                 }
2733         }
2734
2735         kobject_put(nhs->hugepages_kobj);
2736         nhs->hugepages_kobj = NULL;
2737 }
2738
2739
2740 /*
2741  * Register hstate attributes for a single node device.
2742  * No-op if attributes already registered.
2743  */
2744 static void hugetlb_register_node(struct node *node)
2745 {
2746         struct hstate *h;
2747         struct node_hstate *nhs = &node_hstates[node->dev.id];
2748         int err;
2749
2750         if (nhs->hugepages_kobj)
2751                 return;         /* already allocated */
2752
2753         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2754                                                         &node->dev.kobj);
2755         if (!nhs->hugepages_kobj)
2756                 return;
2757
2758         for_each_hstate(h) {
2759                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2760                                                 nhs->hstate_kobjs,
2761                                                 &per_node_hstate_attr_group);
2762                 if (err) {
2763                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2764                                 h->name, node->dev.id);
2765                         hugetlb_unregister_node(node);
2766                         break;
2767                 }
2768         }
2769 }
2770
2771 /*
2772  * hugetlb init time:  register hstate attributes for all registered node
2773  * devices of nodes that have memory.  All on-line nodes should have
2774  * registered their associated device by this time.
2775  */
2776 static void __init hugetlb_register_all_nodes(void)
2777 {
2778         int nid;
2779
2780         for_each_node_state(nid, N_MEMORY) {
2781                 struct node *node = node_devices[nid];
2782                 if (node->dev.id == nid)
2783                         hugetlb_register_node(node);
2784         }
2785
2786         /*
2787          * Let the node device driver know we're here so it can
2788          * [un]register hstate attributes on node hotplug.
2789          */
2790         register_hugetlbfs_with_node(hugetlb_register_node,
2791                                      hugetlb_unregister_node);
2792 }
2793 #else   /* !CONFIG_NUMA */
2794
2795 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2796 {
2797         BUG();
2798         if (nidp)
2799                 *nidp = -1;
2800         return NULL;
2801 }
2802
2803 static void hugetlb_register_all_nodes(void) { }
2804
2805 #endif
2806
2807 static int __init hugetlb_init(void)
2808 {
2809         int i;
2810
2811         if (!hugepages_supported())
2812                 return 0;
2813
2814         if (!size_to_hstate(default_hstate_size)) {
2815                 if (default_hstate_size != 0) {
2816                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2817                                default_hstate_size, HPAGE_SIZE);
2818                 }
2819
2820                 default_hstate_size = HPAGE_SIZE;
2821                 if (!size_to_hstate(default_hstate_size))
2822                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2823         }
2824         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2825         if (default_hstate_max_huge_pages) {
2826                 if (!default_hstate.max_huge_pages)
2827                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2828         }
2829
2830         hugetlb_init_hstates();
2831         gather_bootmem_prealloc();
2832         report_hugepages();
2833
2834         hugetlb_sysfs_init();
2835         hugetlb_register_all_nodes();
2836         hugetlb_cgroup_file_init();
2837
2838 #ifdef CONFIG_SMP
2839         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2840 #else
2841         num_fault_mutexes = 1;
2842 #endif
2843         hugetlb_fault_mutex_table =
2844                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2845                               GFP_KERNEL);
2846         BUG_ON(!hugetlb_fault_mutex_table);
2847
2848         for (i = 0; i < num_fault_mutexes; i++)
2849                 mutex_init(&hugetlb_fault_mutex_table[i]);
2850         return 0;
2851 }
2852 subsys_initcall(hugetlb_init);
2853
2854 /* Should be called on processing a hugepagesz=... option */
2855 void __init hugetlb_bad_size(void)
2856 {
2857         parsed_valid_hugepagesz = false;
2858 }
2859
2860 void __init hugetlb_add_hstate(unsigned int order)
2861 {
2862         struct hstate *h;
2863         unsigned long i;
2864
2865         if (size_to_hstate(PAGE_SIZE << order)) {
2866                 pr_warn("hugepagesz= specified twice, ignoring\n");
2867                 return;
2868         }
2869         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2870         BUG_ON(order == 0);
2871         h = &hstates[hugetlb_max_hstate++];
2872         h->order = order;
2873         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2874         h->nr_huge_pages = 0;
2875         h->free_huge_pages = 0;
2876         for (i = 0; i < MAX_NUMNODES; ++i)
2877                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2878         INIT_LIST_HEAD(&h->hugepage_activelist);
2879         h->next_nid_to_alloc = first_memory_node;
2880         h->next_nid_to_free = first_memory_node;
2881         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2882                                         huge_page_size(h)/1024);
2883
2884         parsed_hstate = h;
2885 }
2886
2887 static int __init hugetlb_nrpages_setup(char *s)
2888 {
2889         unsigned long *mhp;
2890         static unsigned long *last_mhp;
2891
2892         if (!parsed_valid_hugepagesz) {
2893                 pr_warn("hugepages = %s preceded by "
2894                         "an unsupported hugepagesz, ignoring\n", s);
2895                 parsed_valid_hugepagesz = true;
2896                 return 1;
2897         }
2898         /*
2899          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2900          * so this hugepages= parameter goes to the "default hstate".
2901          */
2902         else if (!hugetlb_max_hstate)
2903                 mhp = &default_hstate_max_huge_pages;
2904         else
2905                 mhp = &parsed_hstate->max_huge_pages;
2906
2907         if (mhp == last_mhp) {
2908                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2909                 return 1;
2910         }
2911
2912         if (sscanf(s, "%lu", mhp) <= 0)
2913                 *mhp = 0;
2914
2915         /*
2916          * Global state is always initialized later in hugetlb_init.
2917          * But we need to allocate >= MAX_ORDER hstates here early to still
2918          * use the bootmem allocator.
2919          */
2920         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2921                 hugetlb_hstate_alloc_pages(parsed_hstate);
2922
2923         last_mhp = mhp;
2924
2925         return 1;
2926 }
2927 __setup("hugepages=", hugetlb_nrpages_setup);
2928
2929 static int __init hugetlb_default_setup(char *s)
2930 {
2931         default_hstate_size = memparse(s, &s);
2932         return 1;
2933 }
2934 __setup("default_hugepagesz=", hugetlb_default_setup);
2935
2936 static unsigned int cpuset_mems_nr(unsigned int *array)
2937 {
2938         int node;
2939         unsigned int nr = 0;
2940
2941         for_each_node_mask(node, cpuset_current_mems_allowed)
2942                 nr += array[node];
2943
2944         return nr;
2945 }
2946
2947 #ifdef CONFIG_SYSCTL
2948 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2949                          struct ctl_table *table, int write,
2950                          void __user *buffer, size_t *length, loff_t *ppos)
2951 {
2952         struct hstate *h = &default_hstate;
2953         unsigned long tmp = h->max_huge_pages;
2954         int ret;
2955
2956         if (!hugepages_supported())
2957                 return -EOPNOTSUPP;
2958
2959         table->data = &tmp;
2960         table->maxlen = sizeof(unsigned long);
2961         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962         if (ret)
2963                 goto out;
2964
2965         if (write)
2966                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2967                                                   NUMA_NO_NODE, tmp, *length);
2968 out:
2969         return ret;
2970 }
2971
2972 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2973                           void __user *buffer, size_t *length, loff_t *ppos)
2974 {
2975
2976         return hugetlb_sysctl_handler_common(false, table, write,
2977                                                         buffer, length, ppos);
2978 }
2979
2980 #ifdef CONFIG_NUMA
2981 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2982                           void __user *buffer, size_t *length, loff_t *ppos)
2983 {
2984         return hugetlb_sysctl_handler_common(true, table, write,
2985                                                         buffer, length, ppos);
2986 }
2987 #endif /* CONFIG_NUMA */
2988
2989 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2990                         void __user *buffer,
2991                         size_t *length, loff_t *ppos)
2992 {
2993         struct hstate *h = &default_hstate;
2994         unsigned long tmp;
2995         int ret;
2996
2997         if (!hugepages_supported())
2998                 return -EOPNOTSUPP;
2999
3000         tmp = h->nr_overcommit_huge_pages;
3001
3002         if (write && hstate_is_gigantic(h))
3003                 return -EINVAL;
3004
3005         table->data = &tmp;
3006         table->maxlen = sizeof(unsigned long);
3007         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3008         if (ret)
3009                 goto out;
3010
3011         if (write) {
3012                 spin_lock(&hugetlb_lock);
3013                 h->nr_overcommit_huge_pages = tmp;
3014                 spin_unlock(&hugetlb_lock);
3015         }
3016 out:
3017         return ret;
3018 }
3019
3020 #endif /* CONFIG_SYSCTL */
3021
3022 void hugetlb_report_meminfo(struct seq_file *m)
3023 {
3024         struct hstate *h;
3025         unsigned long total = 0;
3026
3027         if (!hugepages_supported())
3028                 return;
3029
3030         for_each_hstate(h) {
3031                 unsigned long count = h->nr_huge_pages;
3032
3033                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3034
3035                 if (h == &default_hstate)
3036                         seq_printf(m,
3037                                    "HugePages_Total:   %5lu\n"
3038                                    "HugePages_Free:    %5lu\n"
3039                                    "HugePages_Rsvd:    %5lu\n"
3040                                    "HugePages_Surp:    %5lu\n"
3041                                    "Hugepagesize:   %8lu kB\n",
3042                                    count,
3043                                    h->free_huge_pages,
3044                                    h->resv_huge_pages,
3045                                    h->surplus_huge_pages,
3046                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3047         }
3048
3049         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3050 }
3051
3052 int hugetlb_report_node_meminfo(int nid, char *buf)
3053 {
3054         struct hstate *h = &default_hstate;
3055         if (!hugepages_supported())
3056                 return 0;
3057         return sprintf(buf,
3058                 "Node %d HugePages_Total: %5u\n"
3059                 "Node %d HugePages_Free:  %5u\n"
3060                 "Node %d HugePages_Surp:  %5u\n",
3061                 nid, h->nr_huge_pages_node[nid],
3062                 nid, h->free_huge_pages_node[nid],
3063                 nid, h->surplus_huge_pages_node[nid]);
3064 }
3065
3066 void hugetlb_show_meminfo(void)
3067 {
3068         struct hstate *h;
3069         int nid;
3070
3071         if (!hugepages_supported())
3072                 return;
3073
3074         for_each_node_state(nid, N_MEMORY)
3075                 for_each_hstate(h)
3076                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3077                                 nid,
3078                                 h->nr_huge_pages_node[nid],
3079                                 h->free_huge_pages_node[nid],
3080                                 h->surplus_huge_pages_node[nid],
3081                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3082 }
3083
3084 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3085 {
3086         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3087                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3088 }
3089
3090 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3091 unsigned long hugetlb_total_pages(void)
3092 {
3093         struct hstate *h;
3094         unsigned long nr_total_pages = 0;
3095
3096         for_each_hstate(h)
3097                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3098         return nr_total_pages;
3099 }
3100
3101 static int hugetlb_acct_memory(struct hstate *h, long delta)
3102 {
3103         int ret = -ENOMEM;
3104
3105         spin_lock(&hugetlb_lock);
3106         /*
3107          * When cpuset is configured, it breaks the strict hugetlb page
3108          * reservation as the accounting is done on a global variable. Such
3109          * reservation is completely rubbish in the presence of cpuset because
3110          * the reservation is not checked against page availability for the
3111          * current cpuset. Application can still potentially OOM'ed by kernel
3112          * with lack of free htlb page in cpuset that the task is in.
3113          * Attempt to enforce strict accounting with cpuset is almost
3114          * impossible (or too ugly) because cpuset is too fluid that
3115          * task or memory node can be dynamically moved between cpusets.
3116          *
3117          * The change of semantics for shared hugetlb mapping with cpuset is
3118          * undesirable. However, in order to preserve some of the semantics,
3119          * we fall back to check against current free page availability as
3120          * a best attempt and hopefully to minimize the impact of changing
3121          * semantics that cpuset has.
3122          */
3123         if (delta > 0) {
3124                 if (gather_surplus_pages(h, delta) < 0)
3125                         goto out;
3126
3127                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3128                         return_unused_surplus_pages(h, delta);
3129                         goto out;
3130                 }
3131         }
3132
3133         ret = 0;
3134         if (delta < 0)
3135                 return_unused_surplus_pages(h, (unsigned long) -delta);
3136
3137 out:
3138         spin_unlock(&hugetlb_lock);
3139         return ret;
3140 }
3141
3142 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3143 {
3144         struct resv_map *resv = vma_resv_map(vma);
3145
3146         /*
3147          * This new VMA should share its siblings reservation map if present.
3148          * The VMA will only ever have a valid reservation map pointer where
3149          * it is being copied for another still existing VMA.  As that VMA
3150          * has a reference to the reservation map it cannot disappear until
3151          * after this open call completes.  It is therefore safe to take a
3152          * new reference here without additional locking.
3153          */
3154         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3155                 kref_get(&resv->refs);
3156 }
3157
3158 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3159 {
3160         struct hstate *h = hstate_vma(vma);
3161         struct resv_map *resv = vma_resv_map(vma);
3162         struct hugepage_subpool *spool = subpool_vma(vma);
3163         unsigned long reserve, start, end;
3164         long gbl_reserve;
3165
3166         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3167                 return;
3168
3169         start = vma_hugecache_offset(h, vma, vma->vm_start);
3170         end = vma_hugecache_offset(h, vma, vma->vm_end);
3171
3172         reserve = (end - start) - region_count(resv, start, end);
3173
3174         kref_put(&resv->refs, resv_map_release);
3175
3176         if (reserve) {
3177                 /*
3178                  * Decrement reserve counts.  The global reserve count may be
3179                  * adjusted if the subpool has a minimum size.
3180                  */
3181                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3182                 hugetlb_acct_memory(h, -gbl_reserve);
3183         }
3184 }
3185
3186 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3187 {
3188         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3189                 return -EINVAL;
3190         return 0;
3191 }
3192
3193 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3194 {
3195         struct hstate *hstate = hstate_vma(vma);
3196
3197         return 1UL << huge_page_shift(hstate);
3198 }
3199
3200 /*
3201  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3202  * handle_mm_fault() to try to instantiate regular-sized pages in the
3203  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3204  * this far.
3205  */
3206 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3207 {
3208         BUG();
3209         return 0;
3210 }
3211
3212 /*
3213  * When a new function is introduced to vm_operations_struct and added
3214  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3215  * This is because under System V memory model, mappings created via
3216  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3217  * their original vm_ops are overwritten with shm_vm_ops.
3218  */
3219 const struct vm_operations_struct hugetlb_vm_ops = {
3220         .fault = hugetlb_vm_op_fault,
3221         .open = hugetlb_vm_op_open,
3222         .close = hugetlb_vm_op_close,
3223         .split = hugetlb_vm_op_split,
3224         .pagesize = hugetlb_vm_op_pagesize,
3225 };
3226
3227 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3228                                 int writable)
3229 {
3230         pte_t entry;
3231
3232         if (writable) {
3233                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3234                                          vma->vm_page_prot)));
3235         } else {
3236                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3237                                            vma->vm_page_prot));
3238         }
3239         entry = pte_mkyoung(entry);
3240         entry = pte_mkhuge(entry);
3241         entry = arch_make_huge_pte(entry, vma, page, writable);
3242
3243         return entry;
3244 }
3245
3246 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3247                                    unsigned long address, pte_t *ptep)
3248 {
3249         pte_t entry;
3250
3251         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3252         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3253                 update_mmu_cache(vma, address, ptep);
3254 }
3255
3256 bool is_hugetlb_entry_migration(pte_t pte)
3257 {
3258         swp_entry_t swp;
3259
3260         if (huge_pte_none(pte) || pte_present(pte))
3261                 return false;
3262         swp = pte_to_swp_entry(pte);
3263         if (non_swap_entry(swp) && is_migration_entry(swp))
3264                 return true;
3265         else
3266                 return false;
3267 }
3268
3269 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3270 {
3271         swp_entry_t swp;
3272
3273         if (huge_pte_none(pte) || pte_present(pte))
3274                 return 0;
3275         swp = pte_to_swp_entry(pte);
3276         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3277                 return 1;
3278         else
3279                 return 0;
3280 }
3281
3282 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3283                             struct vm_area_struct *vma)
3284 {
3285         pte_t *src_pte, *dst_pte, entry, dst_entry;
3286         struct page *ptepage;
3287         unsigned long addr;
3288         int cow;
3289         struct hstate *h = hstate_vma(vma);
3290         unsigned long sz = huge_page_size(h);
3291         struct mmu_notifier_range range;
3292         int ret = 0;
3293
3294         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3295
3296         if (cow) {
3297                 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, src,
3298                                         vma->vm_start,
3299                                         vma->vm_end);
3300                 mmu_notifier_invalidate_range_start(&range);
3301         }
3302
3303         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3304                 spinlock_t *src_ptl, *dst_ptl;
3305                 src_pte = huge_pte_offset(src, addr, sz);
3306                 if (!src_pte)
3307                         continue;
3308                 dst_pte = huge_pte_alloc(dst, addr, sz);
3309                 if (!dst_pte) {
3310                         ret = -ENOMEM;
3311                         break;
3312                 }
3313
3314                 /*
3315                  * If the pagetables are shared don't copy or take references.
3316                  * dst_pte == src_pte is the common case of src/dest sharing.
3317                  *
3318                  * However, src could have 'unshared' and dst shares with
3319                  * another vma.  If dst_pte !none, this implies sharing.
3320                  * Check here before taking page table lock, and once again
3321                  * after taking the lock below.
3322                  */
3323                 dst_entry = huge_ptep_get(dst_pte);
3324                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3325                         continue;
3326
3327                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3328                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3329                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3330                 entry = huge_ptep_get(src_pte);
3331                 dst_entry = huge_ptep_get(dst_pte);
3332                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3333                         /*
3334                          * Skip if src entry none.  Also, skip in the
3335                          * unlikely case dst entry !none as this implies
3336                          * sharing with another vma.
3337                          */
3338                         ;
3339                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3340                                     is_hugetlb_entry_hwpoisoned(entry))) {
3341                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3342
3343                         if (is_write_migration_entry(swp_entry) && cow) {
3344                                 /*
3345                                  * COW mappings require pages in both
3346                                  * parent and child to be set to read.
3347                                  */
3348                                 make_migration_entry_read(&swp_entry);
3349                                 entry = swp_entry_to_pte(swp_entry);
3350                                 set_huge_swap_pte_at(src, addr, src_pte,
3351                                                      entry, sz);
3352                         }
3353                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3354                 } else {
3355                         if (cow) {
3356                                 /*
3357                                  * No need to notify as we are downgrading page
3358                                  * table protection not changing it to point
3359                                  * to a new page.
3360                                  *
3361                                  * See Documentation/vm/mmu_notifier.rst
3362                                  */
3363                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3364                         }
3365                         entry = huge_ptep_get(src_pte);
3366                         ptepage = pte_page(entry);
3367                         get_page(ptepage);
3368                         page_dup_rmap(ptepage, true);
3369                         set_huge_pte_at(dst, addr, dst_pte, entry);
3370                         hugetlb_count_add(pages_per_huge_page(h), dst);
3371                 }
3372                 spin_unlock(src_ptl);
3373                 spin_unlock(dst_ptl);
3374         }
3375
3376         if (cow)
3377                 mmu_notifier_invalidate_range_end(&range);
3378
3379         return ret;
3380 }
3381
3382 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3383                             unsigned long start, unsigned long end,
3384                             struct page *ref_page)
3385 {
3386         struct mm_struct *mm = vma->vm_mm;
3387         unsigned long address;
3388         pte_t *ptep;
3389         pte_t pte;
3390         spinlock_t *ptl;
3391         struct page *page;
3392         struct hstate *h = hstate_vma(vma);
3393         unsigned long sz = huge_page_size(h);
3394         struct mmu_notifier_range range;
3395
3396         WARN_ON(!is_vm_hugetlb_page(vma));
3397         BUG_ON(start & ~huge_page_mask(h));
3398         BUG_ON(end & ~huge_page_mask(h));
3399
3400         /*
3401          * This is a hugetlb vma, all the pte entries should point
3402          * to huge page.
3403          */
3404         tlb_change_page_size(tlb, sz);
3405         tlb_start_vma(tlb, vma);
3406
3407         /*
3408          * If sharing possible, alert mmu notifiers of worst case.
3409          */
3410         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3411                                 end);
3412         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3413         mmu_notifier_invalidate_range_start(&range);
3414         address = start;
3415         for (; address < end; address += sz) {
3416                 ptep = huge_pte_offset(mm, address, sz);
3417                 if (!ptep)
3418                         continue;
3419
3420                 ptl = huge_pte_lock(h, mm, ptep);
3421                 if (huge_pmd_unshare(mm, &address, ptep)) {
3422                         spin_unlock(ptl);
3423                         /*
3424                          * We just unmapped a page of PMDs by clearing a PUD.
3425                          * The caller's TLB flush range should cover this area.
3426                          */
3427                         continue;
3428                 }
3429
3430                 pte = huge_ptep_get(ptep);
3431                 if (huge_pte_none(pte)) {
3432                         spin_unlock(ptl);
3433                         continue;
3434                 }
3435
3436                 /*
3437                  * Migrating hugepage or HWPoisoned hugepage is already
3438                  * unmapped and its refcount is dropped, so just clear pte here.
3439                  */
3440                 if (unlikely(!pte_present(pte))) {
3441                         huge_pte_clear(mm, address, ptep, sz);
3442                         spin_unlock(ptl);
3443                         continue;
3444                 }
3445
3446                 page = pte_page(pte);
3447                 /*
3448                  * If a reference page is supplied, it is because a specific
3449                  * page is being unmapped, not a range. Ensure the page we
3450                  * are about to unmap is the actual page of interest.
3451                  */
3452                 if (ref_page) {
3453                         if (page != ref_page) {
3454                                 spin_unlock(ptl);
3455                                 continue;
3456                         }
3457                         /*
3458                          * Mark the VMA as having unmapped its page so that
3459                          * future faults in this VMA will fail rather than
3460                          * looking like data was lost
3461                          */
3462                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3463                 }
3464
3465                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3466                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3467                 if (huge_pte_dirty(pte))
3468                         set_page_dirty(page);
3469
3470                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3471                 page_remove_rmap(page, true);
3472
3473                 spin_unlock(ptl);
3474                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3475                 /*
3476                  * Bail out after unmapping reference page if supplied
3477                  */
3478                 if (ref_page)
3479                         break;
3480         }
3481         mmu_notifier_invalidate_range_end(&range);
3482         tlb_end_vma(tlb, vma);
3483 }
3484
3485 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3486                           struct vm_area_struct *vma, unsigned long start,
3487                           unsigned long end, struct page *ref_page)
3488 {
3489         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3490
3491         /*
3492          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3493          * test will fail on a vma being torn down, and not grab a page table
3494          * on its way out.  We're lucky that the flag has such an appropriate
3495          * name, and can in fact be safely cleared here. We could clear it
3496          * before the __unmap_hugepage_range above, but all that's necessary
3497          * is to clear it before releasing the i_mmap_rwsem. This works
3498          * because in the context this is called, the VMA is about to be
3499          * destroyed and the i_mmap_rwsem is held.
3500          */
3501         vma->vm_flags &= ~VM_MAYSHARE;
3502 }
3503
3504 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3505                           unsigned long end, struct page *ref_page)
3506 {
3507         struct mm_struct *mm;
3508         struct mmu_gather tlb;
3509         unsigned long tlb_start = start;
3510         unsigned long tlb_end = end;
3511
3512         /*
3513          * If shared PMDs were possibly used within this vma range, adjust
3514          * start/end for worst case tlb flushing.
3515          * Note that we can not be sure if PMDs are shared until we try to
3516          * unmap pages.  However, we want to make sure TLB flushing covers
3517          * the largest possible range.
3518          */
3519         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3520
3521         mm = vma->vm_mm;
3522
3523         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3524         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3525         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3526 }
3527
3528 /*
3529  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3530  * mappping it owns the reserve page for. The intention is to unmap the page
3531  * from other VMAs and let the children be SIGKILLed if they are faulting the
3532  * same region.
3533  */
3534 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3535                               struct page *page, unsigned long address)
3536 {
3537         struct hstate *h = hstate_vma(vma);
3538         struct vm_area_struct *iter_vma;
3539         struct address_space *mapping;
3540         pgoff_t pgoff;
3541
3542         /*
3543          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3544          * from page cache lookup which is in HPAGE_SIZE units.
3545          */
3546         address = address & huge_page_mask(h);
3547         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3548                         vma->vm_pgoff;
3549         mapping = vma->vm_file->f_mapping;
3550
3551         /*
3552          * Take the mapping lock for the duration of the table walk. As
3553          * this mapping should be shared between all the VMAs,
3554          * __unmap_hugepage_range() is called as the lock is already held
3555          */
3556         i_mmap_lock_write(mapping);
3557         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3558                 /* Do not unmap the current VMA */
3559                 if (iter_vma == vma)
3560                         continue;
3561
3562                 /*
3563                  * Shared VMAs have their own reserves and do not affect
3564                  * MAP_PRIVATE accounting but it is possible that a shared
3565                  * VMA is using the same page so check and skip such VMAs.
3566                  */
3567                 if (iter_vma->vm_flags & VM_MAYSHARE)
3568                         continue;
3569
3570                 /*
3571                  * Unmap the page from other VMAs without their own reserves.
3572                  * They get marked to be SIGKILLed if they fault in these
3573                  * areas. This is because a future no-page fault on this VMA
3574                  * could insert a zeroed page instead of the data existing
3575                  * from the time of fork. This would look like data corruption
3576                  */
3577                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3578                         unmap_hugepage_range(iter_vma, address,
3579                                              address + huge_page_size(h), page);
3580         }
3581         i_mmap_unlock_write(mapping);
3582 }
3583
3584 /*
3585  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3586  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3587  * cannot race with other handlers or page migration.
3588  * Keep the pte_same checks anyway to make transition from the mutex easier.
3589  */
3590 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3591                        unsigned long address, pte_t *ptep,
3592                        struct page *pagecache_page, spinlock_t *ptl)
3593 {
3594         pte_t pte;
3595         struct hstate *h = hstate_vma(vma);
3596         struct page *old_page, *new_page;
3597         int outside_reserve = 0;
3598         vm_fault_t ret = 0;
3599         unsigned long haddr = address & huge_page_mask(h);
3600         struct mmu_notifier_range range;
3601
3602         pte = huge_ptep_get(ptep);
3603         old_page = pte_page(pte);
3604
3605 retry_avoidcopy:
3606         /* If no-one else is actually using this page, avoid the copy
3607          * and just make the page writable */
3608         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3609                 page_move_anon_rmap(old_page, vma);
3610                 set_huge_ptep_writable(vma, haddr, ptep);
3611                 return 0;
3612         }
3613
3614         /*
3615          * If the process that created a MAP_PRIVATE mapping is about to
3616          * perform a COW due to a shared page count, attempt to satisfy
3617          * the allocation without using the existing reserves. The pagecache
3618          * page is used to determine if the reserve at this address was
3619          * consumed or not. If reserves were used, a partial faulted mapping
3620          * at the time of fork() could consume its reserves on COW instead
3621          * of the full address range.
3622          */
3623         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3624                         old_page != pagecache_page)
3625                 outside_reserve = 1;
3626
3627         get_page(old_page);
3628
3629         /*
3630          * Drop page table lock as buddy allocator may be called. It will
3631          * be acquired again before returning to the caller, as expected.
3632          */
3633         spin_unlock(ptl);
3634         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3635
3636         if (IS_ERR(new_page)) {
3637                 /*
3638                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3639                  * it is due to references held by a child and an insufficient
3640                  * huge page pool. To guarantee the original mappers
3641                  * reliability, unmap the page from child processes. The child
3642                  * may get SIGKILLed if it later faults.
3643                  */
3644                 if (outside_reserve) {
3645                         put_page(old_page);
3646                         BUG_ON(huge_pte_none(pte));
3647                         unmap_ref_private(mm, vma, old_page, haddr);
3648                         BUG_ON(huge_pte_none(pte));
3649                         spin_lock(ptl);
3650                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3651                         if (likely(ptep &&
3652                                    pte_same(huge_ptep_get(ptep), pte)))
3653                                 goto retry_avoidcopy;
3654                         /*
3655                          * race occurs while re-acquiring page table
3656                          * lock, and our job is done.
3657                          */
3658                         return 0;
3659                 }
3660
3661                 ret = vmf_error(PTR_ERR(new_page));
3662                 goto out_release_old;
3663         }
3664
3665         /*
3666          * When the original hugepage is shared one, it does not have
3667          * anon_vma prepared.
3668          */
3669         if (unlikely(anon_vma_prepare(vma))) {
3670                 ret = VM_FAULT_OOM;
3671                 goto out_release_all;
3672         }
3673
3674         copy_user_huge_page(new_page, old_page, address, vma,
3675                             pages_per_huge_page(h));
3676         __SetPageUptodate(new_page);
3677
3678         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, haddr,
3679                                 haddr + huge_page_size(h));
3680         mmu_notifier_invalidate_range_start(&range);
3681
3682         /*
3683          * Retake the page table lock to check for racing updates
3684          * before the page tables are altered
3685          */
3686         spin_lock(ptl);
3687         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3688         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3689                 ClearPagePrivate(new_page);
3690
3691                 /* Break COW */
3692                 huge_ptep_clear_flush(vma, haddr, ptep);
3693                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3694                 set_huge_pte_at(mm, haddr, ptep,
3695                                 make_huge_pte(vma, new_page, 1));
3696                 page_remove_rmap(old_page, true);
3697                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3698                 set_page_huge_active(new_page);
3699                 /* Make the old page be freed below */
3700                 new_page = old_page;
3701         }
3702         spin_unlock(ptl);
3703         mmu_notifier_invalidate_range_end(&range);
3704 out_release_all:
3705         restore_reserve_on_error(h, vma, haddr, new_page);
3706         put_page(new_page);
3707 out_release_old:
3708         put_page(old_page);
3709
3710         spin_lock(ptl); /* Caller expects lock to be held */
3711         return ret;
3712 }
3713
3714 /* Return the pagecache page at a given address within a VMA */
3715 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3716                         struct vm_area_struct *vma, unsigned long address)
3717 {
3718         struct address_space *mapping;
3719         pgoff_t idx;
3720
3721         mapping = vma->vm_file->f_mapping;
3722         idx = vma_hugecache_offset(h, vma, address);
3723
3724         return find_lock_page(mapping, idx);
3725 }
3726
3727 /*
3728  * Return whether there is a pagecache page to back given address within VMA.
3729  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3730  */
3731 static bool hugetlbfs_pagecache_present(struct hstate *h,
3732                         struct vm_area_struct *vma, unsigned long address)
3733 {
3734         struct address_space *mapping;
3735         pgoff_t idx;
3736         struct page *page;
3737
3738         mapping = vma->vm_file->f_mapping;
3739         idx = vma_hugecache_offset(h, vma, address);
3740
3741         page = find_get_page(mapping, idx);
3742         if (page)
3743                 put_page(page);
3744         return page != NULL;
3745 }
3746
3747 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3748                            pgoff_t idx)
3749 {
3750         struct inode *inode = mapping->host;
3751         struct hstate *h = hstate_inode(inode);
3752         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3753
3754         if (err)
3755                 return err;
3756         ClearPagePrivate(page);
3757
3758         /*
3759          * set page dirty so that it will not be removed from cache/file
3760          * by non-hugetlbfs specific code paths.
3761          */
3762         set_page_dirty(page);
3763
3764         spin_lock(&inode->i_lock);
3765         inode->i_blocks += blocks_per_huge_page(h);
3766         spin_unlock(&inode->i_lock);
3767         return 0;
3768 }
3769
3770 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3771                         struct vm_area_struct *vma,
3772                         struct address_space *mapping, pgoff_t idx,
3773                         unsigned long address, pte_t *ptep, unsigned int flags)
3774 {
3775         struct hstate *h = hstate_vma(vma);
3776         vm_fault_t ret = VM_FAULT_SIGBUS;
3777         int anon_rmap = 0;
3778         unsigned long size;
3779         struct page *page;
3780         pte_t new_pte;
3781         spinlock_t *ptl;
3782         unsigned long haddr = address & huge_page_mask(h);
3783         bool new_page = false;
3784
3785         /*
3786          * Currently, we are forced to kill the process in the event the
3787          * original mapper has unmapped pages from the child due to a failed
3788          * COW. Warn that such a situation has occurred as it may not be obvious
3789          */
3790         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3791                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3792                            current->pid);
3793                 return ret;
3794         }
3795
3796         /*
3797          * Use page lock to guard against racing truncation
3798          * before we get page_table_lock.
3799          */
3800 retry:
3801         page = find_lock_page(mapping, idx);
3802         if (!page) {
3803                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3804                 if (idx >= size)
3805                         goto out;
3806
3807                 /*
3808                  * Check for page in userfault range
3809                  */
3810                 if (userfaultfd_missing(vma)) {
3811                         u32 hash;
3812                         struct vm_fault vmf = {
3813                                 .vma = vma,
3814                                 .address = haddr,
3815                                 .flags = flags,
3816                                 /*
3817                                  * Hard to debug if it ends up being
3818                                  * used by a callee that assumes
3819                                  * something about the other
3820                                  * uninitialized fields... same as in
3821                                  * memory.c
3822                                  */
3823                         };
3824
3825                         /*
3826                          * hugetlb_fault_mutex must be dropped before
3827                          * handling userfault.  Reacquire after handling
3828                          * fault to make calling code simpler.
3829                          */
3830                         hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3831                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3832                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3833                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3834                         goto out;
3835                 }
3836
3837                 page = alloc_huge_page(vma, haddr, 0);
3838                 if (IS_ERR(page)) {
3839                         ret = vmf_error(PTR_ERR(page));
3840                         goto out;
3841                 }
3842                 clear_huge_page(page, address, pages_per_huge_page(h));
3843                 __SetPageUptodate(page);
3844                 new_page = true;
3845
3846                 if (vma->vm_flags & VM_MAYSHARE) {
3847                         int err = huge_add_to_page_cache(page, mapping, idx);
3848                         if (err) {
3849                                 put_page(page);
3850                                 if (err == -EEXIST)
3851                                         goto retry;
3852                                 goto out;
3853                         }
3854                 } else {
3855                         lock_page(page);
3856                         if (unlikely(anon_vma_prepare(vma))) {
3857                                 ret = VM_FAULT_OOM;
3858                                 goto backout_unlocked;
3859                         }
3860                         anon_rmap = 1;
3861                 }
3862         } else {
3863                 /*
3864                  * If memory error occurs between mmap() and fault, some process
3865                  * don't have hwpoisoned swap entry for errored virtual address.
3866                  * So we need to block hugepage fault by PG_hwpoison bit check.
3867                  */
3868                 if (unlikely(PageHWPoison(page))) {
3869                         ret = VM_FAULT_HWPOISON |
3870                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3871                         goto backout_unlocked;
3872                 }
3873         }
3874
3875         /*
3876          * If we are going to COW a private mapping later, we examine the
3877          * pending reservations for this page now. This will ensure that
3878          * any allocations necessary to record that reservation occur outside
3879          * the spinlock.
3880          */
3881         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3882                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3883                         ret = VM_FAULT_OOM;
3884                         goto backout_unlocked;
3885                 }
3886                 /* Just decrements count, does not deallocate */
3887                 vma_end_reservation(h, vma, haddr);
3888         }
3889
3890         ptl = huge_pte_lock(h, mm, ptep);
3891         size = i_size_read(mapping->host) >> huge_page_shift(h);
3892         if (idx >= size)
3893                 goto backout;
3894
3895         ret = 0;
3896         if (!huge_pte_none(huge_ptep_get(ptep)))
3897                 goto backout;
3898
3899         if (anon_rmap) {
3900                 ClearPagePrivate(page);
3901                 hugepage_add_new_anon_rmap(page, vma, haddr);
3902         } else
3903                 page_dup_rmap(page, true);
3904         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3905                                 && (vma->vm_flags & VM_SHARED)));
3906         set_huge_pte_at(mm, haddr, ptep, new_pte);
3907
3908         hugetlb_count_add(pages_per_huge_page(h), mm);
3909         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3910                 /* Optimization, do the COW without a second fault */
3911                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3912         }
3913
3914         spin_unlock(ptl);
3915
3916         /*
3917          * Only make newly allocated pages active.  Existing pages found
3918          * in the pagecache could be !page_huge_active() if they have been
3919          * isolated for migration.
3920          */
3921         if (new_page)
3922                 set_page_huge_active(page);
3923
3924         unlock_page(page);
3925 out:
3926         return ret;
3927
3928 backout:
3929         spin_unlock(ptl);
3930 backout_unlocked:
3931         unlock_page(page);
3932         restore_reserve_on_error(h, vma, haddr, page);
3933         put_page(page);
3934         goto out;
3935 }
3936
3937 #ifdef CONFIG_SMP
3938 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3939                             pgoff_t idx, unsigned long address)
3940 {
3941         unsigned long key[2];
3942         u32 hash;
3943
3944         key[0] = (unsigned long) mapping;
3945         key[1] = idx;
3946
3947         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3948
3949         return hash & (num_fault_mutexes - 1);
3950 }
3951 #else
3952 /*
3953  * For uniprocesor systems we always use a single mutex, so just
3954  * return 0 and avoid the hashing overhead.
3955  */
3956 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3957                             pgoff_t idx, unsigned long address)
3958 {
3959         return 0;
3960 }
3961 #endif
3962
3963 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3964                         unsigned long address, unsigned int flags)
3965 {
3966         pte_t *ptep, entry;
3967         spinlock_t *ptl;
3968         vm_fault_t ret;
3969         u32 hash;
3970         pgoff_t idx;
3971         struct page *page = NULL;
3972         struct page *pagecache_page = NULL;
3973         struct hstate *h = hstate_vma(vma);
3974         struct address_space *mapping;
3975         int need_wait_lock = 0;
3976         unsigned long haddr = address & huge_page_mask(h);
3977
3978         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3979         if (ptep) {
3980                 entry = huge_ptep_get(ptep);
3981                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3982                         migration_entry_wait_huge(vma, mm, ptep);
3983                         return 0;
3984                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3985                         return VM_FAULT_HWPOISON_LARGE |
3986                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3987         } else {
3988                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3989                 if (!ptep)
3990                         return VM_FAULT_OOM;
3991         }
3992
3993         mapping = vma->vm_file->f_mapping;
3994         idx = vma_hugecache_offset(h, vma, haddr);
3995
3996         /*
3997          * Serialize hugepage allocation and instantiation, so that we don't
3998          * get spurious allocation failures if two CPUs race to instantiate
3999          * the same page in the page cache.
4000          */
4001         hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4002         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4003
4004         entry = huge_ptep_get(ptep);
4005         if (huge_pte_none(entry)) {
4006                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4007                 goto out_mutex;
4008         }
4009
4010         ret = 0;
4011
4012         /*
4013          * entry could be a migration/hwpoison entry at this point, so this
4014          * check prevents the kernel from going below assuming that we have
4015          * a active hugepage in pagecache. This goto expects the 2nd page fault,
4016          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4017          * handle it.
4018          */
4019         if (!pte_present(entry))
4020                 goto out_mutex;
4021
4022         /*
4023          * If we are going to COW the mapping later, we examine the pending
4024          * reservations for this page now. This will ensure that any
4025          * allocations necessary to record that reservation occur outside the
4026          * spinlock. For private mappings, we also lookup the pagecache
4027          * page now as it is used to determine if a reservation has been
4028          * consumed.
4029          */
4030         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4031                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4032                         ret = VM_FAULT_OOM;
4033                         goto out_mutex;
4034                 }
4035                 /* Just decrements count, does not deallocate */
4036                 vma_end_reservation(h, vma, haddr);
4037
4038                 if (!(vma->vm_flags & VM_MAYSHARE))
4039                         pagecache_page = hugetlbfs_pagecache_page(h,
4040                                                                 vma, haddr);
4041         }
4042
4043         ptl = huge_pte_lock(h, mm, ptep);
4044
4045         /* Check for a racing update before calling hugetlb_cow */
4046         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4047                 goto out_ptl;
4048
4049         /*
4050          * hugetlb_cow() requires page locks of pte_page(entry) and
4051          * pagecache_page, so here we need take the former one
4052          * when page != pagecache_page or !pagecache_page.
4053          */
4054         page = pte_page(entry);
4055         if (page != pagecache_page)
4056                 if (!trylock_page(page)) {
4057                         need_wait_lock = 1;
4058                         goto out_ptl;
4059                 }
4060
4061         get_page(page);
4062
4063         if (flags & FAULT_FLAG_WRITE) {
4064                 if (!huge_pte_write(entry)) {
4065                         ret = hugetlb_cow(mm, vma, address, ptep,
4066                                           pagecache_page, ptl);
4067                         goto out_put_page;
4068                 }
4069                 entry = huge_pte_mkdirty(entry);
4070         }
4071         entry = pte_mkyoung(entry);
4072         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4073                                                 flags & FAULT_FLAG_WRITE))
4074                 update_mmu_cache(vma, haddr, ptep);
4075 out_put_page:
4076         if (page != pagecache_page)
4077                 unlock_page(page);
4078         put_page(page);
4079 out_ptl:
4080         spin_unlock(ptl);
4081
4082         if (pagecache_page) {
4083                 unlock_page(pagecache_page);
4084                 put_page(pagecache_page);
4085         }
4086 out_mutex:
4087         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4088         /*
4089          * Generally it's safe to hold refcount during waiting page lock. But
4090          * here we just wait to defer the next page fault to avoid busy loop and
4091          * the page is not used after unlocked before returning from the current
4092          * page fault. So we are safe from accessing freed page, even if we wait
4093          * here without taking refcount.
4094          */
4095         if (need_wait_lock)
4096                 wait_on_page_locked(page);
4097         return ret;
4098 }
4099
4100 /*
4101  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4102  * modifications for huge pages.
4103  */
4104 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4105                             pte_t *dst_pte,
4106                             struct vm_area_struct *dst_vma,
4107                             unsigned long dst_addr,
4108                             unsigned long src_addr,
4109                             struct page **pagep)
4110 {
4111         struct address_space *mapping;
4112         pgoff_t idx;
4113         unsigned long size;
4114         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4115         struct hstate *h = hstate_vma(dst_vma);
4116         pte_t _dst_pte;
4117         spinlock_t *ptl;
4118         int ret;
4119         struct page *page;
4120
4121         if (!*pagep) {
4122                 ret = -ENOMEM;
4123                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4124                 if (IS_ERR(page))
4125                         goto out;
4126
4127                 ret = copy_huge_page_from_user(page,
4128                                                 (const void __user *) src_addr,
4129                                                 pages_per_huge_page(h), false);
4130
4131                 /* fallback to copy_from_user outside mmap_sem */
4132                 if (unlikely(ret)) {
4133                         ret = -ENOENT;
4134                         *pagep = page;
4135                         /* don't free the page */
4136                         goto out;
4137                 }
4138         } else {
4139                 page = *pagep;
4140                 *pagep = NULL;
4141         }
4142
4143         /*
4144          * The memory barrier inside __SetPageUptodate makes sure that
4145          * preceding stores to the page contents become visible before
4146          * the set_pte_at() write.
4147          */
4148         __SetPageUptodate(page);
4149
4150         mapping = dst_vma->vm_file->f_mapping;
4151         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4152
4153         /*
4154          * If shared, add to page cache
4155          */
4156         if (vm_shared) {
4157                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4158                 ret = -EFAULT;
4159                 if (idx >= size)
4160                         goto out_release_nounlock;
4161
4162                 /*
4163                  * Serialization between remove_inode_hugepages() and
4164                  * huge_add_to_page_cache() below happens through the
4165                  * hugetlb_fault_mutex_table that here must be hold by
4166                  * the caller.
4167                  */
4168                 ret = huge_add_to_page_cache(page, mapping, idx);
4169                 if (ret)
4170                         goto out_release_nounlock;
4171         }
4172
4173         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4174         spin_lock(ptl);
4175
4176         /*
4177          * Recheck the i_size after holding PT lock to make sure not
4178          * to leave any page mapped (as page_mapped()) beyond the end
4179          * of the i_size (remove_inode_hugepages() is strict about
4180          * enforcing that). If we bail out here, we'll also leave a
4181          * page in the radix tree in the vm_shared case beyond the end
4182          * of the i_size, but remove_inode_hugepages() will take care
4183          * of it as soon as we drop the hugetlb_fault_mutex_table.
4184          */
4185         size = i_size_read(mapping->host) >> huge_page_shift(h);
4186         ret = -EFAULT;
4187         if (idx >= size)
4188                 goto out_release_unlock;
4189
4190         ret = -EEXIST;
4191         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4192                 goto out_release_unlock;
4193
4194         if (vm_shared) {
4195                 page_dup_rmap(page, true);
4196         } else {
4197                 ClearPagePrivate(page);
4198                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4199         }
4200
4201         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4202         if (dst_vma->vm_flags & VM_WRITE)
4203                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4204         _dst_pte = pte_mkyoung(_dst_pte);
4205
4206         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4207
4208         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4209                                         dst_vma->vm_flags & VM_WRITE);
4210         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4211
4212         /* No need to invalidate - it was non-present before */
4213         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4214
4215         spin_unlock(ptl);
4216         set_page_huge_active(page);
4217         if (vm_shared)
4218                 unlock_page(page);
4219         ret = 0;
4220 out:
4221         return ret;
4222 out_release_unlock:
4223         spin_unlock(ptl);
4224         if (vm_shared)
4225                 unlock_page(page);
4226 out_release_nounlock:
4227         put_page(page);
4228         goto out;
4229 }
4230
4231 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4232                          struct page **pages, struct vm_area_struct **vmas,
4233                          unsigned long *position, unsigned long *nr_pages,
4234                          long i, unsigned int flags, int *nonblocking)
4235 {
4236         unsigned long pfn_offset;
4237         unsigned long vaddr = *position;
4238         unsigned long remainder = *nr_pages;
4239         struct hstate *h = hstate_vma(vma);
4240         int err = -EFAULT;
4241
4242         while (vaddr < vma->vm_end && remainder) {
4243                 pte_t *pte;
4244                 spinlock_t *ptl = NULL;
4245                 int absent;
4246                 struct page *page;
4247
4248                 /*
4249                  * If we have a pending SIGKILL, don't keep faulting pages and
4250                  * potentially allocating memory.
4251                  */
4252                 if (fatal_signal_pending(current)) {
4253                         remainder = 0;
4254                         break;
4255                 }
4256
4257                 /*
4258                  * Some archs (sparc64, sh*) have multiple pte_ts to
4259                  * each hugepage.  We have to make sure we get the
4260                  * first, for the page indexing below to work.
4261                  *
4262                  * Note that page table lock is not held when pte is null.
4263                  */
4264                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4265                                       huge_page_size(h));
4266                 if (pte)
4267                         ptl = huge_pte_lock(h, mm, pte);
4268                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4269
4270                 /*
4271                  * When coredumping, it suits get_dump_page if we just return
4272                  * an error where there's an empty slot with no huge pagecache
4273                  * to back it.  This way, we avoid allocating a hugepage, and
4274                  * the sparse dumpfile avoids allocating disk blocks, but its
4275                  * huge holes still show up with zeroes where they need to be.
4276                  */
4277                 if (absent && (flags & FOLL_DUMP) &&
4278                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4279                         if (pte)
4280                                 spin_unlock(ptl);
4281                         remainder = 0;
4282                         break;
4283                 }
4284
4285                 /*
4286                  * We need call hugetlb_fault for both hugepages under migration
4287                  * (in which case hugetlb_fault waits for the migration,) and
4288                  * hwpoisoned hugepages (in which case we need to prevent the
4289                  * caller from accessing to them.) In order to do this, we use
4290                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4291                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4292                  * both cases, and because we can't follow correct pages
4293                  * directly from any kind of swap entries.
4294                  */
4295                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4296                     ((flags & FOLL_WRITE) &&
4297                       !huge_pte_write(huge_ptep_get(pte)))) {
4298                         vm_fault_t ret;
4299                         unsigned int fault_flags = 0;
4300
4301                         if (pte)
4302                                 spin_unlock(ptl);
4303                         if (flags & FOLL_WRITE)
4304                                 fault_flags |= FAULT_FLAG_WRITE;
4305                         if (nonblocking)
4306                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4307                         if (flags & FOLL_NOWAIT)
4308                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4309                                         FAULT_FLAG_RETRY_NOWAIT;
4310                         if (flags & FOLL_TRIED) {
4311                                 VM_WARN_ON_ONCE(fault_flags &
4312                                                 FAULT_FLAG_ALLOW_RETRY);
4313                                 fault_flags |= FAULT_FLAG_TRIED;
4314                         }
4315                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4316                         if (ret & VM_FAULT_ERROR) {
4317                                 err = vm_fault_to_errno(ret, flags);
4318                                 remainder = 0;
4319                                 break;
4320                         }
4321                         if (ret & VM_FAULT_RETRY) {
4322                                 if (nonblocking &&
4323                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4324                                         *nonblocking = 0;
4325                                 *nr_pages = 0;
4326                                 /*
4327                                  * VM_FAULT_RETRY must not return an
4328                                  * error, it will return zero
4329                                  * instead.
4330                                  *
4331                                  * No need to update "position" as the
4332                                  * caller will not check it after
4333                                  * *nr_pages is set to 0.
4334                                  */
4335                                 return i;
4336                         }
4337                         continue;
4338                 }
4339
4340                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4341                 page = pte_page(huge_ptep_get(pte));
4342
4343                 /*
4344                  * Instead of doing 'try_get_page()' below in the same_page
4345                  * loop, just check the count once here.
4346                  */
4347                 if (unlikely(page_count(page) <= 0)) {
4348                         if (pages) {
4349                                 spin_unlock(ptl);
4350                                 remainder = 0;
4351                                 err = -ENOMEM;
4352                                 break;
4353                         }
4354                 }
4355 same_page:
4356                 if (pages) {
4357                         pages[i] = mem_map_offset(page, pfn_offset);
4358                         get_page(pages[i]);
4359                 }
4360
4361                 if (vmas)
4362                         vmas[i] = vma;
4363
4364                 vaddr += PAGE_SIZE;
4365                 ++pfn_offset;
4366                 --remainder;
4367                 ++i;
4368                 if (vaddr < vma->vm_end && remainder &&
4369                                 pfn_offset < pages_per_huge_page(h)) {
4370                         /*
4371                          * We use pfn_offset to avoid touching the pageframes
4372                          * of this compound page.
4373                          */
4374                         goto same_page;
4375                 }
4376                 spin_unlock(ptl);
4377         }
4378         *nr_pages = remainder;
4379         /*
4380          * setting position is actually required only if remainder is
4381          * not zero but it's faster not to add a "if (remainder)"
4382          * branch.
4383          */
4384         *position = vaddr;
4385
4386         return i ? i : err;
4387 }
4388
4389 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4390 /*
4391  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4392  * implement this.
4393  */
4394 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4395 #endif
4396
4397 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4398                 unsigned long address, unsigned long end, pgprot_t newprot)
4399 {
4400         struct mm_struct *mm = vma->vm_mm;
4401         unsigned long start = address;
4402         pte_t *ptep;
4403         pte_t pte;
4404         struct hstate *h = hstate_vma(vma);
4405         unsigned long pages = 0;
4406         bool shared_pmd = false;
4407         struct mmu_notifier_range range;
4408
4409         /*
4410          * In the case of shared PMDs, the area to flush could be beyond
4411          * start/end.  Set range.start/range.end to cover the maximum possible
4412          * range if PMD sharing is possible.
4413          */
4414         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4415                                 end);
4416         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4417
4418         BUG_ON(address >= end);
4419         flush_cache_range(vma, range.start, range.end);
4420
4421         mmu_notifier_invalidate_range_start(&range);
4422         i_mmap_lock_write(vma->vm_file->f_mapping);
4423         for (; address < end; address += huge_page_size(h)) {
4424                 spinlock_t *ptl;
4425                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4426                 if (!ptep)
4427                         continue;
4428                 ptl = huge_pte_lock(h, mm, ptep);
4429                 if (huge_pmd_unshare(mm, &address, ptep)) {
4430                         pages++;
4431                         spin_unlock(ptl);
4432                         shared_pmd = true;
4433                         continue;
4434                 }
4435                 pte = huge_ptep_get(ptep);
4436                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4437                         spin_unlock(ptl);
4438                         continue;
4439                 }
4440                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4441                         swp_entry_t entry = pte_to_swp_entry(pte);
4442
4443                         if (is_write_migration_entry(entry)) {
4444                                 pte_t newpte;
4445
4446                                 make_migration_entry_read(&entry);
4447                                 newpte = swp_entry_to_pte(entry);
4448                                 set_huge_swap_pte_at(mm, address, ptep,
4449                                                      newpte, huge_page_size(h));
4450                                 pages++;
4451                         }
4452                         spin_unlock(ptl);
4453                         continue;
4454                 }
4455                 if (!huge_pte_none(pte)) {
4456                         pte_t old_pte;
4457
4458                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4459                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4460                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4461                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4462                         pages++;
4463                 }
4464                 spin_unlock(ptl);
4465         }
4466         /*
4467          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4468          * may have cleared our pud entry and done put_page on the page table:
4469          * once we release i_mmap_rwsem, another task can do the final put_page
4470          * and that page table be reused and filled with junk.  If we actually
4471          * did unshare a page of pmds, flush the range corresponding to the pud.
4472          */
4473         if (shared_pmd)
4474                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4475         else
4476                 flush_hugetlb_tlb_range(vma, start, end);
4477         /*
4478          * No need to call mmu_notifier_invalidate_range() we are downgrading
4479          * page table protection not changing it to point to a new page.
4480          *
4481          * See Documentation/vm/mmu_notifier.rst
4482          */
4483         i_mmap_unlock_write(vma->vm_file->f_mapping);
4484         mmu_notifier_invalidate_range_end(&range);
4485
4486         return pages << h->order;
4487 }
4488
4489 int hugetlb_reserve_pages(struct inode *inode,
4490                                         long from, long to,
4491                                         struct vm_area_struct *vma,
4492                                         vm_flags_t vm_flags)
4493 {
4494         long ret, chg;
4495         struct hstate *h = hstate_inode(inode);
4496         struct hugepage_subpool *spool = subpool_inode(inode);
4497         struct resv_map *resv_map;
4498         long gbl_reserve;
4499
4500         /* This should never happen */
4501         if (from > to) {
4502                 VM_WARN(1, "%s called with a negative range\n", __func__);
4503                 return -EINVAL;
4504         }
4505
4506         /*
4507          * Only apply hugepage reservation if asked. At fault time, an
4508          * attempt will be made for VM_NORESERVE to allocate a page
4509          * without using reserves
4510          */
4511         if (vm_flags & VM_NORESERVE)
4512                 return 0;
4513
4514         /*
4515          * Shared mappings base their reservation on the number of pages that
4516          * are already allocated on behalf of the file. Private mappings need
4517          * to reserve the full area even if read-only as mprotect() may be
4518          * called to make the mapping read-write. Assume !vma is a shm mapping
4519          */
4520         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4521                 resv_map = inode_resv_map(inode);
4522
4523                 chg = region_chg(resv_map, from, to);
4524
4525         } else {
4526                 resv_map = resv_map_alloc();
4527                 if (!resv_map)
4528                         return -ENOMEM;
4529
4530                 chg = to - from;
4531
4532                 set_vma_resv_map(vma, resv_map);
4533                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4534         }
4535
4536         if (chg < 0) {
4537                 ret = chg;
4538                 goto out_err;
4539         }
4540
4541         /*
4542          * There must be enough pages in the subpool for the mapping. If
4543          * the subpool has a minimum size, there may be some global
4544          * reservations already in place (gbl_reserve).
4545          */
4546         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4547         if (gbl_reserve < 0) {
4548                 ret = -ENOSPC;
4549                 goto out_err;
4550         }
4551
4552         /*
4553          * Check enough hugepages are available for the reservation.
4554          * Hand the pages back to the subpool if there are not
4555          */
4556         ret = hugetlb_acct_memory(h, gbl_reserve);
4557         if (ret < 0) {
4558                 /* put back original number of pages, chg */
4559                 (void)hugepage_subpool_put_pages(spool, chg);
4560                 goto out_err;
4561         }
4562
4563         /*
4564          * Account for the reservations made. Shared mappings record regions
4565          * that have reservations as they are shared by multiple VMAs.
4566          * When the last VMA disappears, the region map says how much
4567          * the reservation was and the page cache tells how much of
4568          * the reservation was consumed. Private mappings are per-VMA and
4569          * only the consumed reservations are tracked. When the VMA
4570          * disappears, the original reservation is the VMA size and the
4571          * consumed reservations are stored in the map. Hence, nothing
4572          * else has to be done for private mappings here
4573          */
4574         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4575                 long add = region_add(resv_map, from, to);
4576
4577                 if (unlikely(chg > add)) {
4578                         /*
4579                          * pages in this range were added to the reserve
4580                          * map between region_chg and region_add.  This
4581                          * indicates a race with alloc_huge_page.  Adjust
4582                          * the subpool and reserve counts modified above
4583                          * based on the difference.
4584                          */
4585                         long rsv_adjust;
4586
4587                         rsv_adjust = hugepage_subpool_put_pages(spool,
4588                                                                 chg - add);
4589                         hugetlb_acct_memory(h, -rsv_adjust);
4590                 }
4591         }
4592         return 0;
4593 out_err:
4594         if (!vma || vma->vm_flags & VM_MAYSHARE)
4595                 /* Don't call region_abort if region_chg failed */
4596                 if (chg >= 0)
4597                         region_abort(resv_map, from, to);
4598         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4599                 kref_put(&resv_map->refs, resv_map_release);
4600         return ret;
4601 }
4602
4603 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4604                                                                 long freed)
4605 {
4606         struct hstate *h = hstate_inode(inode);
4607         struct resv_map *resv_map = inode_resv_map(inode);
4608         long chg = 0;
4609         struct hugepage_subpool *spool = subpool_inode(inode);
4610         long gbl_reserve;
4611
4612         if (resv_map) {
4613                 chg = region_del(resv_map, start, end);
4614                 /*
4615                  * region_del() can fail in the rare case where a region
4616                  * must be split and another region descriptor can not be
4617                  * allocated.  If end == LONG_MAX, it will not fail.
4618                  */
4619                 if (chg < 0)
4620                         return chg;
4621         }
4622
4623         spin_lock(&inode->i_lock);
4624         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4625         spin_unlock(&inode->i_lock);
4626
4627         /*
4628          * If the subpool has a minimum size, the number of global
4629          * reservations to be released may be adjusted.
4630          */
4631         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4632         hugetlb_acct_memory(h, -gbl_reserve);
4633
4634         return 0;
4635 }
4636
4637 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4638 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4639                                 struct vm_area_struct *vma,
4640                                 unsigned long addr, pgoff_t idx)
4641 {
4642         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4643                                 svma->vm_start;
4644         unsigned long sbase = saddr & PUD_MASK;
4645         unsigned long s_end = sbase + PUD_SIZE;
4646
4647         /* Allow segments to share if only one is marked locked */
4648         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4649         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4650
4651         /*
4652          * match the virtual addresses, permission and the alignment of the
4653          * page table page.
4654          */
4655         if (pmd_index(addr) != pmd_index(saddr) ||
4656             vm_flags != svm_flags ||
4657             sbase < svma->vm_start || svma->vm_end < s_end)
4658                 return 0;
4659
4660         return saddr;
4661 }
4662
4663 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4664 {
4665         unsigned long base = addr & PUD_MASK;
4666         unsigned long end = base + PUD_SIZE;
4667
4668         /*
4669          * check on proper vm_flags and page table alignment
4670          */
4671         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4672                 return true;
4673         return false;
4674 }
4675
4676 /*
4677  * Determine if start,end range within vma could be mapped by shared pmd.
4678  * If yes, adjust start and end to cover range associated with possible
4679  * shared pmd mappings.
4680  */
4681 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4682                                 unsigned long *start, unsigned long *end)
4683 {
4684         unsigned long check_addr = *start;
4685
4686         if (!(vma->vm_flags & VM_MAYSHARE))
4687                 return;
4688
4689         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4690                 unsigned long a_start = check_addr & PUD_MASK;
4691                 unsigned long a_end = a_start + PUD_SIZE;
4692
4693                 /*
4694                  * If sharing is possible, adjust start/end if necessary.
4695                  */
4696                 if (range_in_vma(vma, a_start, a_end)) {
4697                         if (a_start < *start)
4698                                 *start = a_start;
4699                         if (a_end > *end)
4700                                 *end = a_end;
4701                 }
4702         }
4703 }
4704
4705 /*
4706  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4707  * and returns the corresponding pte. While this is not necessary for the
4708  * !shared pmd case because we can allocate the pmd later as well, it makes the
4709  * code much cleaner. pmd allocation is essential for the shared case because
4710  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4711  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4712  * bad pmd for sharing.
4713  */
4714 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4715 {
4716         struct vm_area_struct *vma = find_vma(mm, addr);
4717         struct address_space *mapping = vma->vm_file->f_mapping;
4718         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4719                         vma->vm_pgoff;
4720         struct vm_area_struct *svma;
4721         unsigned long saddr;
4722         pte_t *spte = NULL;
4723         pte_t *pte;
4724         spinlock_t *ptl;
4725
4726         if (!vma_shareable(vma, addr))
4727                 return (pte_t *)pmd_alloc(mm, pud, addr);
4728
4729         i_mmap_lock_write(mapping);
4730         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4731                 if (svma == vma)
4732                         continue;
4733
4734                 saddr = page_table_shareable(svma, vma, addr, idx);
4735                 if (saddr) {
4736                         spte = huge_pte_offset(svma->vm_mm, saddr,
4737                                                vma_mmu_pagesize(svma));
4738                         if (spte) {
4739                                 get_page(virt_to_page(spte));
4740                                 break;
4741                         }
4742                 }
4743         }
4744
4745         if (!spte)
4746                 goto out;
4747
4748         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4749         if (pud_none(*pud)) {
4750                 pud_populate(mm, pud,
4751                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4752                 mm_inc_nr_pmds(mm);
4753         } else {
4754                 put_page(virt_to_page(spte));
4755         }
4756         spin_unlock(ptl);
4757 out:
4758         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4759         i_mmap_unlock_write(mapping);
4760         return pte;
4761 }
4762
4763 /*
4764  * unmap huge page backed by shared pte.
4765  *
4766  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4767  * indicated by page_count > 1, unmap is achieved by clearing pud and
4768  * decrementing the ref count. If count == 1, the pte page is not shared.
4769  *
4770  * called with page table lock held.
4771  *
4772  * returns: 1 successfully unmapped a shared pte page
4773  *          0 the underlying pte page is not shared, or it is the last user
4774  */
4775 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4776 {
4777         pgd_t *pgd = pgd_offset(mm, *addr);
4778         p4d_t *p4d = p4d_offset(pgd, *addr);
4779         pud_t *pud = pud_offset(p4d, *addr);
4780
4781         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4782         if (page_count(virt_to_page(ptep)) == 1)
4783                 return 0;
4784
4785         pud_clear(pud);
4786         put_page(virt_to_page(ptep));
4787         mm_dec_nr_pmds(mm);
4788         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4789         return 1;
4790 }
4791 #define want_pmd_share()        (1)
4792 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4793 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4794 {
4795         return NULL;
4796 }
4797
4798 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4799 {
4800         return 0;
4801 }
4802
4803 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4804                                 unsigned long *start, unsigned long *end)
4805 {
4806 }
4807 #define want_pmd_share()        (0)
4808 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4809
4810 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4811 pte_t *huge_pte_alloc(struct mm_struct *mm,
4812                         unsigned long addr, unsigned long sz)
4813 {
4814         pgd_t *pgd;
4815         p4d_t *p4d;
4816         pud_t *pud;
4817         pte_t *pte = NULL;
4818
4819         pgd = pgd_offset(mm, addr);
4820         p4d = p4d_alloc(mm, pgd, addr);
4821         if (!p4d)
4822                 return NULL;
4823         pud = pud_alloc(mm, p4d, addr);
4824         if (pud) {
4825                 if (sz == PUD_SIZE) {
4826                         pte = (pte_t *)pud;
4827                 } else {
4828                         BUG_ON(sz != PMD_SIZE);
4829                         if (want_pmd_share() && pud_none(*pud))
4830                                 pte = huge_pmd_share(mm, addr, pud);
4831                         else
4832                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4833                 }
4834         }
4835         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4836
4837         return pte;
4838 }
4839
4840 /*
4841  * huge_pte_offset() - Walk the page table to resolve the hugepage
4842  * entry at address @addr
4843  *
4844  * Return: Pointer to page table or swap entry (PUD or PMD) for
4845  * address @addr, or NULL if a p*d_none() entry is encountered and the
4846  * size @sz doesn't match the hugepage size at this level of the page
4847  * table.
4848  */
4849 pte_t *huge_pte_offset(struct mm_struct *mm,
4850                        unsigned long addr, unsigned long sz)
4851 {
4852         pgd_t *pgd;
4853         p4d_t *p4d;
4854         pud_t *pud;
4855         pmd_t *pmd;
4856
4857         pgd = pgd_offset(mm, addr);
4858         if (!pgd_present(*pgd))
4859                 return NULL;
4860         p4d = p4d_offset(pgd, addr);
4861         if (!p4d_present(*p4d))
4862                 return NULL;
4863
4864         pud = pud_offset(p4d, addr);
4865         if (sz != PUD_SIZE && pud_none(*pud))
4866                 return NULL;
4867         /* hugepage or swap? */
4868         if (pud_huge(*pud) || !pud_present(*pud))
4869                 return (pte_t *)pud;
4870
4871         pmd = pmd_offset(pud, addr);
4872         if (sz != PMD_SIZE && pmd_none(*pmd))
4873                 return NULL;
4874         /* hugepage or swap? */
4875         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4876                 return (pte_t *)pmd;
4877
4878         return NULL;
4879 }
4880
4881 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4882
4883 /*
4884  * These functions are overwritable if your architecture needs its own
4885  * behavior.
4886  */
4887 struct page * __weak
4888 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4889                               int write)
4890 {
4891         return ERR_PTR(-EINVAL);
4892 }
4893
4894 struct page * __weak
4895 follow_huge_pd(struct vm_area_struct *vma,
4896                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4897 {
4898         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4899         return NULL;
4900 }
4901
4902 struct page * __weak
4903 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4904                 pmd_t *pmd, int flags)
4905 {
4906         struct page *page = NULL;
4907         spinlock_t *ptl;
4908         pte_t pte;
4909 retry:
4910         ptl = pmd_lockptr(mm, pmd);
4911         spin_lock(ptl);
4912         /*
4913          * make sure that the address range covered by this pmd is not
4914          * unmapped from other threads.
4915          */
4916         if (!pmd_huge(*pmd))
4917                 goto out;
4918         pte = huge_ptep_get((pte_t *)pmd);
4919         if (pte_present(pte)) {
4920                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4921                 if (flags & FOLL_GET)
4922                         get_page(page);
4923         } else {
4924                 if (is_hugetlb_entry_migration(pte)) {
4925                         spin_unlock(ptl);
4926                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4927                         goto retry;
4928                 }
4929                 /*
4930                  * hwpoisoned entry is treated as no_page_table in
4931                  * follow_page_mask().
4932                  */
4933         }
4934 out:
4935         spin_unlock(ptl);
4936         return page;
4937 }
4938
4939 struct page * __weak
4940 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4941                 pud_t *pud, int flags)
4942 {
4943         if (flags & FOLL_GET)
4944                 return NULL;
4945
4946         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4947 }
4948
4949 struct page * __weak
4950 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4951 {
4952         if (flags & FOLL_GET)
4953                 return NULL;
4954
4955         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4956 }
4957
4958 bool isolate_huge_page(struct page *page, struct list_head *list)
4959 {
4960         bool ret = true;
4961
4962         VM_BUG_ON_PAGE(!PageHead(page), page);
4963         spin_lock(&hugetlb_lock);
4964         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4965                 ret = false;
4966                 goto unlock;
4967         }
4968         clear_page_huge_active(page);
4969         list_move_tail(&page->lru, list);
4970 unlock:
4971         spin_unlock(&hugetlb_lock);
4972         return ret;
4973 }
4974
4975 void putback_active_hugepage(struct page *page)
4976 {
4977         VM_BUG_ON_PAGE(!PageHead(page), page);
4978         spin_lock(&hugetlb_lock);
4979         set_page_huge_active(page);
4980         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4981         spin_unlock(&hugetlb_lock);
4982         put_page(page);
4983 }
4984
4985 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4986 {
4987         struct hstate *h = page_hstate(oldpage);
4988
4989         hugetlb_cgroup_migrate(oldpage, newpage);
4990         set_page_owner_migrate_reason(newpage, reason);
4991
4992         /*
4993          * transfer temporary state of the new huge page. This is
4994          * reverse to other transitions because the newpage is going to
4995          * be final while the old one will be freed so it takes over
4996          * the temporary status.
4997          *
4998          * Also note that we have to transfer the per-node surplus state
4999          * here as well otherwise the global surplus count will not match
5000          * the per-node's.
5001          */
5002         if (PageHugeTemporary(newpage)) {
5003                 int old_nid = page_to_nid(oldpage);
5004                 int new_nid = page_to_nid(newpage);
5005
5006                 SetPageHugeTemporary(oldpage);
5007                 ClearPageHugeTemporary(newpage);
5008
5009                 spin_lock(&hugetlb_lock);
5010                 if (h->surplus_huge_pages_node[old_nid]) {
5011                         h->surplus_huge_pages_node[old_nid]--;
5012                         h->surplus_huge_pages_node[new_nid]++;
5013                 }
5014                 spin_unlock(&hugetlb_lock);
5015         }
5016 }