selftests/gpio: Use TEST_GEN_PROGS_EXTENDED
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87         bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89         spin_unlock(&spool->lock);
90
91         /* If no pages are used, and no other handles to the subpool
92          * remain, give up any reservations based on minimum size and
93          * free the subpool */
94         if (free) {
95                 if (spool->min_hpages != -1)
96                         hugetlb_acct_memory(spool->hstate,
97                                                 -spool->min_hpages);
98                 kfree(spool);
99         }
100 }
101
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103                                                 long min_hpages)
104 {
105         struct hugepage_subpool *spool;
106
107         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108         if (!spool)
109                 return NULL;
110
111         spin_lock_init(&spool->lock);
112         spool->count = 1;
113         spool->max_hpages = max_hpages;
114         spool->hstate = h;
115         spool->min_hpages = min_hpages;
116
117         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118                 kfree(spool);
119                 return NULL;
120         }
121         spool->rsv_hpages = min_hpages;
122
123         return spool;
124 }
125
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128         spin_lock(&spool->lock);
129         BUG_ON(!spool->count);
130         spool->count--;
131         unlock_or_release_subpool(spool);
132 }
133
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143                                       long delta)
144 {
145         long ret = delta;
146
147         if (!spool)
148                 return ret;
149
150         spin_lock(&spool->lock);
151
152         if (spool->max_hpages != -1) {          /* maximum size accounting */
153                 if ((spool->used_hpages + delta) <= spool->max_hpages)
154                         spool->used_hpages += delta;
155                 else {
156                         ret = -ENOMEM;
157                         goto unlock_ret;
158                 }
159         }
160
161         /* minimum size accounting */
162         if (spool->min_hpages != -1 && spool->rsv_hpages) {
163                 if (delta > spool->rsv_hpages) {
164                         /*
165                          * Asking for more reserves than those already taken on
166                          * behalf of subpool.  Return difference.
167                          */
168                         ret = delta - spool->rsv_hpages;
169                         spool->rsv_hpages = 0;
170                 } else {
171                         ret = 0;        /* reserves already accounted for */
172                         spool->rsv_hpages -= delta;
173                 }
174         }
175
176 unlock_ret:
177         spin_unlock(&spool->lock);
178         return ret;
179 }
180
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188                                        long delta)
189 {
190         long ret = delta;
191
192         if (!spool)
193                 return delta;
194
195         spin_lock(&spool->lock);
196
197         if (spool->max_hpages != -1)            /* maximum size accounting */
198                 spool->used_hpages -= delta;
199
200          /* minimum size accounting */
201         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202                 if (spool->rsv_hpages + delta <= spool->min_hpages)
203                         ret = 0;
204                 else
205                         ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207                 spool->rsv_hpages += delta;
208                 if (spool->rsv_hpages > spool->min_hpages)
209                         spool->rsv_hpages = spool->min_hpages;
210         }
211
212         /*
213          * If hugetlbfs_put_super couldn't free spool due to an outstanding
214          * quota reference, free it now.
215          */
216         unlock_or_release_subpool(spool);
217
218         return ret;
219 }
220
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223         return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228         return subpool_inode(file_inode(vma->vm_file));
229 }
230
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237         struct file_region *nrg = NULL;
238
239         VM_BUG_ON(resv->region_cache_count <= 0);
240
241         resv->region_cache_count--;
242         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243         list_del(&nrg->link);
244
245         nrg->from = from;
246         nrg->to = to;
247
248         return nrg;
249 }
250
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252                                               struct file_region *rg)
253 {
254 #ifdef CONFIG_CGROUP_HUGETLB
255         nrg->reservation_counter = rg->reservation_counter;
256         nrg->css = rg->css;
257         if (rg->css)
258                 css_get(rg->css);
259 #endif
260 }
261
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264                                                 struct hstate *h,
265                                                 struct resv_map *resv,
266                                                 struct file_region *nrg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         if (h_cg) {
270                 nrg->reservation_counter =
271                         &h_cg->rsvd_hugepage[hstate_index(h)];
272                 nrg->css = &h_cg->css;
273                 if (!resv->pages_per_hpage)
274                         resv->pages_per_hpage = pages_per_huge_page(h);
275                 /* pages_per_hpage should be the same for all entries in
276                  * a resv_map.
277                  */
278                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279         } else {
280                 nrg->reservation_counter = NULL;
281                 nrg->css = NULL;
282         }
283 #endif
284 }
285
286 static bool has_same_uncharge_info(struct file_region *rg,
287                                    struct file_region *org)
288 {
289 #ifdef CONFIG_CGROUP_HUGETLB
290         return rg && org &&
291                rg->reservation_counter == org->reservation_counter &&
292                rg->css == org->css;
293
294 #else
295         return true;
296 #endif
297 }
298
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300 {
301         struct file_region *nrg = NULL, *prg = NULL;
302
303         prg = list_prev_entry(rg, link);
304         if (&prg->link != &resv->regions && prg->to == rg->from &&
305             has_same_uncharge_info(prg, rg)) {
306                 prg->to = rg->to;
307
308                 list_del(&rg->link);
309                 kfree(rg);
310
311                 rg = prg;
312         }
313
314         nrg = list_next_entry(rg, link);
315         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316             has_same_uncharge_info(nrg, rg)) {
317                 nrg->from = rg->from;
318
319                 list_del(&rg->link);
320                 kfree(rg);
321         }
322 }
323
324 /*
325  * Must be called with resv->lock held.
326  *
327  * Calling this with regions_needed != NULL will count the number of pages
328  * to be added but will not modify the linked list. And regions_needed will
329  * indicate the number of file_regions needed in the cache to carry out to add
330  * the regions for this range.
331  */
332 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
333                                      struct hugetlb_cgroup *h_cg,
334                                      struct hstate *h, long *regions_needed)
335 {
336         long add = 0;
337         struct list_head *head = &resv->regions;
338         long last_accounted_offset = f;
339         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340
341         if (regions_needed)
342                 *regions_needed = 0;
343
344         /* In this loop, we essentially handle an entry for the range
345          * [last_accounted_offset, rg->from), at every iteration, with some
346          * bounds checking.
347          */
348         list_for_each_entry_safe(rg, trg, head, link) {
349                 /* Skip irrelevant regions that start before our range. */
350                 if (rg->from < f) {
351                         /* If this region ends after the last accounted offset,
352                          * then we need to update last_accounted_offset.
353                          */
354                         if (rg->to > last_accounted_offset)
355                                 last_accounted_offset = rg->to;
356                         continue;
357                 }
358
359                 /* When we find a region that starts beyond our range, we've
360                  * finished.
361                  */
362                 if (rg->from > t)
363                         break;
364
365                 /* Add an entry for last_accounted_offset -> rg->from, and
366                  * update last_accounted_offset.
367                  */
368                 if (rg->from > last_accounted_offset) {
369                         add += rg->from - last_accounted_offset;
370                         if (!regions_needed) {
371                                 nrg = get_file_region_entry_from_cache(
372                                         resv, last_accounted_offset, rg->from);
373                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374                                                                     resv, nrg);
375                                 list_add(&nrg->link, rg->link.prev);
376                                 coalesce_file_region(resv, nrg);
377                         } else
378                                 *regions_needed += 1;
379                 }
380
381                 last_accounted_offset = rg->to;
382         }
383
384         /* Handle the case where our range extends beyond
385          * last_accounted_offset.
386          */
387         if (last_accounted_offset < t) {
388                 add += t - last_accounted_offset;
389                 if (!regions_needed) {
390                         nrg = get_file_region_entry_from_cache(
391                                 resv, last_accounted_offset, t);
392                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393                         list_add(&nrg->link, rg->link.prev);
394                         coalesce_file_region(resv, nrg);
395                 } else
396                         *regions_needed += 1;
397         }
398
399         VM_BUG_ON(add < 0);
400         return add;
401 }
402
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406                                         int regions_needed)
407         __must_hold(&resv->lock)
408 {
409         struct list_head allocated_regions;
410         int to_allocate = 0, i = 0;
411         struct file_region *trg = NULL, *rg = NULL;
412
413         VM_BUG_ON(regions_needed < 0);
414
415         INIT_LIST_HEAD(&allocated_regions);
416
417         /*
418          * Check for sufficient descriptors in the cache to accommodate
419          * the number of in progress add operations plus regions_needed.
420          *
421          * This is a while loop because when we drop the lock, some other call
422          * to region_add or region_del may have consumed some region_entries,
423          * so we keep looping here until we finally have enough entries for
424          * (adds_in_progress + regions_needed).
425          */
426         while (resv->region_cache_count <
427                (resv->adds_in_progress + regions_needed)) {
428                 to_allocate = resv->adds_in_progress + regions_needed -
429                               resv->region_cache_count;
430
431                 /* At this point, we should have enough entries in the cache
432                  * for all the existings adds_in_progress. We should only be
433                  * needing to allocate for regions_needed.
434                  */
435                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436
437                 spin_unlock(&resv->lock);
438                 for (i = 0; i < to_allocate; i++) {
439                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440                         if (!trg)
441                                 goto out_of_memory;
442                         list_add(&trg->link, &allocated_regions);
443                 }
444
445                 spin_lock(&resv->lock);
446
447                 list_splice(&allocated_regions, &resv->region_cache);
448                 resv->region_cache_count += to_allocate;
449         }
450
451         return 0;
452
453 out_of_memory:
454         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455                 list_del(&rg->link);
456                 kfree(rg);
457         }
458         return -ENOMEM;
459 }
460
461 /*
462  * Add the huge page range represented by [f, t) to the reserve
463  * map.  Regions will be taken from the cache to fill in this range.
464  * Sufficient regions should exist in the cache due to the previous
465  * call to region_chg with the same range, but in some cases the cache will not
466  * have sufficient entries due to races with other code doing region_add or
467  * region_del.  The extra needed entries will be allocated.
468  *
469  * regions_needed is the out value provided by a previous call to region_chg.
470  *
471  * Return the number of new huge pages added to the map.  This number is greater
472  * than or equal to zero.  If file_region entries needed to be allocated for
473  * this operation and we were not able to allocate, it returns -ENOMEM.
474  * region_add of regions of length 1 never allocate file_regions and cannot
475  * fail; region_chg will always allocate at least 1 entry and a region_add for
476  * 1 page will only require at most 1 entry.
477  */
478 static long region_add(struct resv_map *resv, long f, long t,
479                        long in_regions_needed, struct hstate *h,
480                        struct hugetlb_cgroup *h_cg)
481 {
482         long add = 0, actual_regions_needed = 0;
483
484         spin_lock(&resv->lock);
485 retry:
486
487         /* Count how many regions are actually needed to execute this add. */
488         add_reservation_in_range(resv, f, t, NULL, NULL,
489                                  &actual_regions_needed);
490
491         /*
492          * Check for sufficient descriptors in the cache to accommodate
493          * this add operation. Note that actual_regions_needed may be greater
494          * than in_regions_needed, as the resv_map may have been modified since
495          * the region_chg call. In this case, we need to make sure that we
496          * allocate extra entries, such that we have enough for all the
497          * existing adds_in_progress, plus the excess needed for this
498          * operation.
499          */
500         if (actual_regions_needed > in_regions_needed &&
501             resv->region_cache_count <
502                     resv->adds_in_progress +
503                             (actual_regions_needed - in_regions_needed)) {
504                 /* region_add operation of range 1 should never need to
505                  * allocate file_region entries.
506                  */
507                 VM_BUG_ON(t - f <= 1);
508
509                 if (allocate_file_region_entries(
510                             resv, actual_regions_needed - in_regions_needed)) {
511                         return -ENOMEM;
512                 }
513
514                 goto retry;
515         }
516
517         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
518
519         resv->adds_in_progress -= in_regions_needed;
520
521         spin_unlock(&resv->lock);
522         VM_BUG_ON(add < 0);
523         return add;
524 }
525
526 /*
527  * Examine the existing reserve map and determine how many
528  * huge pages in the specified range [f, t) are NOT currently
529  * represented.  This routine is called before a subsequent
530  * call to region_add that will actually modify the reserve
531  * map to add the specified range [f, t).  region_chg does
532  * not change the number of huge pages represented by the
533  * map.  A number of new file_region structures is added to the cache as a
534  * placeholder, for the subsequent region_add call to use. At least 1
535  * file_region structure is added.
536  *
537  * out_regions_needed is the number of regions added to the
538  * resv->adds_in_progress.  This value needs to be provided to a follow up call
539  * to region_add or region_abort for proper accounting.
540  *
541  * Returns the number of huge pages that need to be added to the existing
542  * reservation map for the range [f, t).  This number is greater or equal to
543  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
544  * is needed and can not be allocated.
545  */
546 static long region_chg(struct resv_map *resv, long f, long t,
547                        long *out_regions_needed)
548 {
549         long chg = 0;
550
551         spin_lock(&resv->lock);
552
553         /* Count how many hugepages in this range are NOT represented. */
554         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
555                                        out_regions_needed);
556
557         if (*out_regions_needed == 0)
558                 *out_regions_needed = 1;
559
560         if (allocate_file_region_entries(resv, *out_regions_needed))
561                 return -ENOMEM;
562
563         resv->adds_in_progress += *out_regions_needed;
564
565         spin_unlock(&resv->lock);
566         return chg;
567 }
568
569 /*
570  * Abort the in progress add operation.  The adds_in_progress field
571  * of the resv_map keeps track of the operations in progress between
572  * calls to region_chg and region_add.  Operations are sometimes
573  * aborted after the call to region_chg.  In such cases, region_abort
574  * is called to decrement the adds_in_progress counter. regions_needed
575  * is the value returned by the region_chg call, it is used to decrement
576  * the adds_in_progress counter.
577  *
578  * NOTE: The range arguments [f, t) are not needed or used in this
579  * routine.  They are kept to make reading the calling code easier as
580  * arguments will match the associated region_chg call.
581  */
582 static void region_abort(struct resv_map *resv, long f, long t,
583                          long regions_needed)
584 {
585         spin_lock(&resv->lock);
586         VM_BUG_ON(!resv->region_cache_count);
587         resv->adds_in_progress -= regions_needed;
588         spin_unlock(&resv->lock);
589 }
590
591 /*
592  * Delete the specified range [f, t) from the reserve map.  If the
593  * t parameter is LONG_MAX, this indicates that ALL regions after f
594  * should be deleted.  Locate the regions which intersect [f, t)
595  * and either trim, delete or split the existing regions.
596  *
597  * Returns the number of huge pages deleted from the reserve map.
598  * In the normal case, the return value is zero or more.  In the
599  * case where a region must be split, a new region descriptor must
600  * be allocated.  If the allocation fails, -ENOMEM will be returned.
601  * NOTE: If the parameter t == LONG_MAX, then we will never split
602  * a region and possibly return -ENOMEM.  Callers specifying
603  * t == LONG_MAX do not need to check for -ENOMEM error.
604  */
605 static long region_del(struct resv_map *resv, long f, long t)
606 {
607         struct list_head *head = &resv->regions;
608         struct file_region *rg, *trg;
609         struct file_region *nrg = NULL;
610         long del = 0;
611
612 retry:
613         spin_lock(&resv->lock);
614         list_for_each_entry_safe(rg, trg, head, link) {
615                 /*
616                  * Skip regions before the range to be deleted.  file_region
617                  * ranges are normally of the form [from, to).  However, there
618                  * may be a "placeholder" entry in the map which is of the form
619                  * (from, to) with from == to.  Check for placeholder entries
620                  * at the beginning of the range to be deleted.
621                  */
622                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
623                         continue;
624
625                 if (rg->from >= t)
626                         break;
627
628                 if (f > rg->from && t < rg->to) { /* Must split region */
629                         /*
630                          * Check for an entry in the cache before dropping
631                          * lock and attempting allocation.
632                          */
633                         if (!nrg &&
634                             resv->region_cache_count > resv->adds_in_progress) {
635                                 nrg = list_first_entry(&resv->region_cache,
636                                                         struct file_region,
637                                                         link);
638                                 list_del(&nrg->link);
639                                 resv->region_cache_count--;
640                         }
641
642                         if (!nrg) {
643                                 spin_unlock(&resv->lock);
644                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645                                 if (!nrg)
646                                         return -ENOMEM;
647                                 goto retry;
648                         }
649
650                         del += t - f;
651
652                         /* New entry for end of split region */
653                         nrg->from = t;
654                         nrg->to = rg->to;
655
656                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
657
658                         INIT_LIST_HEAD(&nrg->link);
659
660                         /* Original entry is trimmed */
661                         rg->to = f;
662
663                         hugetlb_cgroup_uncharge_file_region(
664                                 resv, rg, nrg->to - nrg->from);
665
666                         list_add(&nrg->link, &rg->link);
667                         nrg = NULL;
668                         break;
669                 }
670
671                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
672                         del += rg->to - rg->from;
673                         hugetlb_cgroup_uncharge_file_region(resv, rg,
674                                                             rg->to - rg->from);
675                         list_del(&rg->link);
676                         kfree(rg);
677                         continue;
678                 }
679
680                 if (f <= rg->from) {    /* Trim beginning of region */
681                         del += t - rg->from;
682                         rg->from = t;
683
684                         hugetlb_cgroup_uncharge_file_region(resv, rg,
685                                                             t - rg->from);
686                 } else {                /* Trim end of region */
687                         del += rg->to - f;
688                         rg->to = f;
689
690                         hugetlb_cgroup_uncharge_file_region(resv, rg,
691                                                             rg->to - f);
692                 }
693         }
694
695         spin_unlock(&resv->lock);
696         kfree(nrg);
697         return del;
698 }
699
700 /*
701  * A rare out of memory error was encountered which prevented removal of
702  * the reserve map region for a page.  The huge page itself was free'ed
703  * and removed from the page cache.  This routine will adjust the subpool
704  * usage count, and the global reserve count if needed.  By incrementing
705  * these counts, the reserve map entry which could not be deleted will
706  * appear as a "reserved" entry instead of simply dangling with incorrect
707  * counts.
708  */
709 void hugetlb_fix_reserve_counts(struct inode *inode)
710 {
711         struct hugepage_subpool *spool = subpool_inode(inode);
712         long rsv_adjust;
713
714         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
715         if (rsv_adjust) {
716                 struct hstate *h = hstate_inode(inode);
717
718                 hugetlb_acct_memory(h, 1);
719         }
720 }
721
722 /*
723  * Count and return the number of huge pages in the reserve map
724  * that intersect with the range [f, t).
725  */
726 static long region_count(struct resv_map *resv, long f, long t)
727 {
728         struct list_head *head = &resv->regions;
729         struct file_region *rg;
730         long chg = 0;
731
732         spin_lock(&resv->lock);
733         /* Locate each segment we overlap with, and count that overlap. */
734         list_for_each_entry(rg, head, link) {
735                 long seg_from;
736                 long seg_to;
737
738                 if (rg->to <= f)
739                         continue;
740                 if (rg->from >= t)
741                         break;
742
743                 seg_from = max(rg->from, f);
744                 seg_to = min(rg->to, t);
745
746                 chg += seg_to - seg_from;
747         }
748         spin_unlock(&resv->lock);
749
750         return chg;
751 }
752
753 /*
754  * Convert the address within this vma to the page offset within
755  * the mapping, in pagecache page units; huge pages here.
756  */
757 static pgoff_t vma_hugecache_offset(struct hstate *h,
758                         struct vm_area_struct *vma, unsigned long address)
759 {
760         return ((address - vma->vm_start) >> huge_page_shift(h)) +
761                         (vma->vm_pgoff >> huge_page_order(h));
762 }
763
764 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
765                                      unsigned long address)
766 {
767         return vma_hugecache_offset(hstate_vma(vma), vma, address);
768 }
769 EXPORT_SYMBOL_GPL(linear_hugepage_index);
770
771 /*
772  * Return the size of the pages allocated when backing a VMA. In the majority
773  * cases this will be same size as used by the page table entries.
774  */
775 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
776 {
777         if (vma->vm_ops && vma->vm_ops->pagesize)
778                 return vma->vm_ops->pagesize(vma);
779         return PAGE_SIZE;
780 }
781 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
782
783 /*
784  * Return the page size being used by the MMU to back a VMA. In the majority
785  * of cases, the page size used by the kernel matches the MMU size. On
786  * architectures where it differs, an architecture-specific 'strong'
787  * version of this symbol is required.
788  */
789 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
790 {
791         return vma_kernel_pagesize(vma);
792 }
793
794 /*
795  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
796  * bits of the reservation map pointer, which are always clear due to
797  * alignment.
798  */
799 #define HPAGE_RESV_OWNER    (1UL << 0)
800 #define HPAGE_RESV_UNMAPPED (1UL << 1)
801 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
802
803 /*
804  * These helpers are used to track how many pages are reserved for
805  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
806  * is guaranteed to have their future faults succeed.
807  *
808  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
809  * the reserve counters are updated with the hugetlb_lock held. It is safe
810  * to reset the VMA at fork() time as it is not in use yet and there is no
811  * chance of the global counters getting corrupted as a result of the values.
812  *
813  * The private mapping reservation is represented in a subtly different
814  * manner to a shared mapping.  A shared mapping has a region map associated
815  * with the underlying file, this region map represents the backing file
816  * pages which have ever had a reservation assigned which this persists even
817  * after the page is instantiated.  A private mapping has a region map
818  * associated with the original mmap which is attached to all VMAs which
819  * reference it, this region map represents those offsets which have consumed
820  * reservation ie. where pages have been instantiated.
821  */
822 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
823 {
824         return (unsigned long)vma->vm_private_data;
825 }
826
827 static void set_vma_private_data(struct vm_area_struct *vma,
828                                                         unsigned long value)
829 {
830         vma->vm_private_data = (void *)value;
831 }
832
833 static void
834 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
835                                           struct hugetlb_cgroup *h_cg,
836                                           struct hstate *h)
837 {
838 #ifdef CONFIG_CGROUP_HUGETLB
839         if (!h_cg || !h) {
840                 resv_map->reservation_counter = NULL;
841                 resv_map->pages_per_hpage = 0;
842                 resv_map->css = NULL;
843         } else {
844                 resv_map->reservation_counter =
845                         &h_cg->rsvd_hugepage[hstate_index(h)];
846                 resv_map->pages_per_hpage = pages_per_huge_page(h);
847                 resv_map->css = &h_cg->css;
848         }
849 #endif
850 }
851
852 struct resv_map *resv_map_alloc(void)
853 {
854         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
855         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
856
857         if (!resv_map || !rg) {
858                 kfree(resv_map);
859                 kfree(rg);
860                 return NULL;
861         }
862
863         kref_init(&resv_map->refs);
864         spin_lock_init(&resv_map->lock);
865         INIT_LIST_HEAD(&resv_map->regions);
866
867         resv_map->adds_in_progress = 0;
868         /*
869          * Initialize these to 0. On shared mappings, 0's here indicate these
870          * fields don't do cgroup accounting. On private mappings, these will be
871          * re-initialized to the proper values, to indicate that hugetlb cgroup
872          * reservations are to be un-charged from here.
873          */
874         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
875
876         INIT_LIST_HEAD(&resv_map->region_cache);
877         list_add(&rg->link, &resv_map->region_cache);
878         resv_map->region_cache_count = 1;
879
880         return resv_map;
881 }
882
883 void resv_map_release(struct kref *ref)
884 {
885         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
886         struct list_head *head = &resv_map->region_cache;
887         struct file_region *rg, *trg;
888
889         /* Clear out any active regions before we release the map. */
890         region_del(resv_map, 0, LONG_MAX);
891
892         /* ... and any entries left in the cache */
893         list_for_each_entry_safe(rg, trg, head, link) {
894                 list_del(&rg->link);
895                 kfree(rg);
896         }
897
898         VM_BUG_ON(resv_map->adds_in_progress);
899
900         kfree(resv_map);
901 }
902
903 static inline struct resv_map *inode_resv_map(struct inode *inode)
904 {
905         /*
906          * At inode evict time, i_mapping may not point to the original
907          * address space within the inode.  This original address space
908          * contains the pointer to the resv_map.  So, always use the
909          * address space embedded within the inode.
910          * The VERY common case is inode->mapping == &inode->i_data but,
911          * this may not be true for device special inodes.
912          */
913         return (struct resv_map *)(&inode->i_data)->private_data;
914 }
915
916 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
917 {
918         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
919         if (vma->vm_flags & VM_MAYSHARE) {
920                 struct address_space *mapping = vma->vm_file->f_mapping;
921                 struct inode *inode = mapping->host;
922
923                 return inode_resv_map(inode);
924
925         } else {
926                 return (struct resv_map *)(get_vma_private_data(vma) &
927                                                         ~HPAGE_RESV_MASK);
928         }
929 }
930
931 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
932 {
933         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
934         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
935
936         set_vma_private_data(vma, (get_vma_private_data(vma) &
937                                 HPAGE_RESV_MASK) | (unsigned long)map);
938 }
939
940 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
941 {
942         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944
945         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
946 }
947
948 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
949 {
950         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
951
952         return (get_vma_private_data(vma) & flag) != 0;
953 }
954
955 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
956 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
957 {
958         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
959         if (!(vma->vm_flags & VM_MAYSHARE))
960                 vma->vm_private_data = (void *)0;
961 }
962
963 /* Returns true if the VMA has associated reserve pages */
964 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
965 {
966         if (vma->vm_flags & VM_NORESERVE) {
967                 /*
968                  * This address is already reserved by other process(chg == 0),
969                  * so, we should decrement reserved count. Without decrementing,
970                  * reserve count remains after releasing inode, because this
971                  * allocated page will go into page cache and is regarded as
972                  * coming from reserved pool in releasing step.  Currently, we
973                  * don't have any other solution to deal with this situation
974                  * properly, so add work-around here.
975                  */
976                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
977                         return true;
978                 else
979                         return false;
980         }
981
982         /* Shared mappings always use reserves */
983         if (vma->vm_flags & VM_MAYSHARE) {
984                 /*
985                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
986                  * be a region map for all pages.  The only situation where
987                  * there is no region map is if a hole was punched via
988                  * fallocate.  In this case, there really are no reserves to
989                  * use.  This situation is indicated if chg != 0.
990                  */
991                 if (chg)
992                         return false;
993                 else
994                         return true;
995         }
996
997         /*
998          * Only the process that called mmap() has reserves for
999          * private mappings.
1000          */
1001         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002                 /*
1003                  * Like the shared case above, a hole punch or truncate
1004                  * could have been performed on the private mapping.
1005                  * Examine the value of chg to determine if reserves
1006                  * actually exist or were previously consumed.
1007                  * Very Subtle - The value of chg comes from a previous
1008                  * call to vma_needs_reserves().  The reserve map for
1009                  * private mappings has different (opposite) semantics
1010                  * than that of shared mappings.  vma_needs_reserves()
1011                  * has already taken this difference in semantics into
1012                  * account.  Therefore, the meaning of chg is the same
1013                  * as in the shared case above.  Code could easily be
1014                  * combined, but keeping it separate draws attention to
1015                  * subtle differences.
1016                  */
1017                 if (chg)
1018                         return false;
1019                 else
1020                         return true;
1021         }
1022
1023         return false;
1024 }
1025
1026 static void enqueue_huge_page(struct hstate *h, struct page *page)
1027 {
1028         int nid = page_to_nid(page);
1029         list_move(&page->lru, &h->hugepage_freelists[nid]);
1030         h->free_huge_pages++;
1031         h->free_huge_pages_node[nid]++;
1032 }
1033
1034 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1035 {
1036         struct page *page;
1037         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1038
1039         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1040                 if (nocma && is_migrate_cma_page(page))
1041                         continue;
1042
1043                 if (PageHWPoison(page))
1044                         continue;
1045
1046                 list_move(&page->lru, &h->hugepage_activelist);
1047                 set_page_refcounted(page);
1048                 h->free_huge_pages--;
1049                 h->free_huge_pages_node[nid]--;
1050                 return page;
1051         }
1052
1053         return NULL;
1054 }
1055
1056 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1057                 nodemask_t *nmask)
1058 {
1059         unsigned int cpuset_mems_cookie;
1060         struct zonelist *zonelist;
1061         struct zone *zone;
1062         struct zoneref *z;
1063         int node = NUMA_NO_NODE;
1064
1065         zonelist = node_zonelist(nid, gfp_mask);
1066
1067 retry_cpuset:
1068         cpuset_mems_cookie = read_mems_allowed_begin();
1069         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1070                 struct page *page;
1071
1072                 if (!cpuset_zone_allowed(zone, gfp_mask))
1073                         continue;
1074                 /*
1075                  * no need to ask again on the same node. Pool is node rather than
1076                  * zone aware
1077                  */
1078                 if (zone_to_nid(zone) == node)
1079                         continue;
1080                 node = zone_to_nid(zone);
1081
1082                 page = dequeue_huge_page_node_exact(h, node);
1083                 if (page)
1084                         return page;
1085         }
1086         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1087                 goto retry_cpuset;
1088
1089         return NULL;
1090 }
1091
1092 static struct page *dequeue_huge_page_vma(struct hstate *h,
1093                                 struct vm_area_struct *vma,
1094                                 unsigned long address, int avoid_reserve,
1095                                 long chg)
1096 {
1097         struct page *page;
1098         struct mempolicy *mpol;
1099         gfp_t gfp_mask;
1100         nodemask_t *nodemask;
1101         int nid;
1102
1103         /*
1104          * A child process with MAP_PRIVATE mappings created by their parent
1105          * have no page reserves. This check ensures that reservations are
1106          * not "stolen". The child may still get SIGKILLed
1107          */
1108         if (!vma_has_reserves(vma, chg) &&
1109                         h->free_huge_pages - h->resv_huge_pages == 0)
1110                 goto err;
1111
1112         /* If reserves cannot be used, ensure enough pages are in the pool */
1113         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1114                 goto err;
1115
1116         gfp_mask = htlb_alloc_mask(h);
1117         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1118         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1119         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1120                 SetPagePrivate(page);
1121                 h->resv_huge_pages--;
1122         }
1123
1124         mpol_cond_put(mpol);
1125         return page;
1126
1127 err:
1128         return NULL;
1129 }
1130
1131 /*
1132  * common helper functions for hstate_next_node_to_{alloc|free}.
1133  * We may have allocated or freed a huge page based on a different
1134  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1135  * be outside of *nodes_allowed.  Ensure that we use an allowed
1136  * node for alloc or free.
1137  */
1138 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1139 {
1140         nid = next_node_in(nid, *nodes_allowed);
1141         VM_BUG_ON(nid >= MAX_NUMNODES);
1142
1143         return nid;
1144 }
1145
1146 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1147 {
1148         if (!node_isset(nid, *nodes_allowed))
1149                 nid = next_node_allowed(nid, nodes_allowed);
1150         return nid;
1151 }
1152
1153 /*
1154  * returns the previously saved node ["this node"] from which to
1155  * allocate a persistent huge page for the pool and advance the
1156  * next node from which to allocate, handling wrap at end of node
1157  * mask.
1158  */
1159 static int hstate_next_node_to_alloc(struct hstate *h,
1160                                         nodemask_t *nodes_allowed)
1161 {
1162         int nid;
1163
1164         VM_BUG_ON(!nodes_allowed);
1165
1166         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1167         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1168
1169         return nid;
1170 }
1171
1172 /*
1173  * helper for free_pool_huge_page() - return the previously saved
1174  * node ["this node"] from which to free a huge page.  Advance the
1175  * next node id whether or not we find a free huge page to free so
1176  * that the next attempt to free addresses the next node.
1177  */
1178 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1179 {
1180         int nid;
1181
1182         VM_BUG_ON(!nodes_allowed);
1183
1184         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1185         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1186
1187         return nid;
1188 }
1189
1190 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1191         for (nr_nodes = nodes_weight(*mask);                            \
1192                 nr_nodes > 0 &&                                         \
1193                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1194                 nr_nodes--)
1195
1196 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1197         for (nr_nodes = nodes_weight(*mask);                            \
1198                 nr_nodes > 0 &&                                         \
1199                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1200                 nr_nodes--)
1201
1202 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1203 static void destroy_compound_gigantic_page(struct page *page,
1204                                         unsigned int order)
1205 {
1206         int i;
1207         int nr_pages = 1 << order;
1208         struct page *p = page + 1;
1209
1210         atomic_set(compound_mapcount_ptr(page), 0);
1211         if (hpage_pincount_available(page))
1212                 atomic_set(compound_pincount_ptr(page), 0);
1213
1214         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1215                 clear_compound_head(p);
1216                 set_page_refcounted(p);
1217         }
1218
1219         set_compound_order(page, 0);
1220         __ClearPageHead(page);
1221 }
1222
1223 static void free_gigantic_page(struct page *page, unsigned int order)
1224 {
1225         /*
1226          * If the page isn't allocated using the cma allocator,
1227          * cma_release() returns false.
1228          */
1229 #ifdef CONFIG_CMA
1230         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1231                 return;
1232 #endif
1233
1234         free_contig_range(page_to_pfn(page), 1 << order);
1235 }
1236
1237 #ifdef CONFIG_CONTIG_ALLOC
1238 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1239                 int nid, nodemask_t *nodemask)
1240 {
1241         unsigned long nr_pages = 1UL << huge_page_order(h);
1242         if (nid == NUMA_NO_NODE)
1243                 nid = numa_mem_id();
1244
1245 #ifdef CONFIG_CMA
1246         {
1247                 struct page *page;
1248                 int node;
1249
1250                 if (hugetlb_cma[nid]) {
1251                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1252                                         huge_page_order(h), true);
1253                         if (page)
1254                                 return page;
1255                 }
1256
1257                 if (!(gfp_mask & __GFP_THISNODE)) {
1258                         for_each_node_mask(node, *nodemask) {
1259                                 if (node == nid || !hugetlb_cma[node])
1260                                         continue;
1261
1262                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1263                                                 huge_page_order(h), true);
1264                                 if (page)
1265                                         return page;
1266                         }
1267                 }
1268         }
1269 #endif
1270
1271         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272 }
1273
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278                                         int nid, nodemask_t *nodemask)
1279 {
1280         return NULL;
1281 }
1282 #endif /* CONFIG_CONTIG_ALLOC */
1283
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286                                         int nid, nodemask_t *nodemask)
1287 {
1288         return NULL;
1289 }
1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291 static inline void destroy_compound_gigantic_page(struct page *page,
1292                                                 unsigned int order) { }
1293 #endif
1294
1295 static void update_and_free_page(struct hstate *h, struct page *page)
1296 {
1297         int i;
1298
1299         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300                 return;
1301
1302         h->nr_huge_pages--;
1303         h->nr_huge_pages_node[page_to_nid(page)]--;
1304         for (i = 0; i < pages_per_huge_page(h); i++) {
1305                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306                                 1 << PG_referenced | 1 << PG_dirty |
1307                                 1 << PG_active | 1 << PG_private |
1308                                 1 << PG_writeback);
1309         }
1310         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313         set_page_refcounted(page);
1314         if (hstate_is_gigantic(h)) {
1315                 /*
1316                  * Temporarily drop the hugetlb_lock, because
1317                  * we might block in free_gigantic_page().
1318                  */
1319                 spin_unlock(&hugetlb_lock);
1320                 destroy_compound_gigantic_page(page, huge_page_order(h));
1321                 free_gigantic_page(page, huge_page_order(h));
1322                 spin_lock(&hugetlb_lock);
1323         } else {
1324                 __free_pages(page, huge_page_order(h));
1325         }
1326 }
1327
1328 struct hstate *size_to_hstate(unsigned long size)
1329 {
1330         struct hstate *h;
1331
1332         for_each_hstate(h) {
1333                 if (huge_page_size(h) == size)
1334                         return h;
1335         }
1336         return NULL;
1337 }
1338
1339 /*
1340  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341  * to hstate->hugepage_activelist.)
1342  *
1343  * This function can be called for tail pages, but never returns true for them.
1344  */
1345 bool page_huge_active(struct page *page)
1346 {
1347         VM_BUG_ON_PAGE(!PageHuge(page), page);
1348         return PageHead(page) && PagePrivate(&page[1]);
1349 }
1350
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page *page)
1353 {
1354         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355         SetPagePrivate(&page[1]);
1356 }
1357
1358 static void clear_page_huge_active(struct page *page)
1359 {
1360         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361         ClearPagePrivate(&page[1]);
1362 }
1363
1364 /*
1365  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366  * code
1367  */
1368 static inline bool PageHugeTemporary(struct page *page)
1369 {
1370         if (!PageHuge(page))
1371                 return false;
1372
1373         return (unsigned long)page[2].mapping == -1U;
1374 }
1375
1376 static inline void SetPageHugeTemporary(struct page *page)
1377 {
1378         page[2].mapping = (void *)-1U;
1379 }
1380
1381 static inline void ClearPageHugeTemporary(struct page *page)
1382 {
1383         page[2].mapping = NULL;
1384 }
1385
1386 static void __free_huge_page(struct page *page)
1387 {
1388         /*
1389          * Can't pass hstate in here because it is called from the
1390          * compound page destructor.
1391          */
1392         struct hstate *h = page_hstate(page);
1393         int nid = page_to_nid(page);
1394         struct hugepage_subpool *spool =
1395                 (struct hugepage_subpool *)page_private(page);
1396         bool restore_reserve;
1397
1398         VM_BUG_ON_PAGE(page_count(page), page);
1399         VM_BUG_ON_PAGE(page_mapcount(page), page);
1400
1401         set_page_private(page, 0);
1402         page->mapping = NULL;
1403         restore_reserve = PagePrivate(page);
1404         ClearPagePrivate(page);
1405
1406         /*
1407          * If PagePrivate() was set on page, page allocation consumed a
1408          * reservation.  If the page was associated with a subpool, there
1409          * would have been a page reserved in the subpool before allocation
1410          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1411          * reservtion, do not call hugepage_subpool_put_pages() as this will
1412          * remove the reserved page from the subpool.
1413          */
1414         if (!restore_reserve) {
1415                 /*
1416                  * A return code of zero implies that the subpool will be
1417                  * under its minimum size if the reservation is not restored
1418                  * after page is free.  Therefore, force restore_reserve
1419                  * operation.
1420                  */
1421                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1422                         restore_reserve = true;
1423         }
1424
1425         spin_lock(&hugetlb_lock);
1426         clear_page_huge_active(page);
1427         hugetlb_cgroup_uncharge_page(hstate_index(h),
1428                                      pages_per_huge_page(h), page);
1429         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430                                           pages_per_huge_page(h), page);
1431         if (restore_reserve)
1432                 h->resv_huge_pages++;
1433
1434         if (PageHugeTemporary(page)) {
1435                 list_del(&page->lru);
1436                 ClearPageHugeTemporary(page);
1437                 update_and_free_page(h, page);
1438         } else if (h->surplus_huge_pages_node[nid]) {
1439                 /* remove the page from active list */
1440                 list_del(&page->lru);
1441                 update_and_free_page(h, page);
1442                 h->surplus_huge_pages--;
1443                 h->surplus_huge_pages_node[nid]--;
1444         } else {
1445                 arch_clear_hugepage_flags(page);
1446                 enqueue_huge_page(h, page);
1447         }
1448         spin_unlock(&hugetlb_lock);
1449 }
1450
1451 /*
1452  * As free_huge_page() can be called from a non-task context, we have
1453  * to defer the actual freeing in a workqueue to prevent potential
1454  * hugetlb_lock deadlock.
1455  *
1456  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457  * be freed and frees them one-by-one. As the page->mapping pointer is
1458  * going to be cleared in __free_huge_page() anyway, it is reused as the
1459  * llist_node structure of a lockless linked list of huge pages to be freed.
1460  */
1461 static LLIST_HEAD(hpage_freelist);
1462
1463 static void free_hpage_workfn(struct work_struct *work)
1464 {
1465         struct llist_node *node;
1466         struct page *page;
1467
1468         node = llist_del_all(&hpage_freelist);
1469
1470         while (node) {
1471                 page = container_of((struct address_space **)node,
1472                                      struct page, mapping);
1473                 node = node->next;
1474                 __free_huge_page(page);
1475         }
1476 }
1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478
1479 void free_huge_page(struct page *page)
1480 {
1481         /*
1482          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483          */
1484         if (!in_task()) {
1485                 /*
1486                  * Only call schedule_work() if hpage_freelist is previously
1487                  * empty. Otherwise, schedule_work() had been called but the
1488                  * workfn hasn't retrieved the list yet.
1489                  */
1490                 if (llist_add((struct llist_node *)&page->mapping,
1491                               &hpage_freelist))
1492                         schedule_work(&free_hpage_work);
1493                 return;
1494         }
1495
1496         __free_huge_page(page);
1497 }
1498
1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500 {
1501         INIT_LIST_HEAD(&page->lru);
1502         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503         set_hugetlb_cgroup(page, NULL);
1504         set_hugetlb_cgroup_rsvd(page, NULL);
1505         spin_lock(&hugetlb_lock);
1506         h->nr_huge_pages++;
1507         h->nr_huge_pages_node[nid]++;
1508         spin_unlock(&hugetlb_lock);
1509 }
1510
1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512 {
1513         int i;
1514         int nr_pages = 1 << order;
1515         struct page *p = page + 1;
1516
1517         /* we rely on prep_new_huge_page to set the destructor */
1518         set_compound_order(page, order);
1519         __ClearPageReserved(page);
1520         __SetPageHead(page);
1521         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522                 /*
1523                  * For gigantic hugepages allocated through bootmem at
1524                  * boot, it's safer to be consistent with the not-gigantic
1525                  * hugepages and clear the PG_reserved bit from all tail pages
1526                  * too.  Otherwise drivers using get_user_pages() to access tail
1527                  * pages may get the reference counting wrong if they see
1528                  * PG_reserved set on a tail page (despite the head page not
1529                  * having PG_reserved set).  Enforcing this consistency between
1530                  * head and tail pages allows drivers to optimize away a check
1531                  * on the head page when they need know if put_page() is needed
1532                  * after get_user_pages().
1533                  */
1534                 __ClearPageReserved(p);
1535                 set_page_count(p, 0);
1536                 set_compound_head(p, page);
1537         }
1538         atomic_set(compound_mapcount_ptr(page), -1);
1539
1540         if (hpage_pincount_available(page))
1541                 atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551         if (!PageCompound(page))
1552                 return 0;
1553
1554         page = compound_head(page);
1555         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565         if (!PageHead(page_head))
1566                 return 0;
1567
1568         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570
1571 /*
1572  * Find address_space associated with hugetlbfs page.
1573  * Upon entry page is locked and page 'was' mapped although mapped state
1574  * could change.  If necessary, use anon_vma to find vma and associated
1575  * address space.  The returned mapping may be stale, but it can not be
1576  * invalid as page lock (which is held) is required to destroy mapping.
1577  */
1578 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1579 {
1580         struct anon_vma *anon_vma;
1581         pgoff_t pgoff_start, pgoff_end;
1582         struct anon_vma_chain *avc;
1583         struct address_space *mapping = page_mapping(hpage);
1584
1585         /* Simple file based mapping */
1586         if (mapping)
1587                 return mapping;
1588
1589         /*
1590          * Even anonymous hugetlbfs mappings are associated with an
1591          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1592          * code).  Find a vma associated with the anonymous vma, and
1593          * use the file pointer to get address_space.
1594          */
1595         anon_vma = page_lock_anon_vma_read(hpage);
1596         if (!anon_vma)
1597                 return mapping;  /* NULL */
1598
1599         /* Use first found vma */
1600         pgoff_start = page_to_pgoff(hpage);
1601         pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1602         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1603                                         pgoff_start, pgoff_end) {
1604                 struct vm_area_struct *vma = avc->vma;
1605
1606                 mapping = vma->vm_file->f_mapping;
1607                 break;
1608         }
1609
1610         anon_vma_unlock_read(anon_vma);
1611         return mapping;
1612 }
1613
1614 /*
1615  * Find and lock address space (mapping) in write mode.
1616  *
1617  * Upon entry, the page is locked which allows us to find the mapping
1618  * even in the case of an anon page.  However, locking order dictates
1619  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1620  * specific.  So, we first try to lock the sema while still holding the
1621  * page lock.  If this works, great!  If not, then we need to drop the
1622  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1623  * course, need to revalidate state along the way.
1624  */
1625 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1626 {
1627         struct address_space *mapping, *mapping2;
1628
1629         mapping = _get_hugetlb_page_mapping(hpage);
1630 retry:
1631         if (!mapping)
1632                 return mapping;
1633
1634         /*
1635          * If no contention, take lock and return
1636          */
1637         if (i_mmap_trylock_write(mapping))
1638                 return mapping;
1639
1640         /*
1641          * Must drop page lock and wait on mapping sema.
1642          * Note:  Once page lock is dropped, mapping could become invalid.
1643          * As a hack, increase map count until we lock page again.
1644          */
1645         atomic_inc(&hpage->_mapcount);
1646         unlock_page(hpage);
1647         i_mmap_lock_write(mapping);
1648         lock_page(hpage);
1649         atomic_add_negative(-1, &hpage->_mapcount);
1650
1651         /* verify page is still mapped */
1652         if (!page_mapped(hpage)) {
1653                 i_mmap_unlock_write(mapping);
1654                 return NULL;
1655         }
1656
1657         /*
1658          * Get address space again and verify it is the same one
1659          * we locked.  If not, drop lock and retry.
1660          */
1661         mapping2 = _get_hugetlb_page_mapping(hpage);
1662         if (mapping2 != mapping) {
1663                 i_mmap_unlock_write(mapping);
1664                 mapping = mapping2;
1665                 goto retry;
1666         }
1667
1668         return mapping;
1669 }
1670
1671 pgoff_t __basepage_index(struct page *page)
1672 {
1673         struct page *page_head = compound_head(page);
1674         pgoff_t index = page_index(page_head);
1675         unsigned long compound_idx;
1676
1677         if (!PageHuge(page_head))
1678                 return page_index(page);
1679
1680         if (compound_order(page_head) >= MAX_ORDER)
1681                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1682         else
1683                 compound_idx = page - page_head;
1684
1685         return (index << compound_order(page_head)) + compound_idx;
1686 }
1687
1688 static struct page *alloc_buddy_huge_page(struct hstate *h,
1689                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1690                 nodemask_t *node_alloc_noretry)
1691 {
1692         int order = huge_page_order(h);
1693         struct page *page;
1694         bool alloc_try_hard = true;
1695
1696         /*
1697          * By default we always try hard to allocate the page with
1698          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1699          * a loop (to adjust global huge page counts) and previous allocation
1700          * failed, do not continue to try hard on the same node.  Use the
1701          * node_alloc_noretry bitmap to manage this state information.
1702          */
1703         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1704                 alloc_try_hard = false;
1705         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1706         if (alloc_try_hard)
1707                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1708         if (nid == NUMA_NO_NODE)
1709                 nid = numa_mem_id();
1710         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1711         if (page)
1712                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1713         else
1714                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1715
1716         /*
1717          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1718          * indicates an overall state change.  Clear bit so that we resume
1719          * normal 'try hard' allocations.
1720          */
1721         if (node_alloc_noretry && page && !alloc_try_hard)
1722                 node_clear(nid, *node_alloc_noretry);
1723
1724         /*
1725          * If we tried hard to get a page but failed, set bit so that
1726          * subsequent attempts will not try as hard until there is an
1727          * overall state change.
1728          */
1729         if (node_alloc_noretry && !page && alloc_try_hard)
1730                 node_set(nid, *node_alloc_noretry);
1731
1732         return page;
1733 }
1734
1735 /*
1736  * Common helper to allocate a fresh hugetlb page. All specific allocators
1737  * should use this function to get new hugetlb pages
1738  */
1739 static struct page *alloc_fresh_huge_page(struct hstate *h,
1740                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1741                 nodemask_t *node_alloc_noretry)
1742 {
1743         struct page *page;
1744
1745         if (hstate_is_gigantic(h))
1746                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1747         else
1748                 page = alloc_buddy_huge_page(h, gfp_mask,
1749                                 nid, nmask, node_alloc_noretry);
1750         if (!page)
1751                 return NULL;
1752
1753         if (hstate_is_gigantic(h))
1754                 prep_compound_gigantic_page(page, huge_page_order(h));
1755         prep_new_huge_page(h, page, page_to_nid(page));
1756
1757         return page;
1758 }
1759
1760 /*
1761  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1762  * manner.
1763  */
1764 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1765                                 nodemask_t *node_alloc_noretry)
1766 {
1767         struct page *page;
1768         int nr_nodes, node;
1769         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1770
1771         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1772                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1773                                                 node_alloc_noretry);
1774                 if (page)
1775                         break;
1776         }
1777
1778         if (!page)
1779                 return 0;
1780
1781         put_page(page); /* free it into the hugepage allocator */
1782
1783         return 1;
1784 }
1785
1786 /*
1787  * Free huge page from pool from next node to free.
1788  * Attempt to keep persistent huge pages more or less
1789  * balanced over allowed nodes.
1790  * Called with hugetlb_lock locked.
1791  */
1792 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1793                                                          bool acct_surplus)
1794 {
1795         int nr_nodes, node;
1796         int ret = 0;
1797
1798         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1799                 /*
1800                  * If we're returning unused surplus pages, only examine
1801                  * nodes with surplus pages.
1802                  */
1803                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1804                     !list_empty(&h->hugepage_freelists[node])) {
1805                         struct page *page =
1806                                 list_entry(h->hugepage_freelists[node].next,
1807                                           struct page, lru);
1808                         list_del(&page->lru);
1809                         h->free_huge_pages--;
1810                         h->free_huge_pages_node[node]--;
1811                         if (acct_surplus) {
1812                                 h->surplus_huge_pages--;
1813                                 h->surplus_huge_pages_node[node]--;
1814                         }
1815                         update_and_free_page(h, page);
1816                         ret = 1;
1817                         break;
1818                 }
1819         }
1820
1821         return ret;
1822 }
1823
1824 /*
1825  * Dissolve a given free hugepage into free buddy pages. This function does
1826  * nothing for in-use hugepages and non-hugepages.
1827  * This function returns values like below:
1828  *
1829  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1830  *          (allocated or reserved.)
1831  *       0: successfully dissolved free hugepages or the page is not a
1832  *          hugepage (considered as already dissolved)
1833  */
1834 int dissolve_free_huge_page(struct page *page)
1835 {
1836         int rc = -EBUSY;
1837
1838         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1839         if (!PageHuge(page))
1840                 return 0;
1841
1842         spin_lock(&hugetlb_lock);
1843         if (!PageHuge(page)) {
1844                 rc = 0;
1845                 goto out;
1846         }
1847
1848         if (!page_count(page)) {
1849                 struct page *head = compound_head(page);
1850                 struct hstate *h = page_hstate(head);
1851                 int nid = page_to_nid(head);
1852                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1853                         goto out;
1854                 /*
1855                  * Move PageHWPoison flag from head page to the raw error page,
1856                  * which makes any subpages rather than the error page reusable.
1857                  */
1858                 if (PageHWPoison(head) && page != head) {
1859                         SetPageHWPoison(page);
1860                         ClearPageHWPoison(head);
1861                 }
1862                 list_del(&head->lru);
1863                 h->free_huge_pages--;
1864                 h->free_huge_pages_node[nid]--;
1865                 h->max_huge_pages--;
1866                 update_and_free_page(h, head);
1867                 rc = 0;
1868         }
1869 out:
1870         spin_unlock(&hugetlb_lock);
1871         return rc;
1872 }
1873
1874 /*
1875  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1876  * make specified memory blocks removable from the system.
1877  * Note that this will dissolve a free gigantic hugepage completely, if any
1878  * part of it lies within the given range.
1879  * Also note that if dissolve_free_huge_page() returns with an error, all
1880  * free hugepages that were dissolved before that error are lost.
1881  */
1882 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1883 {
1884         unsigned long pfn;
1885         struct page *page;
1886         int rc = 0;
1887
1888         if (!hugepages_supported())
1889                 return rc;
1890
1891         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1892                 page = pfn_to_page(pfn);
1893                 rc = dissolve_free_huge_page(page);
1894                 if (rc)
1895                         break;
1896         }
1897
1898         return rc;
1899 }
1900
1901 /*
1902  * Allocates a fresh surplus page from the page allocator.
1903  */
1904 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1905                 int nid, nodemask_t *nmask)
1906 {
1907         struct page *page = NULL;
1908
1909         if (hstate_is_gigantic(h))
1910                 return NULL;
1911
1912         spin_lock(&hugetlb_lock);
1913         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1914                 goto out_unlock;
1915         spin_unlock(&hugetlb_lock);
1916
1917         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1918         if (!page)
1919                 return NULL;
1920
1921         spin_lock(&hugetlb_lock);
1922         /*
1923          * We could have raced with the pool size change.
1924          * Double check that and simply deallocate the new page
1925          * if we would end up overcommiting the surpluses. Abuse
1926          * temporary page to workaround the nasty free_huge_page
1927          * codeflow
1928          */
1929         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1930                 SetPageHugeTemporary(page);
1931                 spin_unlock(&hugetlb_lock);
1932                 put_page(page);
1933                 return NULL;
1934         } else {
1935                 h->surplus_huge_pages++;
1936                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1937         }
1938
1939 out_unlock:
1940         spin_unlock(&hugetlb_lock);
1941
1942         return page;
1943 }
1944
1945 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1946                                      int nid, nodemask_t *nmask)
1947 {
1948         struct page *page;
1949
1950         if (hstate_is_gigantic(h))
1951                 return NULL;
1952
1953         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1954         if (!page)
1955                 return NULL;
1956
1957         /*
1958          * We do not account these pages as surplus because they are only
1959          * temporary and will be released properly on the last reference
1960          */
1961         SetPageHugeTemporary(page);
1962
1963         return page;
1964 }
1965
1966 /*
1967  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1968  */
1969 static
1970 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1971                 struct vm_area_struct *vma, unsigned long addr)
1972 {
1973         struct page *page;
1974         struct mempolicy *mpol;
1975         gfp_t gfp_mask = htlb_alloc_mask(h);
1976         int nid;
1977         nodemask_t *nodemask;
1978
1979         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1980         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1981         mpol_cond_put(mpol);
1982
1983         return page;
1984 }
1985
1986 /* page migration callback function */
1987 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1988                 nodemask_t *nmask, gfp_t gfp_mask)
1989 {
1990         spin_lock(&hugetlb_lock);
1991         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1992                 struct page *page;
1993
1994                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1995                 if (page) {
1996                         spin_unlock(&hugetlb_lock);
1997                         return page;
1998                 }
1999         }
2000         spin_unlock(&hugetlb_lock);
2001
2002         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2003 }
2004
2005 /* mempolicy aware migration callback */
2006 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2007                 unsigned long address)
2008 {
2009         struct mempolicy *mpol;
2010         nodemask_t *nodemask;
2011         struct page *page;
2012         gfp_t gfp_mask;
2013         int node;
2014
2015         gfp_mask = htlb_alloc_mask(h);
2016         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2017         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2018         mpol_cond_put(mpol);
2019
2020         return page;
2021 }
2022
2023 /*
2024  * Increase the hugetlb pool such that it can accommodate a reservation
2025  * of size 'delta'.
2026  */
2027 static int gather_surplus_pages(struct hstate *h, int delta)
2028         __must_hold(&hugetlb_lock)
2029 {
2030         struct list_head surplus_list;
2031         struct page *page, *tmp;
2032         int ret, i;
2033         int needed, allocated;
2034         bool alloc_ok = true;
2035
2036         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2037         if (needed <= 0) {
2038                 h->resv_huge_pages += delta;
2039                 return 0;
2040         }
2041
2042         allocated = 0;
2043         INIT_LIST_HEAD(&surplus_list);
2044
2045         ret = -ENOMEM;
2046 retry:
2047         spin_unlock(&hugetlb_lock);
2048         for (i = 0; i < needed; i++) {
2049                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2050                                 NUMA_NO_NODE, NULL);
2051                 if (!page) {
2052                         alloc_ok = false;
2053                         break;
2054                 }
2055                 list_add(&page->lru, &surplus_list);
2056                 cond_resched();
2057         }
2058         allocated += i;
2059
2060         /*
2061          * After retaking hugetlb_lock, we need to recalculate 'needed'
2062          * because either resv_huge_pages or free_huge_pages may have changed.
2063          */
2064         spin_lock(&hugetlb_lock);
2065         needed = (h->resv_huge_pages + delta) -
2066                         (h->free_huge_pages + allocated);
2067         if (needed > 0) {
2068                 if (alloc_ok)
2069                         goto retry;
2070                 /*
2071                  * We were not able to allocate enough pages to
2072                  * satisfy the entire reservation so we free what
2073                  * we've allocated so far.
2074                  */
2075                 goto free;
2076         }
2077         /*
2078          * The surplus_list now contains _at_least_ the number of extra pages
2079          * needed to accommodate the reservation.  Add the appropriate number
2080          * of pages to the hugetlb pool and free the extras back to the buddy
2081          * allocator.  Commit the entire reservation here to prevent another
2082          * process from stealing the pages as they are added to the pool but
2083          * before they are reserved.
2084          */
2085         needed += allocated;
2086         h->resv_huge_pages += delta;
2087         ret = 0;
2088
2089         /* Free the needed pages to the hugetlb pool */
2090         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2091                 if ((--needed) < 0)
2092                         break;
2093                 /*
2094                  * This page is now managed by the hugetlb allocator and has
2095                  * no users -- drop the buddy allocator's reference.
2096                  */
2097                 put_page_testzero(page);
2098                 VM_BUG_ON_PAGE(page_count(page), page);
2099                 enqueue_huge_page(h, page);
2100         }
2101 free:
2102         spin_unlock(&hugetlb_lock);
2103
2104         /* Free unnecessary surplus pages to the buddy allocator */
2105         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2106                 put_page(page);
2107         spin_lock(&hugetlb_lock);
2108
2109         return ret;
2110 }
2111
2112 /*
2113  * This routine has two main purposes:
2114  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2115  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2116  *    to the associated reservation map.
2117  * 2) Free any unused surplus pages that may have been allocated to satisfy
2118  *    the reservation.  As many as unused_resv_pages may be freed.
2119  *
2120  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2121  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2122  * we must make sure nobody else can claim pages we are in the process of
2123  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2124  * number of huge pages we plan to free when dropping the lock.
2125  */
2126 static void return_unused_surplus_pages(struct hstate *h,
2127                                         unsigned long unused_resv_pages)
2128 {
2129         unsigned long nr_pages;
2130
2131         /* Cannot return gigantic pages currently */
2132         if (hstate_is_gigantic(h))
2133                 goto out;
2134
2135         /*
2136          * Part (or even all) of the reservation could have been backed
2137          * by pre-allocated pages. Only free surplus pages.
2138          */
2139         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2140
2141         /*
2142          * We want to release as many surplus pages as possible, spread
2143          * evenly across all nodes with memory. Iterate across these nodes
2144          * until we can no longer free unreserved surplus pages. This occurs
2145          * when the nodes with surplus pages have no free pages.
2146          * free_pool_huge_page() will balance the freed pages across the
2147          * on-line nodes with memory and will handle the hstate accounting.
2148          *
2149          * Note that we decrement resv_huge_pages as we free the pages.  If
2150          * we drop the lock, resv_huge_pages will still be sufficiently large
2151          * to cover subsequent pages we may free.
2152          */
2153         while (nr_pages--) {
2154                 h->resv_huge_pages--;
2155                 unused_resv_pages--;
2156                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2157                         goto out;
2158                 cond_resched_lock(&hugetlb_lock);
2159         }
2160
2161 out:
2162         /* Fully uncommit the reservation */
2163         h->resv_huge_pages -= unused_resv_pages;
2164 }
2165
2166
2167 /*
2168  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2169  * are used by the huge page allocation routines to manage reservations.
2170  *
2171  * vma_needs_reservation is called to determine if the huge page at addr
2172  * within the vma has an associated reservation.  If a reservation is
2173  * needed, the value 1 is returned.  The caller is then responsible for
2174  * managing the global reservation and subpool usage counts.  After
2175  * the huge page has been allocated, vma_commit_reservation is called
2176  * to add the page to the reservation map.  If the page allocation fails,
2177  * the reservation must be ended instead of committed.  vma_end_reservation
2178  * is called in such cases.
2179  *
2180  * In the normal case, vma_commit_reservation returns the same value
2181  * as the preceding vma_needs_reservation call.  The only time this
2182  * is not the case is if a reserve map was changed between calls.  It
2183  * is the responsibility of the caller to notice the difference and
2184  * take appropriate action.
2185  *
2186  * vma_add_reservation is used in error paths where a reservation must
2187  * be restored when a newly allocated huge page must be freed.  It is
2188  * to be called after calling vma_needs_reservation to determine if a
2189  * reservation exists.
2190  */
2191 enum vma_resv_mode {
2192         VMA_NEEDS_RESV,
2193         VMA_COMMIT_RESV,
2194         VMA_END_RESV,
2195         VMA_ADD_RESV,
2196 };
2197 static long __vma_reservation_common(struct hstate *h,
2198                                 struct vm_area_struct *vma, unsigned long addr,
2199                                 enum vma_resv_mode mode)
2200 {
2201         struct resv_map *resv;
2202         pgoff_t idx;
2203         long ret;
2204         long dummy_out_regions_needed;
2205
2206         resv = vma_resv_map(vma);
2207         if (!resv)
2208                 return 1;
2209
2210         idx = vma_hugecache_offset(h, vma, addr);
2211         switch (mode) {
2212         case VMA_NEEDS_RESV:
2213                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2214                 /* We assume that vma_reservation_* routines always operate on
2215                  * 1 page, and that adding to resv map a 1 page entry can only
2216                  * ever require 1 region.
2217                  */
2218                 VM_BUG_ON(dummy_out_regions_needed != 1);
2219                 break;
2220         case VMA_COMMIT_RESV:
2221                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2222                 /* region_add calls of range 1 should never fail. */
2223                 VM_BUG_ON(ret < 0);
2224                 break;
2225         case VMA_END_RESV:
2226                 region_abort(resv, idx, idx + 1, 1);
2227                 ret = 0;
2228                 break;
2229         case VMA_ADD_RESV:
2230                 if (vma->vm_flags & VM_MAYSHARE) {
2231                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2232                         /* region_add calls of range 1 should never fail. */
2233                         VM_BUG_ON(ret < 0);
2234                 } else {
2235                         region_abort(resv, idx, idx + 1, 1);
2236                         ret = region_del(resv, idx, idx + 1);
2237                 }
2238                 break;
2239         default:
2240                 BUG();
2241         }
2242
2243         if (vma->vm_flags & VM_MAYSHARE)
2244                 return ret;
2245         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2246                 /*
2247                  * In most cases, reserves always exist for private mappings.
2248                  * However, a file associated with mapping could have been
2249                  * hole punched or truncated after reserves were consumed.
2250                  * As subsequent fault on such a range will not use reserves.
2251                  * Subtle - The reserve map for private mappings has the
2252                  * opposite meaning than that of shared mappings.  If NO
2253                  * entry is in the reserve map, it means a reservation exists.
2254                  * If an entry exists in the reserve map, it means the
2255                  * reservation has already been consumed.  As a result, the
2256                  * return value of this routine is the opposite of the
2257                  * value returned from reserve map manipulation routines above.
2258                  */
2259                 if (ret)
2260                         return 0;
2261                 else
2262                         return 1;
2263         }
2264         else
2265                 return ret < 0 ? ret : 0;
2266 }
2267
2268 static long vma_needs_reservation(struct hstate *h,
2269                         struct vm_area_struct *vma, unsigned long addr)
2270 {
2271         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2272 }
2273
2274 static long vma_commit_reservation(struct hstate *h,
2275                         struct vm_area_struct *vma, unsigned long addr)
2276 {
2277         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2278 }
2279
2280 static void vma_end_reservation(struct hstate *h,
2281                         struct vm_area_struct *vma, unsigned long addr)
2282 {
2283         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2284 }
2285
2286 static long vma_add_reservation(struct hstate *h,
2287                         struct vm_area_struct *vma, unsigned long addr)
2288 {
2289         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2290 }
2291
2292 /*
2293  * This routine is called to restore a reservation on error paths.  In the
2294  * specific error paths, a huge page was allocated (via alloc_huge_page)
2295  * and is about to be freed.  If a reservation for the page existed,
2296  * alloc_huge_page would have consumed the reservation and set PagePrivate
2297  * in the newly allocated page.  When the page is freed via free_huge_page,
2298  * the global reservation count will be incremented if PagePrivate is set.
2299  * However, free_huge_page can not adjust the reserve map.  Adjust the
2300  * reserve map here to be consistent with global reserve count adjustments
2301  * to be made by free_huge_page.
2302  */
2303 static void restore_reserve_on_error(struct hstate *h,
2304                         struct vm_area_struct *vma, unsigned long address,
2305                         struct page *page)
2306 {
2307         if (unlikely(PagePrivate(page))) {
2308                 long rc = vma_needs_reservation(h, vma, address);
2309
2310                 if (unlikely(rc < 0)) {
2311                         /*
2312                          * Rare out of memory condition in reserve map
2313                          * manipulation.  Clear PagePrivate so that
2314                          * global reserve count will not be incremented
2315                          * by free_huge_page.  This will make it appear
2316                          * as though the reservation for this page was
2317                          * consumed.  This may prevent the task from
2318                          * faulting in the page at a later time.  This
2319                          * is better than inconsistent global huge page
2320                          * accounting of reserve counts.
2321                          */
2322                         ClearPagePrivate(page);
2323                 } else if (rc) {
2324                         rc = vma_add_reservation(h, vma, address);
2325                         if (unlikely(rc < 0))
2326                                 /*
2327                                  * See above comment about rare out of
2328                                  * memory condition.
2329                                  */
2330                                 ClearPagePrivate(page);
2331                 } else
2332                         vma_end_reservation(h, vma, address);
2333         }
2334 }
2335
2336 struct page *alloc_huge_page(struct vm_area_struct *vma,
2337                                     unsigned long addr, int avoid_reserve)
2338 {
2339         struct hugepage_subpool *spool = subpool_vma(vma);
2340         struct hstate *h = hstate_vma(vma);
2341         struct page *page;
2342         long map_chg, map_commit;
2343         long gbl_chg;
2344         int ret, idx;
2345         struct hugetlb_cgroup *h_cg;
2346         bool deferred_reserve;
2347
2348         idx = hstate_index(h);
2349         /*
2350          * Examine the region/reserve map to determine if the process
2351          * has a reservation for the page to be allocated.  A return
2352          * code of zero indicates a reservation exists (no change).
2353          */
2354         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2355         if (map_chg < 0)
2356                 return ERR_PTR(-ENOMEM);
2357
2358         /*
2359          * Processes that did not create the mapping will have no
2360          * reserves as indicated by the region/reserve map. Check
2361          * that the allocation will not exceed the subpool limit.
2362          * Allocations for MAP_NORESERVE mappings also need to be
2363          * checked against any subpool limit.
2364          */
2365         if (map_chg || avoid_reserve) {
2366                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2367                 if (gbl_chg < 0) {
2368                         vma_end_reservation(h, vma, addr);
2369                         return ERR_PTR(-ENOSPC);
2370                 }
2371
2372                 /*
2373                  * Even though there was no reservation in the region/reserve
2374                  * map, there could be reservations associated with the
2375                  * subpool that can be used.  This would be indicated if the
2376                  * return value of hugepage_subpool_get_pages() is zero.
2377                  * However, if avoid_reserve is specified we still avoid even
2378                  * the subpool reservations.
2379                  */
2380                 if (avoid_reserve)
2381                         gbl_chg = 1;
2382         }
2383
2384         /* If this allocation is not consuming a reservation, charge it now.
2385          */
2386         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2387         if (deferred_reserve) {
2388                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2389                         idx, pages_per_huge_page(h), &h_cg);
2390                 if (ret)
2391                         goto out_subpool_put;
2392         }
2393
2394         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2395         if (ret)
2396                 goto out_uncharge_cgroup_reservation;
2397
2398         spin_lock(&hugetlb_lock);
2399         /*
2400          * glb_chg is passed to indicate whether or not a page must be taken
2401          * from the global free pool (global change).  gbl_chg == 0 indicates
2402          * a reservation exists for the allocation.
2403          */
2404         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2405         if (!page) {
2406                 spin_unlock(&hugetlb_lock);
2407                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2408                 if (!page)
2409                         goto out_uncharge_cgroup;
2410                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411                         SetPagePrivate(page);
2412                         h->resv_huge_pages--;
2413                 }
2414                 spin_lock(&hugetlb_lock);
2415                 list_add(&page->lru, &h->hugepage_activelist);
2416                 /* Fall through */
2417         }
2418         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2419         /* If allocation is not consuming a reservation, also store the
2420          * hugetlb_cgroup pointer on the page.
2421          */
2422         if (deferred_reserve) {
2423                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2424                                                   h_cg, page);
2425         }
2426
2427         spin_unlock(&hugetlb_lock);
2428
2429         set_page_private(page, (unsigned long)spool);
2430
2431         map_commit = vma_commit_reservation(h, vma, addr);
2432         if (unlikely(map_chg > map_commit)) {
2433                 /*
2434                  * The page was added to the reservation map between
2435                  * vma_needs_reservation and vma_commit_reservation.
2436                  * This indicates a race with hugetlb_reserve_pages.
2437                  * Adjust for the subpool count incremented above AND
2438                  * in hugetlb_reserve_pages for the same page.  Also,
2439                  * the reservation count added in hugetlb_reserve_pages
2440                  * no longer applies.
2441                  */
2442                 long rsv_adjust;
2443
2444                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2445                 hugetlb_acct_memory(h, -rsv_adjust);
2446         }
2447         return page;
2448
2449 out_uncharge_cgroup:
2450         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2451 out_uncharge_cgroup_reservation:
2452         if (deferred_reserve)
2453                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2454                                                     h_cg);
2455 out_subpool_put:
2456         if (map_chg || avoid_reserve)
2457                 hugepage_subpool_put_pages(spool, 1);
2458         vma_end_reservation(h, vma, addr);
2459         return ERR_PTR(-ENOSPC);
2460 }
2461
2462 int alloc_bootmem_huge_page(struct hstate *h)
2463         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2464 int __alloc_bootmem_huge_page(struct hstate *h)
2465 {
2466         struct huge_bootmem_page *m;
2467         int nr_nodes, node;
2468
2469         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2470                 void *addr;
2471
2472                 addr = memblock_alloc_try_nid_raw(
2473                                 huge_page_size(h), huge_page_size(h),
2474                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2475                 if (addr) {
2476                         /*
2477                          * Use the beginning of the huge page to store the
2478                          * huge_bootmem_page struct (until gather_bootmem
2479                          * puts them into the mem_map).
2480                          */
2481                         m = addr;
2482                         goto found;
2483                 }
2484         }
2485         return 0;
2486
2487 found:
2488         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2489         /* Put them into a private list first because mem_map is not up yet */
2490         INIT_LIST_HEAD(&m->list);
2491         list_add(&m->list, &huge_boot_pages);
2492         m->hstate = h;
2493         return 1;
2494 }
2495
2496 static void __init prep_compound_huge_page(struct page *page,
2497                 unsigned int order)
2498 {
2499         if (unlikely(order > (MAX_ORDER - 1)))
2500                 prep_compound_gigantic_page(page, order);
2501         else
2502                 prep_compound_page(page, order);
2503 }
2504
2505 /* Put bootmem huge pages into the standard lists after mem_map is up */
2506 static void __init gather_bootmem_prealloc(void)
2507 {
2508         struct huge_bootmem_page *m;
2509
2510         list_for_each_entry(m, &huge_boot_pages, list) {
2511                 struct page *page = virt_to_page(m);
2512                 struct hstate *h = m->hstate;
2513
2514                 WARN_ON(page_count(page) != 1);
2515                 prep_compound_huge_page(page, h->order);
2516                 WARN_ON(PageReserved(page));
2517                 prep_new_huge_page(h, page, page_to_nid(page));
2518                 put_page(page); /* free it into the hugepage allocator */
2519
2520                 /*
2521                  * If we had gigantic hugepages allocated at boot time, we need
2522                  * to restore the 'stolen' pages to totalram_pages in order to
2523                  * fix confusing memory reports from free(1) and another
2524                  * side-effects, like CommitLimit going negative.
2525                  */
2526                 if (hstate_is_gigantic(h))
2527                         adjust_managed_page_count(page, 1 << h->order);
2528                 cond_resched();
2529         }
2530 }
2531
2532 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2533 {
2534         unsigned long i;
2535         nodemask_t *node_alloc_noretry;
2536
2537         if (!hstate_is_gigantic(h)) {
2538                 /*
2539                  * Bit mask controlling how hard we retry per-node allocations.
2540                  * Ignore errors as lower level routines can deal with
2541                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2542                  * time, we are likely in bigger trouble.
2543                  */
2544                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2545                                                 GFP_KERNEL);
2546         } else {
2547                 /* allocations done at boot time */
2548                 node_alloc_noretry = NULL;
2549         }
2550
2551         /* bit mask controlling how hard we retry per-node allocations */
2552         if (node_alloc_noretry)
2553                 nodes_clear(*node_alloc_noretry);
2554
2555         for (i = 0; i < h->max_huge_pages; ++i) {
2556                 if (hstate_is_gigantic(h)) {
2557                         if (hugetlb_cma_size) {
2558                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2559                                 break;
2560                         }
2561                         if (!alloc_bootmem_huge_page(h))
2562                                 break;
2563                 } else if (!alloc_pool_huge_page(h,
2564                                          &node_states[N_MEMORY],
2565                                          node_alloc_noretry))
2566                         break;
2567                 cond_resched();
2568         }
2569         if (i < h->max_huge_pages) {
2570                 char buf[32];
2571
2572                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2573                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2574                         h->max_huge_pages, buf, i);
2575                 h->max_huge_pages = i;
2576         }
2577
2578         kfree(node_alloc_noretry);
2579 }
2580
2581 static void __init hugetlb_init_hstates(void)
2582 {
2583         struct hstate *h;
2584
2585         for_each_hstate(h) {
2586                 if (minimum_order > huge_page_order(h))
2587                         minimum_order = huge_page_order(h);
2588
2589                 /* oversize hugepages were init'ed in early boot */
2590                 if (!hstate_is_gigantic(h))
2591                         hugetlb_hstate_alloc_pages(h);
2592         }
2593         VM_BUG_ON(minimum_order == UINT_MAX);
2594 }
2595
2596 static void __init report_hugepages(void)
2597 {
2598         struct hstate *h;
2599
2600         for_each_hstate(h) {
2601                 char buf[32];
2602
2603                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2604                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2605                         buf, h->free_huge_pages);
2606         }
2607 }
2608
2609 #ifdef CONFIG_HIGHMEM
2610 static void try_to_free_low(struct hstate *h, unsigned long count,
2611                                                 nodemask_t *nodes_allowed)
2612 {
2613         int i;
2614
2615         if (hstate_is_gigantic(h))
2616                 return;
2617
2618         for_each_node_mask(i, *nodes_allowed) {
2619                 struct page *page, *next;
2620                 struct list_head *freel = &h->hugepage_freelists[i];
2621                 list_for_each_entry_safe(page, next, freel, lru) {
2622                         if (count >= h->nr_huge_pages)
2623                                 return;
2624                         if (PageHighMem(page))
2625                                 continue;
2626                         list_del(&page->lru);
2627                         update_and_free_page(h, page);
2628                         h->free_huge_pages--;
2629                         h->free_huge_pages_node[page_to_nid(page)]--;
2630                 }
2631         }
2632 }
2633 #else
2634 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2635                                                 nodemask_t *nodes_allowed)
2636 {
2637 }
2638 #endif
2639
2640 /*
2641  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2642  * balanced by operating on them in a round-robin fashion.
2643  * Returns 1 if an adjustment was made.
2644  */
2645 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2646                                 int delta)
2647 {
2648         int nr_nodes, node;
2649
2650         VM_BUG_ON(delta != -1 && delta != 1);
2651
2652         if (delta < 0) {
2653                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2654                         if (h->surplus_huge_pages_node[node])
2655                                 goto found;
2656                 }
2657         } else {
2658                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2659                         if (h->surplus_huge_pages_node[node] <
2660                                         h->nr_huge_pages_node[node])
2661                                 goto found;
2662                 }
2663         }
2664         return 0;
2665
2666 found:
2667         h->surplus_huge_pages += delta;
2668         h->surplus_huge_pages_node[node] += delta;
2669         return 1;
2670 }
2671
2672 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2673 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2674                               nodemask_t *nodes_allowed)
2675 {
2676         unsigned long min_count, ret;
2677         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2678
2679         /*
2680          * Bit mask controlling how hard we retry per-node allocations.
2681          * If we can not allocate the bit mask, do not attempt to allocate
2682          * the requested huge pages.
2683          */
2684         if (node_alloc_noretry)
2685                 nodes_clear(*node_alloc_noretry);
2686         else
2687                 return -ENOMEM;
2688
2689         spin_lock(&hugetlb_lock);
2690
2691         /*
2692          * Check for a node specific request.
2693          * Changing node specific huge page count may require a corresponding
2694          * change to the global count.  In any case, the passed node mask
2695          * (nodes_allowed) will restrict alloc/free to the specified node.
2696          */
2697         if (nid != NUMA_NO_NODE) {
2698                 unsigned long old_count = count;
2699
2700                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2701                 /*
2702                  * User may have specified a large count value which caused the
2703                  * above calculation to overflow.  In this case, they wanted
2704                  * to allocate as many huge pages as possible.  Set count to
2705                  * largest possible value to align with their intention.
2706                  */
2707                 if (count < old_count)
2708                         count = ULONG_MAX;
2709         }
2710
2711         /*
2712          * Gigantic pages runtime allocation depend on the capability for large
2713          * page range allocation.
2714          * If the system does not provide this feature, return an error when
2715          * the user tries to allocate gigantic pages but let the user free the
2716          * boottime allocated gigantic pages.
2717          */
2718         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2719                 if (count > persistent_huge_pages(h)) {
2720                         spin_unlock(&hugetlb_lock);
2721                         NODEMASK_FREE(node_alloc_noretry);
2722                         return -EINVAL;
2723                 }
2724                 /* Fall through to decrease pool */
2725         }
2726
2727         /*
2728          * Increase the pool size
2729          * First take pages out of surplus state.  Then make up the
2730          * remaining difference by allocating fresh huge pages.
2731          *
2732          * We might race with alloc_surplus_huge_page() here and be unable
2733          * to convert a surplus huge page to a normal huge page. That is
2734          * not critical, though, it just means the overall size of the
2735          * pool might be one hugepage larger than it needs to be, but
2736          * within all the constraints specified by the sysctls.
2737          */
2738         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2739                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2740                         break;
2741         }
2742
2743         while (count > persistent_huge_pages(h)) {
2744                 /*
2745                  * If this allocation races such that we no longer need the
2746                  * page, free_huge_page will handle it by freeing the page
2747                  * and reducing the surplus.
2748                  */
2749                 spin_unlock(&hugetlb_lock);
2750
2751                 /* yield cpu to avoid soft lockup */
2752                 cond_resched();
2753
2754                 ret = alloc_pool_huge_page(h, nodes_allowed,
2755                                                 node_alloc_noretry);
2756                 spin_lock(&hugetlb_lock);
2757                 if (!ret)
2758                         goto out;
2759
2760                 /* Bail for signals. Probably ctrl-c from user */
2761                 if (signal_pending(current))
2762                         goto out;
2763         }
2764
2765         /*
2766          * Decrease the pool size
2767          * First return free pages to the buddy allocator (being careful
2768          * to keep enough around to satisfy reservations).  Then place
2769          * pages into surplus state as needed so the pool will shrink
2770          * to the desired size as pages become free.
2771          *
2772          * By placing pages into the surplus state independent of the
2773          * overcommit value, we are allowing the surplus pool size to
2774          * exceed overcommit. There are few sane options here. Since
2775          * alloc_surplus_huge_page() is checking the global counter,
2776          * though, we'll note that we're not allowed to exceed surplus
2777          * and won't grow the pool anywhere else. Not until one of the
2778          * sysctls are changed, or the surplus pages go out of use.
2779          */
2780         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2781         min_count = max(count, min_count);
2782         try_to_free_low(h, min_count, nodes_allowed);
2783         while (min_count < persistent_huge_pages(h)) {
2784                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2785                         break;
2786                 cond_resched_lock(&hugetlb_lock);
2787         }
2788         while (count < persistent_huge_pages(h)) {
2789                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2790                         break;
2791         }
2792 out:
2793         h->max_huge_pages = persistent_huge_pages(h);
2794         spin_unlock(&hugetlb_lock);
2795
2796         NODEMASK_FREE(node_alloc_noretry);
2797
2798         return 0;
2799 }
2800
2801 #define HSTATE_ATTR_RO(_name) \
2802         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2803
2804 #define HSTATE_ATTR(_name) \
2805         static struct kobj_attribute _name##_attr = \
2806                 __ATTR(_name, 0644, _name##_show, _name##_store)
2807
2808 static struct kobject *hugepages_kobj;
2809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2810
2811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2812
2813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2814 {
2815         int i;
2816
2817         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2818                 if (hstate_kobjs[i] == kobj) {
2819                         if (nidp)
2820                                 *nidp = NUMA_NO_NODE;
2821                         return &hstates[i];
2822                 }
2823
2824         return kobj_to_node_hstate(kobj, nidp);
2825 }
2826
2827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2828                                         struct kobj_attribute *attr, char *buf)
2829 {
2830         struct hstate *h;
2831         unsigned long nr_huge_pages;
2832         int nid;
2833
2834         h = kobj_to_hstate(kobj, &nid);
2835         if (nid == NUMA_NO_NODE)
2836                 nr_huge_pages = h->nr_huge_pages;
2837         else
2838                 nr_huge_pages = h->nr_huge_pages_node[nid];
2839
2840         return sprintf(buf, "%lu\n", nr_huge_pages);
2841 }
2842
2843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2844                                            struct hstate *h, int nid,
2845                                            unsigned long count, size_t len)
2846 {
2847         int err;
2848         nodemask_t nodes_allowed, *n_mask;
2849
2850         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2851                 return -EINVAL;
2852
2853         if (nid == NUMA_NO_NODE) {
2854                 /*
2855                  * global hstate attribute
2856                  */
2857                 if (!(obey_mempolicy &&
2858                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2859                         n_mask = &node_states[N_MEMORY];
2860                 else
2861                         n_mask = &nodes_allowed;
2862         } else {
2863                 /*
2864                  * Node specific request.  count adjustment happens in
2865                  * set_max_huge_pages() after acquiring hugetlb_lock.
2866                  */
2867                 init_nodemask_of_node(&nodes_allowed, nid);
2868                 n_mask = &nodes_allowed;
2869         }
2870
2871         err = set_max_huge_pages(h, count, nid, n_mask);
2872
2873         return err ? err : len;
2874 }
2875
2876 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2877                                          struct kobject *kobj, const char *buf,
2878                                          size_t len)
2879 {
2880         struct hstate *h;
2881         unsigned long count;
2882         int nid;
2883         int err;
2884
2885         err = kstrtoul(buf, 10, &count);
2886         if (err)
2887                 return err;
2888
2889         h = kobj_to_hstate(kobj, &nid);
2890         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2891 }
2892
2893 static ssize_t nr_hugepages_show(struct kobject *kobj,
2894                                        struct kobj_attribute *attr, char *buf)
2895 {
2896         return nr_hugepages_show_common(kobj, attr, buf);
2897 }
2898
2899 static ssize_t nr_hugepages_store(struct kobject *kobj,
2900                struct kobj_attribute *attr, const char *buf, size_t len)
2901 {
2902         return nr_hugepages_store_common(false, kobj, buf, len);
2903 }
2904 HSTATE_ATTR(nr_hugepages);
2905
2906 #ifdef CONFIG_NUMA
2907
2908 /*
2909  * hstate attribute for optionally mempolicy-based constraint on persistent
2910  * huge page alloc/free.
2911  */
2912 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2913                                        struct kobj_attribute *attr, char *buf)
2914 {
2915         return nr_hugepages_show_common(kobj, attr, buf);
2916 }
2917
2918 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2919                struct kobj_attribute *attr, const char *buf, size_t len)
2920 {
2921         return nr_hugepages_store_common(true, kobj, buf, len);
2922 }
2923 HSTATE_ATTR(nr_hugepages_mempolicy);
2924 #endif
2925
2926
2927 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2928                                         struct kobj_attribute *attr, char *buf)
2929 {
2930         struct hstate *h = kobj_to_hstate(kobj, NULL);
2931         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2932 }
2933
2934 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2935                 struct kobj_attribute *attr, const char *buf, size_t count)
2936 {
2937         int err;
2938         unsigned long input;
2939         struct hstate *h = kobj_to_hstate(kobj, NULL);
2940
2941         if (hstate_is_gigantic(h))
2942                 return -EINVAL;
2943
2944         err = kstrtoul(buf, 10, &input);
2945         if (err)
2946                 return err;
2947
2948         spin_lock(&hugetlb_lock);
2949         h->nr_overcommit_huge_pages = input;
2950         spin_unlock(&hugetlb_lock);
2951
2952         return count;
2953 }
2954 HSTATE_ATTR(nr_overcommit_hugepages);
2955
2956 static ssize_t free_hugepages_show(struct kobject *kobj,
2957                                         struct kobj_attribute *attr, char *buf)
2958 {
2959         struct hstate *h;
2960         unsigned long free_huge_pages;
2961         int nid;
2962
2963         h = kobj_to_hstate(kobj, &nid);
2964         if (nid == NUMA_NO_NODE)
2965                 free_huge_pages = h->free_huge_pages;
2966         else
2967                 free_huge_pages = h->free_huge_pages_node[nid];
2968
2969         return sprintf(buf, "%lu\n", free_huge_pages);
2970 }
2971 HSTATE_ATTR_RO(free_hugepages);
2972
2973 static ssize_t resv_hugepages_show(struct kobject *kobj,
2974                                         struct kobj_attribute *attr, char *buf)
2975 {
2976         struct hstate *h = kobj_to_hstate(kobj, NULL);
2977         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2978 }
2979 HSTATE_ATTR_RO(resv_hugepages);
2980
2981 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2982                                         struct kobj_attribute *attr, char *buf)
2983 {
2984         struct hstate *h;
2985         unsigned long surplus_huge_pages;
2986         int nid;
2987
2988         h = kobj_to_hstate(kobj, &nid);
2989         if (nid == NUMA_NO_NODE)
2990                 surplus_huge_pages = h->surplus_huge_pages;
2991         else
2992                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2993
2994         return sprintf(buf, "%lu\n", surplus_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(surplus_hugepages);
2997
2998 static struct attribute *hstate_attrs[] = {
2999         &nr_hugepages_attr.attr,
3000         &nr_overcommit_hugepages_attr.attr,
3001         &free_hugepages_attr.attr,
3002         &resv_hugepages_attr.attr,
3003         &surplus_hugepages_attr.attr,
3004 #ifdef CONFIG_NUMA
3005         &nr_hugepages_mempolicy_attr.attr,
3006 #endif
3007         NULL,
3008 };
3009
3010 static const struct attribute_group hstate_attr_group = {
3011         .attrs = hstate_attrs,
3012 };
3013
3014 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3015                                     struct kobject **hstate_kobjs,
3016                                     const struct attribute_group *hstate_attr_group)
3017 {
3018         int retval;
3019         int hi = hstate_index(h);
3020
3021         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3022         if (!hstate_kobjs[hi])
3023                 return -ENOMEM;
3024
3025         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3026         if (retval)
3027                 kobject_put(hstate_kobjs[hi]);
3028
3029         return retval;
3030 }
3031
3032 static void __init hugetlb_sysfs_init(void)
3033 {
3034         struct hstate *h;
3035         int err;
3036
3037         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3038         if (!hugepages_kobj)
3039                 return;
3040
3041         for_each_hstate(h) {
3042                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3043                                          hstate_kobjs, &hstate_attr_group);
3044                 if (err)
3045                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3046         }
3047 }
3048
3049 #ifdef CONFIG_NUMA
3050
3051 /*
3052  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3053  * with node devices in node_devices[] using a parallel array.  The array
3054  * index of a node device or _hstate == node id.
3055  * This is here to avoid any static dependency of the node device driver, in
3056  * the base kernel, on the hugetlb module.
3057  */
3058 struct node_hstate {
3059         struct kobject          *hugepages_kobj;
3060         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3061 };
3062 static struct node_hstate node_hstates[MAX_NUMNODES];
3063
3064 /*
3065  * A subset of global hstate attributes for node devices
3066  */
3067 static struct attribute *per_node_hstate_attrs[] = {
3068         &nr_hugepages_attr.attr,
3069         &free_hugepages_attr.attr,
3070         &surplus_hugepages_attr.attr,
3071         NULL,
3072 };
3073
3074 static const struct attribute_group per_node_hstate_attr_group = {
3075         .attrs = per_node_hstate_attrs,
3076 };
3077
3078 /*
3079  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3080  * Returns node id via non-NULL nidp.
3081  */
3082 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3083 {
3084         int nid;
3085
3086         for (nid = 0; nid < nr_node_ids; nid++) {
3087                 struct node_hstate *nhs = &node_hstates[nid];
3088                 int i;
3089                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3090                         if (nhs->hstate_kobjs[i] == kobj) {
3091                                 if (nidp)
3092                                         *nidp = nid;
3093                                 return &hstates[i];
3094                         }
3095         }
3096
3097         BUG();
3098         return NULL;
3099 }
3100
3101 /*
3102  * Unregister hstate attributes from a single node device.
3103  * No-op if no hstate attributes attached.
3104  */
3105 static void hugetlb_unregister_node(struct node *node)
3106 {
3107         struct hstate *h;
3108         struct node_hstate *nhs = &node_hstates[node->dev.id];
3109
3110         if (!nhs->hugepages_kobj)
3111                 return;         /* no hstate attributes */
3112
3113         for_each_hstate(h) {
3114                 int idx = hstate_index(h);
3115                 if (nhs->hstate_kobjs[idx]) {
3116                         kobject_put(nhs->hstate_kobjs[idx]);
3117                         nhs->hstate_kobjs[idx] = NULL;
3118                 }
3119         }
3120
3121         kobject_put(nhs->hugepages_kobj);
3122         nhs->hugepages_kobj = NULL;
3123 }
3124
3125
3126 /*
3127  * Register hstate attributes for a single node device.
3128  * No-op if attributes already registered.
3129  */
3130 static void hugetlb_register_node(struct node *node)
3131 {
3132         struct hstate *h;
3133         struct node_hstate *nhs = &node_hstates[node->dev.id];
3134         int err;
3135
3136         if (nhs->hugepages_kobj)
3137                 return;         /* already allocated */
3138
3139         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3140                                                         &node->dev.kobj);
3141         if (!nhs->hugepages_kobj)
3142                 return;
3143
3144         for_each_hstate(h) {
3145                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3146                                                 nhs->hstate_kobjs,
3147                                                 &per_node_hstate_attr_group);
3148                 if (err) {
3149                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3150                                 h->name, node->dev.id);
3151                         hugetlb_unregister_node(node);
3152                         break;
3153                 }
3154         }
3155 }
3156
3157 /*
3158  * hugetlb init time:  register hstate attributes for all registered node
3159  * devices of nodes that have memory.  All on-line nodes should have
3160  * registered their associated device by this time.
3161  */
3162 static void __init hugetlb_register_all_nodes(void)
3163 {
3164         int nid;
3165
3166         for_each_node_state(nid, N_MEMORY) {
3167                 struct node *node = node_devices[nid];
3168                 if (node->dev.id == nid)
3169                         hugetlb_register_node(node);
3170         }
3171
3172         /*
3173          * Let the node device driver know we're here so it can
3174          * [un]register hstate attributes on node hotplug.
3175          */
3176         register_hugetlbfs_with_node(hugetlb_register_node,
3177                                      hugetlb_unregister_node);
3178 }
3179 #else   /* !CONFIG_NUMA */
3180
3181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3182 {
3183         BUG();
3184         if (nidp)
3185                 *nidp = -1;
3186         return NULL;
3187 }
3188
3189 static void hugetlb_register_all_nodes(void) { }
3190
3191 #endif
3192
3193 static int __init hugetlb_init(void)
3194 {
3195         int i;
3196
3197         if (!hugepages_supported()) {
3198                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3199                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3200                 return 0;
3201         }
3202
3203         /*
3204          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3205          * architectures depend on setup being done here.
3206          */
3207         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3208         if (!parsed_default_hugepagesz) {
3209                 /*
3210                  * If we did not parse a default huge page size, set
3211                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3212                  * number of huge pages for this default size was implicitly
3213                  * specified, set that here as well.
3214                  * Note that the implicit setting will overwrite an explicit
3215                  * setting.  A warning will be printed in this case.
3216                  */
3217                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3218                 if (default_hstate_max_huge_pages) {
3219                         if (default_hstate.max_huge_pages) {
3220                                 char buf[32];
3221
3222                                 string_get_size(huge_page_size(&default_hstate),
3223                                         1, STRING_UNITS_2, buf, 32);
3224                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3225                                         default_hstate.max_huge_pages, buf);
3226                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3227                                         default_hstate_max_huge_pages);
3228                         }
3229                         default_hstate.max_huge_pages =
3230                                 default_hstate_max_huge_pages;
3231                 }
3232         }
3233
3234         hugetlb_cma_check();
3235         hugetlb_init_hstates();
3236         gather_bootmem_prealloc();
3237         report_hugepages();
3238
3239         hugetlb_sysfs_init();
3240         hugetlb_register_all_nodes();
3241         hugetlb_cgroup_file_init();
3242
3243 #ifdef CONFIG_SMP
3244         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3245 #else
3246         num_fault_mutexes = 1;
3247 #endif
3248         hugetlb_fault_mutex_table =
3249                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3250                               GFP_KERNEL);
3251         BUG_ON(!hugetlb_fault_mutex_table);
3252
3253         for (i = 0; i < num_fault_mutexes; i++)
3254                 mutex_init(&hugetlb_fault_mutex_table[i]);
3255         return 0;
3256 }
3257 subsys_initcall(hugetlb_init);
3258
3259 /* Overwritten by architectures with more huge page sizes */
3260 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3261 {
3262         return size == HPAGE_SIZE;
3263 }
3264
3265 void __init hugetlb_add_hstate(unsigned int order)
3266 {
3267         struct hstate *h;
3268         unsigned long i;
3269
3270         if (size_to_hstate(PAGE_SIZE << order)) {
3271                 return;
3272         }
3273         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3274         BUG_ON(order == 0);
3275         h = &hstates[hugetlb_max_hstate++];
3276         h->order = order;
3277         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3278         h->nr_huge_pages = 0;
3279         h->free_huge_pages = 0;
3280         for (i = 0; i < MAX_NUMNODES; ++i)
3281                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3282         INIT_LIST_HEAD(&h->hugepage_activelist);
3283         h->next_nid_to_alloc = first_memory_node;
3284         h->next_nid_to_free = first_memory_node;
3285         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3286                                         huge_page_size(h)/1024);
3287
3288         parsed_hstate = h;
3289 }
3290
3291 /*
3292  * hugepages command line processing
3293  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3294  * specification.  If not, ignore the hugepages value.  hugepages can also
3295  * be the first huge page command line  option in which case it implicitly
3296  * specifies the number of huge pages for the default size.
3297  */
3298 static int __init hugepages_setup(char *s)
3299 {
3300         unsigned long *mhp;
3301         static unsigned long *last_mhp;
3302
3303         if (!parsed_valid_hugepagesz) {
3304                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3305                 parsed_valid_hugepagesz = true;
3306                 return 0;
3307         }
3308
3309         /*
3310          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3311          * yet, so this hugepages= parameter goes to the "default hstate".
3312          * Otherwise, it goes with the previously parsed hugepagesz or
3313          * default_hugepagesz.
3314          */
3315         else if (!hugetlb_max_hstate)
3316                 mhp = &default_hstate_max_huge_pages;
3317         else
3318                 mhp = &parsed_hstate->max_huge_pages;
3319
3320         if (mhp == last_mhp) {
3321                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3322                 return 0;
3323         }
3324
3325         if (sscanf(s, "%lu", mhp) <= 0)
3326                 *mhp = 0;
3327
3328         /*
3329          * Global state is always initialized later in hugetlb_init.
3330          * But we need to allocate >= MAX_ORDER hstates here early to still
3331          * use the bootmem allocator.
3332          */
3333         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3334                 hugetlb_hstate_alloc_pages(parsed_hstate);
3335
3336         last_mhp = mhp;
3337
3338         return 1;
3339 }
3340 __setup("hugepages=", hugepages_setup);
3341
3342 /*
3343  * hugepagesz command line processing
3344  * A specific huge page size can only be specified once with hugepagesz.
3345  * hugepagesz is followed by hugepages on the command line.  The global
3346  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3347  * hugepagesz argument was valid.
3348  */
3349 static int __init hugepagesz_setup(char *s)
3350 {
3351         unsigned long size;
3352         struct hstate *h;
3353
3354         parsed_valid_hugepagesz = false;
3355         size = (unsigned long)memparse(s, NULL);
3356
3357         if (!arch_hugetlb_valid_size(size)) {
3358                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3359                 return 0;
3360         }
3361
3362         h = size_to_hstate(size);
3363         if (h) {
3364                 /*
3365                  * hstate for this size already exists.  This is normally
3366                  * an error, but is allowed if the existing hstate is the
3367                  * default hstate.  More specifically, it is only allowed if
3368                  * the number of huge pages for the default hstate was not
3369                  * previously specified.
3370                  */
3371                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3372                     default_hstate.max_huge_pages) {
3373                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3374                         return 0;
3375                 }
3376
3377                 /*
3378                  * No need to call hugetlb_add_hstate() as hstate already
3379                  * exists.  But, do set parsed_hstate so that a following
3380                  * hugepages= parameter will be applied to this hstate.
3381                  */
3382                 parsed_hstate = h;
3383                 parsed_valid_hugepagesz = true;
3384                 return 1;
3385         }
3386
3387         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3388         parsed_valid_hugepagesz = true;
3389         return 1;
3390 }
3391 __setup("hugepagesz=", hugepagesz_setup);
3392
3393 /*
3394  * default_hugepagesz command line input
3395  * Only one instance of default_hugepagesz allowed on command line.
3396  */
3397 static int __init default_hugepagesz_setup(char *s)
3398 {
3399         unsigned long size;
3400
3401         parsed_valid_hugepagesz = false;
3402         if (parsed_default_hugepagesz) {
3403                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3404                 return 0;
3405         }
3406
3407         size = (unsigned long)memparse(s, NULL);
3408
3409         if (!arch_hugetlb_valid_size(size)) {
3410                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3411                 return 0;
3412         }
3413
3414         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3415         parsed_valid_hugepagesz = true;
3416         parsed_default_hugepagesz = true;
3417         default_hstate_idx = hstate_index(size_to_hstate(size));
3418
3419         /*
3420          * The number of default huge pages (for this size) could have been
3421          * specified as the first hugetlb parameter: hugepages=X.  If so,
3422          * then default_hstate_max_huge_pages is set.  If the default huge
3423          * page size is gigantic (>= MAX_ORDER), then the pages must be
3424          * allocated here from bootmem allocator.
3425          */
3426         if (default_hstate_max_huge_pages) {
3427                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3428                 if (hstate_is_gigantic(&default_hstate))
3429                         hugetlb_hstate_alloc_pages(&default_hstate);
3430                 default_hstate_max_huge_pages = 0;
3431         }
3432
3433         return 1;
3434 }
3435 __setup("default_hugepagesz=", default_hugepagesz_setup);
3436
3437 static unsigned int allowed_mems_nr(struct hstate *h)
3438 {
3439         int node;
3440         unsigned int nr = 0;
3441         nodemask_t *mpol_allowed;
3442         unsigned int *array = h->free_huge_pages_node;
3443         gfp_t gfp_mask = htlb_alloc_mask(h);
3444
3445         mpol_allowed = policy_nodemask_current(gfp_mask);
3446
3447         for_each_node_mask(node, cpuset_current_mems_allowed) {
3448                 if (!mpol_allowed ||
3449                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3450                         nr += array[node];
3451         }
3452
3453         return nr;
3454 }
3455
3456 #ifdef CONFIG_SYSCTL
3457 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3458                                           void *buffer, size_t *length,
3459                                           loff_t *ppos, unsigned long *out)
3460 {
3461         struct ctl_table dup_table;
3462
3463         /*
3464          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3465          * can duplicate the @table and alter the duplicate of it.
3466          */
3467         dup_table = *table;
3468         dup_table.data = out;
3469
3470         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3471 }
3472
3473 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3474                          struct ctl_table *table, int write,
3475                          void *buffer, size_t *length, loff_t *ppos)
3476 {
3477         struct hstate *h = &default_hstate;
3478         unsigned long tmp = h->max_huge_pages;
3479         int ret;
3480
3481         if (!hugepages_supported())
3482                 return -EOPNOTSUPP;
3483
3484         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3485                                              &tmp);
3486         if (ret)
3487                 goto out;
3488
3489         if (write)
3490                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3491                                                   NUMA_NO_NODE, tmp, *length);
3492 out:
3493         return ret;
3494 }
3495
3496 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3497                           void *buffer, size_t *length, loff_t *ppos)
3498 {
3499
3500         return hugetlb_sysctl_handler_common(false, table, write,
3501                                                         buffer, length, ppos);
3502 }
3503
3504 #ifdef CONFIG_NUMA
3505 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3506                           void *buffer, size_t *length, loff_t *ppos)
3507 {
3508         return hugetlb_sysctl_handler_common(true, table, write,
3509                                                         buffer, length, ppos);
3510 }
3511 #endif /* CONFIG_NUMA */
3512
3513 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3514                 void *buffer, size_t *length, loff_t *ppos)
3515 {
3516         struct hstate *h = &default_hstate;
3517         unsigned long tmp;
3518         int ret;
3519
3520         if (!hugepages_supported())
3521                 return -EOPNOTSUPP;
3522
3523         tmp = h->nr_overcommit_huge_pages;
3524
3525         if (write && hstate_is_gigantic(h))
3526                 return -EINVAL;
3527
3528         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3529                                              &tmp);
3530         if (ret)
3531                 goto out;
3532
3533         if (write) {
3534                 spin_lock(&hugetlb_lock);
3535                 h->nr_overcommit_huge_pages = tmp;
3536                 spin_unlock(&hugetlb_lock);
3537         }
3538 out:
3539         return ret;
3540 }
3541
3542 #endif /* CONFIG_SYSCTL */
3543
3544 void hugetlb_report_meminfo(struct seq_file *m)
3545 {
3546         struct hstate *h;
3547         unsigned long total = 0;
3548
3549         if (!hugepages_supported())
3550                 return;
3551
3552         for_each_hstate(h) {
3553                 unsigned long count = h->nr_huge_pages;
3554
3555                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3556
3557                 if (h == &default_hstate)
3558                         seq_printf(m,
3559                                    "HugePages_Total:   %5lu\n"
3560                                    "HugePages_Free:    %5lu\n"
3561                                    "HugePages_Rsvd:    %5lu\n"
3562                                    "HugePages_Surp:    %5lu\n"
3563                                    "Hugepagesize:   %8lu kB\n",
3564                                    count,
3565                                    h->free_huge_pages,
3566                                    h->resv_huge_pages,
3567                                    h->surplus_huge_pages,
3568                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3569         }
3570
3571         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3572 }
3573
3574 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3575 {
3576         struct hstate *h = &default_hstate;
3577
3578         if (!hugepages_supported())
3579                 return 0;
3580
3581         return sysfs_emit_at(buf, len,
3582                              "Node %d HugePages_Total: %5u\n"
3583                              "Node %d HugePages_Free:  %5u\n"
3584                              "Node %d HugePages_Surp:  %5u\n",
3585                              nid, h->nr_huge_pages_node[nid],
3586                              nid, h->free_huge_pages_node[nid],
3587                              nid, h->surplus_huge_pages_node[nid]);
3588 }
3589
3590 void hugetlb_show_meminfo(void)
3591 {
3592         struct hstate *h;
3593         int nid;
3594
3595         if (!hugepages_supported())
3596                 return;
3597
3598         for_each_node_state(nid, N_MEMORY)
3599                 for_each_hstate(h)
3600                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3601                                 nid,
3602                                 h->nr_huge_pages_node[nid],
3603                                 h->free_huge_pages_node[nid],
3604                                 h->surplus_huge_pages_node[nid],
3605                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3606 }
3607
3608 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3609 {
3610         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3611                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3612 }
3613
3614 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3615 unsigned long hugetlb_total_pages(void)
3616 {
3617         struct hstate *h;
3618         unsigned long nr_total_pages = 0;
3619
3620         for_each_hstate(h)
3621                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3622         return nr_total_pages;
3623 }
3624
3625 static int hugetlb_acct_memory(struct hstate *h, long delta)
3626 {
3627         int ret = -ENOMEM;
3628
3629         spin_lock(&hugetlb_lock);
3630         /*
3631          * When cpuset is configured, it breaks the strict hugetlb page
3632          * reservation as the accounting is done on a global variable. Such
3633          * reservation is completely rubbish in the presence of cpuset because
3634          * the reservation is not checked against page availability for the
3635          * current cpuset. Application can still potentially OOM'ed by kernel
3636          * with lack of free htlb page in cpuset that the task is in.
3637          * Attempt to enforce strict accounting with cpuset is almost
3638          * impossible (or too ugly) because cpuset is too fluid that
3639          * task or memory node can be dynamically moved between cpusets.
3640          *
3641          * The change of semantics for shared hugetlb mapping with cpuset is
3642          * undesirable. However, in order to preserve some of the semantics,
3643          * we fall back to check against current free page availability as
3644          * a best attempt and hopefully to minimize the impact of changing
3645          * semantics that cpuset has.
3646          *
3647          * Apart from cpuset, we also have memory policy mechanism that
3648          * also determines from which node the kernel will allocate memory
3649          * in a NUMA system. So similar to cpuset, we also should consider
3650          * the memory policy of the current task. Similar to the description
3651          * above.
3652          */
3653         if (delta > 0) {
3654                 if (gather_surplus_pages(h, delta) < 0)
3655                         goto out;
3656
3657                 if (delta > allowed_mems_nr(h)) {
3658                         return_unused_surplus_pages(h, delta);
3659                         goto out;
3660                 }
3661         }
3662
3663         ret = 0;
3664         if (delta < 0)
3665                 return_unused_surplus_pages(h, (unsigned long) -delta);
3666
3667 out:
3668         spin_unlock(&hugetlb_lock);
3669         return ret;
3670 }
3671
3672 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3673 {
3674         struct resv_map *resv = vma_resv_map(vma);
3675
3676         /*
3677          * This new VMA should share its siblings reservation map if present.
3678          * The VMA will only ever have a valid reservation map pointer where
3679          * it is being copied for another still existing VMA.  As that VMA
3680          * has a reference to the reservation map it cannot disappear until
3681          * after this open call completes.  It is therefore safe to take a
3682          * new reference here without additional locking.
3683          */
3684         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3685                 kref_get(&resv->refs);
3686 }
3687
3688 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3689 {
3690         struct hstate *h = hstate_vma(vma);
3691         struct resv_map *resv = vma_resv_map(vma);
3692         struct hugepage_subpool *spool = subpool_vma(vma);
3693         unsigned long reserve, start, end;
3694         long gbl_reserve;
3695
3696         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3697                 return;
3698
3699         start = vma_hugecache_offset(h, vma, vma->vm_start);
3700         end = vma_hugecache_offset(h, vma, vma->vm_end);
3701
3702         reserve = (end - start) - region_count(resv, start, end);
3703         hugetlb_cgroup_uncharge_counter(resv, start, end);
3704         if (reserve) {
3705                 /*
3706                  * Decrement reserve counts.  The global reserve count may be
3707                  * adjusted if the subpool has a minimum size.
3708                  */
3709                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3710                 hugetlb_acct_memory(h, -gbl_reserve);
3711         }
3712
3713         kref_put(&resv->refs, resv_map_release);
3714 }
3715
3716 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3717 {
3718         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3719                 return -EINVAL;
3720         return 0;
3721 }
3722
3723 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3724 {
3725         struct hstate *hstate = hstate_vma(vma);
3726
3727         return 1UL << huge_page_shift(hstate);
3728 }
3729
3730 /*
3731  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3732  * handle_mm_fault() to try to instantiate regular-sized pages in the
3733  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3734  * this far.
3735  */
3736 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3737 {
3738         BUG();
3739         return 0;
3740 }
3741
3742 /*
3743  * When a new function is introduced to vm_operations_struct and added
3744  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3745  * This is because under System V memory model, mappings created via
3746  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3747  * their original vm_ops are overwritten with shm_vm_ops.
3748  */
3749 const struct vm_operations_struct hugetlb_vm_ops = {
3750         .fault = hugetlb_vm_op_fault,
3751         .open = hugetlb_vm_op_open,
3752         .close = hugetlb_vm_op_close,
3753         .split = hugetlb_vm_op_split,
3754         .pagesize = hugetlb_vm_op_pagesize,
3755 };
3756
3757 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3758                                 int writable)
3759 {
3760         pte_t entry;
3761
3762         if (writable) {
3763                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3764                                          vma->vm_page_prot)));
3765         } else {
3766                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3767                                            vma->vm_page_prot));
3768         }
3769         entry = pte_mkyoung(entry);
3770         entry = pte_mkhuge(entry);
3771         entry = arch_make_huge_pte(entry, vma, page, writable);
3772
3773         return entry;
3774 }
3775
3776 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3777                                    unsigned long address, pte_t *ptep)
3778 {
3779         pte_t entry;
3780
3781         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3782         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3783                 update_mmu_cache(vma, address, ptep);
3784 }
3785
3786 bool is_hugetlb_entry_migration(pte_t pte)
3787 {
3788         swp_entry_t swp;
3789
3790         if (huge_pte_none(pte) || pte_present(pte))
3791                 return false;
3792         swp = pte_to_swp_entry(pte);
3793         if (is_migration_entry(swp))
3794                 return true;
3795         else
3796                 return false;
3797 }
3798
3799 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3800 {
3801         swp_entry_t swp;
3802
3803         if (huge_pte_none(pte) || pte_present(pte))
3804                 return false;
3805         swp = pte_to_swp_entry(pte);
3806         if (is_hwpoison_entry(swp))
3807                 return true;
3808         else
3809                 return false;
3810 }
3811
3812 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3813                             struct vm_area_struct *vma)
3814 {
3815         pte_t *src_pte, *dst_pte, entry, dst_entry;
3816         struct page *ptepage;
3817         unsigned long addr;
3818         int cow;
3819         struct hstate *h = hstate_vma(vma);
3820         unsigned long sz = huge_page_size(h);
3821         struct address_space *mapping = vma->vm_file->f_mapping;
3822         struct mmu_notifier_range range;
3823         int ret = 0;
3824
3825         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3826
3827         if (cow) {
3828                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3829                                         vma->vm_start,
3830                                         vma->vm_end);
3831                 mmu_notifier_invalidate_range_start(&range);
3832         } else {
3833                 /*
3834                  * For shared mappings i_mmap_rwsem must be held to call
3835                  * huge_pte_alloc, otherwise the returned ptep could go
3836                  * away if part of a shared pmd and another thread calls
3837                  * huge_pmd_unshare.
3838                  */
3839                 i_mmap_lock_read(mapping);
3840         }
3841
3842         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3843                 spinlock_t *src_ptl, *dst_ptl;
3844                 src_pte = huge_pte_offset(src, addr, sz);
3845                 if (!src_pte)
3846                         continue;
3847                 dst_pte = huge_pte_alloc(dst, addr, sz);
3848                 if (!dst_pte) {
3849                         ret = -ENOMEM;
3850                         break;
3851                 }
3852
3853                 /*
3854                  * If the pagetables are shared don't copy or take references.
3855                  * dst_pte == src_pte is the common case of src/dest sharing.
3856                  *
3857                  * However, src could have 'unshared' and dst shares with
3858                  * another vma.  If dst_pte !none, this implies sharing.
3859                  * Check here before taking page table lock, and once again
3860                  * after taking the lock below.
3861                  */
3862                 dst_entry = huge_ptep_get(dst_pte);
3863                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3864                         continue;
3865
3866                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3867                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3868                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3869                 entry = huge_ptep_get(src_pte);
3870                 dst_entry = huge_ptep_get(dst_pte);
3871                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3872                         /*
3873                          * Skip if src entry none.  Also, skip in the
3874                          * unlikely case dst entry !none as this implies
3875                          * sharing with another vma.
3876                          */
3877                         ;
3878                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3879                                     is_hugetlb_entry_hwpoisoned(entry))) {
3880                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3881
3882                         if (is_write_migration_entry(swp_entry) && cow) {
3883                                 /*
3884                                  * COW mappings require pages in both
3885                                  * parent and child to be set to read.
3886                                  */
3887                                 make_migration_entry_read(&swp_entry);
3888                                 entry = swp_entry_to_pte(swp_entry);
3889                                 set_huge_swap_pte_at(src, addr, src_pte,
3890                                                      entry, sz);
3891                         }
3892                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3893                 } else {
3894                         if (cow) {
3895                                 /*
3896                                  * No need to notify as we are downgrading page
3897                                  * table protection not changing it to point
3898                                  * to a new page.
3899                                  *
3900                                  * See Documentation/vm/mmu_notifier.rst
3901                                  */
3902                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3903                         }
3904                         entry = huge_ptep_get(src_pte);
3905                         ptepage = pte_page(entry);
3906                         get_page(ptepage);
3907                         page_dup_rmap(ptepage, true);
3908                         set_huge_pte_at(dst, addr, dst_pte, entry);
3909                         hugetlb_count_add(pages_per_huge_page(h), dst);
3910                 }
3911                 spin_unlock(src_ptl);
3912                 spin_unlock(dst_ptl);
3913         }
3914
3915         if (cow)
3916                 mmu_notifier_invalidate_range_end(&range);
3917         else
3918                 i_mmap_unlock_read(mapping);
3919
3920         return ret;
3921 }
3922
3923 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3924                             unsigned long start, unsigned long end,
3925                             struct page *ref_page)
3926 {
3927         struct mm_struct *mm = vma->vm_mm;
3928         unsigned long address;
3929         pte_t *ptep;
3930         pte_t pte;
3931         spinlock_t *ptl;
3932         struct page *page;
3933         struct hstate *h = hstate_vma(vma);
3934         unsigned long sz = huge_page_size(h);
3935         struct mmu_notifier_range range;
3936
3937         WARN_ON(!is_vm_hugetlb_page(vma));
3938         BUG_ON(start & ~huge_page_mask(h));
3939         BUG_ON(end & ~huge_page_mask(h));
3940
3941         /*
3942          * This is a hugetlb vma, all the pte entries should point
3943          * to huge page.
3944          */
3945         tlb_change_page_size(tlb, sz);
3946         tlb_start_vma(tlb, vma);
3947
3948         /*
3949          * If sharing possible, alert mmu notifiers of worst case.
3950          */
3951         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3952                                 end);
3953         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3954         mmu_notifier_invalidate_range_start(&range);
3955         address = start;
3956         for (; address < end; address += sz) {
3957                 ptep = huge_pte_offset(mm, address, sz);
3958                 if (!ptep)
3959                         continue;
3960
3961                 ptl = huge_pte_lock(h, mm, ptep);
3962                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3963                         spin_unlock(ptl);
3964                         /*
3965                          * We just unmapped a page of PMDs by clearing a PUD.
3966                          * The caller's TLB flush range should cover this area.
3967                          */
3968                         continue;
3969                 }
3970
3971                 pte = huge_ptep_get(ptep);
3972                 if (huge_pte_none(pte)) {
3973                         spin_unlock(ptl);
3974                         continue;
3975                 }
3976
3977                 /*
3978                  * Migrating hugepage or HWPoisoned hugepage is already
3979                  * unmapped and its refcount is dropped, so just clear pte here.
3980                  */
3981                 if (unlikely(!pte_present(pte))) {
3982                         huge_pte_clear(mm, address, ptep, sz);
3983                         spin_unlock(ptl);
3984                         continue;
3985                 }
3986
3987                 page = pte_page(pte);
3988                 /*
3989                  * If a reference page is supplied, it is because a specific
3990                  * page is being unmapped, not a range. Ensure the page we
3991                  * are about to unmap is the actual page of interest.
3992                  */
3993                 if (ref_page) {
3994                         if (page != ref_page) {
3995                                 spin_unlock(ptl);
3996                                 continue;
3997                         }
3998                         /*
3999                          * Mark the VMA as having unmapped its page so that
4000                          * future faults in this VMA will fail rather than
4001                          * looking like data was lost
4002                          */
4003                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4004                 }
4005
4006                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4007                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4008                 if (huge_pte_dirty(pte))
4009                         set_page_dirty(page);
4010
4011                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4012                 page_remove_rmap(page, true);
4013
4014                 spin_unlock(ptl);
4015                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4016                 /*
4017                  * Bail out after unmapping reference page if supplied
4018                  */
4019                 if (ref_page)
4020                         break;
4021         }
4022         mmu_notifier_invalidate_range_end(&range);
4023         tlb_end_vma(tlb, vma);
4024 }
4025
4026 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4027                           struct vm_area_struct *vma, unsigned long start,
4028                           unsigned long end, struct page *ref_page)
4029 {
4030         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4031
4032         /*
4033          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4034          * test will fail on a vma being torn down, and not grab a page table
4035          * on its way out.  We're lucky that the flag has such an appropriate
4036          * name, and can in fact be safely cleared here. We could clear it
4037          * before the __unmap_hugepage_range above, but all that's necessary
4038          * is to clear it before releasing the i_mmap_rwsem. This works
4039          * because in the context this is called, the VMA is about to be
4040          * destroyed and the i_mmap_rwsem is held.
4041          */
4042         vma->vm_flags &= ~VM_MAYSHARE;
4043 }
4044
4045 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4046                           unsigned long end, struct page *ref_page)
4047 {
4048         struct mm_struct *mm;
4049         struct mmu_gather tlb;
4050         unsigned long tlb_start = start;
4051         unsigned long tlb_end = end;
4052
4053         /*
4054          * If shared PMDs were possibly used within this vma range, adjust
4055          * start/end for worst case tlb flushing.
4056          * Note that we can not be sure if PMDs are shared until we try to
4057          * unmap pages.  However, we want to make sure TLB flushing covers
4058          * the largest possible range.
4059          */
4060         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4061
4062         mm = vma->vm_mm;
4063
4064         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4065         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4066         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4067 }
4068
4069 /*
4070  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4071  * mappping it owns the reserve page for. The intention is to unmap the page
4072  * from other VMAs and let the children be SIGKILLed if they are faulting the
4073  * same region.
4074  */
4075 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4076                               struct page *page, unsigned long address)
4077 {
4078         struct hstate *h = hstate_vma(vma);
4079         struct vm_area_struct *iter_vma;
4080         struct address_space *mapping;
4081         pgoff_t pgoff;
4082
4083         /*
4084          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4085          * from page cache lookup which is in HPAGE_SIZE units.
4086          */
4087         address = address & huge_page_mask(h);
4088         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4089                         vma->vm_pgoff;
4090         mapping = vma->vm_file->f_mapping;
4091
4092         /*
4093          * Take the mapping lock for the duration of the table walk. As
4094          * this mapping should be shared between all the VMAs,
4095          * __unmap_hugepage_range() is called as the lock is already held
4096          */
4097         i_mmap_lock_write(mapping);
4098         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4099                 /* Do not unmap the current VMA */
4100                 if (iter_vma == vma)
4101                         continue;
4102
4103                 /*
4104                  * Shared VMAs have their own reserves and do not affect
4105                  * MAP_PRIVATE accounting but it is possible that a shared
4106                  * VMA is using the same page so check and skip such VMAs.
4107                  */
4108                 if (iter_vma->vm_flags & VM_MAYSHARE)
4109                         continue;
4110
4111                 /*
4112                  * Unmap the page from other VMAs without their own reserves.
4113                  * They get marked to be SIGKILLed if they fault in these
4114                  * areas. This is because a future no-page fault on this VMA
4115                  * could insert a zeroed page instead of the data existing
4116                  * from the time of fork. This would look like data corruption
4117                  */
4118                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4119                         unmap_hugepage_range(iter_vma, address,
4120                                              address + huge_page_size(h), page);
4121         }
4122         i_mmap_unlock_write(mapping);
4123 }
4124
4125 /*
4126  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4127  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4128  * cannot race with other handlers or page migration.
4129  * Keep the pte_same checks anyway to make transition from the mutex easier.
4130  */
4131 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4132                        unsigned long address, pte_t *ptep,
4133                        struct page *pagecache_page, spinlock_t *ptl)
4134 {
4135         pte_t pte;
4136         struct hstate *h = hstate_vma(vma);
4137         struct page *old_page, *new_page;
4138         int outside_reserve = 0;
4139         vm_fault_t ret = 0;
4140         unsigned long haddr = address & huge_page_mask(h);
4141         struct mmu_notifier_range range;
4142
4143         pte = huge_ptep_get(ptep);
4144         old_page = pte_page(pte);
4145
4146 retry_avoidcopy:
4147         /* If no-one else is actually using this page, avoid the copy
4148          * and just make the page writable */
4149         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4150                 page_move_anon_rmap(old_page, vma);
4151                 set_huge_ptep_writable(vma, haddr, ptep);
4152                 return 0;
4153         }
4154
4155         /*
4156          * If the process that created a MAP_PRIVATE mapping is about to
4157          * perform a COW due to a shared page count, attempt to satisfy
4158          * the allocation without using the existing reserves. The pagecache
4159          * page is used to determine if the reserve at this address was
4160          * consumed or not. If reserves were used, a partial faulted mapping
4161          * at the time of fork() could consume its reserves on COW instead
4162          * of the full address range.
4163          */
4164         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4165                         old_page != pagecache_page)
4166                 outside_reserve = 1;
4167
4168         get_page(old_page);
4169
4170         /*
4171          * Drop page table lock as buddy allocator may be called. It will
4172          * be acquired again before returning to the caller, as expected.
4173          */
4174         spin_unlock(ptl);
4175         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4176
4177         if (IS_ERR(new_page)) {
4178                 /*
4179                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4180                  * it is due to references held by a child and an insufficient
4181                  * huge page pool. To guarantee the original mappers
4182                  * reliability, unmap the page from child processes. The child
4183                  * may get SIGKILLed if it later faults.
4184                  */
4185                 if (outside_reserve) {
4186                         put_page(old_page);
4187                         BUG_ON(huge_pte_none(pte));
4188                         unmap_ref_private(mm, vma, old_page, haddr);
4189                         BUG_ON(huge_pte_none(pte));
4190                         spin_lock(ptl);
4191                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4192                         if (likely(ptep &&
4193                                    pte_same(huge_ptep_get(ptep), pte)))
4194                                 goto retry_avoidcopy;
4195                         /*
4196                          * race occurs while re-acquiring page table
4197                          * lock, and our job is done.
4198                          */
4199                         return 0;
4200                 }
4201
4202                 ret = vmf_error(PTR_ERR(new_page));
4203                 goto out_release_old;
4204         }
4205
4206         /*
4207          * When the original hugepage is shared one, it does not have
4208          * anon_vma prepared.
4209          */
4210         if (unlikely(anon_vma_prepare(vma))) {
4211                 ret = VM_FAULT_OOM;
4212                 goto out_release_all;
4213         }
4214
4215         copy_user_huge_page(new_page, old_page, address, vma,
4216                             pages_per_huge_page(h));
4217         __SetPageUptodate(new_page);
4218
4219         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4220                                 haddr + huge_page_size(h));
4221         mmu_notifier_invalidate_range_start(&range);
4222
4223         /*
4224          * Retake the page table lock to check for racing updates
4225          * before the page tables are altered
4226          */
4227         spin_lock(ptl);
4228         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4229         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4230                 ClearPagePrivate(new_page);
4231
4232                 /* Break COW */
4233                 huge_ptep_clear_flush(vma, haddr, ptep);
4234                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4235                 set_huge_pte_at(mm, haddr, ptep,
4236                                 make_huge_pte(vma, new_page, 1));
4237                 page_remove_rmap(old_page, true);
4238                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4239                 set_page_huge_active(new_page);
4240                 /* Make the old page be freed below */
4241                 new_page = old_page;
4242         }
4243         spin_unlock(ptl);
4244         mmu_notifier_invalidate_range_end(&range);
4245 out_release_all:
4246         restore_reserve_on_error(h, vma, haddr, new_page);
4247         put_page(new_page);
4248 out_release_old:
4249         put_page(old_page);
4250
4251         spin_lock(ptl); /* Caller expects lock to be held */
4252         return ret;
4253 }
4254
4255 /* Return the pagecache page at a given address within a VMA */
4256 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4257                         struct vm_area_struct *vma, unsigned long address)
4258 {
4259         struct address_space *mapping;
4260         pgoff_t idx;
4261
4262         mapping = vma->vm_file->f_mapping;
4263         idx = vma_hugecache_offset(h, vma, address);
4264
4265         return find_lock_page(mapping, idx);
4266 }
4267
4268 /*
4269  * Return whether there is a pagecache page to back given address within VMA.
4270  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4271  */
4272 static bool hugetlbfs_pagecache_present(struct hstate *h,
4273                         struct vm_area_struct *vma, unsigned long address)
4274 {
4275         struct address_space *mapping;
4276         pgoff_t idx;
4277         struct page *page;
4278
4279         mapping = vma->vm_file->f_mapping;
4280         idx = vma_hugecache_offset(h, vma, address);
4281
4282         page = find_get_page(mapping, idx);
4283         if (page)
4284                 put_page(page);
4285         return page != NULL;
4286 }
4287
4288 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4289                            pgoff_t idx)
4290 {
4291         struct inode *inode = mapping->host;
4292         struct hstate *h = hstate_inode(inode);
4293         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4294
4295         if (err)
4296                 return err;
4297         ClearPagePrivate(page);
4298
4299         /*
4300          * set page dirty so that it will not be removed from cache/file
4301          * by non-hugetlbfs specific code paths.
4302          */
4303         set_page_dirty(page);
4304
4305         spin_lock(&inode->i_lock);
4306         inode->i_blocks += blocks_per_huge_page(h);
4307         spin_unlock(&inode->i_lock);
4308         return 0;
4309 }
4310
4311 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4312                         struct vm_area_struct *vma,
4313                         struct address_space *mapping, pgoff_t idx,
4314                         unsigned long address, pte_t *ptep, unsigned int flags)
4315 {
4316         struct hstate *h = hstate_vma(vma);
4317         vm_fault_t ret = VM_FAULT_SIGBUS;
4318         int anon_rmap = 0;
4319         unsigned long size;
4320         struct page *page;
4321         pte_t new_pte;
4322         spinlock_t *ptl;
4323         unsigned long haddr = address & huge_page_mask(h);
4324         bool new_page = false;
4325
4326         /*
4327          * Currently, we are forced to kill the process in the event the
4328          * original mapper has unmapped pages from the child due to a failed
4329          * COW. Warn that such a situation has occurred as it may not be obvious
4330          */
4331         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4332                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4333                            current->pid);
4334                 return ret;
4335         }
4336
4337         /*
4338          * We can not race with truncation due to holding i_mmap_rwsem.
4339          * i_size is modified when holding i_mmap_rwsem, so check here
4340          * once for faults beyond end of file.
4341          */
4342         size = i_size_read(mapping->host) >> huge_page_shift(h);
4343         if (idx >= size)
4344                 goto out;
4345
4346 retry:
4347         page = find_lock_page(mapping, idx);
4348         if (!page) {
4349                 /*
4350                  * Check for page in userfault range
4351                  */
4352                 if (userfaultfd_missing(vma)) {
4353                         u32 hash;
4354                         struct vm_fault vmf = {
4355                                 .vma = vma,
4356                                 .address = haddr,
4357                                 .flags = flags,
4358                                 /*
4359                                  * Hard to debug if it ends up being
4360                                  * used by a callee that assumes
4361                                  * something about the other
4362                                  * uninitialized fields... same as in
4363                                  * memory.c
4364                                  */
4365                         };
4366
4367                         /*
4368                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4369                          * dropped before handling userfault.  Reacquire
4370                          * after handling fault to make calling code simpler.
4371                          */
4372                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4373                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4374                         i_mmap_unlock_read(mapping);
4375                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4376                         i_mmap_lock_read(mapping);
4377                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4378                         goto out;
4379                 }
4380
4381                 page = alloc_huge_page(vma, haddr, 0);
4382                 if (IS_ERR(page)) {
4383                         /*
4384                          * Returning error will result in faulting task being
4385                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4386                          * tasks from racing to fault in the same page which
4387                          * could result in false unable to allocate errors.
4388                          * Page migration does not take the fault mutex, but
4389                          * does a clear then write of pte's under page table
4390                          * lock.  Page fault code could race with migration,
4391                          * notice the clear pte and try to allocate a page
4392                          * here.  Before returning error, get ptl and make
4393                          * sure there really is no pte entry.
4394                          */
4395                         ptl = huge_pte_lock(h, mm, ptep);
4396                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4397                                 ret = 0;
4398                                 spin_unlock(ptl);
4399                                 goto out;
4400                         }
4401                         spin_unlock(ptl);
4402                         ret = vmf_error(PTR_ERR(page));
4403                         goto out;
4404                 }
4405                 clear_huge_page(page, address, pages_per_huge_page(h));
4406                 __SetPageUptodate(page);
4407                 new_page = true;
4408
4409                 if (vma->vm_flags & VM_MAYSHARE) {
4410                         int err = huge_add_to_page_cache(page, mapping, idx);
4411                         if (err) {
4412                                 put_page(page);
4413                                 if (err == -EEXIST)
4414                                         goto retry;
4415                                 goto out;
4416                         }
4417                 } else {
4418                         lock_page(page);
4419                         if (unlikely(anon_vma_prepare(vma))) {
4420                                 ret = VM_FAULT_OOM;
4421                                 goto backout_unlocked;
4422                         }
4423                         anon_rmap = 1;
4424                 }
4425         } else {
4426                 /*
4427                  * If memory error occurs between mmap() and fault, some process
4428                  * don't have hwpoisoned swap entry for errored virtual address.
4429                  * So we need to block hugepage fault by PG_hwpoison bit check.
4430                  */
4431                 if (unlikely(PageHWPoison(page))) {
4432                         ret = VM_FAULT_HWPOISON |
4433                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4434                         goto backout_unlocked;
4435                 }
4436         }
4437
4438         /*
4439          * If we are going to COW a private mapping later, we examine the
4440          * pending reservations for this page now. This will ensure that
4441          * any allocations necessary to record that reservation occur outside
4442          * the spinlock.
4443          */
4444         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4445                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4446                         ret = VM_FAULT_OOM;
4447                         goto backout_unlocked;
4448                 }
4449                 /* Just decrements count, does not deallocate */
4450                 vma_end_reservation(h, vma, haddr);
4451         }
4452
4453         ptl = huge_pte_lock(h, mm, ptep);
4454         ret = 0;
4455         if (!huge_pte_none(huge_ptep_get(ptep)))
4456                 goto backout;
4457
4458         if (anon_rmap) {
4459                 ClearPagePrivate(page);
4460                 hugepage_add_new_anon_rmap(page, vma, haddr);
4461         } else
4462                 page_dup_rmap(page, true);
4463         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4464                                 && (vma->vm_flags & VM_SHARED)));
4465         set_huge_pte_at(mm, haddr, ptep, new_pte);
4466
4467         hugetlb_count_add(pages_per_huge_page(h), mm);
4468         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4469                 /* Optimization, do the COW without a second fault */
4470                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4471         }
4472
4473         spin_unlock(ptl);
4474
4475         /*
4476          * Only make newly allocated pages active.  Existing pages found
4477          * in the pagecache could be !page_huge_active() if they have been
4478          * isolated for migration.
4479          */
4480         if (new_page)
4481                 set_page_huge_active(page);
4482
4483         unlock_page(page);
4484 out:
4485         return ret;
4486
4487 backout:
4488         spin_unlock(ptl);
4489 backout_unlocked:
4490         unlock_page(page);
4491         restore_reserve_on_error(h, vma, haddr, page);
4492         put_page(page);
4493         goto out;
4494 }
4495
4496 #ifdef CONFIG_SMP
4497 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4498 {
4499         unsigned long key[2];
4500         u32 hash;
4501
4502         key[0] = (unsigned long) mapping;
4503         key[1] = idx;
4504
4505         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4506
4507         return hash & (num_fault_mutexes - 1);
4508 }
4509 #else
4510 /*
4511  * For uniprocesor systems we always use a single mutex, so just
4512  * return 0 and avoid the hashing overhead.
4513  */
4514 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4515 {
4516         return 0;
4517 }
4518 #endif
4519
4520 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4521                         unsigned long address, unsigned int flags)
4522 {
4523         pte_t *ptep, entry;
4524         spinlock_t *ptl;
4525         vm_fault_t ret;
4526         u32 hash;
4527         pgoff_t idx;
4528         struct page *page = NULL;
4529         struct page *pagecache_page = NULL;
4530         struct hstate *h = hstate_vma(vma);
4531         struct address_space *mapping;
4532         int need_wait_lock = 0;
4533         unsigned long haddr = address & huge_page_mask(h);
4534
4535         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4536         if (ptep) {
4537                 /*
4538                  * Since we hold no locks, ptep could be stale.  That is
4539                  * OK as we are only making decisions based on content and
4540                  * not actually modifying content here.
4541                  */
4542                 entry = huge_ptep_get(ptep);
4543                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4544                         migration_entry_wait_huge(vma, mm, ptep);
4545                         return 0;
4546                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4547                         return VM_FAULT_HWPOISON_LARGE |
4548                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4549         }
4550
4551         /*
4552          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4553          * until finished with ptep.  This serves two purposes:
4554          * 1) It prevents huge_pmd_unshare from being called elsewhere
4555          *    and making the ptep no longer valid.
4556          * 2) It synchronizes us with i_size modifications during truncation.
4557          *
4558          * ptep could have already be assigned via huge_pte_offset.  That
4559          * is OK, as huge_pte_alloc will return the same value unless
4560          * something has changed.
4561          */
4562         mapping = vma->vm_file->f_mapping;
4563         i_mmap_lock_read(mapping);
4564         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4565         if (!ptep) {
4566                 i_mmap_unlock_read(mapping);
4567                 return VM_FAULT_OOM;
4568         }
4569
4570         /*
4571          * Serialize hugepage allocation and instantiation, so that we don't
4572          * get spurious allocation failures if two CPUs race to instantiate
4573          * the same page in the page cache.
4574          */
4575         idx = vma_hugecache_offset(h, vma, haddr);
4576         hash = hugetlb_fault_mutex_hash(mapping, idx);
4577         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4578
4579         entry = huge_ptep_get(ptep);
4580         if (huge_pte_none(entry)) {
4581                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4582                 goto out_mutex;
4583         }
4584
4585         ret = 0;
4586
4587         /*
4588          * entry could be a migration/hwpoison entry at this point, so this
4589          * check prevents the kernel from going below assuming that we have
4590          * an active hugepage in pagecache. This goto expects the 2nd page
4591          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4592          * properly handle it.
4593          */
4594         if (!pte_present(entry))
4595                 goto out_mutex;
4596
4597         /*
4598          * If we are going to COW the mapping later, we examine the pending
4599          * reservations for this page now. This will ensure that any
4600          * allocations necessary to record that reservation occur outside the
4601          * spinlock. For private mappings, we also lookup the pagecache
4602          * page now as it is used to determine if a reservation has been
4603          * consumed.
4604          */
4605         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4606                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4607                         ret = VM_FAULT_OOM;
4608                         goto out_mutex;
4609                 }
4610                 /* Just decrements count, does not deallocate */
4611                 vma_end_reservation(h, vma, haddr);
4612
4613                 if (!(vma->vm_flags & VM_MAYSHARE))
4614                         pagecache_page = hugetlbfs_pagecache_page(h,
4615                                                                 vma, haddr);
4616         }
4617
4618         ptl = huge_pte_lock(h, mm, ptep);
4619
4620         /* Check for a racing update before calling hugetlb_cow */
4621         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4622                 goto out_ptl;
4623
4624         /*
4625          * hugetlb_cow() requires page locks of pte_page(entry) and
4626          * pagecache_page, so here we need take the former one
4627          * when page != pagecache_page or !pagecache_page.
4628          */
4629         page = pte_page(entry);
4630         if (page != pagecache_page)
4631                 if (!trylock_page(page)) {
4632                         need_wait_lock = 1;
4633                         goto out_ptl;
4634                 }
4635
4636         get_page(page);
4637
4638         if (flags & FAULT_FLAG_WRITE) {
4639                 if (!huge_pte_write(entry)) {
4640                         ret = hugetlb_cow(mm, vma, address, ptep,
4641                                           pagecache_page, ptl);
4642                         goto out_put_page;
4643                 }
4644                 entry = huge_pte_mkdirty(entry);
4645         }
4646         entry = pte_mkyoung(entry);
4647         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4648                                                 flags & FAULT_FLAG_WRITE))
4649                 update_mmu_cache(vma, haddr, ptep);
4650 out_put_page:
4651         if (page != pagecache_page)
4652                 unlock_page(page);
4653         put_page(page);
4654 out_ptl:
4655         spin_unlock(ptl);
4656
4657         if (pagecache_page) {
4658                 unlock_page(pagecache_page);
4659                 put_page(pagecache_page);
4660         }
4661 out_mutex:
4662         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4663         i_mmap_unlock_read(mapping);
4664         /*
4665          * Generally it's safe to hold refcount during waiting page lock. But
4666          * here we just wait to defer the next page fault to avoid busy loop and
4667          * the page is not used after unlocked before returning from the current
4668          * page fault. So we are safe from accessing freed page, even if we wait
4669          * here without taking refcount.
4670          */
4671         if (need_wait_lock)
4672                 wait_on_page_locked(page);
4673         return ret;
4674 }
4675
4676 /*
4677  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4678  * modifications for huge pages.
4679  */
4680 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4681                             pte_t *dst_pte,
4682                             struct vm_area_struct *dst_vma,
4683                             unsigned long dst_addr,
4684                             unsigned long src_addr,
4685                             struct page **pagep)
4686 {
4687         struct address_space *mapping;
4688         pgoff_t idx;
4689         unsigned long size;
4690         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4691         struct hstate *h = hstate_vma(dst_vma);
4692         pte_t _dst_pte;
4693         spinlock_t *ptl;
4694         int ret;
4695         struct page *page;
4696
4697         if (!*pagep) {
4698                 ret = -ENOMEM;
4699                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4700                 if (IS_ERR(page))
4701                         goto out;
4702
4703                 ret = copy_huge_page_from_user(page,
4704                                                 (const void __user *) src_addr,
4705                                                 pages_per_huge_page(h), false);
4706
4707                 /* fallback to copy_from_user outside mmap_lock */
4708                 if (unlikely(ret)) {
4709                         ret = -ENOENT;
4710                         *pagep = page;
4711                         /* don't free the page */
4712                         goto out;
4713                 }
4714         } else {
4715                 page = *pagep;
4716                 *pagep = NULL;
4717         }
4718
4719         /*
4720          * The memory barrier inside __SetPageUptodate makes sure that
4721          * preceding stores to the page contents become visible before
4722          * the set_pte_at() write.
4723          */
4724         __SetPageUptodate(page);
4725
4726         mapping = dst_vma->vm_file->f_mapping;
4727         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4728
4729         /*
4730          * If shared, add to page cache
4731          */
4732         if (vm_shared) {
4733                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4734                 ret = -EFAULT;
4735                 if (idx >= size)
4736                         goto out_release_nounlock;
4737
4738                 /*
4739                  * Serialization between remove_inode_hugepages() and
4740                  * huge_add_to_page_cache() below happens through the
4741                  * hugetlb_fault_mutex_table that here must be hold by
4742                  * the caller.
4743                  */
4744                 ret = huge_add_to_page_cache(page, mapping, idx);
4745                 if (ret)
4746                         goto out_release_nounlock;
4747         }
4748
4749         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4750         spin_lock(ptl);
4751
4752         /*
4753          * Recheck the i_size after holding PT lock to make sure not
4754          * to leave any page mapped (as page_mapped()) beyond the end
4755          * of the i_size (remove_inode_hugepages() is strict about
4756          * enforcing that). If we bail out here, we'll also leave a
4757          * page in the radix tree in the vm_shared case beyond the end
4758          * of the i_size, but remove_inode_hugepages() will take care
4759          * of it as soon as we drop the hugetlb_fault_mutex_table.
4760          */
4761         size = i_size_read(mapping->host) >> huge_page_shift(h);
4762         ret = -EFAULT;
4763         if (idx >= size)
4764                 goto out_release_unlock;
4765
4766         ret = -EEXIST;
4767         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4768                 goto out_release_unlock;
4769
4770         if (vm_shared) {
4771                 page_dup_rmap(page, true);
4772         } else {
4773                 ClearPagePrivate(page);
4774                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4775         }
4776
4777         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4778         if (dst_vma->vm_flags & VM_WRITE)
4779                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4780         _dst_pte = pte_mkyoung(_dst_pte);
4781
4782         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4783
4784         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4785                                         dst_vma->vm_flags & VM_WRITE);
4786         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4787
4788         /* No need to invalidate - it was non-present before */
4789         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4790
4791         spin_unlock(ptl);
4792         set_page_huge_active(page);
4793         if (vm_shared)
4794                 unlock_page(page);
4795         ret = 0;
4796 out:
4797         return ret;
4798 out_release_unlock:
4799         spin_unlock(ptl);
4800         if (vm_shared)
4801                 unlock_page(page);
4802 out_release_nounlock:
4803         put_page(page);
4804         goto out;
4805 }
4806
4807 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4808                          struct page **pages, struct vm_area_struct **vmas,
4809                          unsigned long *position, unsigned long *nr_pages,
4810                          long i, unsigned int flags, int *locked)
4811 {
4812         unsigned long pfn_offset;
4813         unsigned long vaddr = *position;
4814         unsigned long remainder = *nr_pages;
4815         struct hstate *h = hstate_vma(vma);
4816         int err = -EFAULT;
4817
4818         while (vaddr < vma->vm_end && remainder) {
4819                 pte_t *pte;
4820                 spinlock_t *ptl = NULL;
4821                 int absent;
4822                 struct page *page;
4823
4824                 /*
4825                  * If we have a pending SIGKILL, don't keep faulting pages and
4826                  * potentially allocating memory.
4827                  */
4828                 if (fatal_signal_pending(current)) {
4829                         remainder = 0;
4830                         break;
4831                 }
4832
4833                 /*
4834                  * Some archs (sparc64, sh*) have multiple pte_ts to
4835                  * each hugepage.  We have to make sure we get the
4836                  * first, for the page indexing below to work.
4837                  *
4838                  * Note that page table lock is not held when pte is null.
4839                  */
4840                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4841                                       huge_page_size(h));
4842                 if (pte)
4843                         ptl = huge_pte_lock(h, mm, pte);
4844                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4845
4846                 /*
4847                  * When coredumping, it suits get_dump_page if we just return
4848                  * an error where there's an empty slot with no huge pagecache
4849                  * to back it.  This way, we avoid allocating a hugepage, and
4850                  * the sparse dumpfile avoids allocating disk blocks, but its
4851                  * huge holes still show up with zeroes where they need to be.
4852                  */
4853                 if (absent && (flags & FOLL_DUMP) &&
4854                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4855                         if (pte)
4856                                 spin_unlock(ptl);
4857                         remainder = 0;
4858                         break;
4859                 }
4860
4861                 /*
4862                  * We need call hugetlb_fault for both hugepages under migration
4863                  * (in which case hugetlb_fault waits for the migration,) and
4864                  * hwpoisoned hugepages (in which case we need to prevent the
4865                  * caller from accessing to them.) In order to do this, we use
4866                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4867                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4868                  * both cases, and because we can't follow correct pages
4869                  * directly from any kind of swap entries.
4870                  */
4871                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4872                     ((flags & FOLL_WRITE) &&
4873                       !huge_pte_write(huge_ptep_get(pte)))) {
4874                         vm_fault_t ret;
4875                         unsigned int fault_flags = 0;
4876
4877                         if (pte)
4878                                 spin_unlock(ptl);
4879                         if (flags & FOLL_WRITE)
4880                                 fault_flags |= FAULT_FLAG_WRITE;
4881                         if (locked)
4882                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4883                                         FAULT_FLAG_KILLABLE;
4884                         if (flags & FOLL_NOWAIT)
4885                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4886                                         FAULT_FLAG_RETRY_NOWAIT;
4887                         if (flags & FOLL_TRIED) {
4888                                 /*
4889                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4890                                  * FAULT_FLAG_TRIED can co-exist
4891                                  */
4892                                 fault_flags |= FAULT_FLAG_TRIED;
4893                         }
4894                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4895                         if (ret & VM_FAULT_ERROR) {
4896                                 err = vm_fault_to_errno(ret, flags);
4897                                 remainder = 0;
4898                                 break;
4899                         }
4900                         if (ret & VM_FAULT_RETRY) {
4901                                 if (locked &&
4902                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4903                                         *locked = 0;
4904                                 *nr_pages = 0;
4905                                 /*
4906                                  * VM_FAULT_RETRY must not return an
4907                                  * error, it will return zero
4908                                  * instead.
4909                                  *
4910                                  * No need to update "position" as the
4911                                  * caller will not check it after
4912                                  * *nr_pages is set to 0.
4913                                  */
4914                                 return i;
4915                         }
4916                         continue;
4917                 }
4918
4919                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4920                 page = pte_page(huge_ptep_get(pte));
4921
4922                 /*
4923                  * If subpage information not requested, update counters
4924                  * and skip the same_page loop below.
4925                  */
4926                 if (!pages && !vmas && !pfn_offset &&
4927                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4928                     (remainder >= pages_per_huge_page(h))) {
4929                         vaddr += huge_page_size(h);
4930                         remainder -= pages_per_huge_page(h);
4931                         i += pages_per_huge_page(h);
4932                         spin_unlock(ptl);
4933                         continue;
4934                 }
4935
4936 same_page:
4937                 if (pages) {
4938                         pages[i] = mem_map_offset(page, pfn_offset);
4939                         /*
4940                          * try_grab_page() should always succeed here, because:
4941                          * a) we hold the ptl lock, and b) we've just checked
4942                          * that the huge page is present in the page tables. If
4943                          * the huge page is present, then the tail pages must
4944                          * also be present. The ptl prevents the head page and
4945                          * tail pages from being rearranged in any way. So this
4946                          * page must be available at this point, unless the page
4947                          * refcount overflowed:
4948                          */
4949                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4950                                 spin_unlock(ptl);
4951                                 remainder = 0;
4952                                 err = -ENOMEM;
4953                                 break;
4954                         }
4955                 }
4956
4957                 if (vmas)
4958                         vmas[i] = vma;
4959
4960                 vaddr += PAGE_SIZE;
4961                 ++pfn_offset;
4962                 --remainder;
4963                 ++i;
4964                 if (vaddr < vma->vm_end && remainder &&
4965                                 pfn_offset < pages_per_huge_page(h)) {
4966                         /*
4967                          * We use pfn_offset to avoid touching the pageframes
4968                          * of this compound page.
4969                          */
4970                         goto same_page;
4971                 }
4972                 spin_unlock(ptl);
4973         }
4974         *nr_pages = remainder;
4975         /*
4976          * setting position is actually required only if remainder is
4977          * not zero but it's faster not to add a "if (remainder)"
4978          * branch.
4979          */
4980         *position = vaddr;
4981
4982         return i ? i : err;
4983 }
4984
4985 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4986 /*
4987  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4988  * implement this.
4989  */
4990 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4991 #endif
4992
4993 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4994                 unsigned long address, unsigned long end, pgprot_t newprot)
4995 {
4996         struct mm_struct *mm = vma->vm_mm;
4997         unsigned long start = address;
4998         pte_t *ptep;
4999         pte_t pte;
5000         struct hstate *h = hstate_vma(vma);
5001         unsigned long pages = 0;
5002         bool shared_pmd = false;
5003         struct mmu_notifier_range range;
5004
5005         /*
5006          * In the case of shared PMDs, the area to flush could be beyond
5007          * start/end.  Set range.start/range.end to cover the maximum possible
5008          * range if PMD sharing is possible.
5009          */
5010         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5011                                 0, vma, mm, start, end);
5012         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5013
5014         BUG_ON(address >= end);
5015         flush_cache_range(vma, range.start, range.end);
5016
5017         mmu_notifier_invalidate_range_start(&range);
5018         i_mmap_lock_write(vma->vm_file->f_mapping);
5019         for (; address < end; address += huge_page_size(h)) {
5020                 spinlock_t *ptl;
5021                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5022                 if (!ptep)
5023                         continue;
5024                 ptl = huge_pte_lock(h, mm, ptep);
5025                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5026                         pages++;
5027                         spin_unlock(ptl);
5028                         shared_pmd = true;
5029                         continue;
5030                 }
5031                 pte = huge_ptep_get(ptep);
5032                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5033                         spin_unlock(ptl);
5034                         continue;
5035                 }
5036                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5037                         swp_entry_t entry = pte_to_swp_entry(pte);
5038
5039                         if (is_write_migration_entry(entry)) {
5040                                 pte_t newpte;
5041
5042                                 make_migration_entry_read(&entry);
5043                                 newpte = swp_entry_to_pte(entry);
5044                                 set_huge_swap_pte_at(mm, address, ptep,
5045                                                      newpte, huge_page_size(h));
5046                                 pages++;
5047                         }
5048                         spin_unlock(ptl);
5049                         continue;
5050                 }
5051                 if (!huge_pte_none(pte)) {
5052                         pte_t old_pte;
5053
5054                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5055                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5056                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5057                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5058                         pages++;
5059                 }
5060                 spin_unlock(ptl);
5061         }
5062         /*
5063          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5064          * may have cleared our pud entry and done put_page on the page table:
5065          * once we release i_mmap_rwsem, another task can do the final put_page
5066          * and that page table be reused and filled with junk.  If we actually
5067          * did unshare a page of pmds, flush the range corresponding to the pud.
5068          */
5069         if (shared_pmd)
5070                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5071         else
5072                 flush_hugetlb_tlb_range(vma, start, end);
5073         /*
5074          * No need to call mmu_notifier_invalidate_range() we are downgrading
5075          * page table protection not changing it to point to a new page.
5076          *
5077          * See Documentation/vm/mmu_notifier.rst
5078          */
5079         i_mmap_unlock_write(vma->vm_file->f_mapping);
5080         mmu_notifier_invalidate_range_end(&range);
5081
5082         return pages << h->order;
5083 }
5084
5085 int hugetlb_reserve_pages(struct inode *inode,
5086                                         long from, long to,
5087                                         struct vm_area_struct *vma,
5088                                         vm_flags_t vm_flags)
5089 {
5090         long ret, chg, add = -1;
5091         struct hstate *h = hstate_inode(inode);
5092         struct hugepage_subpool *spool = subpool_inode(inode);
5093         struct resv_map *resv_map;
5094         struct hugetlb_cgroup *h_cg = NULL;
5095         long gbl_reserve, regions_needed = 0;
5096
5097         /* This should never happen */
5098         if (from > to) {
5099                 VM_WARN(1, "%s called with a negative range\n", __func__);
5100                 return -EINVAL;
5101         }
5102
5103         /*
5104          * Only apply hugepage reservation if asked. At fault time, an
5105          * attempt will be made for VM_NORESERVE to allocate a page
5106          * without using reserves
5107          */
5108         if (vm_flags & VM_NORESERVE)
5109                 return 0;
5110
5111         /*
5112          * Shared mappings base their reservation on the number of pages that
5113          * are already allocated on behalf of the file. Private mappings need
5114          * to reserve the full area even if read-only as mprotect() may be
5115          * called to make the mapping read-write. Assume !vma is a shm mapping
5116          */
5117         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5118                 /*
5119                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5120                  * called for inodes for which resv_maps were created (see
5121                  * hugetlbfs_get_inode).
5122                  */
5123                 resv_map = inode_resv_map(inode);
5124
5125                 chg = region_chg(resv_map, from, to, &regions_needed);
5126
5127         } else {
5128                 /* Private mapping. */
5129                 resv_map = resv_map_alloc();
5130                 if (!resv_map)
5131                         return -ENOMEM;
5132
5133                 chg = to - from;
5134
5135                 set_vma_resv_map(vma, resv_map);
5136                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5137         }
5138
5139         if (chg < 0) {
5140                 ret = chg;
5141                 goto out_err;
5142         }
5143
5144         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5145                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5146
5147         if (ret < 0) {
5148                 ret = -ENOMEM;
5149                 goto out_err;
5150         }
5151
5152         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5153                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5154                  * of the resv_map.
5155                  */
5156                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5157         }
5158
5159         /*
5160          * There must be enough pages in the subpool for the mapping. If
5161          * the subpool has a minimum size, there may be some global
5162          * reservations already in place (gbl_reserve).
5163          */
5164         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5165         if (gbl_reserve < 0) {
5166                 ret = -ENOSPC;
5167                 goto out_uncharge_cgroup;
5168         }
5169
5170         /*
5171          * Check enough hugepages are available for the reservation.
5172          * Hand the pages back to the subpool if there are not
5173          */
5174         ret = hugetlb_acct_memory(h, gbl_reserve);
5175         if (ret < 0) {
5176                 goto out_put_pages;
5177         }
5178
5179         /*
5180          * Account for the reservations made. Shared mappings record regions
5181          * that have reservations as they are shared by multiple VMAs.
5182          * When the last VMA disappears, the region map says how much
5183          * the reservation was and the page cache tells how much of
5184          * the reservation was consumed. Private mappings are per-VMA and
5185          * only the consumed reservations are tracked. When the VMA
5186          * disappears, the original reservation is the VMA size and the
5187          * consumed reservations are stored in the map. Hence, nothing
5188          * else has to be done for private mappings here
5189          */
5190         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5191                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5192
5193                 if (unlikely(add < 0)) {
5194                         hugetlb_acct_memory(h, -gbl_reserve);
5195                         goto out_put_pages;
5196                 } else if (unlikely(chg > add)) {
5197                         /*
5198                          * pages in this range were added to the reserve
5199                          * map between region_chg and region_add.  This
5200                          * indicates a race with alloc_huge_page.  Adjust
5201                          * the subpool and reserve counts modified above
5202                          * based on the difference.
5203                          */
5204                         long rsv_adjust;
5205
5206                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5207                                 hstate_index(h),
5208                                 (chg - add) * pages_per_huge_page(h), h_cg);
5209
5210                         rsv_adjust = hugepage_subpool_put_pages(spool,
5211                                                                 chg - add);
5212                         hugetlb_acct_memory(h, -rsv_adjust);
5213                 }
5214         }
5215         return 0;
5216 out_put_pages:
5217         /* put back original number of pages, chg */
5218         (void)hugepage_subpool_put_pages(spool, chg);
5219 out_uncharge_cgroup:
5220         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5221                                             chg * pages_per_huge_page(h), h_cg);
5222 out_err:
5223         if (!vma || vma->vm_flags & VM_MAYSHARE)
5224                 /* Only call region_abort if the region_chg succeeded but the
5225                  * region_add failed or didn't run.
5226                  */
5227                 if (chg >= 0 && add < 0)
5228                         region_abort(resv_map, from, to, regions_needed);
5229         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5230                 kref_put(&resv_map->refs, resv_map_release);
5231         return ret;
5232 }
5233
5234 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5235                                                                 long freed)
5236 {
5237         struct hstate *h = hstate_inode(inode);
5238         struct resv_map *resv_map = inode_resv_map(inode);
5239         long chg = 0;
5240         struct hugepage_subpool *spool = subpool_inode(inode);
5241         long gbl_reserve;
5242
5243         /*
5244          * Since this routine can be called in the evict inode path for all
5245          * hugetlbfs inodes, resv_map could be NULL.
5246          */
5247         if (resv_map) {
5248                 chg = region_del(resv_map, start, end);
5249                 /*
5250                  * region_del() can fail in the rare case where a region
5251                  * must be split and another region descriptor can not be
5252                  * allocated.  If end == LONG_MAX, it will not fail.
5253                  */
5254                 if (chg < 0)
5255                         return chg;
5256         }
5257
5258         spin_lock(&inode->i_lock);
5259         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5260         spin_unlock(&inode->i_lock);
5261
5262         /*
5263          * If the subpool has a minimum size, the number of global
5264          * reservations to be released may be adjusted.
5265          */
5266         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5267         hugetlb_acct_memory(h, -gbl_reserve);
5268
5269         return 0;
5270 }
5271
5272 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5273 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5274                                 struct vm_area_struct *vma,
5275                                 unsigned long addr, pgoff_t idx)
5276 {
5277         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5278                                 svma->vm_start;
5279         unsigned long sbase = saddr & PUD_MASK;
5280         unsigned long s_end = sbase + PUD_SIZE;
5281
5282         /* Allow segments to share if only one is marked locked */
5283         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5284         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5285
5286         /*
5287          * match the virtual addresses, permission and the alignment of the
5288          * page table page.
5289          */
5290         if (pmd_index(addr) != pmd_index(saddr) ||
5291             vm_flags != svm_flags ||
5292             sbase < svma->vm_start || svma->vm_end < s_end)
5293                 return 0;
5294
5295         return saddr;
5296 }
5297
5298 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5299 {
5300         unsigned long base = addr & PUD_MASK;
5301         unsigned long end = base + PUD_SIZE;
5302
5303         /*
5304          * check on proper vm_flags and page table alignment
5305          */
5306         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5307                 return true;
5308         return false;
5309 }
5310
5311 /*
5312  * Determine if start,end range within vma could be mapped by shared pmd.
5313  * If yes, adjust start and end to cover range associated with possible
5314  * shared pmd mappings.
5315  */
5316 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5317                                 unsigned long *start, unsigned long *end)
5318 {
5319         unsigned long a_start, a_end;
5320
5321         if (!(vma->vm_flags & VM_MAYSHARE))
5322                 return;
5323
5324         /* Extend the range to be PUD aligned for a worst case scenario */
5325         a_start = ALIGN_DOWN(*start, PUD_SIZE);
5326         a_end = ALIGN(*end, PUD_SIZE);
5327
5328         /*
5329          * Intersect the range with the vma range, since pmd sharing won't be
5330          * across vma after all
5331          */
5332         *start = max(vma->vm_start, a_start);
5333         *end = min(vma->vm_end, a_end);
5334 }
5335
5336 /*
5337  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5338  * and returns the corresponding pte. While this is not necessary for the
5339  * !shared pmd case because we can allocate the pmd later as well, it makes the
5340  * code much cleaner.
5341  *
5342  * This routine must be called with i_mmap_rwsem held in at least read mode if
5343  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5344  * table entries associated with the address space.  This is important as we
5345  * are setting up sharing based on existing page table entries (mappings).
5346  *
5347  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5348  * huge_pte_alloc know that sharing is not possible and do not take
5349  * i_mmap_rwsem as a performance optimization.  This is handled by the
5350  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5351  * only required for subsequent processing.
5352  */
5353 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5354 {
5355         struct vm_area_struct *vma = find_vma(mm, addr);
5356         struct address_space *mapping = vma->vm_file->f_mapping;
5357         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5358                         vma->vm_pgoff;
5359         struct vm_area_struct *svma;
5360         unsigned long saddr;
5361         pte_t *spte = NULL;
5362         pte_t *pte;
5363         spinlock_t *ptl;
5364
5365         if (!vma_shareable(vma, addr))
5366                 return (pte_t *)pmd_alloc(mm, pud, addr);
5367
5368         i_mmap_assert_locked(mapping);
5369         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5370                 if (svma == vma)
5371                         continue;
5372
5373                 saddr = page_table_shareable(svma, vma, addr, idx);
5374                 if (saddr) {
5375                         spte = huge_pte_offset(svma->vm_mm, saddr,
5376                                                vma_mmu_pagesize(svma));
5377                         if (spte) {
5378                                 get_page(virt_to_page(spte));
5379                                 break;
5380                         }
5381                 }
5382         }
5383
5384         if (!spte)
5385                 goto out;
5386
5387         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5388         if (pud_none(*pud)) {
5389                 pud_populate(mm, pud,
5390                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5391                 mm_inc_nr_pmds(mm);
5392         } else {
5393                 put_page(virt_to_page(spte));
5394         }
5395         spin_unlock(ptl);
5396 out:
5397         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5398         return pte;
5399 }
5400
5401 /*
5402  * unmap huge page backed by shared pte.
5403  *
5404  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5405  * indicated by page_count > 1, unmap is achieved by clearing pud and
5406  * decrementing the ref count. If count == 1, the pte page is not shared.
5407  *
5408  * Called with page table lock held and i_mmap_rwsem held in write mode.
5409  *
5410  * returns: 1 successfully unmapped a shared pte page
5411  *          0 the underlying pte page is not shared, or it is the last user
5412  */
5413 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5414                                         unsigned long *addr, pte_t *ptep)
5415 {
5416         pgd_t *pgd = pgd_offset(mm, *addr);
5417         p4d_t *p4d = p4d_offset(pgd, *addr);
5418         pud_t *pud = pud_offset(p4d, *addr);
5419
5420         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5421         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5422         if (page_count(virt_to_page(ptep)) == 1)
5423                 return 0;
5424
5425         pud_clear(pud);
5426         put_page(virt_to_page(ptep));
5427         mm_dec_nr_pmds(mm);
5428         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5429         return 1;
5430 }
5431 #define want_pmd_share()        (1)
5432 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5433 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5434 {
5435         return NULL;
5436 }
5437
5438 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5439                                 unsigned long *addr, pte_t *ptep)
5440 {
5441         return 0;
5442 }
5443
5444 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5445                                 unsigned long *start, unsigned long *end)
5446 {
5447 }
5448 #define want_pmd_share()        (0)
5449 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5450
5451 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5452 pte_t *huge_pte_alloc(struct mm_struct *mm,
5453                         unsigned long addr, unsigned long sz)
5454 {
5455         pgd_t *pgd;
5456         p4d_t *p4d;
5457         pud_t *pud;
5458         pte_t *pte = NULL;
5459
5460         pgd = pgd_offset(mm, addr);
5461         p4d = p4d_alloc(mm, pgd, addr);
5462         if (!p4d)
5463                 return NULL;
5464         pud = pud_alloc(mm, p4d, addr);
5465         if (pud) {
5466                 if (sz == PUD_SIZE) {
5467                         pte = (pte_t *)pud;
5468                 } else {
5469                         BUG_ON(sz != PMD_SIZE);
5470                         if (want_pmd_share() && pud_none(*pud))
5471                                 pte = huge_pmd_share(mm, addr, pud);
5472                         else
5473                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5474                 }
5475         }
5476         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5477
5478         return pte;
5479 }
5480
5481 /*
5482  * huge_pte_offset() - Walk the page table to resolve the hugepage
5483  * entry at address @addr
5484  *
5485  * Return: Pointer to page table entry (PUD or PMD) for
5486  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5487  * size @sz doesn't match the hugepage size at this level of the page
5488  * table.
5489  */
5490 pte_t *huge_pte_offset(struct mm_struct *mm,
5491                        unsigned long addr, unsigned long sz)
5492 {
5493         pgd_t *pgd;
5494         p4d_t *p4d;
5495         pud_t *pud;
5496         pmd_t *pmd;
5497
5498         pgd = pgd_offset(mm, addr);
5499         if (!pgd_present(*pgd))
5500                 return NULL;
5501         p4d = p4d_offset(pgd, addr);
5502         if (!p4d_present(*p4d))
5503                 return NULL;
5504
5505         pud = pud_offset(p4d, addr);
5506         if (sz == PUD_SIZE)
5507                 /* must be pud huge, non-present or none */
5508                 return (pte_t *)pud;
5509         if (!pud_present(*pud))
5510                 return NULL;
5511         /* must have a valid entry and size to go further */
5512
5513         pmd = pmd_offset(pud, addr);
5514         /* must be pmd huge, non-present or none */
5515         return (pte_t *)pmd;
5516 }
5517
5518 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5519
5520 /*
5521  * These functions are overwritable if your architecture needs its own
5522  * behavior.
5523  */
5524 struct page * __weak
5525 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5526                               int write)
5527 {
5528         return ERR_PTR(-EINVAL);
5529 }
5530
5531 struct page * __weak
5532 follow_huge_pd(struct vm_area_struct *vma,
5533                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5534 {
5535         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5536         return NULL;
5537 }
5538
5539 struct page * __weak
5540 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5541                 pmd_t *pmd, int flags)
5542 {
5543         struct page *page = NULL;
5544         spinlock_t *ptl;
5545         pte_t pte;
5546
5547         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5548         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5549                          (FOLL_PIN | FOLL_GET)))
5550                 return NULL;
5551
5552 retry:
5553         ptl = pmd_lockptr(mm, pmd);
5554         spin_lock(ptl);
5555         /*
5556          * make sure that the address range covered by this pmd is not
5557          * unmapped from other threads.
5558          */
5559         if (!pmd_huge(*pmd))
5560                 goto out;
5561         pte = huge_ptep_get((pte_t *)pmd);
5562         if (pte_present(pte)) {
5563                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5564                 /*
5565                  * try_grab_page() should always succeed here, because: a) we
5566                  * hold the pmd (ptl) lock, and b) we've just checked that the
5567                  * huge pmd (head) page is present in the page tables. The ptl
5568                  * prevents the head page and tail pages from being rearranged
5569                  * in any way. So this page must be available at this point,
5570                  * unless the page refcount overflowed:
5571                  */
5572                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5573                         page = NULL;
5574                         goto out;
5575                 }
5576         } else {
5577                 if (is_hugetlb_entry_migration(pte)) {
5578                         spin_unlock(ptl);
5579                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5580                         goto retry;
5581                 }
5582                 /*
5583                  * hwpoisoned entry is treated as no_page_table in
5584                  * follow_page_mask().
5585                  */
5586         }
5587 out:
5588         spin_unlock(ptl);
5589         return page;
5590 }
5591
5592 struct page * __weak
5593 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5594                 pud_t *pud, int flags)
5595 {
5596         if (flags & (FOLL_GET | FOLL_PIN))
5597                 return NULL;
5598
5599         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5600 }
5601
5602 struct page * __weak
5603 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5604 {
5605         if (flags & (FOLL_GET | FOLL_PIN))
5606                 return NULL;
5607
5608         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5609 }
5610
5611 bool isolate_huge_page(struct page *page, struct list_head *list)
5612 {
5613         bool ret = true;
5614
5615         VM_BUG_ON_PAGE(!PageHead(page), page);
5616         spin_lock(&hugetlb_lock);
5617         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5618                 ret = false;
5619                 goto unlock;
5620         }
5621         clear_page_huge_active(page);
5622         list_move_tail(&page->lru, list);
5623 unlock:
5624         spin_unlock(&hugetlb_lock);
5625         return ret;
5626 }
5627
5628 void putback_active_hugepage(struct page *page)
5629 {
5630         VM_BUG_ON_PAGE(!PageHead(page), page);
5631         spin_lock(&hugetlb_lock);
5632         set_page_huge_active(page);
5633         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5634         spin_unlock(&hugetlb_lock);
5635         put_page(page);
5636 }
5637
5638 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5639 {
5640         struct hstate *h = page_hstate(oldpage);
5641
5642         hugetlb_cgroup_migrate(oldpage, newpage);
5643         set_page_owner_migrate_reason(newpage, reason);
5644
5645         /*
5646          * transfer temporary state of the new huge page. This is
5647          * reverse to other transitions because the newpage is going to
5648          * be final while the old one will be freed so it takes over
5649          * the temporary status.
5650          *
5651          * Also note that we have to transfer the per-node surplus state
5652          * here as well otherwise the global surplus count will not match
5653          * the per-node's.
5654          */
5655         if (PageHugeTemporary(newpage)) {
5656                 int old_nid = page_to_nid(oldpage);
5657                 int new_nid = page_to_nid(newpage);
5658
5659                 SetPageHugeTemporary(oldpage);
5660                 ClearPageHugeTemporary(newpage);
5661
5662                 spin_lock(&hugetlb_lock);
5663                 if (h->surplus_huge_pages_node[old_nid]) {
5664                         h->surplus_huge_pages_node[old_nid]--;
5665                         h->surplus_huge_pages_node[new_nid]++;
5666                 }
5667                 spin_unlock(&hugetlb_lock);
5668         }
5669 }
5670
5671 #ifdef CONFIG_CMA
5672 static bool cma_reserve_called __initdata;
5673
5674 static int __init cmdline_parse_hugetlb_cma(char *p)
5675 {
5676         hugetlb_cma_size = memparse(p, &p);
5677         return 0;
5678 }
5679
5680 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5681
5682 void __init hugetlb_cma_reserve(int order)
5683 {
5684         unsigned long size, reserved, per_node;
5685         int nid;
5686
5687         cma_reserve_called = true;
5688
5689         if (!hugetlb_cma_size)
5690                 return;
5691
5692         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5693                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5694                         (PAGE_SIZE << order) / SZ_1M);
5695                 return;
5696         }
5697
5698         /*
5699          * If 3 GB area is requested on a machine with 4 numa nodes,
5700          * let's allocate 1 GB on first three nodes and ignore the last one.
5701          */
5702         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5703         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5704                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5705
5706         reserved = 0;
5707         for_each_node_state(nid, N_ONLINE) {
5708                 int res;
5709                 char name[CMA_MAX_NAME];
5710
5711                 size = min(per_node, hugetlb_cma_size - reserved);
5712                 size = round_up(size, PAGE_SIZE << order);
5713
5714                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5715                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5716                                                  0, false, name,
5717                                                  &hugetlb_cma[nid], nid);
5718                 if (res) {
5719                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5720                                 res, nid);
5721                         continue;
5722                 }
5723
5724                 reserved += size;
5725                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5726                         size / SZ_1M, nid);
5727
5728                 if (reserved >= hugetlb_cma_size)
5729                         break;
5730         }
5731 }
5732
5733 void __init hugetlb_cma_check(void)
5734 {
5735         if (!hugetlb_cma_size || cma_reserve_called)
5736                 return;
5737
5738         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5739 }
5740
5741 #endif /* CONFIG_CMA */