Merge tag 'pinctrl-v4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76         bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78         spin_unlock(&spool->lock);
79
80         /* If no pages are used, and no other handles to the subpool
81          * remain, give up any reservations mased on minimum size and
82          * free the subpool */
83         if (free) {
84                 if (spool->min_hpages != -1)
85                         hugetlb_acct_memory(spool->hstate,
86                                                 -spool->min_hpages);
87                 kfree(spool);
88         }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92                                                 long min_hpages)
93 {
94         struct hugepage_subpool *spool;
95
96         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97         if (!spool)
98                 return NULL;
99
100         spin_lock_init(&spool->lock);
101         spool->count = 1;
102         spool->max_hpages = max_hpages;
103         spool->hstate = h;
104         spool->min_hpages = min_hpages;
105
106         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107                 kfree(spool);
108                 return NULL;
109         }
110         spool->rsv_hpages = min_hpages;
111
112         return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117         spin_lock(&spool->lock);
118         BUG_ON(!spool->count);
119         spool->count--;
120         unlock_or_release_subpool(spool);
121 }
122
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132                                       long delta)
133 {
134         long ret = delta;
135
136         if (!spool)
137                 return ret;
138
139         spin_lock(&spool->lock);
140
141         if (spool->max_hpages != -1) {          /* maximum size accounting */
142                 if ((spool->used_hpages + delta) <= spool->max_hpages)
143                         spool->used_hpages += delta;
144                 else {
145                         ret = -ENOMEM;
146                         goto unlock_ret;
147                 }
148         }
149
150         /* minimum size accounting */
151         if (spool->min_hpages != -1 && spool->rsv_hpages) {
152                 if (delta > spool->rsv_hpages) {
153                         /*
154                          * Asking for more reserves than those already taken on
155                          * behalf of subpool.  Return difference.
156                          */
157                         ret = delta - spool->rsv_hpages;
158                         spool->rsv_hpages = 0;
159                 } else {
160                         ret = 0;        /* reserves already accounted for */
161                         spool->rsv_hpages -= delta;
162                 }
163         }
164
165 unlock_ret:
166         spin_unlock(&spool->lock);
167         return ret;
168 }
169
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177                                        long delta)
178 {
179         long ret = delta;
180
181         if (!spool)
182                 return delta;
183
184         spin_lock(&spool->lock);
185
186         if (spool->max_hpages != -1)            /* maximum size accounting */
187                 spool->used_hpages -= delta;
188
189          /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191                 if (spool->rsv_hpages + delta <= spool->min_hpages)
192                         ret = 0;
193                 else
194                         ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196                 spool->rsv_hpages += delta;
197                 if (spool->rsv_hpages > spool->min_hpages)
198                         spool->rsv_hpages = spool->min_hpages;
199         }
200
201         /*
202          * If hugetlbfs_put_super couldn't free spool due to an outstanding
203          * quota reference, free it now.
204          */
205         unlock_or_release_subpool(spool);
206
207         return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212         return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217         return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240         struct list_head link;
241         long from;
242         long to;
243 };
244
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261         struct list_head *head = &resv->regions;
262         struct file_region *rg, *nrg, *trg;
263         long add = 0;
264
265         spin_lock(&resv->lock);
266         /* Locate the region we are either in or before. */
267         list_for_each_entry(rg, head, link)
268                 if (f <= rg->to)
269                         break;
270
271         /*
272          * If no region exists which can be expanded to include the
273          * specified range, the list must have been modified by an
274          * interleving call to region_del().  Pull a region descriptor
275          * from the cache and use it for this range.
276          */
277         if (&rg->link == head || t < rg->from) {
278                 VM_BUG_ON(resv->region_cache_count <= 0);
279
280                 resv->region_cache_count--;
281                 nrg = list_first_entry(&resv->region_cache, struct file_region,
282                                         link);
283                 list_del(&nrg->link);
284
285                 nrg->from = f;
286                 nrg->to = t;
287                 list_add(&nrg->link, rg->link.prev);
288
289                 add += t - f;
290                 goto out_locked;
291         }
292
293         /* Round our left edge to the current segment if it encloses us. */
294         if (f > rg->from)
295                 f = rg->from;
296
297         /* Check for and consume any regions we now overlap with. */
298         nrg = rg;
299         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300                 if (&rg->link == head)
301                         break;
302                 if (rg->from > t)
303                         break;
304
305                 /* If this area reaches higher then extend our area to
306                  * include it completely.  If this is not the first area
307                  * which we intend to reuse, free it. */
308                 if (rg->to > t)
309                         t = rg->to;
310                 if (rg != nrg) {
311                         /* Decrement return value by the deleted range.
312                          * Another range will span this area so that by
313                          * end of routine add will be >= zero
314                          */
315                         add -= (rg->to - rg->from);
316                         list_del(&rg->link);
317                         kfree(rg);
318                 }
319         }
320
321         add += (nrg->from - f);         /* Added to beginning of region */
322         nrg->from = f;
323         add += t - nrg->to;             /* Added to end of region */
324         nrg->to = t;
325
326 out_locked:
327         resv->adds_in_progress--;
328         spin_unlock(&resv->lock);
329         VM_BUG_ON(add < 0);
330         return add;
331 }
332
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357         struct list_head *head = &resv->regions;
358         struct file_region *rg, *nrg = NULL;
359         long chg = 0;
360
361 retry:
362         spin_lock(&resv->lock);
363 retry_locked:
364         resv->adds_in_progress++;
365
366         /*
367          * Check for sufficient descriptors in the cache to accommodate
368          * the number of in progress add operations.
369          */
370         if (resv->adds_in_progress > resv->region_cache_count) {
371                 struct file_region *trg;
372
373                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374                 /* Must drop lock to allocate a new descriptor. */
375                 resv->adds_in_progress--;
376                 spin_unlock(&resv->lock);
377
378                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379                 if (!trg) {
380                         kfree(nrg);
381                         return -ENOMEM;
382                 }
383
384                 spin_lock(&resv->lock);
385                 list_add(&trg->link, &resv->region_cache);
386                 resv->region_cache_count++;
387                 goto retry_locked;
388         }
389
390         /* Locate the region we are before or in. */
391         list_for_each_entry(rg, head, link)
392                 if (f <= rg->to)
393                         break;
394
395         /* If we are below the current region then a new region is required.
396          * Subtle, allocate a new region at the position but make it zero
397          * size such that we can guarantee to record the reservation. */
398         if (&rg->link == head || t < rg->from) {
399                 if (!nrg) {
400                         resv->adds_in_progress--;
401                         spin_unlock(&resv->lock);
402                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403                         if (!nrg)
404                                 return -ENOMEM;
405
406                         nrg->from = f;
407                         nrg->to   = f;
408                         INIT_LIST_HEAD(&nrg->link);
409                         goto retry;
410                 }
411
412                 list_add(&nrg->link, rg->link.prev);
413                 chg = t - f;
414                 goto out_nrg;
415         }
416
417         /* Round our left edge to the current segment if it encloses us. */
418         if (f > rg->from)
419                 f = rg->from;
420         chg = t - f;
421
422         /* Check for and consume any regions we now overlap with. */
423         list_for_each_entry(rg, rg->link.prev, link) {
424                 if (&rg->link == head)
425                         break;
426                 if (rg->from > t)
427                         goto out;
428
429                 /* We overlap with this area, if it extends further than
430                  * us then we must extend ourselves.  Account for its
431                  * existing reservation. */
432                 if (rg->to > t) {
433                         chg += rg->to - t;
434                         t = rg->to;
435                 }
436                 chg -= rg->to - rg->from;
437         }
438
439 out:
440         spin_unlock(&resv->lock);
441         /*  We already know we raced and no longer need the new region */
442         kfree(nrg);
443         return chg;
444 out_nrg:
445         spin_unlock(&resv->lock);
446         return chg;
447 }
448
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462         spin_lock(&resv->lock);
463         VM_BUG_ON(!resv->region_cache_count);
464         resv->adds_in_progress--;
465         spin_unlock(&resv->lock);
466 }
467
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484         struct list_head *head = &resv->regions;
485         struct file_region *rg, *trg;
486         struct file_region *nrg = NULL;
487         long del = 0;
488
489 retry:
490         spin_lock(&resv->lock);
491         list_for_each_entry_safe(rg, trg, head, link) {
492                 /*
493                  * Skip regions before the range to be deleted.  file_region
494                  * ranges are normally of the form [from, to).  However, there
495                  * may be a "placeholder" entry in the map which is of the form
496                  * (from, to) with from == to.  Check for placeholder entries
497                  * at the beginning of the range to be deleted.
498                  */
499                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500                         continue;
501
502                 if (rg->from >= t)
503                         break;
504
505                 if (f > rg->from && t < rg->to) { /* Must split region */
506                         /*
507                          * Check for an entry in the cache before dropping
508                          * lock and attempting allocation.
509                          */
510                         if (!nrg &&
511                             resv->region_cache_count > resv->adds_in_progress) {
512                                 nrg = list_first_entry(&resv->region_cache,
513                                                         struct file_region,
514                                                         link);
515                                 list_del(&nrg->link);
516                                 resv->region_cache_count--;
517                         }
518
519                         if (!nrg) {
520                                 spin_unlock(&resv->lock);
521                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522                                 if (!nrg)
523                                         return -ENOMEM;
524                                 goto retry;
525                         }
526
527                         del += t - f;
528
529                         /* New entry for end of split region */
530                         nrg->from = t;
531                         nrg->to = rg->to;
532                         INIT_LIST_HEAD(&nrg->link);
533
534                         /* Original entry is trimmed */
535                         rg->to = f;
536
537                         list_add(&nrg->link, &rg->link);
538                         nrg = NULL;
539                         break;
540                 }
541
542                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543                         del += rg->to - rg->from;
544                         list_del(&rg->link);
545                         kfree(rg);
546                         continue;
547                 }
548
549                 if (f <= rg->from) {    /* Trim beginning of region */
550                         del += t - rg->from;
551                         rg->from = t;
552                 } else {                /* Trim end of region */
553                         del += rg->to - f;
554                         rg->to = f;
555                 }
556         }
557
558         spin_unlock(&resv->lock);
559         kfree(nrg);
560         return del;
561 }
562
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574         struct hugepage_subpool *spool = subpool_inode(inode);
575         long rsv_adjust;
576
577         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578         if (rsv_adjust) {
579                 struct hstate *h = hstate_inode(inode);
580
581                 hugetlb_acct_memory(h, 1);
582         }
583 }
584
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591         struct list_head *head = &resv->regions;
592         struct file_region *rg;
593         long chg = 0;
594
595         spin_lock(&resv->lock);
596         /* Locate each segment we overlap with, and count that overlap. */
597         list_for_each_entry(rg, head, link) {
598                 long seg_from;
599                 long seg_to;
600
601                 if (rg->to <= f)
602                         continue;
603                 if (rg->from >= t)
604                         break;
605
606                 seg_from = max(rg->from, f);
607                 seg_to = min(rg->to, t);
608
609                 chg += seg_to - seg_from;
610         }
611         spin_unlock(&resv->lock);
612
613         return chg;
614 }
615
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621                         struct vm_area_struct *vma, unsigned long address)
622 {
623         return ((address - vma->vm_start) >> huge_page_shift(h)) +
624                         (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628                                      unsigned long address)
629 {
630         return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640         if (vma->vm_ops && vma->vm_ops->pagesize)
641                 return vma->vm_ops->pagesize(vma);
642         return PAGE_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific 'strong'
650  * version of this symbol is required.
651  */
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654         return vma_kernel_pagesize(vma);
655 }
656
657 /*
658  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
659  * bits of the reservation map pointer, which are always clear due to
660  * alignment.
661  */
662 #define HPAGE_RESV_OWNER    (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665
666 /*
667  * These helpers are used to track how many pages are reserved for
668  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669  * is guaranteed to have their future faults succeed.
670  *
671  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672  * the reserve counters are updated with the hugetlb_lock held. It is safe
673  * to reset the VMA at fork() time as it is not in use yet and there is no
674  * chance of the global counters getting corrupted as a result of the values.
675  *
676  * The private mapping reservation is represented in a subtly different
677  * manner to a shared mapping.  A shared mapping has a region map associated
678  * with the underlying file, this region map represents the backing file
679  * pages which have ever had a reservation assigned which this persists even
680  * after the page is instantiated.  A private mapping has a region map
681  * associated with the original mmap which is attached to all VMAs which
682  * reference it, this region map represents those offsets which have consumed
683  * reservation ie. where pages have been instantiated.
684  */
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686 {
687         return (unsigned long)vma->vm_private_data;
688 }
689
690 static void set_vma_private_data(struct vm_area_struct *vma,
691                                                         unsigned long value)
692 {
693         vma->vm_private_data = (void *)value;
694 }
695
696 struct resv_map *resv_map_alloc(void)
697 {
698         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700
701         if (!resv_map || !rg) {
702                 kfree(resv_map);
703                 kfree(rg);
704                 return NULL;
705         }
706
707         kref_init(&resv_map->refs);
708         spin_lock_init(&resv_map->lock);
709         INIT_LIST_HEAD(&resv_map->regions);
710
711         resv_map->adds_in_progress = 0;
712
713         INIT_LIST_HEAD(&resv_map->region_cache);
714         list_add(&rg->link, &resv_map->region_cache);
715         resv_map->region_cache_count = 1;
716
717         return resv_map;
718 }
719
720 void resv_map_release(struct kref *ref)
721 {
722         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723         struct list_head *head = &resv_map->region_cache;
724         struct file_region *rg, *trg;
725
726         /* Clear out any active regions before we release the map. */
727         region_del(resv_map, 0, LONG_MAX);
728
729         /* ... and any entries left in the cache */
730         list_for_each_entry_safe(rg, trg, head, link) {
731                 list_del(&rg->link);
732                 kfree(rg);
733         }
734
735         VM_BUG_ON(resv_map->adds_in_progress);
736
737         kfree(resv_map);
738 }
739
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
741 {
742         return inode->i_mapping->private_data;
743 }
744
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746 {
747         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748         if (vma->vm_flags & VM_MAYSHARE) {
749                 struct address_space *mapping = vma->vm_file->f_mapping;
750                 struct inode *inode = mapping->host;
751
752                 return inode_resv_map(inode);
753
754         } else {
755                 return (struct resv_map *)(get_vma_private_data(vma) &
756                                                         ~HPAGE_RESV_MASK);
757         }
758 }
759
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761 {
762         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764
765         set_vma_private_data(vma, (get_vma_private_data(vma) &
766                                 HPAGE_RESV_MASK) | (unsigned long)map);
767 }
768
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773
774         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 }
776
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
781         return (get_vma_private_data(vma) & flag) != 0;
782 }
783
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786 {
787         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788         if (!(vma->vm_flags & VM_MAYSHARE))
789                 vma->vm_private_data = (void *)0;
790 }
791
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794 {
795         if (vma->vm_flags & VM_NORESERVE) {
796                 /*
797                  * This address is already reserved by other process(chg == 0),
798                  * so, we should decrement reserved count. Without decrementing,
799                  * reserve count remains after releasing inode, because this
800                  * allocated page will go into page cache and is regarded as
801                  * coming from reserved pool in releasing step.  Currently, we
802                  * don't have any other solution to deal with this situation
803                  * properly, so add work-around here.
804                  */
805                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806                         return true;
807                 else
808                         return false;
809         }
810
811         /* Shared mappings always use reserves */
812         if (vma->vm_flags & VM_MAYSHARE) {
813                 /*
814                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
815                  * be a region map for all pages.  The only situation where
816                  * there is no region map is if a hole was punched via
817                  * fallocate.  In this case, there really are no reverves to
818                  * use.  This situation is indicated if chg != 0.
819                  */
820                 if (chg)
821                         return false;
822                 else
823                         return true;
824         }
825
826         /*
827          * Only the process that called mmap() has reserves for
828          * private mappings.
829          */
830         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831                 /*
832                  * Like the shared case above, a hole punch or truncate
833                  * could have been performed on the private mapping.
834                  * Examine the value of chg to determine if reserves
835                  * actually exist or were previously consumed.
836                  * Very Subtle - The value of chg comes from a previous
837                  * call to vma_needs_reserves().  The reserve map for
838                  * private mappings has different (opposite) semantics
839                  * than that of shared mappings.  vma_needs_reserves()
840                  * has already taken this difference in semantics into
841                  * account.  Therefore, the meaning of chg is the same
842                  * as in the shared case above.  Code could easily be
843                  * combined, but keeping it separate draws attention to
844                  * subtle differences.
845                  */
846                 if (chg)
847                         return false;
848                 else
849                         return true;
850         }
851
852         return false;
853 }
854
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
856 {
857         int nid = page_to_nid(page);
858         list_move(&page->lru, &h->hugepage_freelists[nid]);
859         h->free_huge_pages++;
860         h->free_huge_pages_node[nid]++;
861 }
862
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 {
865         struct page *page;
866
867         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868                 if (!PageHWPoison(page))
869                         break;
870         /*
871          * if 'non-isolated free hugepage' not found on the list,
872          * the allocation fails.
873          */
874         if (&h->hugepage_freelists[nid] == &page->lru)
875                 return NULL;
876         list_move(&page->lru, &h->hugepage_activelist);
877         set_page_refcounted(page);
878         h->free_huge_pages--;
879         h->free_huge_pages_node[nid]--;
880         return page;
881 }
882
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884                 nodemask_t *nmask)
885 {
886         unsigned int cpuset_mems_cookie;
887         struct zonelist *zonelist;
888         struct zone *zone;
889         struct zoneref *z;
890         int node = -1;
891
892         zonelist = node_zonelist(nid, gfp_mask);
893
894 retry_cpuset:
895         cpuset_mems_cookie = read_mems_allowed_begin();
896         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897                 struct page *page;
898
899                 if (!cpuset_zone_allowed(zone, gfp_mask))
900                         continue;
901                 /*
902                  * no need to ask again on the same node. Pool is node rather than
903                  * zone aware
904                  */
905                 if (zone_to_nid(zone) == node)
906                         continue;
907                 node = zone_to_nid(zone);
908
909                 page = dequeue_huge_page_node_exact(h, node);
910                 if (page)
911                         return page;
912         }
913         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914                 goto retry_cpuset;
915
916         return NULL;
917 }
918
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
921 {
922         if (hugepage_migration_supported(h))
923                 return GFP_HIGHUSER_MOVABLE;
924         else
925                 return GFP_HIGHUSER;
926 }
927
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929                                 struct vm_area_struct *vma,
930                                 unsigned long address, int avoid_reserve,
931                                 long chg)
932 {
933         struct page *page;
934         struct mempolicy *mpol;
935         gfp_t gfp_mask;
936         nodemask_t *nodemask;
937         int nid;
938
939         /*
940          * A child process with MAP_PRIVATE mappings created by their parent
941          * have no page reserves. This check ensures that reservations are
942          * not "stolen". The child may still get SIGKILLed
943          */
944         if (!vma_has_reserves(vma, chg) &&
945                         h->free_huge_pages - h->resv_huge_pages == 0)
946                 goto err;
947
948         /* If reserves cannot be used, ensure enough pages are in the pool */
949         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950                 goto err;
951
952         gfp_mask = htlb_alloc_mask(h);
953         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956                 SetPagePrivate(page);
957                 h->resv_huge_pages--;
958         }
959
960         mpol_cond_put(mpol);
961         return page;
962
963 err:
964         return NULL;
965 }
966
967 /*
968  * common helper functions for hstate_next_node_to_{alloc|free}.
969  * We may have allocated or freed a huge page based on a different
970  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971  * be outside of *nodes_allowed.  Ensure that we use an allowed
972  * node for alloc or free.
973  */
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975 {
976         nid = next_node_in(nid, *nodes_allowed);
977         VM_BUG_ON(nid >= MAX_NUMNODES);
978
979         return nid;
980 }
981
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984         if (!node_isset(nid, *nodes_allowed))
985                 nid = next_node_allowed(nid, nodes_allowed);
986         return nid;
987 }
988
989 /*
990  * returns the previously saved node ["this node"] from which to
991  * allocate a persistent huge page for the pool and advance the
992  * next node from which to allocate, handling wrap at end of node
993  * mask.
994  */
995 static int hstate_next_node_to_alloc(struct hstate *h,
996                                         nodemask_t *nodes_allowed)
997 {
998         int nid;
999
1000         VM_BUG_ON(!nodes_allowed);
1001
1002         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005         return nid;
1006 }
1007
1008 /*
1009  * helper for free_pool_huge_page() - return the previously saved
1010  * node ["this node"] from which to free a huge page.  Advance the
1011  * next node id whether or not we find a free huge page to free so
1012  * that the next attempt to free addresses the next node.
1013  */
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015 {
1016         int nid;
1017
1018         VM_BUG_ON(!nodes_allowed);
1019
1020         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023         return nid;
1024 }
1025
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1027         for (nr_nodes = nodes_weight(*mask);                            \
1028                 nr_nodes > 0 &&                                         \
1029                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1030                 nr_nodes--)
1031
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1033         for (nr_nodes = nodes_weight(*mask);                            \
1034                 nr_nodes > 0 &&                                         \
1035                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1036                 nr_nodes--)
1037
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040                                         unsigned int order)
1041 {
1042         int i;
1043         int nr_pages = 1 << order;
1044         struct page *p = page + 1;
1045
1046         atomic_set(compound_mapcount_ptr(page), 0);
1047         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048                 clear_compound_head(p);
1049                 set_page_refcounted(p);
1050         }
1051
1052         set_compound_order(page, 0);
1053         __ClearPageHead(page);
1054 }
1055
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1057 {
1058         free_contig_range(page_to_pfn(page), 1 << order);
1059 }
1060
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062                                 unsigned long nr_pages, gfp_t gfp_mask)
1063 {
1064         unsigned long end_pfn = start_pfn + nr_pages;
1065         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066                                   gfp_mask);
1067 }
1068
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070                         unsigned long start_pfn, unsigned long nr_pages)
1071 {
1072         unsigned long i, end_pfn = start_pfn + nr_pages;
1073         struct page *page;
1074
1075         for (i = start_pfn; i < end_pfn; i++) {
1076                 if (!pfn_valid(i))
1077                         return false;
1078
1079                 page = pfn_to_page(i);
1080
1081                 if (page_zone(page) != z)
1082                         return false;
1083
1084                 if (PageReserved(page))
1085                         return false;
1086
1087                 if (page_count(page) > 0)
1088                         return false;
1089
1090                 if (PageHuge(page))
1091                         return false;
1092         }
1093
1094         return true;
1095 }
1096
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098                         unsigned long start_pfn, unsigned long nr_pages)
1099 {
1100         unsigned long last_pfn = start_pfn + nr_pages - 1;
1101         return zone_spans_pfn(zone, last_pfn);
1102 }
1103
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105                 int nid, nodemask_t *nodemask)
1106 {
1107         unsigned int order = huge_page_order(h);
1108         unsigned long nr_pages = 1 << order;
1109         unsigned long ret, pfn, flags;
1110         struct zonelist *zonelist;
1111         struct zone *zone;
1112         struct zoneref *z;
1113
1114         zonelist = node_zonelist(nid, gfp_mask);
1115         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116                 spin_lock_irqsave(&zone->lock, flags);
1117
1118                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121                                 /*
1122                                  * We release the zone lock here because
1123                                  * alloc_contig_range() will also lock the zone
1124                                  * at some point. If there's an allocation
1125                                  * spinning on this lock, it may win the race
1126                                  * and cause alloc_contig_range() to fail...
1127                                  */
1128                                 spin_unlock_irqrestore(&zone->lock, flags);
1129                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130                                 if (!ret)
1131                                         return pfn_to_page(pfn);
1132                                 spin_lock_irqsave(&zone->lock, flags);
1133                         }
1134                         pfn += nr_pages;
1135                 }
1136
1137                 spin_unlock_irqrestore(&zone->lock, flags);
1138         }
1139
1140         return NULL;
1141 }
1142
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149                 int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152                                                 unsigned int order) { }
1153 #endif
1154
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1156 {
1157         int i;
1158
1159         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160                 return;
1161
1162         h->nr_huge_pages--;
1163         h->nr_huge_pages_node[page_to_nid(page)]--;
1164         for (i = 0; i < pages_per_huge_page(h); i++) {
1165                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166                                 1 << PG_referenced | 1 << PG_dirty |
1167                                 1 << PG_active | 1 << PG_private |
1168                                 1 << PG_writeback);
1169         }
1170         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172         set_page_refcounted(page);
1173         if (hstate_is_gigantic(h)) {
1174                 destroy_compound_gigantic_page(page, huge_page_order(h));
1175                 free_gigantic_page(page, huge_page_order(h));
1176         } else {
1177                 __free_pages(page, huge_page_order(h));
1178         }
1179 }
1180
1181 struct hstate *size_to_hstate(unsigned long size)
1182 {
1183         struct hstate *h;
1184
1185         for_each_hstate(h) {
1186                 if (huge_page_size(h) == size)
1187                         return h;
1188         }
1189         return NULL;
1190 }
1191
1192 /*
1193  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194  * to hstate->hugepage_activelist.)
1195  *
1196  * This function can be called for tail pages, but never returns true for them.
1197  */
1198 bool page_huge_active(struct page *page)
1199 {
1200         VM_BUG_ON_PAGE(!PageHuge(page), page);
1201         return PageHead(page) && PagePrivate(&page[1]);
1202 }
1203
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1206 {
1207         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208         SetPagePrivate(&page[1]);
1209 }
1210
1211 static void clear_page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214         ClearPagePrivate(&page[1]);
1215 }
1216
1217 /*
1218  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219  * code
1220  */
1221 static inline bool PageHugeTemporary(struct page *page)
1222 {
1223         if (!PageHuge(page))
1224                 return false;
1225
1226         return (unsigned long)page[2].mapping == -1U;
1227 }
1228
1229 static inline void SetPageHugeTemporary(struct page *page)
1230 {
1231         page[2].mapping = (void *)-1U;
1232 }
1233
1234 static inline void ClearPageHugeTemporary(struct page *page)
1235 {
1236         page[2].mapping = NULL;
1237 }
1238
1239 void free_huge_page(struct page *page)
1240 {
1241         /*
1242          * Can't pass hstate in here because it is called from the
1243          * compound page destructor.
1244          */
1245         struct hstate *h = page_hstate(page);
1246         int nid = page_to_nid(page);
1247         struct hugepage_subpool *spool =
1248                 (struct hugepage_subpool *)page_private(page);
1249         bool restore_reserve;
1250
1251         set_page_private(page, 0);
1252         page->mapping = NULL;
1253         VM_BUG_ON_PAGE(page_count(page), page);
1254         VM_BUG_ON_PAGE(page_mapcount(page), page);
1255         restore_reserve = PagePrivate(page);
1256         ClearPagePrivate(page);
1257
1258         /*
1259          * A return code of zero implies that the subpool will be under its
1260          * minimum size if the reservation is not restored after page is free.
1261          * Therefore, force restore_reserve operation.
1262          */
1263         if (hugepage_subpool_put_pages(spool, 1) == 0)
1264                 restore_reserve = true;
1265
1266         spin_lock(&hugetlb_lock);
1267         clear_page_huge_active(page);
1268         hugetlb_cgroup_uncharge_page(hstate_index(h),
1269                                      pages_per_huge_page(h), page);
1270         if (restore_reserve)
1271                 h->resv_huge_pages++;
1272
1273         if (PageHugeTemporary(page)) {
1274                 list_del(&page->lru);
1275                 ClearPageHugeTemporary(page);
1276                 update_and_free_page(h, page);
1277         } else if (h->surplus_huge_pages_node[nid]) {
1278                 /* remove the page from active list */
1279                 list_del(&page->lru);
1280                 update_and_free_page(h, page);
1281                 h->surplus_huge_pages--;
1282                 h->surplus_huge_pages_node[nid]--;
1283         } else {
1284                 arch_clear_hugepage_flags(page);
1285                 enqueue_huge_page(h, page);
1286         }
1287         spin_unlock(&hugetlb_lock);
1288 }
1289
1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291 {
1292         INIT_LIST_HEAD(&page->lru);
1293         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294         spin_lock(&hugetlb_lock);
1295         set_hugetlb_cgroup(page, NULL);
1296         h->nr_huge_pages++;
1297         h->nr_huge_pages_node[nid]++;
1298         spin_unlock(&hugetlb_lock);
1299 }
1300
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302 {
1303         int i;
1304         int nr_pages = 1 << order;
1305         struct page *p = page + 1;
1306
1307         /* we rely on prep_new_huge_page to set the destructor */
1308         set_compound_order(page, order);
1309         __ClearPageReserved(page);
1310         __SetPageHead(page);
1311         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312                 /*
1313                  * For gigantic hugepages allocated through bootmem at
1314                  * boot, it's safer to be consistent with the not-gigantic
1315                  * hugepages and clear the PG_reserved bit from all tail pages
1316                  * too.  Otherwse drivers using get_user_pages() to access tail
1317                  * pages may get the reference counting wrong if they see
1318                  * PG_reserved set on a tail page (despite the head page not
1319                  * having PG_reserved set).  Enforcing this consistency between
1320                  * head and tail pages allows drivers to optimize away a check
1321                  * on the head page when they need know if put_page() is needed
1322                  * after get_user_pages().
1323                  */
1324                 __ClearPageReserved(p);
1325                 set_page_count(p, 0);
1326                 set_compound_head(p, page);
1327         }
1328         atomic_set(compound_mapcount_ptr(page), -1);
1329 }
1330
1331 /*
1332  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333  * transparent huge pages.  See the PageTransHuge() documentation for more
1334  * details.
1335  */
1336 int PageHuge(struct page *page)
1337 {
1338         if (!PageCompound(page))
1339                 return 0;
1340
1341         page = compound_head(page);
1342         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343 }
1344 EXPORT_SYMBOL_GPL(PageHuge);
1345
1346 /*
1347  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348  * normal or transparent huge pages.
1349  */
1350 int PageHeadHuge(struct page *page_head)
1351 {
1352         if (!PageHead(page_head))
1353                 return 0;
1354
1355         return get_compound_page_dtor(page_head) == free_huge_page;
1356 }
1357
1358 pgoff_t __basepage_index(struct page *page)
1359 {
1360         struct page *page_head = compound_head(page);
1361         pgoff_t index = page_index(page_head);
1362         unsigned long compound_idx;
1363
1364         if (!PageHuge(page_head))
1365                 return page_index(page);
1366
1367         if (compound_order(page_head) >= MAX_ORDER)
1368                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369         else
1370                 compound_idx = page - page_head;
1371
1372         return (index << compound_order(page_head)) + compound_idx;
1373 }
1374
1375 static struct page *alloc_buddy_huge_page(struct hstate *h,
1376                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377 {
1378         int order = huge_page_order(h);
1379         struct page *page;
1380
1381         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382         if (nid == NUMA_NO_NODE)
1383                 nid = numa_mem_id();
1384         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385         if (page)
1386                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1387         else
1388                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389
1390         return page;
1391 }
1392
1393 /*
1394  * Common helper to allocate a fresh hugetlb page. All specific allocators
1395  * should use this function to get new hugetlb pages
1396  */
1397 static struct page *alloc_fresh_huge_page(struct hstate *h,
1398                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399 {
1400         struct page *page;
1401
1402         if (hstate_is_gigantic(h))
1403                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404         else
1405                 page = alloc_buddy_huge_page(h, gfp_mask,
1406                                 nid, nmask);
1407         if (!page)
1408                 return NULL;
1409
1410         if (hstate_is_gigantic(h))
1411                 prep_compound_gigantic_page(page, huge_page_order(h));
1412         prep_new_huge_page(h, page, page_to_nid(page));
1413
1414         return page;
1415 }
1416
1417 /*
1418  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419  * manner.
1420  */
1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422 {
1423         struct page *page;
1424         int nr_nodes, node;
1425         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426
1427         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429                 if (page)
1430                         break;
1431         }
1432
1433         if (!page)
1434                 return 0;
1435
1436         put_page(page); /* free it into the hugepage allocator */
1437
1438         return 1;
1439 }
1440
1441 /*
1442  * Free huge page from pool from next node to free.
1443  * Attempt to keep persistent huge pages more or less
1444  * balanced over allowed nodes.
1445  * Called with hugetlb_lock locked.
1446  */
1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448                                                          bool acct_surplus)
1449 {
1450         int nr_nodes, node;
1451         int ret = 0;
1452
1453         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454                 /*
1455                  * If we're returning unused surplus pages, only examine
1456                  * nodes with surplus pages.
1457                  */
1458                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459                     !list_empty(&h->hugepage_freelists[node])) {
1460                         struct page *page =
1461                                 list_entry(h->hugepage_freelists[node].next,
1462                                           struct page, lru);
1463                         list_del(&page->lru);
1464                         h->free_huge_pages--;
1465                         h->free_huge_pages_node[node]--;
1466                         if (acct_surplus) {
1467                                 h->surplus_huge_pages--;
1468                                 h->surplus_huge_pages_node[node]--;
1469                         }
1470                         update_and_free_page(h, page);
1471                         ret = 1;
1472                         break;
1473                 }
1474         }
1475
1476         return ret;
1477 }
1478
1479 /*
1480  * Dissolve a given free hugepage into free buddy pages. This function does
1481  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482  * dissolution fails because a give page is not a free hugepage, or because
1483  * free hugepages are fully reserved.
1484  */
1485 int dissolve_free_huge_page(struct page *page)
1486 {
1487         int rc = -EBUSY;
1488
1489         spin_lock(&hugetlb_lock);
1490         if (PageHuge(page) && !page_count(page)) {
1491                 struct page *head = compound_head(page);
1492                 struct hstate *h = page_hstate(head);
1493                 int nid = page_to_nid(head);
1494                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1495                         goto out;
1496                 /*
1497                  * Move PageHWPoison flag from head page to the raw error page,
1498                  * which makes any subpages rather than the error page reusable.
1499                  */
1500                 if (PageHWPoison(head) && page != head) {
1501                         SetPageHWPoison(page);
1502                         ClearPageHWPoison(head);
1503                 }
1504                 list_del(&head->lru);
1505                 h->free_huge_pages--;
1506                 h->free_huge_pages_node[nid]--;
1507                 h->max_huge_pages--;
1508                 update_and_free_page(h, head);
1509                 rc = 0;
1510         }
1511 out:
1512         spin_unlock(&hugetlb_lock);
1513         return rc;
1514 }
1515
1516 /*
1517  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1518  * make specified memory blocks removable from the system.
1519  * Note that this will dissolve a free gigantic hugepage completely, if any
1520  * part of it lies within the given range.
1521  * Also note that if dissolve_free_huge_page() returns with an error, all
1522  * free hugepages that were dissolved before that error are lost.
1523  */
1524 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1525 {
1526         unsigned long pfn;
1527         struct page *page;
1528         int rc = 0;
1529
1530         if (!hugepages_supported())
1531                 return rc;
1532
1533         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1534                 page = pfn_to_page(pfn);
1535                 if (PageHuge(page) && !page_count(page)) {
1536                         rc = dissolve_free_huge_page(page);
1537                         if (rc)
1538                                 break;
1539                 }
1540         }
1541
1542         return rc;
1543 }
1544
1545 /*
1546  * Allocates a fresh surplus page from the page allocator.
1547  */
1548 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1549                 int nid, nodemask_t *nmask)
1550 {
1551         struct page *page = NULL;
1552
1553         if (hstate_is_gigantic(h))
1554                 return NULL;
1555
1556         spin_lock(&hugetlb_lock);
1557         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1558                 goto out_unlock;
1559         spin_unlock(&hugetlb_lock);
1560
1561         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1562         if (!page)
1563                 return NULL;
1564
1565         spin_lock(&hugetlb_lock);
1566         /*
1567          * We could have raced with the pool size change.
1568          * Double check that and simply deallocate the new page
1569          * if we would end up overcommiting the surpluses. Abuse
1570          * temporary page to workaround the nasty free_huge_page
1571          * codeflow
1572          */
1573         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1574                 SetPageHugeTemporary(page);
1575                 put_page(page);
1576                 page = NULL;
1577         } else {
1578                 h->surplus_huge_pages++;
1579                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1580         }
1581
1582 out_unlock:
1583         spin_unlock(&hugetlb_lock);
1584
1585         return page;
1586 }
1587
1588 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1589                 int nid, nodemask_t *nmask)
1590 {
1591         struct page *page;
1592
1593         if (hstate_is_gigantic(h))
1594                 return NULL;
1595
1596         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1597         if (!page)
1598                 return NULL;
1599
1600         /*
1601          * We do not account these pages as surplus because they are only
1602          * temporary and will be released properly on the last reference
1603          */
1604         SetPageHugeTemporary(page);
1605
1606         return page;
1607 }
1608
1609 /*
1610  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611  */
1612 static
1613 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614                 struct vm_area_struct *vma, unsigned long addr)
1615 {
1616         struct page *page;
1617         struct mempolicy *mpol;
1618         gfp_t gfp_mask = htlb_alloc_mask(h);
1619         int nid;
1620         nodemask_t *nodemask;
1621
1622         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1623         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1624         mpol_cond_put(mpol);
1625
1626         return page;
1627 }
1628
1629 /* page migration callback function */
1630 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1631 {
1632         gfp_t gfp_mask = htlb_alloc_mask(h);
1633         struct page *page = NULL;
1634
1635         if (nid != NUMA_NO_NODE)
1636                 gfp_mask |= __GFP_THISNODE;
1637
1638         spin_lock(&hugetlb_lock);
1639         if (h->free_huge_pages - h->resv_huge_pages > 0)
1640                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641         spin_unlock(&hugetlb_lock);
1642
1643         if (!page)
1644                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1645
1646         return page;
1647 }
1648
1649 /* page migration callback function */
1650 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1651                 nodemask_t *nmask)
1652 {
1653         gfp_t gfp_mask = htlb_alloc_mask(h);
1654
1655         spin_lock(&hugetlb_lock);
1656         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1657                 struct page *page;
1658
1659                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1660                 if (page) {
1661                         spin_unlock(&hugetlb_lock);
1662                         return page;
1663                 }
1664         }
1665         spin_unlock(&hugetlb_lock);
1666
1667         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1668 }
1669
1670 /* mempolicy aware migration callback */
1671 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1672                 unsigned long address)
1673 {
1674         struct mempolicy *mpol;
1675         nodemask_t *nodemask;
1676         struct page *page;
1677         gfp_t gfp_mask;
1678         int node;
1679
1680         gfp_mask = htlb_alloc_mask(h);
1681         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1682         page = alloc_huge_page_nodemask(h, node, nodemask);
1683         mpol_cond_put(mpol);
1684
1685         return page;
1686 }
1687
1688 /*
1689  * Increase the hugetlb pool such that it can accommodate a reservation
1690  * of size 'delta'.
1691  */
1692 static int gather_surplus_pages(struct hstate *h, int delta)
1693 {
1694         struct list_head surplus_list;
1695         struct page *page, *tmp;
1696         int ret, i;
1697         int needed, allocated;
1698         bool alloc_ok = true;
1699
1700         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1701         if (needed <= 0) {
1702                 h->resv_huge_pages += delta;
1703                 return 0;
1704         }
1705
1706         allocated = 0;
1707         INIT_LIST_HEAD(&surplus_list);
1708
1709         ret = -ENOMEM;
1710 retry:
1711         spin_unlock(&hugetlb_lock);
1712         for (i = 0; i < needed; i++) {
1713                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1714                                 NUMA_NO_NODE, NULL);
1715                 if (!page) {
1716                         alloc_ok = false;
1717                         break;
1718                 }
1719                 list_add(&page->lru, &surplus_list);
1720                 cond_resched();
1721         }
1722         allocated += i;
1723
1724         /*
1725          * After retaking hugetlb_lock, we need to recalculate 'needed'
1726          * because either resv_huge_pages or free_huge_pages may have changed.
1727          */
1728         spin_lock(&hugetlb_lock);
1729         needed = (h->resv_huge_pages + delta) -
1730                         (h->free_huge_pages + allocated);
1731         if (needed > 0) {
1732                 if (alloc_ok)
1733                         goto retry;
1734                 /*
1735                  * We were not able to allocate enough pages to
1736                  * satisfy the entire reservation so we free what
1737                  * we've allocated so far.
1738                  */
1739                 goto free;
1740         }
1741         /*
1742          * The surplus_list now contains _at_least_ the number of extra pages
1743          * needed to accommodate the reservation.  Add the appropriate number
1744          * of pages to the hugetlb pool and free the extras back to the buddy
1745          * allocator.  Commit the entire reservation here to prevent another
1746          * process from stealing the pages as they are added to the pool but
1747          * before they are reserved.
1748          */
1749         needed += allocated;
1750         h->resv_huge_pages += delta;
1751         ret = 0;
1752
1753         /* Free the needed pages to the hugetlb pool */
1754         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755                 if ((--needed) < 0)
1756                         break;
1757                 /*
1758                  * This page is now managed by the hugetlb allocator and has
1759                  * no users -- drop the buddy allocator's reference.
1760                  */
1761                 put_page_testzero(page);
1762                 VM_BUG_ON_PAGE(page_count(page), page);
1763                 enqueue_huge_page(h, page);
1764         }
1765 free:
1766         spin_unlock(&hugetlb_lock);
1767
1768         /* Free unnecessary surplus pages to the buddy allocator */
1769         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770                 put_page(page);
1771         spin_lock(&hugetlb_lock);
1772
1773         return ret;
1774 }
1775
1776 /*
1777  * This routine has two main purposes:
1778  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1780  *    to the associated reservation map.
1781  * 2) Free any unused surplus pages that may have been allocated to satisfy
1782  *    the reservation.  As many as unused_resv_pages may be freed.
1783  *
1784  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1785  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1786  * we must make sure nobody else can claim pages we are in the process of
1787  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1788  * number of huge pages we plan to free when dropping the lock.
1789  */
1790 static void return_unused_surplus_pages(struct hstate *h,
1791                                         unsigned long unused_resv_pages)
1792 {
1793         unsigned long nr_pages;
1794
1795         /* Cannot return gigantic pages currently */
1796         if (hstate_is_gigantic(h))
1797                 goto out;
1798
1799         /*
1800          * Part (or even all) of the reservation could have been backed
1801          * by pre-allocated pages. Only free surplus pages.
1802          */
1803         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804
1805         /*
1806          * We want to release as many surplus pages as possible, spread
1807          * evenly across all nodes with memory. Iterate across these nodes
1808          * until we can no longer free unreserved surplus pages. This occurs
1809          * when the nodes with surplus pages have no free pages.
1810          * free_pool_huge_page() will balance the the freed pages across the
1811          * on-line nodes with memory and will handle the hstate accounting.
1812          *
1813          * Note that we decrement resv_huge_pages as we free the pages.  If
1814          * we drop the lock, resv_huge_pages will still be sufficiently large
1815          * to cover subsequent pages we may free.
1816          */
1817         while (nr_pages--) {
1818                 h->resv_huge_pages--;
1819                 unused_resv_pages--;
1820                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821                         goto out;
1822                 cond_resched_lock(&hugetlb_lock);
1823         }
1824
1825 out:
1826         /* Fully uncommit the reservation */
1827         h->resv_huge_pages -= unused_resv_pages;
1828 }
1829
1830
1831 /*
1832  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833  * are used by the huge page allocation routines to manage reservations.
1834  *
1835  * vma_needs_reservation is called to determine if the huge page at addr
1836  * within the vma has an associated reservation.  If a reservation is
1837  * needed, the value 1 is returned.  The caller is then responsible for
1838  * managing the global reservation and subpool usage counts.  After
1839  * the huge page has been allocated, vma_commit_reservation is called
1840  * to add the page to the reservation map.  If the page allocation fails,
1841  * the reservation must be ended instead of committed.  vma_end_reservation
1842  * is called in such cases.
1843  *
1844  * In the normal case, vma_commit_reservation returns the same value
1845  * as the preceding vma_needs_reservation call.  The only time this
1846  * is not the case is if a reserve map was changed between calls.  It
1847  * is the responsibility of the caller to notice the difference and
1848  * take appropriate action.
1849  *
1850  * vma_add_reservation is used in error paths where a reservation must
1851  * be restored when a newly allocated huge page must be freed.  It is
1852  * to be called after calling vma_needs_reservation to determine if a
1853  * reservation exists.
1854  */
1855 enum vma_resv_mode {
1856         VMA_NEEDS_RESV,
1857         VMA_COMMIT_RESV,
1858         VMA_END_RESV,
1859         VMA_ADD_RESV,
1860 };
1861 static long __vma_reservation_common(struct hstate *h,
1862                                 struct vm_area_struct *vma, unsigned long addr,
1863                                 enum vma_resv_mode mode)
1864 {
1865         struct resv_map *resv;
1866         pgoff_t idx;
1867         long ret;
1868
1869         resv = vma_resv_map(vma);
1870         if (!resv)
1871                 return 1;
1872
1873         idx = vma_hugecache_offset(h, vma, addr);
1874         switch (mode) {
1875         case VMA_NEEDS_RESV:
1876                 ret = region_chg(resv, idx, idx + 1);
1877                 break;
1878         case VMA_COMMIT_RESV:
1879                 ret = region_add(resv, idx, idx + 1);
1880                 break;
1881         case VMA_END_RESV:
1882                 region_abort(resv, idx, idx + 1);
1883                 ret = 0;
1884                 break;
1885         case VMA_ADD_RESV:
1886                 if (vma->vm_flags & VM_MAYSHARE)
1887                         ret = region_add(resv, idx, idx + 1);
1888                 else {
1889                         region_abort(resv, idx, idx + 1);
1890                         ret = region_del(resv, idx, idx + 1);
1891                 }
1892                 break;
1893         default:
1894                 BUG();
1895         }
1896
1897         if (vma->vm_flags & VM_MAYSHARE)
1898                 return ret;
1899         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1900                 /*
1901                  * In most cases, reserves always exist for private mappings.
1902                  * However, a file associated with mapping could have been
1903                  * hole punched or truncated after reserves were consumed.
1904                  * As subsequent fault on such a range will not use reserves.
1905                  * Subtle - The reserve map for private mappings has the
1906                  * opposite meaning than that of shared mappings.  If NO
1907                  * entry is in the reserve map, it means a reservation exists.
1908                  * If an entry exists in the reserve map, it means the
1909                  * reservation has already been consumed.  As a result, the
1910                  * return value of this routine is the opposite of the
1911                  * value returned from reserve map manipulation routines above.
1912                  */
1913                 if (ret)
1914                         return 0;
1915                 else
1916                         return 1;
1917         }
1918         else
1919                 return ret < 0 ? ret : 0;
1920 }
1921
1922 static long vma_needs_reservation(struct hstate *h,
1923                         struct vm_area_struct *vma, unsigned long addr)
1924 {
1925         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1926 }
1927
1928 static long vma_commit_reservation(struct hstate *h,
1929                         struct vm_area_struct *vma, unsigned long addr)
1930 {
1931         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1932 }
1933
1934 static void vma_end_reservation(struct hstate *h,
1935                         struct vm_area_struct *vma, unsigned long addr)
1936 {
1937         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1938 }
1939
1940 static long vma_add_reservation(struct hstate *h,
1941                         struct vm_area_struct *vma, unsigned long addr)
1942 {
1943         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1944 }
1945
1946 /*
1947  * This routine is called to restore a reservation on error paths.  In the
1948  * specific error paths, a huge page was allocated (via alloc_huge_page)
1949  * and is about to be freed.  If a reservation for the page existed,
1950  * alloc_huge_page would have consumed the reservation and set PagePrivate
1951  * in the newly allocated page.  When the page is freed via free_huge_page,
1952  * the global reservation count will be incremented if PagePrivate is set.
1953  * However, free_huge_page can not adjust the reserve map.  Adjust the
1954  * reserve map here to be consistent with global reserve count adjustments
1955  * to be made by free_huge_page.
1956  */
1957 static void restore_reserve_on_error(struct hstate *h,
1958                         struct vm_area_struct *vma, unsigned long address,
1959                         struct page *page)
1960 {
1961         if (unlikely(PagePrivate(page))) {
1962                 long rc = vma_needs_reservation(h, vma, address);
1963
1964                 if (unlikely(rc < 0)) {
1965                         /*
1966                          * Rare out of memory condition in reserve map
1967                          * manipulation.  Clear PagePrivate so that
1968                          * global reserve count will not be incremented
1969                          * by free_huge_page.  This will make it appear
1970                          * as though the reservation for this page was
1971                          * consumed.  This may prevent the task from
1972                          * faulting in the page at a later time.  This
1973                          * is better than inconsistent global huge page
1974                          * accounting of reserve counts.
1975                          */
1976                         ClearPagePrivate(page);
1977                 } else if (rc) {
1978                         rc = vma_add_reservation(h, vma, address);
1979                         if (unlikely(rc < 0))
1980                                 /*
1981                                  * See above comment about rare out of
1982                                  * memory condition.
1983                                  */
1984                                 ClearPagePrivate(page);
1985                 } else
1986                         vma_end_reservation(h, vma, address);
1987         }
1988 }
1989
1990 struct page *alloc_huge_page(struct vm_area_struct *vma,
1991                                     unsigned long addr, int avoid_reserve)
1992 {
1993         struct hugepage_subpool *spool = subpool_vma(vma);
1994         struct hstate *h = hstate_vma(vma);
1995         struct page *page;
1996         long map_chg, map_commit;
1997         long gbl_chg;
1998         int ret, idx;
1999         struct hugetlb_cgroup *h_cg;
2000
2001         idx = hstate_index(h);
2002         /*
2003          * Examine the region/reserve map to determine if the process
2004          * has a reservation for the page to be allocated.  A return
2005          * code of zero indicates a reservation exists (no change).
2006          */
2007         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2008         if (map_chg < 0)
2009                 return ERR_PTR(-ENOMEM);
2010
2011         /*
2012          * Processes that did not create the mapping will have no
2013          * reserves as indicated by the region/reserve map. Check
2014          * that the allocation will not exceed the subpool limit.
2015          * Allocations for MAP_NORESERVE mappings also need to be
2016          * checked against any subpool limit.
2017          */
2018         if (map_chg || avoid_reserve) {
2019                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2020                 if (gbl_chg < 0) {
2021                         vma_end_reservation(h, vma, addr);
2022                         return ERR_PTR(-ENOSPC);
2023                 }
2024
2025                 /*
2026                  * Even though there was no reservation in the region/reserve
2027                  * map, there could be reservations associated with the
2028                  * subpool that can be used.  This would be indicated if the
2029                  * return value of hugepage_subpool_get_pages() is zero.
2030                  * However, if avoid_reserve is specified we still avoid even
2031                  * the subpool reservations.
2032                  */
2033                 if (avoid_reserve)
2034                         gbl_chg = 1;
2035         }
2036
2037         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2038         if (ret)
2039                 goto out_subpool_put;
2040
2041         spin_lock(&hugetlb_lock);
2042         /*
2043          * glb_chg is passed to indicate whether or not a page must be taken
2044          * from the global free pool (global change).  gbl_chg == 0 indicates
2045          * a reservation exists for the allocation.
2046          */
2047         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2048         if (!page) {
2049                 spin_unlock(&hugetlb_lock);
2050                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2051                 if (!page)
2052                         goto out_uncharge_cgroup;
2053                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054                         SetPagePrivate(page);
2055                         h->resv_huge_pages--;
2056                 }
2057                 spin_lock(&hugetlb_lock);
2058                 list_move(&page->lru, &h->hugepage_activelist);
2059                 /* Fall through */
2060         }
2061         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062         spin_unlock(&hugetlb_lock);
2063
2064         set_page_private(page, (unsigned long)spool);
2065
2066         map_commit = vma_commit_reservation(h, vma, addr);
2067         if (unlikely(map_chg > map_commit)) {
2068                 /*
2069                  * The page was added to the reservation map between
2070                  * vma_needs_reservation and vma_commit_reservation.
2071                  * This indicates a race with hugetlb_reserve_pages.
2072                  * Adjust for the subpool count incremented above AND
2073                  * in hugetlb_reserve_pages for the same page.  Also,
2074                  * the reservation count added in hugetlb_reserve_pages
2075                  * no longer applies.
2076                  */
2077                 long rsv_adjust;
2078
2079                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080                 hugetlb_acct_memory(h, -rsv_adjust);
2081         }
2082         return page;
2083
2084 out_uncharge_cgroup:
2085         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2086 out_subpool_put:
2087         if (map_chg || avoid_reserve)
2088                 hugepage_subpool_put_pages(spool, 1);
2089         vma_end_reservation(h, vma, addr);
2090         return ERR_PTR(-ENOSPC);
2091 }
2092
2093 int alloc_bootmem_huge_page(struct hstate *h)
2094         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2095 int __alloc_bootmem_huge_page(struct hstate *h)
2096 {
2097         struct huge_bootmem_page *m;
2098         int nr_nodes, node;
2099
2100         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2101                 void *addr;
2102
2103                 addr = memblock_virt_alloc_try_nid_raw(
2104                                 huge_page_size(h), huge_page_size(h),
2105                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2106                 if (addr) {
2107                         /*
2108                          * Use the beginning of the huge page to store the
2109                          * huge_bootmem_page struct (until gather_bootmem
2110                          * puts them into the mem_map).
2111                          */
2112                         m = addr;
2113                         goto found;
2114                 }
2115         }
2116         return 0;
2117
2118 found:
2119         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2120         /* Put them into a private list first because mem_map is not up yet */
2121         INIT_LIST_HEAD(&m->list);
2122         list_add(&m->list, &huge_boot_pages);
2123         m->hstate = h;
2124         return 1;
2125 }
2126
2127 static void __init prep_compound_huge_page(struct page *page,
2128                 unsigned int order)
2129 {
2130         if (unlikely(order > (MAX_ORDER - 1)))
2131                 prep_compound_gigantic_page(page, order);
2132         else
2133                 prep_compound_page(page, order);
2134 }
2135
2136 /* Put bootmem huge pages into the standard lists after mem_map is up */
2137 static void __init gather_bootmem_prealloc(void)
2138 {
2139         struct huge_bootmem_page *m;
2140
2141         list_for_each_entry(m, &huge_boot_pages, list) {
2142                 struct page *page = virt_to_page(m);
2143                 struct hstate *h = m->hstate;
2144
2145                 WARN_ON(page_count(page) != 1);
2146                 prep_compound_huge_page(page, h->order);
2147                 WARN_ON(PageReserved(page));
2148                 prep_new_huge_page(h, page, page_to_nid(page));
2149                 put_page(page); /* free it into the hugepage allocator */
2150
2151                 /*
2152                  * If we had gigantic hugepages allocated at boot time, we need
2153                  * to restore the 'stolen' pages to totalram_pages in order to
2154                  * fix confusing memory reports from free(1) and another
2155                  * side-effects, like CommitLimit going negative.
2156                  */
2157                 if (hstate_is_gigantic(h))
2158                         adjust_managed_page_count(page, 1 << h->order);
2159                 cond_resched();
2160         }
2161 }
2162
2163 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2164 {
2165         unsigned long i;
2166
2167         for (i = 0; i < h->max_huge_pages; ++i) {
2168                 if (hstate_is_gigantic(h)) {
2169                         if (!alloc_bootmem_huge_page(h))
2170                                 break;
2171                 } else if (!alloc_pool_huge_page(h,
2172                                          &node_states[N_MEMORY]))
2173                         break;
2174                 cond_resched();
2175         }
2176         if (i < h->max_huge_pages) {
2177                 char buf[32];
2178
2179                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2180                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2181                         h->max_huge_pages, buf, i);
2182                 h->max_huge_pages = i;
2183         }
2184 }
2185
2186 static void __init hugetlb_init_hstates(void)
2187 {
2188         struct hstate *h;
2189
2190         for_each_hstate(h) {
2191                 if (minimum_order > huge_page_order(h))
2192                         minimum_order = huge_page_order(h);
2193
2194                 /* oversize hugepages were init'ed in early boot */
2195                 if (!hstate_is_gigantic(h))
2196                         hugetlb_hstate_alloc_pages(h);
2197         }
2198         VM_BUG_ON(minimum_order == UINT_MAX);
2199 }
2200
2201 static void __init report_hugepages(void)
2202 {
2203         struct hstate *h;
2204
2205         for_each_hstate(h) {
2206                 char buf[32];
2207
2208                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2209                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2210                         buf, h->free_huge_pages);
2211         }
2212 }
2213
2214 #ifdef CONFIG_HIGHMEM
2215 static void try_to_free_low(struct hstate *h, unsigned long count,
2216                                                 nodemask_t *nodes_allowed)
2217 {
2218         int i;
2219
2220         if (hstate_is_gigantic(h))
2221                 return;
2222
2223         for_each_node_mask(i, *nodes_allowed) {
2224                 struct page *page, *next;
2225                 struct list_head *freel = &h->hugepage_freelists[i];
2226                 list_for_each_entry_safe(page, next, freel, lru) {
2227                         if (count >= h->nr_huge_pages)
2228                                 return;
2229                         if (PageHighMem(page))
2230                                 continue;
2231                         list_del(&page->lru);
2232                         update_and_free_page(h, page);
2233                         h->free_huge_pages--;
2234                         h->free_huge_pages_node[page_to_nid(page)]--;
2235                 }
2236         }
2237 }
2238 #else
2239 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2240                                                 nodemask_t *nodes_allowed)
2241 {
2242 }
2243 #endif
2244
2245 /*
2246  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2247  * balanced by operating on them in a round-robin fashion.
2248  * Returns 1 if an adjustment was made.
2249  */
2250 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2251                                 int delta)
2252 {
2253         int nr_nodes, node;
2254
2255         VM_BUG_ON(delta != -1 && delta != 1);
2256
2257         if (delta < 0) {
2258                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2259                         if (h->surplus_huge_pages_node[node])
2260                                 goto found;
2261                 }
2262         } else {
2263                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264                         if (h->surplus_huge_pages_node[node] <
2265                                         h->nr_huge_pages_node[node])
2266                                 goto found;
2267                 }
2268         }
2269         return 0;
2270
2271 found:
2272         h->surplus_huge_pages += delta;
2273         h->surplus_huge_pages_node[node] += delta;
2274         return 1;
2275 }
2276
2277 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2278 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2279                                                 nodemask_t *nodes_allowed)
2280 {
2281         unsigned long min_count, ret;
2282
2283         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2284                 return h->max_huge_pages;
2285
2286         /*
2287          * Increase the pool size
2288          * First take pages out of surplus state.  Then make up the
2289          * remaining difference by allocating fresh huge pages.
2290          *
2291          * We might race with alloc_surplus_huge_page() here and be unable
2292          * to convert a surplus huge page to a normal huge page. That is
2293          * not critical, though, it just means the overall size of the
2294          * pool might be one hugepage larger than it needs to be, but
2295          * within all the constraints specified by the sysctls.
2296          */
2297         spin_lock(&hugetlb_lock);
2298         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2299                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2300                         break;
2301         }
2302
2303         while (count > persistent_huge_pages(h)) {
2304                 /*
2305                  * If this allocation races such that we no longer need the
2306                  * page, free_huge_page will handle it by freeing the page
2307                  * and reducing the surplus.
2308                  */
2309                 spin_unlock(&hugetlb_lock);
2310
2311                 /* yield cpu to avoid soft lockup */
2312                 cond_resched();
2313
2314                 ret = alloc_pool_huge_page(h, nodes_allowed);
2315                 spin_lock(&hugetlb_lock);
2316                 if (!ret)
2317                         goto out;
2318
2319                 /* Bail for signals. Probably ctrl-c from user */
2320                 if (signal_pending(current))
2321                         goto out;
2322         }
2323
2324         /*
2325          * Decrease the pool size
2326          * First return free pages to the buddy allocator (being careful
2327          * to keep enough around to satisfy reservations).  Then place
2328          * pages into surplus state as needed so the pool will shrink
2329          * to the desired size as pages become free.
2330          *
2331          * By placing pages into the surplus state independent of the
2332          * overcommit value, we are allowing the surplus pool size to
2333          * exceed overcommit. There are few sane options here. Since
2334          * alloc_surplus_huge_page() is checking the global counter,
2335          * though, we'll note that we're not allowed to exceed surplus
2336          * and won't grow the pool anywhere else. Not until one of the
2337          * sysctls are changed, or the surplus pages go out of use.
2338          */
2339         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2340         min_count = max(count, min_count);
2341         try_to_free_low(h, min_count, nodes_allowed);
2342         while (min_count < persistent_huge_pages(h)) {
2343                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2344                         break;
2345                 cond_resched_lock(&hugetlb_lock);
2346         }
2347         while (count < persistent_huge_pages(h)) {
2348                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2349                         break;
2350         }
2351 out:
2352         ret = persistent_huge_pages(h);
2353         spin_unlock(&hugetlb_lock);
2354         return ret;
2355 }
2356
2357 #define HSTATE_ATTR_RO(_name) \
2358         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2359
2360 #define HSTATE_ATTR(_name) \
2361         static struct kobj_attribute _name##_attr = \
2362                 __ATTR(_name, 0644, _name##_show, _name##_store)
2363
2364 static struct kobject *hugepages_kobj;
2365 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2366
2367 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2368
2369 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2370 {
2371         int i;
2372
2373         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2374                 if (hstate_kobjs[i] == kobj) {
2375                         if (nidp)
2376                                 *nidp = NUMA_NO_NODE;
2377                         return &hstates[i];
2378                 }
2379
2380         return kobj_to_node_hstate(kobj, nidp);
2381 }
2382
2383 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2384                                         struct kobj_attribute *attr, char *buf)
2385 {
2386         struct hstate *h;
2387         unsigned long nr_huge_pages;
2388         int nid;
2389
2390         h = kobj_to_hstate(kobj, &nid);
2391         if (nid == NUMA_NO_NODE)
2392                 nr_huge_pages = h->nr_huge_pages;
2393         else
2394                 nr_huge_pages = h->nr_huge_pages_node[nid];
2395
2396         return sprintf(buf, "%lu\n", nr_huge_pages);
2397 }
2398
2399 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2400                                            struct hstate *h, int nid,
2401                                            unsigned long count, size_t len)
2402 {
2403         int err;
2404         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2405
2406         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2407                 err = -EINVAL;
2408                 goto out;
2409         }
2410
2411         if (nid == NUMA_NO_NODE) {
2412                 /*
2413                  * global hstate attribute
2414                  */
2415                 if (!(obey_mempolicy &&
2416                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2417                         NODEMASK_FREE(nodes_allowed);
2418                         nodes_allowed = &node_states[N_MEMORY];
2419                 }
2420         } else if (nodes_allowed) {
2421                 /*
2422                  * per node hstate attribute: adjust count to global,
2423                  * but restrict alloc/free to the specified node.
2424                  */
2425                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2426                 init_nodemask_of_node(nodes_allowed, nid);
2427         } else
2428                 nodes_allowed = &node_states[N_MEMORY];
2429
2430         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2431
2432         if (nodes_allowed != &node_states[N_MEMORY])
2433                 NODEMASK_FREE(nodes_allowed);
2434
2435         return len;
2436 out:
2437         NODEMASK_FREE(nodes_allowed);
2438         return err;
2439 }
2440
2441 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2442                                          struct kobject *kobj, const char *buf,
2443                                          size_t len)
2444 {
2445         struct hstate *h;
2446         unsigned long count;
2447         int nid;
2448         int err;
2449
2450         err = kstrtoul(buf, 10, &count);
2451         if (err)
2452                 return err;
2453
2454         h = kobj_to_hstate(kobj, &nid);
2455         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2456 }
2457
2458 static ssize_t nr_hugepages_show(struct kobject *kobj,
2459                                        struct kobj_attribute *attr, char *buf)
2460 {
2461         return nr_hugepages_show_common(kobj, attr, buf);
2462 }
2463
2464 static ssize_t nr_hugepages_store(struct kobject *kobj,
2465                struct kobj_attribute *attr, const char *buf, size_t len)
2466 {
2467         return nr_hugepages_store_common(false, kobj, buf, len);
2468 }
2469 HSTATE_ATTR(nr_hugepages);
2470
2471 #ifdef CONFIG_NUMA
2472
2473 /*
2474  * hstate attribute for optionally mempolicy-based constraint on persistent
2475  * huge page alloc/free.
2476  */
2477 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2478                                        struct kobj_attribute *attr, char *buf)
2479 {
2480         return nr_hugepages_show_common(kobj, attr, buf);
2481 }
2482
2483 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2484                struct kobj_attribute *attr, const char *buf, size_t len)
2485 {
2486         return nr_hugepages_store_common(true, kobj, buf, len);
2487 }
2488 HSTATE_ATTR(nr_hugepages_mempolicy);
2489 #endif
2490
2491
2492 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2493                                         struct kobj_attribute *attr, char *buf)
2494 {
2495         struct hstate *h = kobj_to_hstate(kobj, NULL);
2496         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2497 }
2498
2499 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2500                 struct kobj_attribute *attr, const char *buf, size_t count)
2501 {
2502         int err;
2503         unsigned long input;
2504         struct hstate *h = kobj_to_hstate(kobj, NULL);
2505
2506         if (hstate_is_gigantic(h))
2507                 return -EINVAL;
2508
2509         err = kstrtoul(buf, 10, &input);
2510         if (err)
2511                 return err;
2512
2513         spin_lock(&hugetlb_lock);
2514         h->nr_overcommit_huge_pages = input;
2515         spin_unlock(&hugetlb_lock);
2516
2517         return count;
2518 }
2519 HSTATE_ATTR(nr_overcommit_hugepages);
2520
2521 static ssize_t free_hugepages_show(struct kobject *kobj,
2522                                         struct kobj_attribute *attr, char *buf)
2523 {
2524         struct hstate *h;
2525         unsigned long free_huge_pages;
2526         int nid;
2527
2528         h = kobj_to_hstate(kobj, &nid);
2529         if (nid == NUMA_NO_NODE)
2530                 free_huge_pages = h->free_huge_pages;
2531         else
2532                 free_huge_pages = h->free_huge_pages_node[nid];
2533
2534         return sprintf(buf, "%lu\n", free_huge_pages);
2535 }
2536 HSTATE_ATTR_RO(free_hugepages);
2537
2538 static ssize_t resv_hugepages_show(struct kobject *kobj,
2539                                         struct kobj_attribute *attr, char *buf)
2540 {
2541         struct hstate *h = kobj_to_hstate(kobj, NULL);
2542         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2543 }
2544 HSTATE_ATTR_RO(resv_hugepages);
2545
2546 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2547                                         struct kobj_attribute *attr, char *buf)
2548 {
2549         struct hstate *h;
2550         unsigned long surplus_huge_pages;
2551         int nid;
2552
2553         h = kobj_to_hstate(kobj, &nid);
2554         if (nid == NUMA_NO_NODE)
2555                 surplus_huge_pages = h->surplus_huge_pages;
2556         else
2557                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2558
2559         return sprintf(buf, "%lu\n", surplus_huge_pages);
2560 }
2561 HSTATE_ATTR_RO(surplus_hugepages);
2562
2563 static struct attribute *hstate_attrs[] = {
2564         &nr_hugepages_attr.attr,
2565         &nr_overcommit_hugepages_attr.attr,
2566         &free_hugepages_attr.attr,
2567         &resv_hugepages_attr.attr,
2568         &surplus_hugepages_attr.attr,
2569 #ifdef CONFIG_NUMA
2570         &nr_hugepages_mempolicy_attr.attr,
2571 #endif
2572         NULL,
2573 };
2574
2575 static const struct attribute_group hstate_attr_group = {
2576         .attrs = hstate_attrs,
2577 };
2578
2579 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2580                                     struct kobject **hstate_kobjs,
2581                                     const struct attribute_group *hstate_attr_group)
2582 {
2583         int retval;
2584         int hi = hstate_index(h);
2585
2586         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2587         if (!hstate_kobjs[hi])
2588                 return -ENOMEM;
2589
2590         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2591         if (retval)
2592                 kobject_put(hstate_kobjs[hi]);
2593
2594         return retval;
2595 }
2596
2597 static void __init hugetlb_sysfs_init(void)
2598 {
2599         struct hstate *h;
2600         int err;
2601
2602         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2603         if (!hugepages_kobj)
2604                 return;
2605
2606         for_each_hstate(h) {
2607                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2608                                          hstate_kobjs, &hstate_attr_group);
2609                 if (err)
2610                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2611         }
2612 }
2613
2614 #ifdef CONFIG_NUMA
2615
2616 /*
2617  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2618  * with node devices in node_devices[] using a parallel array.  The array
2619  * index of a node device or _hstate == node id.
2620  * This is here to avoid any static dependency of the node device driver, in
2621  * the base kernel, on the hugetlb module.
2622  */
2623 struct node_hstate {
2624         struct kobject          *hugepages_kobj;
2625         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2626 };
2627 static struct node_hstate node_hstates[MAX_NUMNODES];
2628
2629 /*
2630  * A subset of global hstate attributes for node devices
2631  */
2632 static struct attribute *per_node_hstate_attrs[] = {
2633         &nr_hugepages_attr.attr,
2634         &free_hugepages_attr.attr,
2635         &surplus_hugepages_attr.attr,
2636         NULL,
2637 };
2638
2639 static const struct attribute_group per_node_hstate_attr_group = {
2640         .attrs = per_node_hstate_attrs,
2641 };
2642
2643 /*
2644  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2645  * Returns node id via non-NULL nidp.
2646  */
2647 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2648 {
2649         int nid;
2650
2651         for (nid = 0; nid < nr_node_ids; nid++) {
2652                 struct node_hstate *nhs = &node_hstates[nid];
2653                 int i;
2654                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2655                         if (nhs->hstate_kobjs[i] == kobj) {
2656                                 if (nidp)
2657                                         *nidp = nid;
2658                                 return &hstates[i];
2659                         }
2660         }
2661
2662         BUG();
2663         return NULL;
2664 }
2665
2666 /*
2667  * Unregister hstate attributes from a single node device.
2668  * No-op if no hstate attributes attached.
2669  */
2670 static void hugetlb_unregister_node(struct node *node)
2671 {
2672         struct hstate *h;
2673         struct node_hstate *nhs = &node_hstates[node->dev.id];
2674
2675         if (!nhs->hugepages_kobj)
2676                 return;         /* no hstate attributes */
2677
2678         for_each_hstate(h) {
2679                 int idx = hstate_index(h);
2680                 if (nhs->hstate_kobjs[idx]) {
2681                         kobject_put(nhs->hstate_kobjs[idx]);
2682                         nhs->hstate_kobjs[idx] = NULL;
2683                 }
2684         }
2685
2686         kobject_put(nhs->hugepages_kobj);
2687         nhs->hugepages_kobj = NULL;
2688 }
2689
2690
2691 /*
2692  * Register hstate attributes for a single node device.
2693  * No-op if attributes already registered.
2694  */
2695 static void hugetlb_register_node(struct node *node)
2696 {
2697         struct hstate *h;
2698         struct node_hstate *nhs = &node_hstates[node->dev.id];
2699         int err;
2700
2701         if (nhs->hugepages_kobj)
2702                 return;         /* already allocated */
2703
2704         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2705                                                         &node->dev.kobj);
2706         if (!nhs->hugepages_kobj)
2707                 return;
2708
2709         for_each_hstate(h) {
2710                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2711                                                 nhs->hstate_kobjs,
2712                                                 &per_node_hstate_attr_group);
2713                 if (err) {
2714                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2715                                 h->name, node->dev.id);
2716                         hugetlb_unregister_node(node);
2717                         break;
2718                 }
2719         }
2720 }
2721
2722 /*
2723  * hugetlb init time:  register hstate attributes for all registered node
2724  * devices of nodes that have memory.  All on-line nodes should have
2725  * registered their associated device by this time.
2726  */
2727 static void __init hugetlb_register_all_nodes(void)
2728 {
2729         int nid;
2730
2731         for_each_node_state(nid, N_MEMORY) {
2732                 struct node *node = node_devices[nid];
2733                 if (node->dev.id == nid)
2734                         hugetlb_register_node(node);
2735         }
2736
2737         /*
2738          * Let the node device driver know we're here so it can
2739          * [un]register hstate attributes on node hotplug.
2740          */
2741         register_hugetlbfs_with_node(hugetlb_register_node,
2742                                      hugetlb_unregister_node);
2743 }
2744 #else   /* !CONFIG_NUMA */
2745
2746 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2747 {
2748         BUG();
2749         if (nidp)
2750                 *nidp = -1;
2751         return NULL;
2752 }
2753
2754 static void hugetlb_register_all_nodes(void) { }
2755
2756 #endif
2757
2758 static int __init hugetlb_init(void)
2759 {
2760         int i;
2761
2762         if (!hugepages_supported())
2763                 return 0;
2764
2765         if (!size_to_hstate(default_hstate_size)) {
2766                 if (default_hstate_size != 0) {
2767                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2768                                default_hstate_size, HPAGE_SIZE);
2769                 }
2770
2771                 default_hstate_size = HPAGE_SIZE;
2772                 if (!size_to_hstate(default_hstate_size))
2773                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2774         }
2775         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2776         if (default_hstate_max_huge_pages) {
2777                 if (!default_hstate.max_huge_pages)
2778                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2779         }
2780
2781         hugetlb_init_hstates();
2782         gather_bootmem_prealloc();
2783         report_hugepages();
2784
2785         hugetlb_sysfs_init();
2786         hugetlb_register_all_nodes();
2787         hugetlb_cgroup_file_init();
2788
2789 #ifdef CONFIG_SMP
2790         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2791 #else
2792         num_fault_mutexes = 1;
2793 #endif
2794         hugetlb_fault_mutex_table =
2795                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2796                               GFP_KERNEL);
2797         BUG_ON(!hugetlb_fault_mutex_table);
2798
2799         for (i = 0; i < num_fault_mutexes; i++)
2800                 mutex_init(&hugetlb_fault_mutex_table[i]);
2801         return 0;
2802 }
2803 subsys_initcall(hugetlb_init);
2804
2805 /* Should be called on processing a hugepagesz=... option */
2806 void __init hugetlb_bad_size(void)
2807 {
2808         parsed_valid_hugepagesz = false;
2809 }
2810
2811 void __init hugetlb_add_hstate(unsigned int order)
2812 {
2813         struct hstate *h;
2814         unsigned long i;
2815
2816         if (size_to_hstate(PAGE_SIZE << order)) {
2817                 pr_warn("hugepagesz= specified twice, ignoring\n");
2818                 return;
2819         }
2820         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2821         BUG_ON(order == 0);
2822         h = &hstates[hugetlb_max_hstate++];
2823         h->order = order;
2824         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2825         h->nr_huge_pages = 0;
2826         h->free_huge_pages = 0;
2827         for (i = 0; i < MAX_NUMNODES; ++i)
2828                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2829         INIT_LIST_HEAD(&h->hugepage_activelist);
2830         h->next_nid_to_alloc = first_memory_node;
2831         h->next_nid_to_free = first_memory_node;
2832         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2833                                         huge_page_size(h)/1024);
2834
2835         parsed_hstate = h;
2836 }
2837
2838 static int __init hugetlb_nrpages_setup(char *s)
2839 {
2840         unsigned long *mhp;
2841         static unsigned long *last_mhp;
2842
2843         if (!parsed_valid_hugepagesz) {
2844                 pr_warn("hugepages = %s preceded by "
2845                         "an unsupported hugepagesz, ignoring\n", s);
2846                 parsed_valid_hugepagesz = true;
2847                 return 1;
2848         }
2849         /*
2850          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2851          * so this hugepages= parameter goes to the "default hstate".
2852          */
2853         else if (!hugetlb_max_hstate)
2854                 mhp = &default_hstate_max_huge_pages;
2855         else
2856                 mhp = &parsed_hstate->max_huge_pages;
2857
2858         if (mhp == last_mhp) {
2859                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2860                 return 1;
2861         }
2862
2863         if (sscanf(s, "%lu", mhp) <= 0)
2864                 *mhp = 0;
2865
2866         /*
2867          * Global state is always initialized later in hugetlb_init.
2868          * But we need to allocate >= MAX_ORDER hstates here early to still
2869          * use the bootmem allocator.
2870          */
2871         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2872                 hugetlb_hstate_alloc_pages(parsed_hstate);
2873
2874         last_mhp = mhp;
2875
2876         return 1;
2877 }
2878 __setup("hugepages=", hugetlb_nrpages_setup);
2879
2880 static int __init hugetlb_default_setup(char *s)
2881 {
2882         default_hstate_size = memparse(s, &s);
2883         return 1;
2884 }
2885 __setup("default_hugepagesz=", hugetlb_default_setup);
2886
2887 static unsigned int cpuset_mems_nr(unsigned int *array)
2888 {
2889         int node;
2890         unsigned int nr = 0;
2891
2892         for_each_node_mask(node, cpuset_current_mems_allowed)
2893                 nr += array[node];
2894
2895         return nr;
2896 }
2897
2898 #ifdef CONFIG_SYSCTL
2899 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2900                          struct ctl_table *table, int write,
2901                          void __user *buffer, size_t *length, loff_t *ppos)
2902 {
2903         struct hstate *h = &default_hstate;
2904         unsigned long tmp = h->max_huge_pages;
2905         int ret;
2906
2907         if (!hugepages_supported())
2908                 return -EOPNOTSUPP;
2909
2910         table->data = &tmp;
2911         table->maxlen = sizeof(unsigned long);
2912         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2913         if (ret)
2914                 goto out;
2915
2916         if (write)
2917                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2918                                                   NUMA_NO_NODE, tmp, *length);
2919 out:
2920         return ret;
2921 }
2922
2923 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2924                           void __user *buffer, size_t *length, loff_t *ppos)
2925 {
2926
2927         return hugetlb_sysctl_handler_common(false, table, write,
2928                                                         buffer, length, ppos);
2929 }
2930
2931 #ifdef CONFIG_NUMA
2932 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2933                           void __user *buffer, size_t *length, loff_t *ppos)
2934 {
2935         return hugetlb_sysctl_handler_common(true, table, write,
2936                                                         buffer, length, ppos);
2937 }
2938 #endif /* CONFIG_NUMA */
2939
2940 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2941                         void __user *buffer,
2942                         size_t *length, loff_t *ppos)
2943 {
2944         struct hstate *h = &default_hstate;
2945         unsigned long tmp;
2946         int ret;
2947
2948         if (!hugepages_supported())
2949                 return -EOPNOTSUPP;
2950
2951         tmp = h->nr_overcommit_huge_pages;
2952
2953         if (write && hstate_is_gigantic(h))
2954                 return -EINVAL;
2955
2956         table->data = &tmp;
2957         table->maxlen = sizeof(unsigned long);
2958         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2959         if (ret)
2960                 goto out;
2961
2962         if (write) {
2963                 spin_lock(&hugetlb_lock);
2964                 h->nr_overcommit_huge_pages = tmp;
2965                 spin_unlock(&hugetlb_lock);
2966         }
2967 out:
2968         return ret;
2969 }
2970
2971 #endif /* CONFIG_SYSCTL */
2972
2973 void hugetlb_report_meminfo(struct seq_file *m)
2974 {
2975         struct hstate *h;
2976         unsigned long total = 0;
2977
2978         if (!hugepages_supported())
2979                 return;
2980
2981         for_each_hstate(h) {
2982                 unsigned long count = h->nr_huge_pages;
2983
2984                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2985
2986                 if (h == &default_hstate)
2987                         seq_printf(m,
2988                                    "HugePages_Total:   %5lu\n"
2989                                    "HugePages_Free:    %5lu\n"
2990                                    "HugePages_Rsvd:    %5lu\n"
2991                                    "HugePages_Surp:    %5lu\n"
2992                                    "Hugepagesize:   %8lu kB\n",
2993                                    count,
2994                                    h->free_huge_pages,
2995                                    h->resv_huge_pages,
2996                                    h->surplus_huge_pages,
2997                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
2998         }
2999
3000         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3001 }
3002
3003 int hugetlb_report_node_meminfo(int nid, char *buf)
3004 {
3005         struct hstate *h = &default_hstate;
3006         if (!hugepages_supported())
3007                 return 0;
3008         return sprintf(buf,
3009                 "Node %d HugePages_Total: %5u\n"
3010                 "Node %d HugePages_Free:  %5u\n"
3011                 "Node %d HugePages_Surp:  %5u\n",
3012                 nid, h->nr_huge_pages_node[nid],
3013                 nid, h->free_huge_pages_node[nid],
3014                 nid, h->surplus_huge_pages_node[nid]);
3015 }
3016
3017 void hugetlb_show_meminfo(void)
3018 {
3019         struct hstate *h;
3020         int nid;
3021
3022         if (!hugepages_supported())
3023                 return;
3024
3025         for_each_node_state(nid, N_MEMORY)
3026                 for_each_hstate(h)
3027                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3028                                 nid,
3029                                 h->nr_huge_pages_node[nid],
3030                                 h->free_huge_pages_node[nid],
3031                                 h->surplus_huge_pages_node[nid],
3032                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3033 }
3034
3035 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3036 {
3037         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3038                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3039 }
3040
3041 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3042 unsigned long hugetlb_total_pages(void)
3043 {
3044         struct hstate *h;
3045         unsigned long nr_total_pages = 0;
3046
3047         for_each_hstate(h)
3048                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3049         return nr_total_pages;
3050 }
3051
3052 static int hugetlb_acct_memory(struct hstate *h, long delta)
3053 {
3054         int ret = -ENOMEM;
3055
3056         spin_lock(&hugetlb_lock);
3057         /*
3058          * When cpuset is configured, it breaks the strict hugetlb page
3059          * reservation as the accounting is done on a global variable. Such
3060          * reservation is completely rubbish in the presence of cpuset because
3061          * the reservation is not checked against page availability for the
3062          * current cpuset. Application can still potentially OOM'ed by kernel
3063          * with lack of free htlb page in cpuset that the task is in.
3064          * Attempt to enforce strict accounting with cpuset is almost
3065          * impossible (or too ugly) because cpuset is too fluid that
3066          * task or memory node can be dynamically moved between cpusets.
3067          *
3068          * The change of semantics for shared hugetlb mapping with cpuset is
3069          * undesirable. However, in order to preserve some of the semantics,
3070          * we fall back to check against current free page availability as
3071          * a best attempt and hopefully to minimize the impact of changing
3072          * semantics that cpuset has.
3073          */
3074         if (delta > 0) {
3075                 if (gather_surplus_pages(h, delta) < 0)
3076                         goto out;
3077
3078                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3079                         return_unused_surplus_pages(h, delta);
3080                         goto out;
3081                 }
3082         }
3083
3084         ret = 0;
3085         if (delta < 0)
3086                 return_unused_surplus_pages(h, (unsigned long) -delta);
3087
3088 out:
3089         spin_unlock(&hugetlb_lock);
3090         return ret;
3091 }
3092
3093 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3094 {
3095         struct resv_map *resv = vma_resv_map(vma);
3096
3097         /*
3098          * This new VMA should share its siblings reservation map if present.
3099          * The VMA will only ever have a valid reservation map pointer where
3100          * it is being copied for another still existing VMA.  As that VMA
3101          * has a reference to the reservation map it cannot disappear until
3102          * after this open call completes.  It is therefore safe to take a
3103          * new reference here without additional locking.
3104          */
3105         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3106                 kref_get(&resv->refs);
3107 }
3108
3109 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3110 {
3111         struct hstate *h = hstate_vma(vma);
3112         struct resv_map *resv = vma_resv_map(vma);
3113         struct hugepage_subpool *spool = subpool_vma(vma);
3114         unsigned long reserve, start, end;
3115         long gbl_reserve;
3116
3117         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118                 return;
3119
3120         start = vma_hugecache_offset(h, vma, vma->vm_start);
3121         end = vma_hugecache_offset(h, vma, vma->vm_end);
3122
3123         reserve = (end - start) - region_count(resv, start, end);
3124
3125         kref_put(&resv->refs, resv_map_release);
3126
3127         if (reserve) {
3128                 /*
3129                  * Decrement reserve counts.  The global reserve count may be
3130                  * adjusted if the subpool has a minimum size.
3131                  */
3132                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3133                 hugetlb_acct_memory(h, -gbl_reserve);
3134         }
3135 }
3136
3137 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3138 {
3139         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3140                 return -EINVAL;
3141         return 0;
3142 }
3143
3144 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3145 {
3146         struct hstate *hstate = hstate_vma(vma);
3147
3148         return 1UL << huge_page_shift(hstate);
3149 }
3150
3151 /*
3152  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3153  * handle_mm_fault() to try to instantiate regular-sized pages in the
3154  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3155  * this far.
3156  */
3157 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3158 {
3159         BUG();
3160         return 0;
3161 }
3162
3163 /*
3164  * When a new function is introduced to vm_operations_struct and added
3165  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3166  * This is because under System V memory model, mappings created via
3167  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3168  * their original vm_ops are overwritten with shm_vm_ops.
3169  */
3170 const struct vm_operations_struct hugetlb_vm_ops = {
3171         .fault = hugetlb_vm_op_fault,
3172         .open = hugetlb_vm_op_open,
3173         .close = hugetlb_vm_op_close,
3174         .split = hugetlb_vm_op_split,
3175         .pagesize = hugetlb_vm_op_pagesize,
3176 };
3177
3178 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3179                                 int writable)
3180 {
3181         pte_t entry;
3182
3183         if (writable) {
3184                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3185                                          vma->vm_page_prot)));
3186         } else {
3187                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3188                                            vma->vm_page_prot));
3189         }
3190         entry = pte_mkyoung(entry);
3191         entry = pte_mkhuge(entry);
3192         entry = arch_make_huge_pte(entry, vma, page, writable);
3193
3194         return entry;
3195 }
3196
3197 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3198                                    unsigned long address, pte_t *ptep)
3199 {
3200         pte_t entry;
3201
3202         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3203         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3204                 update_mmu_cache(vma, address, ptep);
3205 }
3206
3207 bool is_hugetlb_entry_migration(pte_t pte)
3208 {
3209         swp_entry_t swp;
3210
3211         if (huge_pte_none(pte) || pte_present(pte))
3212                 return false;
3213         swp = pte_to_swp_entry(pte);
3214         if (non_swap_entry(swp) && is_migration_entry(swp))
3215                 return true;
3216         else
3217                 return false;
3218 }
3219
3220 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3221 {
3222         swp_entry_t swp;
3223
3224         if (huge_pte_none(pte) || pte_present(pte))
3225                 return 0;
3226         swp = pte_to_swp_entry(pte);
3227         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3228                 return 1;
3229         else
3230                 return 0;
3231 }
3232
3233 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3234                             struct vm_area_struct *vma)
3235 {
3236         pte_t *src_pte, *dst_pte, entry;
3237         struct page *ptepage;
3238         unsigned long addr;
3239         int cow;
3240         struct hstate *h = hstate_vma(vma);
3241         unsigned long sz = huge_page_size(h);
3242         unsigned long mmun_start;       /* For mmu_notifiers */
3243         unsigned long mmun_end;         /* For mmu_notifiers */
3244         int ret = 0;
3245
3246         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3247
3248         mmun_start = vma->vm_start;
3249         mmun_end = vma->vm_end;
3250         if (cow)
3251                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3252
3253         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3254                 spinlock_t *src_ptl, *dst_ptl;
3255                 src_pte = huge_pte_offset(src, addr, sz);
3256                 if (!src_pte)
3257                         continue;
3258                 dst_pte = huge_pte_alloc(dst, addr, sz);
3259                 if (!dst_pte) {
3260                         ret = -ENOMEM;
3261                         break;
3262                 }
3263
3264                 /* If the pagetables are shared don't copy or take references */
3265                 if (dst_pte == src_pte)
3266                         continue;
3267
3268                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3269                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3270                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3271                 entry = huge_ptep_get(src_pte);
3272                 if (huge_pte_none(entry)) { /* skip none entry */
3273                         ;
3274                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3275                                     is_hugetlb_entry_hwpoisoned(entry))) {
3276                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3277
3278                         if (is_write_migration_entry(swp_entry) && cow) {
3279                                 /*
3280                                  * COW mappings require pages in both
3281                                  * parent and child to be set to read.
3282                                  */
3283                                 make_migration_entry_read(&swp_entry);
3284                                 entry = swp_entry_to_pte(swp_entry);
3285                                 set_huge_swap_pte_at(src, addr, src_pte,
3286                                                      entry, sz);
3287                         }
3288                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3289                 } else {
3290                         if (cow) {
3291                                 /*
3292                                  * No need to notify as we are downgrading page
3293                                  * table protection not changing it to point
3294                                  * to a new page.
3295                                  *
3296                                  * See Documentation/vm/mmu_notifier.rst
3297                                  */
3298                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3299                         }
3300                         entry = huge_ptep_get(src_pte);
3301                         ptepage = pte_page(entry);
3302                         get_page(ptepage);
3303                         page_dup_rmap(ptepage, true);
3304                         set_huge_pte_at(dst, addr, dst_pte, entry);
3305                         hugetlb_count_add(pages_per_huge_page(h), dst);
3306                 }
3307                 spin_unlock(src_ptl);
3308                 spin_unlock(dst_ptl);
3309         }
3310
3311         if (cow)
3312                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3313
3314         return ret;
3315 }
3316
3317 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3318                             unsigned long start, unsigned long end,
3319                             struct page *ref_page)
3320 {
3321         struct mm_struct *mm = vma->vm_mm;
3322         unsigned long address;
3323         pte_t *ptep;
3324         pte_t pte;
3325         spinlock_t *ptl;
3326         struct page *page;
3327         struct hstate *h = hstate_vma(vma);
3328         unsigned long sz = huge_page_size(h);
3329         unsigned long mmun_start = start;       /* For mmu_notifiers */
3330         unsigned long mmun_end   = end;         /* For mmu_notifiers */
3331
3332         WARN_ON(!is_vm_hugetlb_page(vma));
3333         BUG_ON(start & ~huge_page_mask(h));
3334         BUG_ON(end & ~huge_page_mask(h));
3335
3336         /*
3337          * This is a hugetlb vma, all the pte entries should point
3338          * to huge page.
3339          */
3340         tlb_remove_check_page_size_change(tlb, sz);
3341         tlb_start_vma(tlb, vma);
3342
3343         /*
3344          * If sharing possible, alert mmu notifiers of worst case.
3345          */
3346         adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3347         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3348         address = start;
3349         for (; address < end; address += sz) {
3350                 ptep = huge_pte_offset(mm, address, sz);
3351                 if (!ptep)
3352                         continue;
3353
3354                 ptl = huge_pte_lock(h, mm, ptep);
3355                 if (huge_pmd_unshare(mm, &address, ptep)) {
3356                         spin_unlock(ptl);
3357                         /*
3358                          * We just unmapped a page of PMDs by clearing a PUD.
3359                          * The caller's TLB flush range should cover this area.
3360                          */
3361                         continue;
3362                 }
3363
3364                 pte = huge_ptep_get(ptep);
3365                 if (huge_pte_none(pte)) {
3366                         spin_unlock(ptl);
3367                         continue;
3368                 }
3369
3370                 /*
3371                  * Migrating hugepage or HWPoisoned hugepage is already
3372                  * unmapped and its refcount is dropped, so just clear pte here.
3373                  */
3374                 if (unlikely(!pte_present(pte))) {
3375                         huge_pte_clear(mm, address, ptep, sz);
3376                         spin_unlock(ptl);
3377                         continue;
3378                 }
3379
3380                 page = pte_page(pte);
3381                 /*
3382                  * If a reference page is supplied, it is because a specific
3383                  * page is being unmapped, not a range. Ensure the page we
3384                  * are about to unmap is the actual page of interest.
3385                  */
3386                 if (ref_page) {
3387                         if (page != ref_page) {
3388                                 spin_unlock(ptl);
3389                                 continue;
3390                         }
3391                         /*
3392                          * Mark the VMA as having unmapped its page so that
3393                          * future faults in this VMA will fail rather than
3394                          * looking like data was lost
3395                          */
3396                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3397                 }
3398
3399                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3400                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3401                 if (huge_pte_dirty(pte))
3402                         set_page_dirty(page);
3403
3404                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3405                 page_remove_rmap(page, true);
3406
3407                 spin_unlock(ptl);
3408                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3409                 /*
3410                  * Bail out after unmapping reference page if supplied
3411                  */
3412                 if (ref_page)
3413                         break;
3414         }
3415         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3416         tlb_end_vma(tlb, vma);
3417 }
3418
3419 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3420                           struct vm_area_struct *vma, unsigned long start,
3421                           unsigned long end, struct page *ref_page)
3422 {
3423         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3424
3425         /*
3426          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3427          * test will fail on a vma being torn down, and not grab a page table
3428          * on its way out.  We're lucky that the flag has such an appropriate
3429          * name, and can in fact be safely cleared here. We could clear it
3430          * before the __unmap_hugepage_range above, but all that's necessary
3431          * is to clear it before releasing the i_mmap_rwsem. This works
3432          * because in the context this is called, the VMA is about to be
3433          * destroyed and the i_mmap_rwsem is held.
3434          */
3435         vma->vm_flags &= ~VM_MAYSHARE;
3436 }
3437
3438 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3439                           unsigned long end, struct page *ref_page)
3440 {
3441         struct mm_struct *mm;
3442         struct mmu_gather tlb;
3443         unsigned long tlb_start = start;
3444         unsigned long tlb_end = end;
3445
3446         /*
3447          * If shared PMDs were possibly used within this vma range, adjust
3448          * start/end for worst case tlb flushing.
3449          * Note that we can not be sure if PMDs are shared until we try to
3450          * unmap pages.  However, we want to make sure TLB flushing covers
3451          * the largest possible range.
3452          */
3453         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3454
3455         mm = vma->vm_mm;
3456
3457         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3458         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3459         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3460 }
3461
3462 /*
3463  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3464  * mappping it owns the reserve page for. The intention is to unmap the page
3465  * from other VMAs and let the children be SIGKILLed if they are faulting the
3466  * same region.
3467  */
3468 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3469                               struct page *page, unsigned long address)
3470 {
3471         struct hstate *h = hstate_vma(vma);
3472         struct vm_area_struct *iter_vma;
3473         struct address_space *mapping;
3474         pgoff_t pgoff;
3475
3476         /*
3477          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3478          * from page cache lookup which is in HPAGE_SIZE units.
3479          */
3480         address = address & huge_page_mask(h);
3481         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3482                         vma->vm_pgoff;
3483         mapping = vma->vm_file->f_mapping;
3484
3485         /*
3486          * Take the mapping lock for the duration of the table walk. As
3487          * this mapping should be shared between all the VMAs,
3488          * __unmap_hugepage_range() is called as the lock is already held
3489          */
3490         i_mmap_lock_write(mapping);
3491         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3492                 /* Do not unmap the current VMA */
3493                 if (iter_vma == vma)
3494                         continue;
3495
3496                 /*
3497                  * Shared VMAs have their own reserves and do not affect
3498                  * MAP_PRIVATE accounting but it is possible that a shared
3499                  * VMA is using the same page so check and skip such VMAs.
3500                  */
3501                 if (iter_vma->vm_flags & VM_MAYSHARE)
3502                         continue;
3503
3504                 /*
3505                  * Unmap the page from other VMAs without their own reserves.
3506                  * They get marked to be SIGKILLed if they fault in these
3507                  * areas. This is because a future no-page fault on this VMA
3508                  * could insert a zeroed page instead of the data existing
3509                  * from the time of fork. This would look like data corruption
3510                  */
3511                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3512                         unmap_hugepage_range(iter_vma, address,
3513                                              address + huge_page_size(h), page);
3514         }
3515         i_mmap_unlock_write(mapping);
3516 }
3517
3518 /*
3519  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3520  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3521  * cannot race with other handlers or page migration.
3522  * Keep the pte_same checks anyway to make transition from the mutex easier.
3523  */
3524 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3525                        unsigned long address, pte_t *ptep,
3526                        struct page *pagecache_page, spinlock_t *ptl)
3527 {
3528         pte_t pte;
3529         struct hstate *h = hstate_vma(vma);
3530         struct page *old_page, *new_page;
3531         int outside_reserve = 0;
3532         vm_fault_t ret = 0;
3533         unsigned long mmun_start;       /* For mmu_notifiers */
3534         unsigned long mmun_end;         /* For mmu_notifiers */
3535         unsigned long haddr = address & huge_page_mask(h);
3536
3537         pte = huge_ptep_get(ptep);
3538         old_page = pte_page(pte);
3539
3540 retry_avoidcopy:
3541         /* If no-one else is actually using this page, avoid the copy
3542          * and just make the page writable */
3543         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3544                 page_move_anon_rmap(old_page, vma);
3545                 set_huge_ptep_writable(vma, haddr, ptep);
3546                 return 0;
3547         }
3548
3549         /*
3550          * If the process that created a MAP_PRIVATE mapping is about to
3551          * perform a COW due to a shared page count, attempt to satisfy
3552          * the allocation without using the existing reserves. The pagecache
3553          * page is used to determine if the reserve at this address was
3554          * consumed or not. If reserves were used, a partial faulted mapping
3555          * at the time of fork() could consume its reserves on COW instead
3556          * of the full address range.
3557          */
3558         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3559                         old_page != pagecache_page)
3560                 outside_reserve = 1;
3561
3562         get_page(old_page);
3563
3564         /*
3565          * Drop page table lock as buddy allocator may be called. It will
3566          * be acquired again before returning to the caller, as expected.
3567          */
3568         spin_unlock(ptl);
3569         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3570
3571         if (IS_ERR(new_page)) {
3572                 /*
3573                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3574                  * it is due to references held by a child and an insufficient
3575                  * huge page pool. To guarantee the original mappers
3576                  * reliability, unmap the page from child processes. The child
3577                  * may get SIGKILLed if it later faults.
3578                  */
3579                 if (outside_reserve) {
3580                         put_page(old_page);
3581                         BUG_ON(huge_pte_none(pte));
3582                         unmap_ref_private(mm, vma, old_page, haddr);
3583                         BUG_ON(huge_pte_none(pte));
3584                         spin_lock(ptl);
3585                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3586                         if (likely(ptep &&
3587                                    pte_same(huge_ptep_get(ptep), pte)))
3588                                 goto retry_avoidcopy;
3589                         /*
3590                          * race occurs while re-acquiring page table
3591                          * lock, and our job is done.
3592                          */
3593                         return 0;
3594                 }
3595
3596                 ret = vmf_error(PTR_ERR(new_page));
3597                 goto out_release_old;
3598         }
3599
3600         /*
3601          * When the original hugepage is shared one, it does not have
3602          * anon_vma prepared.
3603          */
3604         if (unlikely(anon_vma_prepare(vma))) {
3605                 ret = VM_FAULT_OOM;
3606                 goto out_release_all;
3607         }
3608
3609         copy_user_huge_page(new_page, old_page, address, vma,
3610                             pages_per_huge_page(h));
3611         __SetPageUptodate(new_page);
3612         set_page_huge_active(new_page);
3613
3614         mmun_start = haddr;
3615         mmun_end = mmun_start + huge_page_size(h);
3616         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3617
3618         /*
3619          * Retake the page table lock to check for racing updates
3620          * before the page tables are altered
3621          */
3622         spin_lock(ptl);
3623         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3624         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3625                 ClearPagePrivate(new_page);
3626
3627                 /* Break COW */
3628                 huge_ptep_clear_flush(vma, haddr, ptep);
3629                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3630                 set_huge_pte_at(mm, haddr, ptep,
3631                                 make_huge_pte(vma, new_page, 1));
3632                 page_remove_rmap(old_page, true);
3633                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3634                 /* Make the old page be freed below */
3635                 new_page = old_page;
3636         }
3637         spin_unlock(ptl);
3638         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3639 out_release_all:
3640         restore_reserve_on_error(h, vma, haddr, new_page);
3641         put_page(new_page);
3642 out_release_old:
3643         put_page(old_page);
3644
3645         spin_lock(ptl); /* Caller expects lock to be held */
3646         return ret;
3647 }
3648
3649 /* Return the pagecache page at a given address within a VMA */
3650 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3651                         struct vm_area_struct *vma, unsigned long address)
3652 {
3653         struct address_space *mapping;
3654         pgoff_t idx;
3655
3656         mapping = vma->vm_file->f_mapping;
3657         idx = vma_hugecache_offset(h, vma, address);
3658
3659         return find_lock_page(mapping, idx);
3660 }
3661
3662 /*
3663  * Return whether there is a pagecache page to back given address within VMA.
3664  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3665  */
3666 static bool hugetlbfs_pagecache_present(struct hstate *h,
3667                         struct vm_area_struct *vma, unsigned long address)
3668 {
3669         struct address_space *mapping;
3670         pgoff_t idx;
3671         struct page *page;
3672
3673         mapping = vma->vm_file->f_mapping;
3674         idx = vma_hugecache_offset(h, vma, address);
3675
3676         page = find_get_page(mapping, idx);
3677         if (page)
3678                 put_page(page);
3679         return page != NULL;
3680 }
3681
3682 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3683                            pgoff_t idx)
3684 {
3685         struct inode *inode = mapping->host;
3686         struct hstate *h = hstate_inode(inode);
3687         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3688
3689         if (err)
3690                 return err;
3691         ClearPagePrivate(page);
3692
3693         spin_lock(&inode->i_lock);
3694         inode->i_blocks += blocks_per_huge_page(h);
3695         spin_unlock(&inode->i_lock);
3696         return 0;
3697 }
3698
3699 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3700                         struct vm_area_struct *vma,
3701                         struct address_space *mapping, pgoff_t idx,
3702                         unsigned long address, pte_t *ptep, unsigned int flags)
3703 {
3704         struct hstate *h = hstate_vma(vma);
3705         vm_fault_t ret = VM_FAULT_SIGBUS;
3706         int anon_rmap = 0;
3707         unsigned long size;
3708         struct page *page;
3709         pte_t new_pte;
3710         spinlock_t *ptl;
3711         unsigned long haddr = address & huge_page_mask(h);
3712
3713         /*
3714          * Currently, we are forced to kill the process in the event the
3715          * original mapper has unmapped pages from the child due to a failed
3716          * COW. Warn that such a situation has occurred as it may not be obvious
3717          */
3718         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3719                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3720                            current->pid);
3721                 return ret;
3722         }
3723
3724         /*
3725          * Use page lock to guard against racing truncation
3726          * before we get page_table_lock.
3727          */
3728 retry:
3729         page = find_lock_page(mapping, idx);
3730         if (!page) {
3731                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3732                 if (idx >= size)
3733                         goto out;
3734
3735                 /*
3736                  * Check for page in userfault range
3737                  */
3738                 if (userfaultfd_missing(vma)) {
3739                         u32 hash;
3740                         struct vm_fault vmf = {
3741                                 .vma = vma,
3742                                 .address = haddr,
3743                                 .flags = flags,
3744                                 /*
3745                                  * Hard to debug if it ends up being
3746                                  * used by a callee that assumes
3747                                  * something about the other
3748                                  * uninitialized fields... same as in
3749                                  * memory.c
3750                                  */
3751                         };
3752
3753                         /*
3754                          * hugetlb_fault_mutex must be dropped before
3755                          * handling userfault.  Reacquire after handling
3756                          * fault to make calling code simpler.
3757                          */
3758                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3759                                                         idx, haddr);
3760                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3761                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3762                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3763                         goto out;
3764                 }
3765
3766                 page = alloc_huge_page(vma, haddr, 0);
3767                 if (IS_ERR(page)) {
3768                         ret = vmf_error(PTR_ERR(page));
3769                         goto out;
3770                 }
3771                 clear_huge_page(page, address, pages_per_huge_page(h));
3772                 __SetPageUptodate(page);
3773                 set_page_huge_active(page);
3774
3775                 if (vma->vm_flags & VM_MAYSHARE) {
3776                         int err = huge_add_to_page_cache(page, mapping, idx);
3777                         if (err) {
3778                                 put_page(page);
3779                                 if (err == -EEXIST)
3780                                         goto retry;
3781                                 goto out;
3782                         }
3783                 } else {
3784                         lock_page(page);
3785                         if (unlikely(anon_vma_prepare(vma))) {
3786                                 ret = VM_FAULT_OOM;
3787                                 goto backout_unlocked;
3788                         }
3789                         anon_rmap = 1;
3790                 }
3791         } else {
3792                 /*
3793                  * If memory error occurs between mmap() and fault, some process
3794                  * don't have hwpoisoned swap entry for errored virtual address.
3795                  * So we need to block hugepage fault by PG_hwpoison bit check.
3796                  */
3797                 if (unlikely(PageHWPoison(page))) {
3798                         ret = VM_FAULT_HWPOISON |
3799                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3800                         goto backout_unlocked;
3801                 }
3802         }
3803
3804         /*
3805          * If we are going to COW a private mapping later, we examine the
3806          * pending reservations for this page now. This will ensure that
3807          * any allocations necessary to record that reservation occur outside
3808          * the spinlock.
3809          */
3810         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3811                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3812                         ret = VM_FAULT_OOM;
3813                         goto backout_unlocked;
3814                 }
3815                 /* Just decrements count, does not deallocate */
3816                 vma_end_reservation(h, vma, haddr);
3817         }
3818
3819         ptl = huge_pte_lock(h, mm, ptep);
3820         size = i_size_read(mapping->host) >> huge_page_shift(h);
3821         if (idx >= size)
3822                 goto backout;
3823
3824         ret = 0;
3825         if (!huge_pte_none(huge_ptep_get(ptep)))
3826                 goto backout;
3827
3828         if (anon_rmap) {
3829                 ClearPagePrivate(page);
3830                 hugepage_add_new_anon_rmap(page, vma, haddr);
3831         } else
3832                 page_dup_rmap(page, true);
3833         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3834                                 && (vma->vm_flags & VM_SHARED)));
3835         set_huge_pte_at(mm, haddr, ptep, new_pte);
3836
3837         hugetlb_count_add(pages_per_huge_page(h), mm);
3838         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3839                 /* Optimization, do the COW without a second fault */
3840                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3841         }
3842
3843         spin_unlock(ptl);
3844         unlock_page(page);
3845 out:
3846         return ret;
3847
3848 backout:
3849         spin_unlock(ptl);
3850 backout_unlocked:
3851         unlock_page(page);
3852         restore_reserve_on_error(h, vma, haddr, page);
3853         put_page(page);
3854         goto out;
3855 }
3856
3857 #ifdef CONFIG_SMP
3858 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3859                             struct vm_area_struct *vma,
3860                             struct address_space *mapping,
3861                             pgoff_t idx, unsigned long address)
3862 {
3863         unsigned long key[2];
3864         u32 hash;
3865
3866         if (vma->vm_flags & VM_SHARED) {
3867                 key[0] = (unsigned long) mapping;
3868                 key[1] = idx;
3869         } else {
3870                 key[0] = (unsigned long) mm;
3871                 key[1] = address >> huge_page_shift(h);
3872         }
3873
3874         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3875
3876         return hash & (num_fault_mutexes - 1);
3877 }
3878 #else
3879 /*
3880  * For uniprocesor systems we always use a single mutex, so just
3881  * return 0 and avoid the hashing overhead.
3882  */
3883 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3884                             struct vm_area_struct *vma,
3885                             struct address_space *mapping,
3886                             pgoff_t idx, unsigned long address)
3887 {
3888         return 0;
3889 }
3890 #endif
3891
3892 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3893                         unsigned long address, unsigned int flags)
3894 {
3895         pte_t *ptep, entry;
3896         spinlock_t *ptl;
3897         vm_fault_t ret;
3898         u32 hash;
3899         pgoff_t idx;
3900         struct page *page = NULL;
3901         struct page *pagecache_page = NULL;
3902         struct hstate *h = hstate_vma(vma);
3903         struct address_space *mapping;
3904         int need_wait_lock = 0;
3905         unsigned long haddr = address & huge_page_mask(h);
3906
3907         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3908         if (ptep) {
3909                 entry = huge_ptep_get(ptep);
3910                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3911                         migration_entry_wait_huge(vma, mm, ptep);
3912                         return 0;
3913                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3914                         return VM_FAULT_HWPOISON_LARGE |
3915                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3916         } else {
3917                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3918                 if (!ptep)
3919                         return VM_FAULT_OOM;
3920         }
3921
3922         mapping = vma->vm_file->f_mapping;
3923         idx = vma_hugecache_offset(h, vma, haddr);
3924
3925         /*
3926          * Serialize hugepage allocation and instantiation, so that we don't
3927          * get spurious allocation failures if two CPUs race to instantiate
3928          * the same page in the page cache.
3929          */
3930         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3931         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3932
3933         entry = huge_ptep_get(ptep);
3934         if (huge_pte_none(entry)) {
3935                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3936                 goto out_mutex;
3937         }
3938
3939         ret = 0;
3940
3941         /*
3942          * entry could be a migration/hwpoison entry at this point, so this
3943          * check prevents the kernel from going below assuming that we have
3944          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3945          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3946          * handle it.
3947          */
3948         if (!pte_present(entry))
3949                 goto out_mutex;
3950
3951         /*
3952          * If we are going to COW the mapping later, we examine the pending
3953          * reservations for this page now. This will ensure that any
3954          * allocations necessary to record that reservation occur outside the
3955          * spinlock. For private mappings, we also lookup the pagecache
3956          * page now as it is used to determine if a reservation has been
3957          * consumed.
3958          */
3959         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3960                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3961                         ret = VM_FAULT_OOM;
3962                         goto out_mutex;
3963                 }
3964                 /* Just decrements count, does not deallocate */
3965                 vma_end_reservation(h, vma, haddr);
3966
3967                 if (!(vma->vm_flags & VM_MAYSHARE))
3968                         pagecache_page = hugetlbfs_pagecache_page(h,
3969                                                                 vma, haddr);
3970         }
3971
3972         ptl = huge_pte_lock(h, mm, ptep);
3973
3974         /* Check for a racing update before calling hugetlb_cow */
3975         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3976                 goto out_ptl;
3977
3978         /*
3979          * hugetlb_cow() requires page locks of pte_page(entry) and
3980          * pagecache_page, so here we need take the former one
3981          * when page != pagecache_page or !pagecache_page.
3982          */
3983         page = pte_page(entry);
3984         if (page != pagecache_page)
3985                 if (!trylock_page(page)) {
3986                         need_wait_lock = 1;
3987                         goto out_ptl;
3988                 }
3989
3990         get_page(page);
3991
3992         if (flags & FAULT_FLAG_WRITE) {
3993                 if (!huge_pte_write(entry)) {
3994                         ret = hugetlb_cow(mm, vma, address, ptep,
3995                                           pagecache_page, ptl);
3996                         goto out_put_page;
3997                 }
3998                 entry = huge_pte_mkdirty(entry);
3999         }
4000         entry = pte_mkyoung(entry);
4001         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4002                                                 flags & FAULT_FLAG_WRITE))
4003                 update_mmu_cache(vma, haddr, ptep);
4004 out_put_page:
4005         if (page != pagecache_page)
4006                 unlock_page(page);
4007         put_page(page);
4008 out_ptl:
4009         spin_unlock(ptl);
4010
4011         if (pagecache_page) {
4012                 unlock_page(pagecache_page);
4013                 put_page(pagecache_page);
4014         }
4015 out_mutex:
4016         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4017         /*
4018          * Generally it's safe to hold refcount during waiting page lock. But
4019          * here we just wait to defer the next page fault to avoid busy loop and
4020          * the page is not used after unlocked before returning from the current
4021          * page fault. So we are safe from accessing freed page, even if we wait
4022          * here without taking refcount.
4023          */
4024         if (need_wait_lock)
4025                 wait_on_page_locked(page);
4026         return ret;
4027 }
4028
4029 /*
4030  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4031  * modifications for huge pages.
4032  */
4033 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4034                             pte_t *dst_pte,
4035                             struct vm_area_struct *dst_vma,
4036                             unsigned long dst_addr,
4037                             unsigned long src_addr,
4038                             struct page **pagep)
4039 {
4040         struct address_space *mapping;
4041         pgoff_t idx;
4042         unsigned long size;
4043         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4044         struct hstate *h = hstate_vma(dst_vma);
4045         pte_t _dst_pte;
4046         spinlock_t *ptl;
4047         int ret;
4048         struct page *page;
4049
4050         if (!*pagep) {
4051                 ret = -ENOMEM;
4052                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4053                 if (IS_ERR(page))
4054                         goto out;
4055
4056                 ret = copy_huge_page_from_user(page,
4057                                                 (const void __user *) src_addr,
4058                                                 pages_per_huge_page(h), false);
4059
4060                 /* fallback to copy_from_user outside mmap_sem */
4061                 if (unlikely(ret)) {
4062                         ret = -EFAULT;
4063                         *pagep = page;
4064                         /* don't free the page */
4065                         goto out;
4066                 }
4067         } else {
4068                 page = *pagep;
4069                 *pagep = NULL;
4070         }
4071
4072         /*
4073          * The memory barrier inside __SetPageUptodate makes sure that
4074          * preceding stores to the page contents become visible before
4075          * the set_pte_at() write.
4076          */
4077         __SetPageUptodate(page);
4078         set_page_huge_active(page);
4079
4080         mapping = dst_vma->vm_file->f_mapping;
4081         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4082
4083         /*
4084          * If shared, add to page cache
4085          */
4086         if (vm_shared) {
4087                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4088                 ret = -EFAULT;
4089                 if (idx >= size)
4090                         goto out_release_nounlock;
4091
4092                 /*
4093                  * Serialization between remove_inode_hugepages() and
4094                  * huge_add_to_page_cache() below happens through the
4095                  * hugetlb_fault_mutex_table that here must be hold by
4096                  * the caller.
4097                  */
4098                 ret = huge_add_to_page_cache(page, mapping, idx);
4099                 if (ret)
4100                         goto out_release_nounlock;
4101         }
4102
4103         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4104         spin_lock(ptl);
4105
4106         /*
4107          * Recheck the i_size after holding PT lock to make sure not
4108          * to leave any page mapped (as page_mapped()) beyond the end
4109          * of the i_size (remove_inode_hugepages() is strict about
4110          * enforcing that). If we bail out here, we'll also leave a
4111          * page in the radix tree in the vm_shared case beyond the end
4112          * of the i_size, but remove_inode_hugepages() will take care
4113          * of it as soon as we drop the hugetlb_fault_mutex_table.
4114          */
4115         size = i_size_read(mapping->host) >> huge_page_shift(h);
4116         ret = -EFAULT;
4117         if (idx >= size)
4118                 goto out_release_unlock;
4119
4120         ret = -EEXIST;
4121         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4122                 goto out_release_unlock;
4123
4124         if (vm_shared) {
4125                 page_dup_rmap(page, true);
4126         } else {
4127                 ClearPagePrivate(page);
4128                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4129         }
4130
4131         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4132         if (dst_vma->vm_flags & VM_WRITE)
4133                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4134         _dst_pte = pte_mkyoung(_dst_pte);
4135
4136         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4137
4138         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4139                                         dst_vma->vm_flags & VM_WRITE);
4140         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4141
4142         /* No need to invalidate - it was non-present before */
4143         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4144
4145         spin_unlock(ptl);
4146         if (vm_shared)
4147                 unlock_page(page);
4148         ret = 0;
4149 out:
4150         return ret;
4151 out_release_unlock:
4152         spin_unlock(ptl);
4153         if (vm_shared)
4154                 unlock_page(page);
4155 out_release_nounlock:
4156         put_page(page);
4157         goto out;
4158 }
4159
4160 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4161                          struct page **pages, struct vm_area_struct **vmas,
4162                          unsigned long *position, unsigned long *nr_pages,
4163                          long i, unsigned int flags, int *nonblocking)
4164 {
4165         unsigned long pfn_offset;
4166         unsigned long vaddr = *position;
4167         unsigned long remainder = *nr_pages;
4168         struct hstate *h = hstate_vma(vma);
4169         int err = -EFAULT;
4170
4171         while (vaddr < vma->vm_end && remainder) {
4172                 pte_t *pte;
4173                 spinlock_t *ptl = NULL;
4174                 int absent;
4175                 struct page *page;
4176
4177                 /*
4178                  * If we have a pending SIGKILL, don't keep faulting pages and
4179                  * potentially allocating memory.
4180                  */
4181                 if (unlikely(fatal_signal_pending(current))) {
4182                         remainder = 0;
4183                         break;
4184                 }
4185
4186                 /*
4187                  * Some archs (sparc64, sh*) have multiple pte_ts to
4188                  * each hugepage.  We have to make sure we get the
4189                  * first, for the page indexing below to work.
4190                  *
4191                  * Note that page table lock is not held when pte is null.
4192                  */
4193                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4194                                       huge_page_size(h));
4195                 if (pte)
4196                         ptl = huge_pte_lock(h, mm, pte);
4197                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4198
4199                 /*
4200                  * When coredumping, it suits get_dump_page if we just return
4201                  * an error where there's an empty slot with no huge pagecache
4202                  * to back it.  This way, we avoid allocating a hugepage, and
4203                  * the sparse dumpfile avoids allocating disk blocks, but its
4204                  * huge holes still show up with zeroes where they need to be.
4205                  */
4206                 if (absent && (flags & FOLL_DUMP) &&
4207                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4208                         if (pte)
4209                                 spin_unlock(ptl);
4210                         remainder = 0;
4211                         break;
4212                 }
4213
4214                 /*
4215                  * We need call hugetlb_fault for both hugepages under migration
4216                  * (in which case hugetlb_fault waits for the migration,) and
4217                  * hwpoisoned hugepages (in which case we need to prevent the
4218                  * caller from accessing to them.) In order to do this, we use
4219                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4220                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4221                  * both cases, and because we can't follow correct pages
4222                  * directly from any kind of swap entries.
4223                  */
4224                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4225                     ((flags & FOLL_WRITE) &&
4226                       !huge_pte_write(huge_ptep_get(pte)))) {
4227                         vm_fault_t ret;
4228                         unsigned int fault_flags = 0;
4229
4230                         if (pte)
4231                                 spin_unlock(ptl);
4232                         if (flags & FOLL_WRITE)
4233                                 fault_flags |= FAULT_FLAG_WRITE;
4234                         if (nonblocking)
4235                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4236                         if (flags & FOLL_NOWAIT)
4237                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4238                                         FAULT_FLAG_RETRY_NOWAIT;
4239                         if (flags & FOLL_TRIED) {
4240                                 VM_WARN_ON_ONCE(fault_flags &
4241                                                 FAULT_FLAG_ALLOW_RETRY);
4242                                 fault_flags |= FAULT_FLAG_TRIED;
4243                         }
4244                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4245                         if (ret & VM_FAULT_ERROR) {
4246                                 err = vm_fault_to_errno(ret, flags);
4247                                 remainder = 0;
4248                                 break;
4249                         }
4250                         if (ret & VM_FAULT_RETRY) {
4251                                 if (nonblocking)
4252                                         *nonblocking = 0;
4253                                 *nr_pages = 0;
4254                                 /*
4255                                  * VM_FAULT_RETRY must not return an
4256                                  * error, it will return zero
4257                                  * instead.
4258                                  *
4259                                  * No need to update "position" as the
4260                                  * caller will not check it after
4261                                  * *nr_pages is set to 0.
4262                                  */
4263                                 return i;
4264                         }
4265                         continue;
4266                 }
4267
4268                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4269                 page = pte_page(huge_ptep_get(pte));
4270 same_page:
4271                 if (pages) {
4272                         pages[i] = mem_map_offset(page, pfn_offset);
4273                         get_page(pages[i]);
4274                 }
4275
4276                 if (vmas)
4277                         vmas[i] = vma;
4278
4279                 vaddr += PAGE_SIZE;
4280                 ++pfn_offset;
4281                 --remainder;
4282                 ++i;
4283                 if (vaddr < vma->vm_end && remainder &&
4284                                 pfn_offset < pages_per_huge_page(h)) {
4285                         /*
4286                          * We use pfn_offset to avoid touching the pageframes
4287                          * of this compound page.
4288                          */
4289                         goto same_page;
4290                 }
4291                 spin_unlock(ptl);
4292         }
4293         *nr_pages = remainder;
4294         /*
4295          * setting position is actually required only if remainder is
4296          * not zero but it's faster not to add a "if (remainder)"
4297          * branch.
4298          */
4299         *position = vaddr;
4300
4301         return i ? i : err;
4302 }
4303
4304 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4305 /*
4306  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4307  * implement this.
4308  */
4309 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4310 #endif
4311
4312 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4313                 unsigned long address, unsigned long end, pgprot_t newprot)
4314 {
4315         struct mm_struct *mm = vma->vm_mm;
4316         unsigned long start = address;
4317         pte_t *ptep;
4318         pte_t pte;
4319         struct hstate *h = hstate_vma(vma);
4320         unsigned long pages = 0;
4321         unsigned long f_start = start;
4322         unsigned long f_end = end;
4323         bool shared_pmd = false;
4324
4325         /*
4326          * In the case of shared PMDs, the area to flush could be beyond
4327          * start/end.  Set f_start/f_end to cover the maximum possible
4328          * range if PMD sharing is possible.
4329          */
4330         adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4331
4332         BUG_ON(address >= end);
4333         flush_cache_range(vma, f_start, f_end);
4334
4335         mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4336         i_mmap_lock_write(vma->vm_file->f_mapping);
4337         for (; address < end; address += huge_page_size(h)) {
4338                 spinlock_t *ptl;
4339                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4340                 if (!ptep)
4341                         continue;
4342                 ptl = huge_pte_lock(h, mm, ptep);
4343                 if (huge_pmd_unshare(mm, &address, ptep)) {
4344                         pages++;
4345                         spin_unlock(ptl);
4346                         shared_pmd = true;
4347                         continue;
4348                 }
4349                 pte = huge_ptep_get(ptep);
4350                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4351                         spin_unlock(ptl);
4352                         continue;
4353                 }
4354                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4355                         swp_entry_t entry = pte_to_swp_entry(pte);
4356
4357                         if (is_write_migration_entry(entry)) {
4358                                 pte_t newpte;
4359
4360                                 make_migration_entry_read(&entry);
4361                                 newpte = swp_entry_to_pte(entry);
4362                                 set_huge_swap_pte_at(mm, address, ptep,
4363                                                      newpte, huge_page_size(h));
4364                                 pages++;
4365                         }
4366                         spin_unlock(ptl);
4367                         continue;
4368                 }
4369                 if (!huge_pte_none(pte)) {
4370                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4371                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4372                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4373                         set_huge_pte_at(mm, address, ptep, pte);
4374                         pages++;
4375                 }
4376                 spin_unlock(ptl);
4377         }
4378         /*
4379          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4380          * may have cleared our pud entry and done put_page on the page table:
4381          * once we release i_mmap_rwsem, another task can do the final put_page
4382          * and that page table be reused and filled with junk.  If we actually
4383          * did unshare a page of pmds, flush the range corresponding to the pud.
4384          */
4385         if (shared_pmd)
4386                 flush_hugetlb_tlb_range(vma, f_start, f_end);
4387         else
4388                 flush_hugetlb_tlb_range(vma, start, end);
4389         /*
4390          * No need to call mmu_notifier_invalidate_range() we are downgrading
4391          * page table protection not changing it to point to a new page.
4392          *
4393          * See Documentation/vm/mmu_notifier.rst
4394          */
4395         i_mmap_unlock_write(vma->vm_file->f_mapping);
4396         mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4397
4398         return pages << h->order;
4399 }
4400
4401 int hugetlb_reserve_pages(struct inode *inode,
4402                                         long from, long to,
4403                                         struct vm_area_struct *vma,
4404                                         vm_flags_t vm_flags)
4405 {
4406         long ret, chg;
4407         struct hstate *h = hstate_inode(inode);
4408         struct hugepage_subpool *spool = subpool_inode(inode);
4409         struct resv_map *resv_map;
4410         long gbl_reserve;
4411
4412         /* This should never happen */
4413         if (from > to) {
4414                 VM_WARN(1, "%s called with a negative range\n", __func__);
4415                 return -EINVAL;
4416         }
4417
4418         /*
4419          * Only apply hugepage reservation if asked. At fault time, an
4420          * attempt will be made for VM_NORESERVE to allocate a page
4421          * without using reserves
4422          */
4423         if (vm_flags & VM_NORESERVE)
4424                 return 0;
4425
4426         /*
4427          * Shared mappings base their reservation on the number of pages that
4428          * are already allocated on behalf of the file. Private mappings need
4429          * to reserve the full area even if read-only as mprotect() may be
4430          * called to make the mapping read-write. Assume !vma is a shm mapping
4431          */
4432         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4433                 resv_map = inode_resv_map(inode);
4434
4435                 chg = region_chg(resv_map, from, to);
4436
4437         } else {
4438                 resv_map = resv_map_alloc();
4439                 if (!resv_map)
4440                         return -ENOMEM;
4441
4442                 chg = to - from;
4443
4444                 set_vma_resv_map(vma, resv_map);
4445                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4446         }
4447
4448         if (chg < 0) {
4449                 ret = chg;
4450                 goto out_err;
4451         }
4452
4453         /*
4454          * There must be enough pages in the subpool for the mapping. If
4455          * the subpool has a minimum size, there may be some global
4456          * reservations already in place (gbl_reserve).
4457          */
4458         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4459         if (gbl_reserve < 0) {
4460                 ret = -ENOSPC;
4461                 goto out_err;
4462         }
4463
4464         /*
4465          * Check enough hugepages are available for the reservation.
4466          * Hand the pages back to the subpool if there are not
4467          */
4468         ret = hugetlb_acct_memory(h, gbl_reserve);
4469         if (ret < 0) {
4470                 /* put back original number of pages, chg */
4471                 (void)hugepage_subpool_put_pages(spool, chg);
4472                 goto out_err;
4473         }
4474
4475         /*
4476          * Account for the reservations made. Shared mappings record regions
4477          * that have reservations as they are shared by multiple VMAs.
4478          * When the last VMA disappears, the region map says how much
4479          * the reservation was and the page cache tells how much of
4480          * the reservation was consumed. Private mappings are per-VMA and
4481          * only the consumed reservations are tracked. When the VMA
4482          * disappears, the original reservation is the VMA size and the
4483          * consumed reservations are stored in the map. Hence, nothing
4484          * else has to be done for private mappings here
4485          */
4486         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4487                 long add = region_add(resv_map, from, to);
4488
4489                 if (unlikely(chg > add)) {
4490                         /*
4491                          * pages in this range were added to the reserve
4492                          * map between region_chg and region_add.  This
4493                          * indicates a race with alloc_huge_page.  Adjust
4494                          * the subpool and reserve counts modified above
4495                          * based on the difference.
4496                          */
4497                         long rsv_adjust;
4498
4499                         rsv_adjust = hugepage_subpool_put_pages(spool,
4500                                                                 chg - add);
4501                         hugetlb_acct_memory(h, -rsv_adjust);
4502                 }
4503         }
4504         return 0;
4505 out_err:
4506         if (!vma || vma->vm_flags & VM_MAYSHARE)
4507                 /* Don't call region_abort if region_chg failed */
4508                 if (chg >= 0)
4509                         region_abort(resv_map, from, to);
4510         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4511                 kref_put(&resv_map->refs, resv_map_release);
4512         return ret;
4513 }
4514
4515 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4516                                                                 long freed)
4517 {
4518         struct hstate *h = hstate_inode(inode);
4519         struct resv_map *resv_map = inode_resv_map(inode);
4520         long chg = 0;
4521         struct hugepage_subpool *spool = subpool_inode(inode);
4522         long gbl_reserve;
4523
4524         if (resv_map) {
4525                 chg = region_del(resv_map, start, end);
4526                 /*
4527                  * region_del() can fail in the rare case where a region
4528                  * must be split and another region descriptor can not be
4529                  * allocated.  If end == LONG_MAX, it will not fail.
4530                  */
4531                 if (chg < 0)
4532                         return chg;
4533         }
4534
4535         spin_lock(&inode->i_lock);
4536         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4537         spin_unlock(&inode->i_lock);
4538
4539         /*
4540          * If the subpool has a minimum size, the number of global
4541          * reservations to be released may be adjusted.
4542          */
4543         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4544         hugetlb_acct_memory(h, -gbl_reserve);
4545
4546         return 0;
4547 }
4548
4549 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4550 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4551                                 struct vm_area_struct *vma,
4552                                 unsigned long addr, pgoff_t idx)
4553 {
4554         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4555                                 svma->vm_start;
4556         unsigned long sbase = saddr & PUD_MASK;
4557         unsigned long s_end = sbase + PUD_SIZE;
4558
4559         /* Allow segments to share if only one is marked locked */
4560         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4561         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4562
4563         /*
4564          * match the virtual addresses, permission and the alignment of the
4565          * page table page.
4566          */
4567         if (pmd_index(addr) != pmd_index(saddr) ||
4568             vm_flags != svm_flags ||
4569             sbase < svma->vm_start || svma->vm_end < s_end)
4570                 return 0;
4571
4572         return saddr;
4573 }
4574
4575 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4576 {
4577         unsigned long base = addr & PUD_MASK;
4578         unsigned long end = base + PUD_SIZE;
4579
4580         /*
4581          * check on proper vm_flags and page table alignment
4582          */
4583         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4584                 return true;
4585         return false;
4586 }
4587
4588 /*
4589  * Determine if start,end range within vma could be mapped by shared pmd.
4590  * If yes, adjust start and end to cover range associated with possible
4591  * shared pmd mappings.
4592  */
4593 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4594                                 unsigned long *start, unsigned long *end)
4595 {
4596         unsigned long check_addr = *start;
4597
4598         if (!(vma->vm_flags & VM_MAYSHARE))
4599                 return;
4600
4601         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4602                 unsigned long a_start = check_addr & PUD_MASK;
4603                 unsigned long a_end = a_start + PUD_SIZE;
4604
4605                 /*
4606                  * If sharing is possible, adjust start/end if necessary.
4607                  */
4608                 if (range_in_vma(vma, a_start, a_end)) {
4609                         if (a_start < *start)
4610                                 *start = a_start;
4611                         if (a_end > *end)
4612                                 *end = a_end;
4613                 }
4614         }
4615 }
4616
4617 /*
4618  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4619  * and returns the corresponding pte. While this is not necessary for the
4620  * !shared pmd case because we can allocate the pmd later as well, it makes the
4621  * code much cleaner. pmd allocation is essential for the shared case because
4622  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4623  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4624  * bad pmd for sharing.
4625  */
4626 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4627 {
4628         struct vm_area_struct *vma = find_vma(mm, addr);
4629         struct address_space *mapping = vma->vm_file->f_mapping;
4630         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4631                         vma->vm_pgoff;
4632         struct vm_area_struct *svma;
4633         unsigned long saddr;
4634         pte_t *spte = NULL;
4635         pte_t *pte;
4636         spinlock_t *ptl;
4637
4638         if (!vma_shareable(vma, addr))
4639                 return (pte_t *)pmd_alloc(mm, pud, addr);
4640
4641         i_mmap_lock_write(mapping);
4642         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4643                 if (svma == vma)
4644                         continue;
4645
4646                 saddr = page_table_shareable(svma, vma, addr, idx);
4647                 if (saddr) {
4648                         spte = huge_pte_offset(svma->vm_mm, saddr,
4649                                                vma_mmu_pagesize(svma));
4650                         if (spte) {
4651                                 get_page(virt_to_page(spte));
4652                                 break;
4653                         }
4654                 }
4655         }
4656
4657         if (!spte)
4658                 goto out;
4659
4660         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4661         if (pud_none(*pud)) {
4662                 pud_populate(mm, pud,
4663                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4664                 mm_inc_nr_pmds(mm);
4665         } else {
4666                 put_page(virt_to_page(spte));
4667         }
4668         spin_unlock(ptl);
4669 out:
4670         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4671         i_mmap_unlock_write(mapping);
4672         return pte;
4673 }
4674
4675 /*
4676  * unmap huge page backed by shared pte.
4677  *
4678  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4679  * indicated by page_count > 1, unmap is achieved by clearing pud and
4680  * decrementing the ref count. If count == 1, the pte page is not shared.
4681  *
4682  * called with page table lock held.
4683  *
4684  * returns: 1 successfully unmapped a shared pte page
4685  *          0 the underlying pte page is not shared, or it is the last user
4686  */
4687 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4688 {
4689         pgd_t *pgd = pgd_offset(mm, *addr);
4690         p4d_t *p4d = p4d_offset(pgd, *addr);
4691         pud_t *pud = pud_offset(p4d, *addr);
4692
4693         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4694         if (page_count(virt_to_page(ptep)) == 1)
4695                 return 0;
4696
4697         pud_clear(pud);
4698         put_page(virt_to_page(ptep));
4699         mm_dec_nr_pmds(mm);
4700         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4701         return 1;
4702 }
4703 #define want_pmd_share()        (1)
4704 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4705 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4706 {
4707         return NULL;
4708 }
4709
4710 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4711 {
4712         return 0;
4713 }
4714
4715 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4716                                 unsigned long *start, unsigned long *end)
4717 {
4718 }
4719 #define want_pmd_share()        (0)
4720 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4721
4722 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4723 pte_t *huge_pte_alloc(struct mm_struct *mm,
4724                         unsigned long addr, unsigned long sz)
4725 {
4726         pgd_t *pgd;
4727         p4d_t *p4d;
4728         pud_t *pud;
4729         pte_t *pte = NULL;
4730
4731         pgd = pgd_offset(mm, addr);
4732         p4d = p4d_alloc(mm, pgd, addr);
4733         if (!p4d)
4734                 return NULL;
4735         pud = pud_alloc(mm, p4d, addr);
4736         if (pud) {
4737                 if (sz == PUD_SIZE) {
4738                         pte = (pte_t *)pud;
4739                 } else {
4740                         BUG_ON(sz != PMD_SIZE);
4741                         if (want_pmd_share() && pud_none(*pud))
4742                                 pte = huge_pmd_share(mm, addr, pud);
4743                         else
4744                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4745                 }
4746         }
4747         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4748
4749         return pte;
4750 }
4751
4752 /*
4753  * huge_pte_offset() - Walk the page table to resolve the hugepage
4754  * entry at address @addr
4755  *
4756  * Return: Pointer to page table or swap entry (PUD or PMD) for
4757  * address @addr, or NULL if a p*d_none() entry is encountered and the
4758  * size @sz doesn't match the hugepage size at this level of the page
4759  * table.
4760  */
4761 pte_t *huge_pte_offset(struct mm_struct *mm,
4762                        unsigned long addr, unsigned long sz)
4763 {
4764         pgd_t *pgd;
4765         p4d_t *p4d;
4766         pud_t *pud;
4767         pmd_t *pmd;
4768
4769         pgd = pgd_offset(mm, addr);
4770         if (!pgd_present(*pgd))
4771                 return NULL;
4772         p4d = p4d_offset(pgd, addr);
4773         if (!p4d_present(*p4d))
4774                 return NULL;
4775
4776         pud = pud_offset(p4d, addr);
4777         if (sz != PUD_SIZE && pud_none(*pud))
4778                 return NULL;
4779         /* hugepage or swap? */
4780         if (pud_huge(*pud) || !pud_present(*pud))
4781                 return (pte_t *)pud;
4782
4783         pmd = pmd_offset(pud, addr);
4784         if (sz != PMD_SIZE && pmd_none(*pmd))
4785                 return NULL;
4786         /* hugepage or swap? */
4787         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4788                 return (pte_t *)pmd;
4789
4790         return NULL;
4791 }
4792
4793 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4794
4795 /*
4796  * These functions are overwritable if your architecture needs its own
4797  * behavior.
4798  */
4799 struct page * __weak
4800 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4801                               int write)
4802 {
4803         return ERR_PTR(-EINVAL);
4804 }
4805
4806 struct page * __weak
4807 follow_huge_pd(struct vm_area_struct *vma,
4808                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4809 {
4810         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4811         return NULL;
4812 }
4813
4814 struct page * __weak
4815 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4816                 pmd_t *pmd, int flags)
4817 {
4818         struct page *page = NULL;
4819         spinlock_t *ptl;
4820         pte_t pte;
4821 retry:
4822         ptl = pmd_lockptr(mm, pmd);
4823         spin_lock(ptl);
4824         /*
4825          * make sure that the address range covered by this pmd is not
4826          * unmapped from other threads.
4827          */
4828         if (!pmd_huge(*pmd))
4829                 goto out;
4830         pte = huge_ptep_get((pte_t *)pmd);
4831         if (pte_present(pte)) {
4832                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4833                 if (flags & FOLL_GET)
4834                         get_page(page);
4835         } else {
4836                 if (is_hugetlb_entry_migration(pte)) {
4837                         spin_unlock(ptl);
4838                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4839                         goto retry;
4840                 }
4841                 /*
4842                  * hwpoisoned entry is treated as no_page_table in
4843                  * follow_page_mask().
4844                  */
4845         }
4846 out:
4847         spin_unlock(ptl);
4848         return page;
4849 }
4850
4851 struct page * __weak
4852 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4853                 pud_t *pud, int flags)
4854 {
4855         if (flags & FOLL_GET)
4856                 return NULL;
4857
4858         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4859 }
4860
4861 struct page * __weak
4862 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4863 {
4864         if (flags & FOLL_GET)
4865                 return NULL;
4866
4867         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4868 }
4869
4870 bool isolate_huge_page(struct page *page, struct list_head *list)
4871 {
4872         bool ret = true;
4873
4874         VM_BUG_ON_PAGE(!PageHead(page), page);
4875         spin_lock(&hugetlb_lock);
4876         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4877                 ret = false;
4878                 goto unlock;
4879         }
4880         clear_page_huge_active(page);
4881         list_move_tail(&page->lru, list);
4882 unlock:
4883         spin_unlock(&hugetlb_lock);
4884         return ret;
4885 }
4886
4887 void putback_active_hugepage(struct page *page)
4888 {
4889         VM_BUG_ON_PAGE(!PageHead(page), page);
4890         spin_lock(&hugetlb_lock);
4891         set_page_huge_active(page);
4892         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4893         spin_unlock(&hugetlb_lock);
4894         put_page(page);
4895 }
4896
4897 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4898 {
4899         struct hstate *h = page_hstate(oldpage);
4900
4901         hugetlb_cgroup_migrate(oldpage, newpage);
4902         set_page_owner_migrate_reason(newpage, reason);
4903
4904         /*
4905          * transfer temporary state of the new huge page. This is
4906          * reverse to other transitions because the newpage is going to
4907          * be final while the old one will be freed so it takes over
4908          * the temporary status.
4909          *
4910          * Also note that we have to transfer the per-node surplus state
4911          * here as well otherwise the global surplus count will not match
4912          * the per-node's.
4913          */
4914         if (PageHugeTemporary(newpage)) {
4915                 int old_nid = page_to_nid(oldpage);
4916                 int new_nid = page_to_nid(newpage);
4917
4918                 SetPageHugeTemporary(oldpage);
4919                 ClearPageHugeTemporary(newpage);
4920
4921                 spin_lock(&hugetlb_lock);
4922                 if (h->surplus_huge_pages_node[old_nid]) {
4923                         h->surplus_huge_pages_node[old_nid]--;
4924                         h->surplus_huge_pages_node[new_nid]++;
4925                 }
4926                 spin_unlock(&hugetlb_lock);
4927         }
4928 }